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Abstract

Deep learning-based Natural Language Pro-
cessing (NLP) models are vulnerable to adver-
sarial attacks, where small perturbations can
cause a model to misclassify. Adversarial Train-
ing (AT) is often used to increase model ro-
bustness. Despite the challenging nature of
textual inputs, numerous AT approaches have
emerged for NLP models. However, we have
discovered an intriguing phenomenon: delib-
erately or accidentally (implicitly as part of
existing AT schemes) miscalibrating models
such that they are extremely overconfident or
underconfident in their predictions, disrupts ad-
versarial attack search methods, giving rise to
an apparent increase in robustness. However,
we demonstrate that the observed gain in ro-
bustness is an illusion of robustness (IOR), as
an adversary aware of this miscalibration can
perform temperature calibration to modify the
predicted model logits, allowing the adversar-
ial attack search method to find adversarial ex-
amples whereby obviating IOR. Consequently,
we urge adversarial robustness researchers to
incorporate adversarial temperature scaling ap-
proaches into their evaluations to mitigate IOR.

1 Introduction

Deep learning Transformer-based Natural Lan-
guage Processing (NLP) models are able to per-
form well in a range of tasks (Manning et al., 2014).
However, these NLP models are susceptible to ad-
versarial attacks, where clean input text samples
perturbed slightly (accidentally or maliciously by
an adversary) can lead to a NLP model misclas-
sifying the perturbed input (Jia and Liang, 2017).
However, the emergence of the Adversarial Train-
ing (AT) paradigm (Bai et al., 2021) has shown
some success in training models to be more ro-
bust to these small adversarial perturbations. Here,
the traditional training process is adapted to mini-
mize the empirical risk associated with a “robust-
ness loss” as opposed to the risk associated with
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Figure 1: Accuracy on adversarial examples from out-
of-the-box adversarial attack for models with different
average predicted class confidence, E,(x)[P;(¢[x)]. Ex-
tremely overconfident and underconfident models show
increased robustness. We reveal that this increased ro-
bustness is an illusion of robustness.

the standard loss for clean input samples. The ro-
bustness loss is the standard loss applied to the
worst-case (loss maximizing) adversarial sample
for each training sample. In NLP, due to the dis-
crete nature of the text, this adversarial training
min-max formulation is particularly challenging
as the inner maximization is computationally ex-
pensive (Yoo and Qi, 2021). Nevertheless, a vari-
ety of approaches have been proposed in literature,
ranging from augmentation of the training set with
adversarial examples for a specific model, to so-
phisticated token-embedding space optimizations
for the inner maximization step (Wang et al., 2019a;
Goyal et al., 2023).

Although many NLP AT methods are effective
in boosting model robustness, we argue that, in
some cases, the increased robustness is an illusion
of robustness (IOR). Specifically, highly miscal-
ibrated models, with an extreme predicted class
confidence (Guo et al., 2017), present an IOR. This
extreme class confidence disrupts out-of-the-box



adversarial attacks’ search processes, such that the
model appears robust to these out-of-the-box at-
tacks. We identify extreme predicted class con-
fidence as one cause of IOR by reproducing this
phenomenon in a controlled manner, intentionally
creating highly overconfident and underconfident
models. We next demonstrate that this appears
to give significant robustness gains against out-of-
the-box attacks (up to a three-fold increase in ad-
versarial accuracy). We also demonstrate that AT
scheme developers can (unintentionally) develop
techniques that cause high model miscalibration
and thus also present an IOR — a false sense of se-
curity against adversarial attacks. We show that our
findings apply to all three commonly used encoder
models: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and DeBERTa (He et al., 2020).

Next, we argue that an adversary who is aware
of model miscalibration used in this manner, can
largely circumvent the model’s perceived robust-
ness at inference-time, such that the observed ro-
bustness gains no longer persist. We show that
test-time temperature calibration approaches can
be used for this purpose, and also how an adversary
can use a more sophisticated and tailored tempera-
ture scaling optimization approach to better pierce
a model’s IOR. We then demonstrate the effective-
ness of our approach at mitigating the IOR, which
significantly decreases the adversarial accuracy.

In light of our findings, we urge the adversarial
robustness community to adopt optimized temper-
ature scaling approaches in all adversarial robust-
ness evaluations to ensure they accurately reflect a
proposed defense’s ability to induce robustness.

2 Background
2.1 Adversarial Attacks

An untargeted adversarial attack is able to fool a
classification system, () with trained parameters
0, by perturbing an input sample, x to generate
an adversarial example X to cause a change in the
predicted class,

F(x;0) # F(%0). (1)

Traditional adversarial attack definitions (Szegedy
et al., 2014) require the perturbation to be imper-
ceptible as per human perception. In NLP it can be
challenging to measure imperceptibility. Following
Morris et al. (2020) and Raina and Gales (2023),
we can separate modern NLP imperceptibility con-
straints into two categories: 1) pre-transformation

constraints, which limit the changes that can be
made to a clean sample x, such that an adver-
sarial example is limited to a specific set of se-
quences X € A(x); and 2) distance-based con-
straints, which aim to mathematically limit the dis-
tance between the original, clean sample and the
adversarial example using a proxy distance mea-
sure G(x,X) < e.

A plethora of adversarial attack approaches have
been proposed for efficiently discovering adversar-
ial examples for NLP models (Alzantot et al., 2018;
Garg and Ramakrishnan, 2020; Li et al., 2020;
Gao et al., 2018; Wang et al., 2019b; Ren et al.,
2019; Jin et al., 2019; Li et al., 2018; Tan and
Joty, 2021; Tan et al., 2020). Many of the popular
attack approaches are implemented in the TextAt-
tack library (Morris et al., 2020). These attack
approaches can be classed as either whitebox at-
tacks, where the adversary has full access to the
model parameters or blackbox attacks, where the
adversary can only access input-output pairs from
the model (Tabassi et al., 2019).

2.2 Traditional Adversarial Training

Standard supervised training methods seek to find
model parameters, 6 that minimises the empirical
risk (for a dataset of x ~ p(x)), characterised by a
loss function,

0 =argmin E [L(x,0)]. (2)
9 x~p(x)

Adversarial Training (AT) (Goodfellow et al.,
2015) adapts the training scheme to minimise the
empirical risk associated with the worst-case ad-
versarial example, X, such that we are minimising
a robust loss

f = argmin [E
6 x~px)

max L(x,0)
G(x,%,)<e, REA

3)
It is too computationally expensive to perform the
inner maximization step to find textual adversar-
ial examples in each step of training. A group
of AT methods speed-up this optimization step
by finding adversarial examples in the token em-
bedding space, which allows for faster gradient-
based approaches: PGD-K (Madry et al., 2018),
FreeLLB (Zhu et al., 2020), TA-VAT (Li and Qiu,
2020), InfoBERT (Wang et al., 2020). However,
limited success of these approaches has been at-
tributed to perturbations in the embedding space



being unrepresentative of real textual adversarial
attacks. Hence, AT methods such as Adversar-
ial Sparse Convex Combination (ASCC) (Dong
et al., 2021) and Dirichlet Neighborhood Ensemble
(DNE) (Zhou et al., 2020) identify a more sensible
embedding perturbation space, which they define
as the convex hull of word synonyms. Nevertheless,
today the simplest and most popular AT approach
in NLP is to simply to augment (once) the training
set with textual adversarial examples X for each
clean sample x using standard NLP attack mecha-
nisms on a model trained in the standard manner
(Equation 2).

