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Abstract

Deep learning-based Natural Language Pro-001
cessing (NLP) models are vulnerable to adver-002
sarial attacks, where small perturbations can003
cause a model to misclassify. Adversarial Train-004
ing (AT) is often used to increase model ro-005
bustness. Despite the challenging nature of006
textual inputs, numerous AT approaches have007
emerged for NLP models. However, we have008
discovered an intriguing phenomenon: delib-009
erately or accidentally (implicitly as part of010
existing AT schemes) miscalibrating models011
such that they are extremely overconfident or012
underconfident in their predictions, disrupts ad-013
versarial attack search methods, giving rise to014
an apparent increase in robustness. However,015
we demonstrate that the observed gain in ro-016
bustness is an illusion of robustness (IOR), as017
an adversary aware of this miscalibration can018
perform temperature calibration to modify the019
predicted model logits, allowing the adversar-020
ial attack search method to find adversarial ex-021
amples whereby obviating IOR. Consequently,022
we urge adversarial robustness researchers to023
incorporate adversarial temperature scaling ap-024
proaches into their evaluations to mitigate IOR.025

1 Introduction026

Deep learning Transformer-based Natural Lan-027

guage Processing (NLP) models are able to per-028

form well in a range of tasks (Manning et al., 2014).029

However, these NLP models are susceptible to ad-030

versarial attacks, where clean input text samples031

perturbed slightly (accidentally or maliciously by032

an adversary) can lead to a NLP model misclas-033

sifying the perturbed input (Jia and Liang, 2017).034

However, the emergence of the Adversarial Train-035

ing (AT) paradigm (Bai et al., 2021) has shown036

some success in training models to be more ro-037

bust to these small adversarial perturbations. Here,038

the traditional training process is adapted to mini-039

mize the empirical risk associated with a “robust-040

ness loss” as opposed to the risk associated with041

Figure 1: Accuracy on adversarial examples from out-
of-the-box adversarial attack for models with different
average predicted class confidence, Ep(x)[Pθ̂(ĉ|x)]. Ex-
tremely overconfident and underconfident models show
increased robustness. We reveal that this increased ro-
bustness is an illusion of robustness.

the standard loss for clean input samples. The ro- 042

bustness loss is the standard loss applied to the 043

worst-case (loss maximizing) adversarial sample 044

for each training sample. In NLP, due to the dis- 045

crete nature of the text, this adversarial training 046

min-max formulation is particularly challenging 047

as the inner maximization is computationally ex- 048

pensive (Yoo and Qi, 2021). Nevertheless, a vari- 049

ety of approaches have been proposed in literature, 050

ranging from augmentation of the training set with 051

adversarial examples for a specific model, to so- 052

phisticated token-embedding space optimizations 053

for the inner maximization step (Wang et al., 2019a; 054

Goyal et al., 2023). 055

Although many NLP AT methods are effective 056

in boosting model robustness, we argue that, in 057

some cases, the increased robustness is an illusion 058

of robustness (IOR). Specifically, highly miscal- 059

ibrated models, with an extreme predicted class 060

confidence (Guo et al., 2017), present an IOR. This 061

extreme class confidence disrupts out-of-the-box 062
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adversarial attacks’ search processes, such that the063