2.3 Model Calibration

Modern deep learning models are often miscali-
brated, where the model’s confidence in the pre-
dicted class does not reflect the ground truth cor-
rectness likelihood (Guo et al., 2017). Intuitively,
for 100 model predictions with a model confidence
of 90%, we should expect 90% of these predic-
tions to be correct. More formally, a model with
a predicted class confidence P;(¢[x), is defined as
perfectly calibrated when

P (é = c*|Py(¢élx) :p) =p, VYpel0,1], 4)

where ¢ = F(x;0) is the predicted class and the
true (label) class is ¢*. The extent of a model’s
miscalibration can be visualized on a reliability
diagram (Degroot and Fienberg, 1983; Niculescu-
Mizil and Caruana, 2005), displaying the sample
accuracy as a function of model confidence. Any
deviation from an identity function indicates mis-
calibration. Typical single-value summaries for
the calibration error are the Expected Calibration
Error (ECE) and the Maximum Calibration Error
(MCE) (Naeini et al., 2015).

3 Extreme Predicted Class Confidence

The robustness gains observed for traditional AT
approaches (Equation 3), may not always be due
to inherent robustness gains, but can be a conse-
quence of a high level of model miscalibration.
This miscalibration can induce extreme confidence
predictions, such that the model’s predicted class
confidence P(¢|x) is either very high (overconfi-
dent) or very low (underconfident). Figure 1 (using
a standard NLP model, test dataset and adversarial
attack described in Section 5) demonstrates that
highly miscalibrated models with extreme confi-
dence values in the predicted class (around 1.0 for

overconfident models or 1/C, with C' as the num-
ber of classes for underconfident models) are sig-
nificantly more robust to out-of-the-box adversarial
attacks.

The apparent increase in robustness of extremely
miscalibrated models can be explained. For both
underconfident and overconfident models, the pre-
dicted class confidence has very little variance for
different input sequences, X,

By [P (€]%) = By [P ()] < ¢, (5)

where ( is some small variance. The narrow con-
fidence distribution makes it challenging for an
adversary to identify an appropriate search direc-
tion for adversarial examples. To illustrate this,
consider a miscalibrated model with extremely
high confidence in the predicted class probabil-
ity, P;(¢|x) =~ 1.0, then for most search directions
d that are not in an adversarial direction d # d
(where x = x + a) the model has very little sensi-
tiVity,l 1.€.,

d" Vi P;(¢lx) ~ 0. (6)

As a consequence of this little sensitivity, any white-
box adversarial attack approach looking to exploit
gradients or even a blackbox attack approach mea-
suring the sensitivity of the predicted probability,
has a small confidence range to observe, meaning
that the impact of any proposed perturbation gives
a very noisy signal to its actual effect on the output.
As a result, the adversarial attack search process
will converge extremely slowly or fail to find the
desired adversarial perturbation direction d. This
hypothesis is verified empirically in Appendix E.
In this work, to demonstrate that extreme confi-
dence can cause an apparent increase in robustness
against of-the-shelf adversarial attacks, we con-
sider models that are explicitly induced with over-
confidence or underconfidence (Section 3.1). We
further demonstrate that standard AT approaches
can also implicitly induce extreme confidence and
also cause an apparent increase in robustness (Sec-
tion 3.2). Section 4 shows that this increase in
robustness is an illusion of robustness (IOR).

3.1 Explicit: Temperature Scaling

Let d be a model trained using the standard training
objective, as in Equation 2. For this model with
"Note that these strict mathematical operations are not

defined for the input text space and are simply representative
of equivalent discrete textual space perturbations.



predicted logits, I1, . . ., {c for C output classes, the
probability of a specific class is typically estimated
by the Softmax function,

exp (I¢)
>oiexp (1)

However, we can intentionally miscalibrate the
model and increase the model confidence at infer-
ence time by using a design temperature, 7' = T},
to scale the predicted logits,

exp (I./T)
>iexp (Li/T)

A design choice of T;; < 1.0 concentrates the prob-
ability mass in the largest logit class to create an
overconfident model, whilst conversely T,; > 1.0
creates an underconfident model. Hence, explicitly
setting a design temperature 7% at inference time
can be used to serve highly miscalibrated models,
which can disrupt an adversary’s attack search pro-
cess as described in Equation 6, whilst maintaining
the simplicity of the standard training objective
(Equation 2).

Bylex) = @)

Py(c|x;T) = ®)

3.2 Implicit Overconfidence: DDi AT

Section 3.1 presents an explicit temperature scaling
method to generate a highly miscalibrated system,
which cause an illusion of robustness for out-of-the-
box adversarial attacks. However, it is possible that
implementation strategies and algorithmic features
in adversarial training (AT) procedures (Equation
3) can also lead to inherently overconfident models.
We now consider adversarial training techniques
that implicitly induce model overconfidence.
Implicit overconfidence can be demonstrated
first with the incorporation of the recently proposed
Danskin Descent Direction (DDi; Latorre et al.,
2023) into an AT approach. Latorre et al. (2023)
adapted the standard AT paradigm of Equation 3
to identify optimal gradient update directions for
increased model robustness, showing promising
results in computer vision. In Appendix A, we
detail how the DDi algorithm can be used to com-
pute gradients while adversarially training NLP
classifiers. In our experiments, we observe (Ta-
ble 1) that the DDi gradients applied in AT for
NLP classifiers induces highly overconfident mod-
els without compromising on clean accuracy, such
that a model that has undergone DDi-AT almost
always predicts near 100% confidence in its pre-
dicted class, Py(c|[x) ~ 1.0. Our ablations (Ap-
pendix B) reveal that the gradient normalization

step in the DDi algorithm (Equation 12) is respon-
sible for the induction of inherent model overconfi-
dence. Hence, we further consider other standard
AT schemes that may use gradient normalization
during training. Specifically, we consider Project
Gradient Descent (PGD) and Adversarial Sparce
Convex Combination (ASCC), introduced in Sec-
tion 2.2. Table 1 and the discussion in Appendix
B demonstrate that these AT schemes also yield
highly overconfident systems, and are thus at risk
of IOR: they appear robust to adversarial attacks
by disrupting the search process (Equation 6).

4 Piercing the Illusion

Section 3 demonstrates how intentional or acciden-
tal extreme miscalibration of a model can create
extreme confidence distributions that disrupt out-
of-the-box adversarial attack search methods and
thus give an apparent gain in robustness. This sec-
tion highlights that the observed gains in robustness
are an illusion of robustness (IOR), as we propose
simple approaches that an adversary can use to
mitigate extreme model confidences to remove the
disruption to the attack search methods.