model appears robust to these out-of-the-box at-064

tacks. We identify extreme predicted class con-065

fidence as one cause of IOR by reproducing this066

phenomenon in a controlled manner, intentionally067

creating highly overconfident and underconfident068

models. We next demonstrate that this appears069

to give significant robustness gains against out-of-070

the-box attacks (up to a three-fold increase in ad-071

versarial accuracy). We also demonstrate that AT072

scheme developers can (unintentionally) develop073

techniques that cause high model miscalibration074

and thus also present an IOR — a false sense of se-075

curity against adversarial attacks. We show that our076

findings apply to all three commonly used encoder077

models: BERT (Devlin et al., 2019), RoBERTa078

(Liu et al., 2019), and DeBERTa (He et al., 2020).079

Next, we argue that an adversary who is aware080

of model miscalibration used in this manner, can081

largely circumvent the model’s perceived robust-082

ness at inference-time, such that the observed ro-083

bustness gains no longer persist. We show that084

test-time temperature calibration approaches can085

be used for this purpose, and also how an adversary086

can use a more sophisticated and tailored tempera-087

ture scaling optimization approach to better pierce088

a model’s IOR. We then demonstrate the effective-089

ness of our approach at mitigating the IOR, which090

significantly decreases the adversarial accuracy.091

In light of our findings, we urge the adversarial092

robustness community to adopt optimized temper-093

ature scaling approaches in all adversarial robust-094

ness evaluations to ensure they accurately reflect a095

proposed defense’s ability to induce robustness.096

2 Background097

2.1 Adversarial Attacks098

An untargeted adversarial attack is able to fool a099

classification system, F() with trained parameters100

θ̂, by perturbing an input sample, x to generate101

an adversarial example x̃ to cause a change in the102

predicted class,103

F(x; θ̂) ̸= F(x̃; θ̂). (1)104

Traditional adversarial attack definitions (Szegedy105

et al., 2014) require the perturbation to be imper-106

ceptible as per human perception. In NLP it can be107

challenging to measure imperceptibility. Following108

Morris et al. (2020) and Raina and Gales (2023),109

we can separate modern NLP imperceptibility con-110

straints into two categories: 1) pre-transformation111

constraints, which limit the changes that can be 112

made to a clean sample x, such that an adver- 113

sarial example is limited to a specific set of se- 114

quences x̃ ∈ A(x); and 2) distance-based con- 115

straints, which aim to mathematically limit the dis- 116

tance between the original, clean sample and the 117

adversarial example using a proxy distance mea- 118

sure G(x, x̃) ≤ ϵ. 119

A plethora of adversarial attack approaches have 120

been proposed for efficiently discovering adversar- 121

ial examples for NLP models (Alzantot et al., 2018; 122

Garg and Ramakrishnan, 2020; Li et al., 2020; 123

Gao et al., 2018; Wang et al., 2019b; Ren et al., 124

2019; Jin et al., 2019; Li et al., 2018; Tan and 125

Joty, 2021; Tan et al., 2020). Many of the popular 126

attack approaches are implemented in the TextAt- 127

tack library (Morris et al., 2020). These attack 128

approaches can be classed as either whitebox at- 129

tacks, where the adversary has full access to the 130

model parameters or blackbox attacks, where the 131

adversary can only access input-output pairs from 132

the model (Tabassi et al., 2019). 133

2.2 Traditional Adversarial Training 134

Standard supervised training methods seek to find 135

model parameters, θ̂ that minimises the empirical 136

risk (for a dataset of x ∼ p(x)), characterised by a 137

loss function, 138

θ̂ = argmin
θ

E
x∼p(x)

[L(x, θ)]. (2) 139

Adversarial Training (AT) (Goodfellow et al., 140

2015) adapts the training scheme to minimise the 141

empirical risk associated with the worst-case ad- 142

versarial example, x̃, such that we are minimising 143

a robust loss 144

θ̂ = argmin
θ

E
x∼p(x)

 max
x̃:

G(x,x̃,)≤ϵ, x̃∈A

L(x̃, θ)

 .

(3) 145

It is too computationally expensive to perform the 146

inner maximization step to find textual adversar- 147

ial examples in each step of training. A group 148

of AT methods speed-up this optimization step 149

by finding adversarial examples in the token em- 150

bedding space, which allows for faster gradient- 151

based approaches: PGD-K (Madry et al., 2018), 152

FreeLB (Zhu et al., 2020), TA-VAT (Li and Qiu, 153

2020), InfoBERT (Wang et al., 2020). However, 154

limited success of these approaches has been at- 155

tributed to perturbations in the embedding space 156
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being unrepresentative of real textual adversarial157

attacks. Hence, AT methods such as Adversar-158

ial Sparse Convex Combination (ASCC) (Dong159

et al., 2021) and Dirichlet Neighborhood Ensemble160

(DNE) (Zhou et al., 2020) identify a more sensible161

embedding perturbation space, which they define162

as the convex hull of word synonyms. Nevertheless,163

today the simplest and most popular AT approach164

in NLP is to simply to augment (once) the training165

set with textual adversarial examples x̃ for each166

clean sample x using standard NLP attack mecha-167

nisms on a model trained in the standard manner168

(Equation 2).169

2.3 Model Calibration170

Modern deep learning models are often miscali-171

brated, where the model’s confidence in the pre-172

dicted class does not reflect the ground truth cor-173

rectness likelihood (Guo et al., 2017). Intuitively,174

for 100 model predictions with a model confidence175

of 90%, we should expect 90% of these predic-176

tions to be correct. More formally, a model with177

a predicted class confidence Pθ̂(ĉ|x), is defined as178

perfectly calibrated when179

P
(
ĉ = c∗|Pθ̂(ĉ|x) = p

)
= p, ∀p ∈ [0, 1], (4)180

where ĉ = F(x; θ̂) is the predicted class and the181

true (label) class is c∗. The extent of a model’s182

miscalibration can be visualized on a reliability183

diagram (Degroot and Fienberg, 1983; Niculescu-184

Mizil and Caruana, 2005), displaying the sample185

accuracy as a function of model confidence. Any186

deviation from an identity function indicates mis-187

calibration. Typical single-value summaries for188

the calibration error are the Expected Calibration189

Error (ECE) and the Maximum Calibration Error190

(MCE) (Naeini et al., 2015).191

3 Extreme Predicted Class Confidence192

The robustness gains observed for traditional AT193

approaches (Equation 3), may not always be due194

to inherent robustness gains, but can be a conse-195

quence of a high level of model miscalibration.196

This miscalibration can induce extreme confidence197

predictions, such that the model’s predicted class198

confidence Pθ̂(ĉ|x) is either very high (overconfi-199

dent) or very low (underconfident). Figure 1 (using200

a standard NLP model, test dataset and adversarial201

attack described in Section 5) demonstrates that202

highly miscalibrated models with extreme confi-203

dence values in the predicted class (around 1.0 for204

overconfident models or 1/C, with C as the num- 205

ber of classes for underconfident models) are sig- 206

nificantly more robust to out-of-the-box adversarial 207

attacks. 208

The apparent increase in robustness of extremely 209

miscalibrated models can be explained. For both 210

underconfident and overconfident models, the pre- 211

dicted class confidence has very little variance for 212

different input sequences, x, 213

Ep(x)[Pθ̂(ĉ|x)− Ep(x)[Pθ̂(ĉ|x)]]
2 < ζ, (5) 214

where ζ is some small variance. The narrow con- 215

fidence distribution makes it challenging for an 216

adversary to identify an appropriate search direc- 217

tion for adversarial examples. To illustrate this, 218

consider a miscalibrated model with extremely 219

high confidence in the predicted class probabil- 220

ity, Pθ̂(ĉ|x) ≈ 1.0, then for most search directions 221

d that are not in an adversarial direction d ̸= d̃ 222

(where x̃ = x+ d̃) the model has very little sensi- 223

tivity,1 i.e., 224

dT∇xPθ̂(ĉ|x) ≈ 0. (6) 225

As a consequence of this little sensitivity, any white- 226

box adversarial attack approach looking to exploit 227

gradients or even a blackbox attack approach mea- 228

suring the sensitivity of the predicted probability, 229

has a small confidence range to observe, meaning 230

that the impact of any proposed perturbation gives 231

a very noisy signal to its actual effect on the output. 232

As a result, the adversarial attack search process 233

will converge extremely slowly or fail to find the 234

desired adversarial perturbation direction d̃. This 235

hypothesis is verified empirically in Appendix E. 236

In this work, to demonstrate that extreme confi- 237

dence can cause an apparent increase in robustness 238

against of-the-shelf adversarial attacks, we con- 239

sider models that are explicitly induced with over- 240

confidence or underconfidence (Section 3.1). We 241

further demonstrate that standard AT approaches 242

can also implicitly induce extreme confidence and 243

also cause an apparent increase in robustness (Sec- 244

tion 3.2). Section 4 shows that this increase in 245

robustness is an illusion of robustness (IOR). 246

3.1 Explicit: Temperature Scaling 247

Let θ̂ be a model trained using the standard training 248

objective, as in Equation 2. For this model with 249

1Note that these strict mathematical operations are not
defined for the input text space and are simply representative
of equivalent discrete textual space perturbations.
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predicted logits, l1, . . . , lC for C output classes, the250