The following approaches require an adversary
to modify aspects of the output of the model to
mitigate the disruption to an attack search pro-
cess. Note that these modifications are only used
by the adversary to create/find adversarial exam-
ples, which can then be applied to the original (un-
modified) model served by the model developer.

4.1 Adversary Temperature Calibration

Highly miscalibrated models, such as the design of
overconfident models in Section 3, interfere with
adversarial attacks from finding meaningful search
directions due to the little sensitivity in the pre-
dicted probabilities. An adversary aims to mitigate
this disruption to the attack search process. The
simplest solution for an adversary is to calibrate
the model so that the confidences are in a sensible
range and can be exploited by adversarial attacks.

A strong indicator of model miscalibration (Sec-
tion 2.3) can be given by the Negative Log Likeli-
hood (NLL; Hastie et al., 2017). Thus, assuming
an adversary has access to the output model log-
its [1, ..., lc and a labelled validation set of data
{x;, c}};, test-time temperature calibration (Guo
et al., 2017) can be applied.> Here the adversary

Note that the logits received by an adversary may already
have been explicitly scaled by a model designer to intention-



optimizes an adversarial temperature, 7}, to min-
imize the Negative Log Likelihood (NLL) of the
validation set samples,

T, = arg minz —log Py(ci|x;T), (9)
T

where P;(c*|x;T) is the confidence of the true
class after temperature scaling as in Equation 8.
Due to the continuous nature of the transformation
and the need to optimize a single parameter, T,
in this work we use the standard gradient descent
optimization.’

Other than temperature optimization, an ad-
versary can attempt other post-training model
calibration approaches such as Histogram Bin-
ning (Zadrozny and Elkan, 2001), isotonic regres-
sion (Zadrozny and Elkan, 2002) and multi-class
versions of Platt scaling (Niculescu-Mizil and Caru-
ana, 2005; Platt and Karampatziakis, 2007). How-
ever, temperature calibration is found to be the most
practical and effective for an adversary seeking to
mitigate a model’s IOR. A more detailed discussion
is presented in Appendix D.5.

4.2 Adversary Temperature Optimization

Section 4.1 outlines a temperature calibration ap-
proach an adversary can use to mitigate the disrup-
tion to out-of-the-box adversarial attack methods.
However, this approach has two shortcomings:

1. The adversarial temperature, 7, is not directly
tuned to minimize adversarial robustness, as
it only considers the likelihood of clean exam-
ples in a validation set.

2. Learning the adversarial temperature, 7}, to
minimize the NLL (Equation 9) uses a gra-
dient descent based optimization algorithm
where the stability of the algorithm is sensitive
to hyperparameters and does not guarantee an
optimal solution.

Hence, this section outlines an algorithm that
directly optimizes the adversarial temperature 7,
to minimize a model’s adversarial robustness. We
define the adversarial accuracy, Q() as a function
of the temperature parameter,

o) = 5 Y IFER(T) =], (10)

ally miscalibrate the system as in Section 3.1.

3The optimization method is inspired by
https://github.com/gpleiss/temperature_
scaling/tree/master.

where X;(T") represents the adversarial example
generated from an adversarial attack on the given
model, 6 with the logits scaled by a temperature
T as in Equation 8. Figure 1 illustrates that as
the temperature parameter is swept from large
to small values (increasing model confidence),
the adversarial accuracy, Q() behaves almost as
a convex function of temperature, 7', such that,
QlaTi+ (1—a)Th) < aQ(Th) + (1 — a)Q(T3),
where 0 < o < 1. The optimal adversarial temper-
ature 7, is the minimizer of the adversarial accu-

racy Q(T),

T, = argmin Q(T).
T

(11

The minimizer, T, can be found efficiently over
the non-differentiable convex function, Q() us-
ing a search method such as the Golden-section
search algorithm (Kiefer, 1953). In this work we
use the Brent-Dekker method, an extension of
Golden-section search that accounts for a poten-
tially parabolic convergence point (Brent, 1971).

Note, as is the case for the calibration approach
of Section 4.1, to optimize for 7,, an adversary
is not required to query the target model multiple
times as the adversary only requires the output
model logits Iy, ...,lc.

Although the temperature optimization approach
in this section offers an adversarial temperature
T, optimized for adversarial robustness, the search
method is significantly slower than the gradient
descent approach for calibration on a clean (not ad-
versarially attacked samples) validation set (Equa-
tion 9). The greatest computational cost can be
attributed to calculation of the adversarial accuracy
(Equation 10), as this requires an adversarial attack
to be applied to each clean sample in the validation
set, {x;,¢] }37:1. Therefore, we recommend that
by default, to pierce the IOR, one should adopt
the calibration approach of Equation 9, but when
there is access to greater computational resources
Equation 11 should be followed.

S Experiments

We first demonstrate how explicit or implicit train-
ing approaches that cause a model to become
highly underconfident or overconfident (miscali-
brated) suffer from an illusion of robustness (IOR),
where the models appear robust to out-of-the-box
adversarial attacks. We then show how simple ap-
proaches can be used to pierce this illusion.


https://github.com/gpleiss/temperature_scaling/tree/master
https://github.com/gpleiss/temperature_scaling/tree/master

5.1 Experimental Setup

Data. Experiments are carried out on three stan-
dard NLP classification datasets. First, Rotten
Tomatoes (Pang and Lee, 2005) is a binary sen-
timent classification task for movie reviews, con-
sisting of 8530 training, 1066 validation and 1840
test samples. Next, we consider the Twitter Emo-
tions Dataset (Saravia et al., 2018), which catego-
rizes tweets into one of six emotions: love, joy,
surprise, fear, sadness or anger, with a total of
16,000 training, 2000 validation and 2000 test sam-
ples. Finally we consider the popular AGNews
dataset (Zhang et al., 2015), consisting of articles
from 2000 news sources classified into one of four
topics: business, sci/tech, world or sports. There
are a combined 120,000 training samples and 7600
test samples. For readability we present the re-
sults in the main paper for the Rotten Tomatoes
dataset, with the equivalent results presented for
the other datasets in Appendix D.1. The same
general trends are observed across the different
datasets.

Models. Transformer-encoder models (Vaswani
et al., 2017) give state-of-the-art performance on
many NLP classification tasks. Hence, in this work
we perform experiments with three Transformer-
encoder base models (110M parameters). Specif-
ically, we consider DeBERTa (He et al., 2020),
RoBERTa (Liu et al., 2019) and BERT (Devlin
et al., 2019). The results in the main paper are
presented for the Deberta model with equiva-
lent results presented for the other models in
Appendix D.2. Identical trends are observed for
all the models. Hyperparameter settings for train-
ing of these models are given in Appendix C. All
experiments are run over three random seeds.

Adversarial attacks. We consider four popular
out-of-the-box adversarial attack approaches in this
work. Bert Adversarial Example (bae) (Garg and
Ramakrishnan, 2020) is included as a word-level
blackbox attack, where the adversary has only ac-
cess to the model inputs and predictions. Next, we
include the more powerful Textfooler (tf) (Jin et al.,
2019) and Probability Weighted Word Saliency
(pwws) (Ren et al., 2019) word-level attacks. Fi-
nally, we include the DeepWordBug (dg) (Gao
et al., 2018) attack as a whitebox, character-level
adversarial attack approach. Each adversarial at-
tack is implemented with the default settings from
TextAttack (Morris et al., 2020). To evaluate the

impact of the different adversarial attacks we report
the adversarial accuracy, which is the accuracy of
the target model on adversarial examples.

AT Approaches. To demonstrate the risk of IOR
we consider a range of standard AT methods. As
described in Section 2.2, we first consider the Dan-
skin Descent Direction (DDi; Latorre et al., 2023),
which we show generates inherent overconfidence.
We further consider PGD-K (Madry et al., 2018)
and FreeLLB (Zhu et al., 2020) as embedding-space
AT schemes and ASCC (Dong et al., 2021) as a
text-embedding combined AT approach. Finally,
we consider the most popular NLP AT approach:
simple augmentation of the training set with ad-
versarial examples. In this work, to generate these
adversarial examples the target model is trained in
the standard manner (Equation 2) and DeepWord-
Bug is used to attack the trained model, such that an
adversarial example is found for each clean train-
ing sample. The target model architecture is then
re-trained (as per Equation 2) on the training set
augmented with the generated adversarial exam-
ples. Hence, for the augmentation-based AT model,
DeepWordBug can be viewed as a seen attack and
the remaining attacks as unseen. It would be ex-
pected that the model is relatively more robust to
seen attacks. Hyperparameters for each individual
AT baseline method are given in Appendix C.

5.2 Creating the Illusion

To illustrate the IOR, Section 3 proposes that highly
miscalibrated systems with extreme predicted class
confidences can be created explicitly by tempera-
ture scaling (Section 3.1). However, IOR can man-
ifest for AT schemes that implicitly induce model
miscalibration (Section 3.2). To verify this, we con-
sider a standard model (std) trained in the standard
manner (Equation 2). After the model is trained,
we create two new versions of the std model us-
ing explicit design temperature scaling (Equation
8): a highly underconfident model (Jconf) with
Ty = 2000000 and a highly overconfident model
(ftconf) with T; = 0.005. To demonstrate how
AT schemes can implicitly create overconfidence,
we include DDi-AT (ddi-at), PGD AT (pgd*), and
ASCC AT (ascc*), where * indicates that gradient
normalization is used during training.*

Table 1 verifies that models {conf, ddi-at, pgd*
and ascc™* are significantly more confident than the

*Appendix B shows that gradient normalization during
training can implicitly lead to overconfidence.



std model, whilst the |conf model is far less confi-
dent, as intended. The differences in the confidence
are more prominent for the adversarial examples
(pwws is used to attack the test set). The clean
accuracy on the test data is the same or similar to
that of the std model.

Model ‘ clean ‘ P(é|Xdean)  P(é|Xaay)
std ‘ 88.96 ‘ 97.08 86.04
+0.30 +0.68
lconf | 88.96 | 50.00007  50.00004
+0.30 +0.00 +0.00
tconf | 88.96 99.98 99.95
+0.30 +0.02 +0.01
ddi-at | 87.90 99.97 99.91
+0.49 +0.0 +0.01
ped* | 88.36 99.96 99.90
+0.68 +0.04 +0.01
ascc* | 87.80 99.97 99.92
+0.42 +0.04 +0.01

Table 1: Clean accuracy (%) and model confidence (%)
on clean and adversarial (pwws) examples for extreme
confidence systems: high confidence ( tconf), low con-
fidence (Jconf), ddi-at, pgd* and ascc*.

Table 2 presents the adversarial robustness of
each model as measured by the adversarial accu-
racy under the different out-of-the-box adversarial
attacks. For comparison, we include the AT ap-
proaches (aug, pgd, ascc, freelb), which have been
designed to not be overconfident by removing gra-
dient normalization during training (Appendix D.4).
In general, the baseline AT approaches (aug, pgd,
ascc, freelb) do increase model robustness across
all the different attack methods, with the augmen-
tation approach being the most effective. The low
confidence model also demonstrates comparable
adversarial robustness to the augmentation-based
approach. However, the highly overconfident mod-
els (Tconf, ddi-at, pgd*, ascc*) indicate a signifi-
cantly higher (two/three-fold increase) adversarial
robustness relative to the other AT approaches.

5.3 Piercing the Illusion

We argue that the apparent increase in adversar-
ial robustness of the extreme confidence models
(Jconf, Tconf, ddi-at, pgd*, ascc*) in Table 2 is due
to the out-of-the-box attack search process being
disrupted,’ i.e. the models are actually suscepti-
ble to adversarial examples® but the adversarial at-
tacks are unable to find these adversarial examples.

5 Appendix E empirically shows that extreme confidence
results in a noisier search for regular adversarial attacks.

%We know this must be true for the temperature-scaled
models as the predicted class for any input for these models is
identical to the std model.

Method ‘ clean ‘ bae tf pwWws dg
std ‘ 88.96 ‘ 31.39 17.82 20.42 20.11
+1.20 +0.49 +0.62 +0.94
leonf(§3.1) | 88.96 | 31.21 2098 25.17 32.18
+0.30 +0.94 +0.99 +0.89 +2.78
teonf (§3.1) | 88.96 | 37.71 54.35 59.29  65.60
+0.30 +1.18 +0.73 +0.62 +1.81
ddi-at (§3.2) | 87.90 | 39.18 56.54 61.07 66.73
+0.49 +0.75 +1.67 +0.99 +1.01
ped* 88.36 | 39.94 58.02 64.45 67.02
+0.68 +0.55 +1.04 +0.77 +0.83
ascc* 87.80 | 40.01 54.32 63.99 67.43
+0.42 +0.69 +1.57 +0.86 +0.93
aug 87.12 | 34.74 22.36 26.11 37.43
+0.39 +1.59 +1.8 +2.57 +0.75
ped 88.24 | 33.65 19.92 26.70 26.05
+0.73 +0.57 +0.47 +0.87 +0.61
asce 87.77 | 33.61 15.13 23.50 26.80
+0.36 +0.64 +2.17 +0.77 +2.11
freelb 88.74 | 32.52 19.51 24.55 24.52
+0.32 +0.52 +1.70 +0.70 +0.73

Table 2: Accuracy (%) of extreme confidence systems
compared to standard AT methods on out-of-the-box
adversarial attacks.

Hence, the observed robustness is an IOR.

In Section 4, we presented two simple ap-
proaches an adversary could employ to mitigate
the disruption of the adversarial attack search pro-
cesses and remove the IOR. First, temperature cal-
ibration (cal) can be applied to the trained model
to learn an adversarial calibrating temperature 7.
This temperature is learnt by minimizing the NLL
on the validation data (Equation 9) with a gradient-
descent based optimizer. The learning rate is set to
0.01 with a maximum of 5000 iterations. Alterna-
tively, the adversary can optimize the temperature
T, (opt) by accounting for the adversarial examples
for a validation set (Equation 11). Here, DeepWord-
Bug is used to attack the validation set to optimize
for T,. For both approaches, the target model is
modified by scaling the predicted logits by T}, and
then the out-of-the-box adversarial attacks are run
on the modified model to find adversarial exam-
ples. These adversarial examples are evaluated on
the original, unmodified model. Table 3 shows the
impact of the different adversarial approaches (cal
and opt) to learn T}, on the adversarial robustness
of the models. For the overconfident models, {conf,
ddi-at, pgd* and ascc*, simple temperature calibra-
tion (cal) is sufficient to cause a significant drop in
model robustness. For the low confidence model,
the more computationally expensive temperature
optimization approach (opt) is necessary to signifi-
cantly reduce model robustness. This demonstrates
that an adversary can remove the IOR of highly
miscalibrated systems by optimizing for the adver-



sarial scaling temperature 77,.”