probability of a specific class is typically estimated251

by the Softmax function,252

Pθ̂(c|x) =
exp (lc)∑
i exp (li)

. (7)253

However, we can intentionally miscalibrate the254

model and increase the model confidence at infer-255

ence time by using a design temperature, T = Td,256

to scale the predicted logits,257

Pθ̂(c|x;T ) =
exp (lc/T )∑
i exp (li/T )

. (8)258

A design choice of Td ≪ 1.0 concentrates the prob-259

ability mass in the largest logit class to create an260

overconfident model, whilst conversely Td ≫ 1.0261

creates an underconfident model. Hence, explicitly262

setting a design temperature T (d) at inference time263

can be used to serve highly miscalibrated models,264

which can disrupt an adversary’s attack search pro-265

cess as described in Equation 6, whilst maintaining266

the simplicity of the standard training objective267

(Equation 2).268

3.2 Implicit Overconfidence: DDi AT269

Section 3.1 presents an explicit temperature scaling270

method to generate a highly miscalibrated system,271

which cause an illusion of robustness for out-of-the-272

box adversarial attacks. However, it is possible that273

implementation strategies and algorithmic features274

in adversarial training (AT) procedures (Equation275

3) can also lead to inherently overconfident models.276

We now consider adversarial training techniques277

that implicitly induce model overconfidence.278

Implicit overconfidence can be demonstrated279

first with the incorporation of the recently proposed280

Danskin Descent Direction (DDi; Latorre et al.,281

2023) into an AT approach. Latorre et al. (2023)282

adapted the standard AT paradigm of Equation 3283

to identify optimal gradient update directions for284

increased model robustness, showing promising285

results in computer vision. In Appendix A, we286

detail how the DDi algorithm can be used to com-287

pute gradients while adversarially training NLP288

classifiers. In our experiments, we observe (Ta-289

ble 1) that the DDi gradients applied in AT for290

NLP classifiers induces highly overconfident mod-291

els without compromising on clean accuracy, such292

that a model that has undergone DDi-AT almost293

always predicts near 100% confidence in its pre-294

dicted class, Pθ̂(c|x) ≈ 1.0. Our ablations (Ap-295

pendix B) reveal that the gradient normalization296

step in the DDi algorithm (Equation 12) is respon- 297

sible for the induction of inherent model overconfi- 298

dence. Hence, we further consider other standard 299

AT schemes that may use gradient normalization 300

during training. Specifically, we consider Project 301

Gradient Descent (PGD) and Adversarial Sparce 302

Convex Combination (ASCC), introduced in Sec- 303

tion 2.2. Table 1 and the discussion in Appendix 304

B demonstrate that these AT schemes also yield 305

highly overconfident systems, and are thus at risk 306

of IOR: they appear robust to adversarial attacks 307

by disrupting the search process (Equation 6). 308

4 Piercing the Illusion 309

Section 3 demonstrates how intentional or acciden- 310

tal extreme miscalibration of a model can create 311

extreme confidence distributions that disrupt out- 312

of-the-box adversarial attack search methods and 313

thus give an apparent gain in robustness. This sec- 314

tion highlights that the observed gains in robustness 315

are an illusion of robustness (IOR), as we propose 316

simple approaches that an adversary can use to 317

mitigate extreme model confidences to remove the 318

disruption to the attack search methods. 319

The following approaches require an adversary 320