Method Adv. ‘ clean ‘ bae tf pwws dg
std - 88.96 | 31.39 17.82 20.42 20.11
+0.30 | +£1.20 +0.49 +0.62 +0.94

Jeonf - 88.96 | 31.21 20.98 25.17 32.18
+0.30 | +£0.94 +0.99 +0.89 +2.78

cal 88.96 | 31.52 21.89 27.58 31.52

+0.30 | +0.34 +0.43 +1.31 +0.34

opt 88.96 | 31.44 17.82 20.86  21.98

+0.30 | +1.15 +0.49 +0.64 +1.66

Tconf - 88.96 | 37.71 54.35 59.29  65.60
+0.30 | +1.18 +0.73 +0.62 +1.81

cal 88.96 | 31.39 17.82 20.45 21.64

+0.30 | +£1.20 +£0.49 £0.74 £1.46

opt 88.96 | 31.39 17.82 20.90 21.06

+0.30 | +1.20 +0.49 £0.94 £0.82

ddi-at - 87.90 | 39.18 56.54 61.07 66.73
+0.49 | +£0.75 +£1.67 +0.99 =£1.01

cal 87.90 | 31.80 18.36 23.08 22.89

+0.49 | +0.57 £3.01 £1.96 £3.38

opt 87.90 | 31.80 18.88 22.16 22.28

+0.49 | +0.57 £3.32 £1.03 F£1.12

pegd* - 88.36 | 39.94 58.02 64.45 67.02
+0.68 | +0.55 +1.04 +0.77 +0.83

cal 88.36 | 33.64 19.95 26.78 26.22

+0.68 | +0.61 £1.02 +0.73  $0.69

ascc™ - 87.80 | 40.01 54.32 63.99 67.43
+0.42 | +0.69 +1.57 +0.86 =+0.93

cal 87.80 | 33.53 16.22 23.78  26.90

+0.42 | +0.78 +254 +0.75 +1.54

Table 3: Clean and adversarial accuracy (%) for the
adversarial mitigation of the Illusion of Robustness of
highly miscalibrated systems with temperature calibra-
tion (cal) or optimized temperature scaling (opt).

It is apparent that there is the risk that proposed
AT approaches, such as with the naive use of the
DDi gradients within AT or the use of gradient nor-
malization (e.g. pgd* and ascc*), can give the illu-
sion of robustness when in reality these approaches
do not give inherently robust models. However, it
can perhaps be argued that to expose this weakness
it may not be necessary for an adversary to modify
the model with adversarial temperature scaling to
find adversarial examples. Instead, adversarial ex-
amples can be found for another model (e.g., std)
and directly transferred to the target model. This
follows from Demontis et al. (2018) where it is
shown that similar architectures can be susceptible
to the same adversarial examples. This is explored
in Table 4, where adversarial examples are found
for the source model and evaluated on the target
model. It is clear from these results that although
the transfer attack from std to ddi-at is effective in
reducing the adversarial accuracy, it is unable to
bring the adversarial accuracy down to the values
for std, as is achieved by the temperature optimiza-
tion approaches in Table 3.

" Appendix D.3 discusses the relationship between the cali-
bration error and the model confidence.

tgt sre ‘ clean ‘ bae tf pwws dg
std std 88.96 | 31.39 17.82 20.42 20.11
+0.30 | £1.20 +£0.49 £0.62 £0.94
ddi-at  ddi-at | 87.90 | 39.18 56.54 61.07 66.73
+0.49 | £0.75  *£1.67 £0.99 +1.01
ddi-at  std 87.90 ‘ 48.91  52.47 50.00 48.53
+0.49 | +0.60 *1.15 +1.64 +0.99

Table 4: Transferability: adversarial examples for each
attack method are generated for the source model and
adversarial accuracy (%) is given for the target model.

Overall, these results demonstrate that highly
miscalibrated systems can appear robust to out-of-
the-box attack methods by disrupting adversarial
attack search processes. However, in reality this
robustness is an illusion as simple modifications
can mitigate the disruption of the search process.
Therefore, we encourage future work in adversar-
ial robustness to incorporate model calibration or
temperature optimization at test-time to ensure that
any proposed AT schemes do not unintentionally
include underlying mechanisms that cause extreme
miscalibration and thus present an IOR, giving a
false sense of security.

6 Conclusion

Modern NLP models are susceptible to adversarial
attacks, where small changes in the input cause the
model to predict the incorrect class. A range of
Adversarial Training (AT) approaches have been
proposed to encourage model robustness to adver-
sarial attacks. However, the observed robustness
gains may not be entirely due to inherent model
robustness gains. In this work, we demonstrate that
AT schemes can unknowingly (or intentionally)
create highly miscalibrated models, such that the
predicted class confidence is extreme. The extreme
confidence in the class prediction disrupts out-of-
the-box adversarial attack search methods, giving
observed gains in robustness. However, this is an
illusion of robustness (IOR). We propose simple
approaches an adversary could use to mitigate such
robustness gains. Specifically, we demonstrate that
various optimized temperature scaling approaches
can reduce the extremity of the class confidence,
which mitigates the disruption to the adversarial
attack search processes, obviating the IOR. There-
fore, we recommend that future adversarial robust-
ness evaluation frameworks incorporate adversarial
temperature scaling at test-time to ensure that any
observed robustness is genuine and not an i/lusion.



7 Limitations

This work demonstrates that a model developer can
create an illusion of robustness (IOR) to adversar-
ial attacks by serving highly miscalibrated systems.
An aware adversary can mitigate the IOR by per-
forming targeted temperature calibration at infer-
ence time. The following limitations have been
identified for this work:

* Empirical results are presented for state-of-
the-art encoder-based Transformer models.
However, recently with the rise of genera-
tive models, classification tasks are being ap-
proached with the use of decoder-based mod-
els. Although many of the out-of-the-box ad-
versarial attack approaches cannot be applied
directly to decoder models, it would be useful
to investigate how susceptible decoder models
are to the IOR.

¢ In this work we consider popular Adversar-
ial Training (AT) baselines the IOR. How-
ever, future work would benefit from con-
sidering other recently proposed alternative
approaches for adversarial robustness, e.g.,
contrastive learning based approaches (Rim
et al., 2021) and Textual Manifold De-
fence (Nguyen Minh and Luu, 2022), where
all inputs are mapped to a robust manifold. It
would be interesting to also explore to what
extent these proposed approaches are offering
true robustness and to what extent they may
be unknowingly creating an IOR.

8 Risks and Ethics

This work presents results on the topic of adversar-
ial training. The contributions in this work encour-
age the development of truly robust systems and
therefore there are no identified ethical concerns.
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A Danksin’s Descent Direction for NLP

A.1 Original Theory

Latorre et al. (2023) demonstrate that the standard
formulation and implementation of AT (as in Equa-
tion 3) is potentially flawed. Specifically, solv-
ing the inner maximization to find the worst-case
adversarial example X, can give a gradient direc-
tion (in standard stochastic gradient descent ap-
proaches), that can in fact increase the robust loss
(the new worst-case adversarial example, X, with
the updated model parameters, 6, can give a robust
loss that is greater than before the update step),
i.e. worsening the adversarial robustness of the
model. This flaw is attributed to the reliance on a
single adversarial example, as a parameter gradient
step to reduce the model’s sensitivity to a particular
adversarial example does not guarantee reduction
in the model’s sensitivity to all adversarial exam-
ples (the model may now be less robust to other
adversarial examples) for a specific sample x. The
paper argues that their exist multiple solutions to
the inner-maximization for the robust loss and the
optimal parameter gradient direction depends on
all of those solutions. Thus, Equation 3 can the-
oretically be adapted to selecting the adversarial
example that maximises the gradient direction in
each gradient update step for a batch size of K

samples,

2 1 2
9(x1.K,0i,X1.K) = e E L(X, 6;),
%

 Veg(xuk, b, X1:k)
[|Vog(x1.1, 0i, X1:.5)| |2

Oiv1 =2 (91;,7* =

Xp = argmax |[Vo—g, L(X,0)] |2,
xeS*(0;,%xy)

12)

where ®(0,) is the first-order stochastic gradi-
ent descent (SGD) algorithm used to update 6 as
per descent direction ~, e.g. in standard SGD,
®(0,7) = 6 + B, where 3 is the step-size (learn-
ing rate). Further S*(0;,xy) represents the set of
all maximizers of the robust loss,

S*(0,%,G) = L£(x,0). (13)

arg max
G(x,%,)<e, REA
This set of (robust loss) maximizers, S*(0,x,G)
can theoretically be infinite. However, if assume
we have access to a finite set with M adversarial
examples, such that they define,

S Mg x) = {xM, ... xM)

, X

o4

12

then Latorre et al. (2023) propose an efficient algo-
rithm termed, Danskin’s Descent Direction (DDi),
that provides a method to approximate the steepest
direction, v* as though as if we are still selecting
from the infinite set S* 8, despite only having ac-
cess to S*M)_ The optimization problem over an
infinite set in Equation 12 can be solved by find-
ing an optimal linear combination, a € AM of
the gradients of the loss, Vgg for each different
adversarial example. Note that AM defines the
M-dimensional simplex (on which « lies). If we

let Vgg(0, S;(Ijg ) (0)) be the matrix with columns

Vog(x1.x, Gz,iﬁg)) form =1,..., M, then

. Voal8 515 (0)er
- *(M ’
1Vog(0, 515" (6))ex"] |2
o = argmin ||Vog(0, S1%"(@)al3. (15

acNM
A.2 DDi-AT for NLP classification

The challenge with NLP is that generating strong
textual adversarial examples as per Equation 14
can be extremely slow. Hence to increase speed,
we generate adversarial examples in the token em-
bedding space, such that we follow Equation 15,
but adapt Equation 12 to,

2 1 2
9(x1.K,0i, k) = I zk:/l(hk, 6;),

h, = argmax “nggiﬁ(fl, 9)‘ l2,  (16)

heS*(6;,hy,)
where hy, = {hy,...,h; 1} represents the se-
quence of token embeddings for tokens xj
{Xk,1,..., %Xk, }. We can create our proxy finite
set of maximizers, S*(™) (Equation 14) by using a
computer-vision style Projected Gradient Descent
(PGD) attack (Madry et al., 2019) in each token
embedding space with initialisations of the PGD
attack at different points to create multiple adver-
sarial examples,

S$*M) g h) = {PGDY(9,h),...,PGDM) (4, h), }.

(17)
In this work we refer to DDi gradients applied to
PGD AT as, DDi-AT.

B Gradient Normalization and
Overconfidence

It is shown in Table 1 that the use of the DDi gradi-
ents with the PGD AT approach (ddi-at) gives rise

8Theorem 3 in the paper justifies the conditions to certify
that the approximation is the steepest descent direction



to a highly overconfident model, which is responsi-
ble for the IOR. This section aims to determine the
route cause of this overconfidence in the DDi gradi-
ent update algorithm. Equation 12 indicates that in
the DDi gradient update algorithm global gradient
normalization is applied. Note that this is different
to standard training algorithms where either no nor-
malization is applied or gradient clipping is used
where global gradient normalization is only applied
if the global gradient norm is larger than a thresh-
old (Pascanu et al., 2012). Table 5 demonstrates
that the use of the global gradient normalization in
DDi-AT is responsible for the overconfidence and
thus IOR. Interestingly, Table 6 reveals that gradi-
ent normalization can also induce overconfidence
for the standardly trained std model.

Normalization | clean | P(é|Xcem) P(€[Xaav)
gradient norm 87.90 99.97 99.91
] o 0.49 0.03 0.01
gradient clipping 8§ .6288 9(?.3%6 89 . 122
none 88.20 96.98 86.16
0.55 0.42 0.66

Table 5: Model Confidence on clean and adversarial
(pwws) examples for DDi-AT model with different
forms of gradient normalization in the DDi gradient
update step. Rotten Tomatoes dataset, DeBERTa model.

Normalization | clean | P(¢|Xciem) P(é[Xuav)
gradient norm 87.93 99.96 99.93
0.44 0.04 0.02
gradient clipping | 88.94 97.02 86.74
0.31 0.29 0.84
none 88.96 97.08 86.04
0.30 0.26 0.68

Table 6: Model Confidence on clean and adversarial
(pwws) examples for std model with different forms
of gradient normalization in training. Rotten Tomatoes
dataset, DeBERTa model.

C Hyperparameter selection

We train the Transformer std models using standard
hyper-parameter settings (He et al., 2020): initial
learning rate of 1le — 5; batch size of 8; total of 5
epochs; 0 warm-up steps °; ADAMW optimizer,
with a weight decay of 0.01 and parameters 5 =
0.9, B2 = 0.999, € = 1e — 8.

The Adversarial Training (AT) baseline ap-
proaches are trained with the same hyperparam-

*We follow TextDefender (Li et al., 2021a) (presenting
benchmark comparisons for AT approaches) in setting no
warm-up steps. Further, empirically validation accuracy re-
mained the same with warm-up of 50 and 100 steps.
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eters as for the std model and AT specific hyperpa-
rameters are as described in Li et al. (2021b). The
default hyperparameters for each baseline (pgd,
ascc and freelb) are: 5 adversarial iterations; adver-
sarial learning rate of 0.03; adversarial initialisation
magnitude of 0.05; adversarial maximum norm of
1.0; adversarial norm type of 12; « for ascc is 10.0;
and S for ascc is 40.0. For DDi-AT, DDi gradients
are applied to the PGD AT approach, with M = 3
gradients and K = 3 PGD iteration steps.