to modify aspects of the output of the model to 321

mitigate the disruption to an attack search pro- 322

cess. Note that these modifications are only used 323

by the adversary to create/find adversarial exam- 324

ples, which can then be applied to the original (un- 325

modified) model served by the model developer. 326

4.1 Adversary Temperature Calibration 327

Highly miscalibrated models, such as the design of 328

overconfident models in Section 3, interfere with 329

adversarial attacks from finding meaningful search 330

directions due to the little sensitivity in the pre- 331

dicted probabilities. An adversary aims to mitigate 332

this disruption to the attack search process. The 333

simplest solution for an adversary is to calibrate 334

the model so that the confidences are in a sensible 335

range and can be exploited by adversarial attacks. 336

A strong indicator of model miscalibration (Sec- 337

tion 2.3) can be given by the Negative Log Likeli- 338

hood (NLL; Hastie et al., 2017). Thus, assuming 339

an adversary has access to the output model log- 340

its l1, . . . , lC and a labelled validation set of data 341

{xi, c
∗
i }i, test-time temperature calibration (Guo 342

et al., 2017) can be applied.2 Here the adversary 343

2Note that the logits received by an adversary may already
have been explicitly scaled by a model designer to intention-
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optimizes an adversarial temperature, Ta to min-344

imize the Negative Log Likelihood (NLL) of the345

validation set samples,346

Ta = argmin
T

∑
i

− logPθ̂(c
∗
i |xi;T ), (9)347

where Pθ̂(c
∗|x;T ) is the confidence of the true348

class after temperature scaling as in Equation 8.349

Due to the continuous nature of the transformation350

and the need to optimize a single parameter, Ta,351

in this work we use the standard gradient descent352

optimization.3353

Other than temperature optimization, an ad-354

versary can attempt other post-training model355

calibration approaches such as Histogram Bin-356

ning (Zadrozny and Elkan, 2001), isotonic regres-357

sion (Zadrozny and Elkan, 2002) and multi-class358

versions of Platt scaling (Niculescu-Mizil and Caru-359

ana, 2005; Platt and Karampatziakis, 2007). How-360

ever, temperature calibration is found to be the most361

practical and effective for an adversary seeking to362

mitigate a model’s IOR. A more detailed discussion363

is presented in Appendix D.5.364

4.2 Adversary Temperature Optimization365

Section 4.1 outlines a temperature calibration ap-366

proach an adversary can use to mitigate the disrup-367

tion to out-of-the-box adversarial attack methods.368

However, this approach has two shortcomings:369

1. The adversarial temperature, Ta is not directly370

tuned to minimize adversarial robustness, as371

it only considers the likelihood of clean exam-372

ples in a validation set.373

2. Learning the adversarial temperature, Ta to374

minimize the NLL (Equation 9) uses a gra-375

dient descent based optimization algorithm376

where the stability of the algorithm is sensitive377

to hyperparameters and does not guarantee an378

optimal solution.379

Hence, this section outlines an algorithm that380

directly optimizes the adversarial temperature Ta381

to minimize a model’s adversarial robustness. We382

define the adversarial accuracy, Q() as a function383

of the temperature parameter,384

Q(T ) =
1

J

∑
j

I
[
F(x̃j(T )) = c∗j

]
, (10)385

ally miscalibrate the system as in Section 3.1.
3The optimization method is inspired by

https://github.com/gpleiss/temperature_
scaling/tree/master.