C.1 DDi-AT Ablation

The main results report DDi-AT results for DDi gra-
dients applied to PGD AT with K = 3 PGD steps
to find each adversarial example (in the embedding
space) during training and M = 3 adversarial ex-
amples (refer to Section A.2). Table 7 gives the
impact on adversarial accuracy (with and with out
adversarial temperature calibration) of varying K
and M. It appears that with greater iteration steps,
K, the model presents a smaller IOR and a greater
true robustness as the robustness accuracy does not
degrade as much after calibration.

M K Adv | clean pwws dg
3 3 - 87.90 61.07 66.73
1049  £0.99  +1.01

cal 87.90 23.08 22.89

+0.49 +1.96 +3.38

3 5 - 87.87 55.53 61.73
+0.57 +10.10 +10.06

cal 87.87 31.08 32.90

+0.57 +4.61 +6.31

3 7 - 88.12 40.06  44.50
+0.11 +12.24 +15.79

cal 88.12 31.21  30.93

+0.11 +1.26 +0.61

5 5 - 87.65 50.59  54.00
+1.17 +21.23 +26.22

cal 87.65 28.08 27.95

+1.17 +2.05 +4.29

5 7 - 88.15 31.68 34.96
+0.38 +2.96 +4.79

cal 88.15 29.92 31.61

+0.38 +1.17 +0.84

Table 7: Ablation: DDi-AT with M PGD adversarial
examples, with each PGD adversarial example search
during training using K iteration steps.

D Further Experiments

D.1 Other Datasets

Equivalent results are presented for Twitter (6 emo-
tion classes) in Table 8 and for the AGNews dataset
(4 news classes) in Table 9.



Method ‘ clean ‘ bae tf pwws dg
std ‘ 93.13 ‘ 30.17 577 11.80  8.32
+0.24 +0.85 +0.55 +2.01 +2.98
leonf(§3.1) | 9313 | 29.63  6.78 1522 1468
+0.24 +0.80 +0.58 +1.55 +3
Teonf (§3.1) | 9313 | 3062 16.62 2885 3L 03
+0.24 +0.76 +0.51 +1.01 +2.0
ddi-at (§3.2) ‘ 93.40 ‘ 27.92  9.90 1857 18.17
+0.18 +1.23 +0.79 +0.67 +1.65
aug 92.58 | 31.52 4.68  9.33  29.45
+0.11 +2.82 +0.25 +0.11 +0.64
ped 93.48 | 28.83 4.88  9.95  5.45
+0.03 +0.43 +1.24 +0.69 +1.08
asce 91.15 | 34.65 4.60 12.15 11.28
+0.57 +0.23 +1.05 +0.22 +1.40
freelb 9367 | 2915 493 1015 548
+0.23 +1.00 +1.25 +0.30 +0.73

Table 8: Twitter: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks.

Method ‘ clean ‘ bae tf pwws dg
std ‘ 9375 | 78.46 31.63 4225 4621
+0.51 +1.11 +2.93 +1.31
Jeonf (§3.1) | 93.75 | §L08 5917 7079 7571
+0.25 +0.51 +0.19 +2.24 +1.06
feonf (§3.1) | 9375 | 8571 8479 8821 8817
+0.25 +0.80 +0.89 +0.36 +0.31
ddi-at (§3.2) ‘ 94.25 ‘ 88.00 88.08 88.96 89.25
+0.33 +0.75 +1.00 +0.36 +0.13
aug 94.13 | 74.58 33.92 50.33  56.38
+0.43 +1.63 +0.19 +1.25 +0.38
ped 94.00 | 85.13 45.86 59.58  57.00
+0.50 +0.50 +1.27 +0.95 +1.44
ascc 94.03 | 83.19 49.80 54.04 58.70
+0.46 +0.87 +1.95 +1.86 +1.32
freelb 93.58 | 83.46 44.13 58.13 54.25
+0.07 +0.71 +0.66 +1.73 +2.05

Table 9: AGNews: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks. *Evaluation on 1000 samples.

D.2 Other Models

The illusion of robustness is presented for an over-
confident, underconfident and DDi-AT DeBERTa
model in the main paper in Table 2. The same
trends are observed for other popular Transformer-
encoder (base) models: RoBERTa (Table 10); and
BERT (Table 11).

Method | clean | b tf pWwws dg
std ‘ 88.27 ‘ 32.46 17.01 21.23 24.30
To47 | ¥o74  *0.72  H0.05  E1.71
Jconf 88.27 | 31.77 20.42 24.92 32.99
To47 | F0.33  E127  E143 F133
Tconf 88.27 | 37.65 53.63 58.66 66.32
T047 | H076  X0.94  +0.61  +0.92
ddi-at ‘ 88.06 ‘ 36.24 50.84 54.85 62.76
1062 | +0.85 +0.41  +1.25  +1.27

Table 10: RoBERTa Model:
calibrated systems.

Robustness of Mis-
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Method | clean | bae tf pWwws dg
std ‘ 85.08 ‘ 30.52 21.01 21.20 23.14
1050 | 2076  £0.32 +034 4214
Jconf 85.08 | 29.74 20.95 24.58 30.64
1050 | £0.19  £053  +1.36  +0.24
Tconf 85.08 | 35.08 45.84 53.25 57.50
$0.50 | *£1.11  40.85 41.37  +2.06
ddi-at ‘ 85.55 ‘ 36.80 48.09 51.50 56.60
1043 | 029  +0.69 +1.04 1.6

Table 11: BERT Model: Robustness of Mis-calibrated
systems.

D.3 Calibration Error

In Table 12 we verify that the calibration ap-
proaches are effective in calibrating the models.
We report the metrics: Expected Calibration Error
(ECE) and Maximum Calibration Error (MCE).

Method ‘ ECE MCE ‘ (é|Xclean)  P(&]Xaav )
std ‘ 48.82 51.98 ‘ 97.08 86 04
+0.62 +1.15 +0.26 +0.68
Jeonf 38.96° 38.96" | 50.00007  50.00004
+£0.30 +0.30 +0.00 +0.00
+cal 38.96" 38.96" | 50.00004  50.00002
+£0.30 +0.30 +0.00 +0.00
Tconf 51.31 62.62 99.98 99.95
+1.03 +11.8 +0.02 +0.01
+cal 42.30 48.28 90.36 75.88
+0.91 +1.04 +0.45 +0.58
ddi-at 52.41 74.87 99.97 99.91
+0.57 +20.97 +0.03 +0.05
+cal 42.60 62.73 90.13 87.54
+0.58 +£18.36 +0.11 +0.80

Table 12: Calibration Error and Average Predicted Con-
fidence (on clean and adv-pwws). N.B. std is across
seeds. *off-the-shelf calibration error computation fails
here as all confidences very close to 50%, so manual
computation of CE here: accuracy - 50%.