where x̃j(T ) represents the adversarial example 386

generated from an adversarial attack on the given 387

model, θ̂ with the logits scaled by a temperature 388

T as in Equation 8. Figure 1 illustrates that as 389

the temperature parameter is swept from large 390

to small values (increasing model confidence), 391

the adversarial accuracy, Q() behaves almost as 392

a convex function of temperature, T , such that, 393

Q(αT1 + (1−α)T2) ≤ αQ(T1) + (1−α)Q(T2), 394

where 0 ≤ α ≤ 1. The optimal adversarial temper- 395

ature Ta is the minimizer of the adversarial accu- 396

racy Q(T ), 397

Ta = argmin
T

Q(T ). (11) 398

The minimizer, Ta can be found efficiently over 399

the non-differentiable convex function, Q() us- 400

ing a search method such as the Golden-section 401

search algorithm (Kiefer, 1953). In this work we 402

use the Brent-Dekker method, an extension of 403

Golden-section search that accounts for a poten- 404

tially parabolic convergence point (Brent, 1971). 405

Note, as is the case for the calibration approach 406

of Section 4.1, to optimize for Ta, an adversary 407

is not required to query the target model multiple 408

times as the adversary only requires the output 409

model logits l1, . . . , lC . 410

Although the temperature optimization approach 411

in this section offers an adversarial temperature 412

Ta optimized for adversarial robustness, the search 413

method is significantly slower than the gradient 414

descent approach for calibration on a clean (not ad- 415

versarially attacked samples) validation set (Equa- 416

tion 9). The greatest computational cost can be 417

attributed to calculation of the adversarial accuracy 418

(Equation 10), as this requires an adversarial attack 419

to be applied to each clean sample in the validation 420

set, {xj , c
∗
j}Jj=1. Therefore, we recommend that 421

by default, to pierce the IOR, one should adopt 422

the calibration approach of Equation 9, but when 423

there is access to greater computational resources 424

Equation 11 should be followed. 425

5 Experiments 426

We first demonstrate how explicit or implicit train- 427

ing approaches that cause a model to become 428

highly underconfident or overconfident (miscali- 429

brated) suffer from an illusion of robustness (IOR), 430

where the models appear robust to out-of-the-box 431

adversarial attacks. We then show how simple ap- 432

proaches can be used to pierce this illusion. 433
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5.1 Experimental Setup434