D.4 IOR in AT Approaches

The main results demonstrate that highly miscali-
brated systems have an illusion of robustness (I0R),
where an adversary’s temperature calibration can
mitigate this illusion of robustness. Considering the
rotten tomatoes dataset and the DeBERTa model,
Table 13 demonstrates that standard AT approaches
considered in this work can also suffer from the
IOR, when global gradient normalization is in-
cluded in the training algorithm (Note that Table 6
shows that gradient normalization can be a source
of model overonfidence). Nevertheless, Table 14
demonstrates that when global gradient normaliza-
tion is excluded from the training algorithm, the
baseline AT approaches considered in this work no
longer present IOR as calibration does not degrade
their adversarial accuracy.



Method Adv ‘ clean ‘ bae tf pwws dg
pgd* - 88.36 | 39.94 58.02 64.45 67.02
+0.68 | +0.55 +1.04 +0.77 +0.83

cal 88.36 | 33.64 19.95 26.78 26.22

+0.68 | +0.61 £1.02 +0.73  +0.69

ascc™ - 87.80 | 40.01 54.32 63.99 67.43
+0.42 | +0.69 +1.57 +0.86 +0.93

cal | 87.80 | 33.53 16.22 23.78 26.90

+0.42 | +0.78 +254 +0.75 +£1.54

Table 13: Baseline AT approach (PGD and ASCC re-
sults here) can also suffer from IOR (calibration reduces
observed adversarial robustness) when global gradient
normalization used in the training algorithm. The IOR
was also observed for aug and freelb AT schemes.

explored as a viable calibration strategy and subse-
quently contrasted against the benchmark temper-
ature calibration approach from the main results.
The performance of the calibration results is shown
in Table 15, where it is evident that the Platt scaling
approach is far less stable than temperature calibra-
tion and can in fact excessively enhance the illusion
of robustness.

For automatic calibration, standard training hy-
perparameters were employed. Specifically, the
temperature calibration protocol was set at 5,000 it-
erations with a learning rate of 0.01. Similarly, the
Platt scaling protocol was also designed for 5000

Method ~ Adv | clean | bae tf pwws  dg iterations with a learning rate of 0.01. A point
std - | 8896 | 31.39 17.82 2042 20.11  to note for practical implementation: adversaries
+0.30 +1.20 +0.49 +0.62 +0.94 . .
cal | 88.96 | 31.39 1780 20.46 20.05  Might need to refine calibrator hyperparameters to
+0.30 +1.20 +0.51 +0.66 +0.88 R . .
minimize the Expected Calibration Error (ECE) on
aug ©| 8GR | T 2238 WAL 3G43 4 specified validation set. However, ECE determi-
cal | 8712 | 3474 22.36 2598 3745  nation is nuanced, largely due to its sensitivity to
ped - | w24 | w6 1992 2670 2608 chosen bin widths, as highlighted in Table 12 for
cal | 8824 | 33.65 19.00 2674 92610  nstances of underconfidence.
+0.73 +0.57 +0.46 +0.90 +0.54
asce - | 8777 | 3361 1513 2350 26.80 Method ~ Adv | clean | bae tf pwws dg
+0.36 +0.64 +2.17 +0.77 +2.11
al | 87.77 | 33.60 15.10 23.49 26.75
al | 8550 | 59 B BB B s - 88| u & W42 2
freelb - | 8874 | 3252 1951 2455 24.52
ree +0.32 | *052 +1.70 F0.70 F0.73 {conf - i%%g 110%}1 1%(%% 3:50"183 1221%
al | 88.74 | 88.74 19.50 24.35 24.54
c +0.32 | *0.32 F172  F055 $0.75 temp i%%g ‘1102% Qiloig 2i7153§ :ilo?i
mar | 808 | 208 Jom B pm
. . 1o . . .
Table 14: Baseline AT approach can be freed of the IOR
when global gradient normalization is not used in the Teonf - | 8896 | 3771 2435 5929 65.600
training algorithm. temp | 88.96 | 31.39  17.82  20.45  21.64
+0.30 +1.20 +0.49 +0.74 +1.46
platt | 88.96 | 37.21  34.55  37.46  41.09
+0.30 +3.73 +17.90 +19.70 +19.59
D.5 Alternative Calibration Approaches ddi-at i §9 | ¥ %P Y 6B
eme | 120 | MW 18% B BY
In the main results, temperature calibration was platt | 87.90 | 43.3 3877 4295 4279
+0.49 +19.42 +32.23 +31.66 +32.72

implemented to detect adversarial examples based
on two central considerations: 1) Temperature cal-
ibration effectively facilitates the adversarial at-
tack search, especially for obviously mis-calibrated
models; and 2) Temperature calibration preserves
the rank order of logits, thereby ensuring transfer-
ability of adversarial examples from the calibrated
to the original uncalibrated model. To broaden the
analytical scope, alternative calibration techniques
are examined. The goal is to assess their potential
in mitigating the disruption to the adversarial attack
search processes and to determine the potency of
the resulting adversarial examples on the uncali-
brated model. Binning-based calibration is deemed
unsuitable due to its intrinsic non-differentiability,
which could prevent the adversarial search process.
Hence, the multi-class version of Platt Scaling is
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Table 15: Adversarial mitigation of highly miscalibrated
systems using different test-time calibration approaches.

E Extreme miscalibration causes noisy
gradients

Section 3 argues that for heavily miscalibrated sys-
tems, the ‘gradients’ of the output probabilities
with respect to the input are extremely noisy. There-
fore, of-the-shelf adversarial attack methods, that
use these gradients to select which tokens in the
input sequence to attack, receive noisy signals and
fail to operate. In this section, we demonstrate that
extreme miscalibration does indeed cause noisy
gradients for of-the-shelf-adversarial attacks.



We consider two systems: the standard std sys-
tem from the main paper and the heavily miscali-
brated, overconfident system, Tconf in the main pa-
per. Experiments are on the rt dataset and we con-
sider specifically the PWWS attack and Textfooler
attack. These off-the-shelf adversarial attack ap-
proach rank all tokens wj; in the input sequence x
by their influence on the output of the model (N.B.
this is considered an approximation for the gradient
of the output with respect to each input token). The
PWWS attack refers to this influence as saliency,
whilst the Textfooler attack calls it importance. To
assess the impact of heavy miscalibration on the
rank ordering, Table 16 reports the Spearman Rank
Correlation between the rank of all input tokens
(in the first iteration of the attack) as per the two
models: std and fconf. The average correlation
and standard deviation are given over the entire
dataset. The average rank correlation is 0.28 for
PWWS and 0.29 Textfooler, which is very low and
demonstrates that by simply having heavy miscal-
ibration there is a significant impact on the attack
mechanism. Further, the standard deviation is also
large, suggesting that for many input sequences,
the correlation is even lower.

Attack Rank Correlation
pwws 0.28

+0.24
textfooler 0.29

+0.26

Table 16: Spearman Rank Correlation of input tokens’
importance with (overonfident model) and without (std
model) heavy miscalibration. The low rank correlation
demonstrates that the token importance is strongly im-
pacted by extreme confidence, which can explain the
observed IOR for highly miscalibrated models.
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