Data. Experiments are carried out on three stan-435

dard NLP classification datasets. First, Rotten436

Tomatoes (Pang and Lee, 2005) is a binary sen-437

timent classification task for movie reviews, con-438

sisting of 8530 training, 1066 validation and 1840439

test samples. Next, we consider the Twitter Emo-440

tions Dataset (Saravia et al., 2018), which catego-441

rizes tweets into one of six emotions: love, joy,442

surprise, fear, sadness or anger, with a total of443

16,000 training, 2000 validation and 2000 test sam-444

ples. Finally we consider the popular AGNews445

dataset (Zhang et al., 2015), consisting of articles446

from 2000 news sources classified into one of four447

topics: business, sci/tech, world or sports. There448

are a combined 120,000 training samples and 7600449

test samples. For readability we present the re-450

sults in the main paper for the Rotten Tomatoes451

dataset, with the equivalent results presented for452

the other datasets in Appendix D.1. The same453

general trends are observed across the different454

datasets.455

Models. Transformer-encoder models (Vaswani456

et al., 2017) give state-of-the-art performance on457

many NLP classification tasks. Hence, in this work458

we perform experiments with three Transformer-459

encoder base models (110M parameters). Specif-460

ically, we consider DeBERTa (He et al., 2020),461

RoBERTa (Liu et al., 2019) and BERT (Devlin462

et al., 2019). The results in the main paper are463

presented for the Deberta model with equiva-464

lent results presented for the other models in465

Appendix D.2. Identical trends are observed for466

all the models. Hyperparameter settings for train-467

ing of these models are given in Appendix C. All468

experiments are run over three random seeds.469

Adversarial attacks. We consider four popular470

out-of-the-box adversarial attack approaches in this471

work. Bert Adversarial Example (bae) (Garg and472

Ramakrishnan, 2020) is included as a word-level473

blackbox attack, where the adversary has only ac-474

cess to the model inputs and predictions. Next, we475

include the more powerful Textfooler (tf) (Jin et al.,476

2019) and Probability Weighted Word Saliency477

(pwws) (Ren et al., 2019) word-level attacks. Fi-478

nally, we include the DeepWordBug (dg) (Gao479

et al., 2018) attack as a whitebox, character-level480

adversarial attack approach. Each adversarial at-481

tack is implemented with the default settings from482

TextAttack (Morris et al., 2020). To evaluate the483

impact of the different adversarial attacks we report 484

the adversarial accuracy, which is the accuracy of 485

the target model on adversarial examples. 486

AT Approaches. To demonstrate the risk of IOR 487

we consider a range of standard AT methods. As 488

described in Section 2.2, we first consider the Dan- 489

skin Descent Direction (DDi; Latorre et al., 2023), 490

which we show generates inherent overconfidence. 491

We further consider PGD-K (Madry et al., 2018) 492

and FreeLB (Zhu et al., 2020) as embedding-space 493

AT schemes and ASCC (Dong et al., 2021) as a 494

text-embedding combined AT approach. Finally, 495

we consider the most popular NLP AT approach: 496

simple augmentation of the training set with ad- 497

versarial examples. In this work, to generate these 498

adversarial examples the target model is trained in 499

the standard manner (Equation 2) and DeepWord- 500

Bug is used to attack the trained model, such that an 501

adversarial example is found for each clean train- 502

ing sample. The target model architecture is then 503

re-trained (as per Equation 2) on the training set 504

augmented with the generated adversarial exam- 505

ples. Hence, for the augmentation-based AT model, 506

DeepWordBug can be viewed as a seen attack and 507

the remaining attacks as unseen. It would be ex- 508

pected that the model is relatively more robust to 509

seen attacks. Hyperparameters for each individual 510

AT baseline method are given in Appendix C. 511

5.2 Creating the Illusion 512

To illustrate the IOR, Section 3 proposes that highly 513

miscalibrated systems with extreme predicted class 514

confidences can be created explicitly by tempera- 515

ture scaling (Section 3.1). However, IOR can man- 516

ifest for AT schemes that implicitly induce model 517

miscalibration (Section 3.2). To verify this, we con- 518

sider a standard model (std) trained in the standard 519

manner (Equation 2). After the model is trained, 520

we create two new versions of the std model us- 521

ing explicit design temperature scaling (Equation 522

8): a highly underconfident model (↓conf) with 523

Td = 2000000 and a highly overconfident model 524

(↑conf) with Td = 0.005. To demonstrate how 525

AT schemes can implicitly create overconfidence, 526

we include DDi-AT (ddi-at), PGD AT (pgd∗), and 527

ASCC AT (ascc∗), where ∗ indicates that gradient 528

normalization is used during training.4 529

Table 1 verifies that models ↑conf, ddi-at, pgd∗ 530

and ascc∗ are significantly more confident than the 531

4Appendix B shows that gradient normalization during
training can implicitly lead to overconfidence.
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std model, whilst the ↓conf model is far less confi-532

dent, as intended. The differences in the confidence533

are more prominent for the adversarial examples534

(pwws is used to attack the test set). The clean535

accuracy on the test data is the same or similar to536

that of the std model.537

Model clean P̄ (ĉ|xclean) P̄ (ĉ|xadv)

std 88.96
±0.30

97.08
±0.26

86.04
±0.68

↓conf 88.96
±0.30

50.00007
±0.00

50.00004
±0.00

↑conf 88.96
±0.30

99.98
±0.02

99.95
±0.01

ddi-at 87.90
±0.49

99.97
±0.03

99.91
±0.01

pgd∗ 88.36
±0.68

99.96
±0.04

99.90
±0.01

ascc∗ 87.80
±0.42

99.97
±0.04

99.92
±0.01

Table 1: Clean accuracy (%) and model confidence (%)
on clean and adversarial (pwws) examples for extreme
confidence systems: high confidence ( ↑conf), low con-
fidence (↓conf), ddi-at, pgd∗ and ascc∗.

Table 2 presents the adversarial robustness of538

each model as measured by the adversarial accu-539

racy under the different out-of-the-box adversarial540

attacks. For comparison, we include the AT ap-541

proaches (aug, pgd, ascc, freelb), which have been542

designed to not be overconfident by removing gra-543

dient normalization during training (Appendix D.4).544

In general, the baseline AT approaches (aug, pgd,545

ascc, freelb) do increase model robustness across546

all the different attack methods, with the augmen-547

tation approach being the most effective. The low548

confidence model also demonstrates comparable549

adversarial robustness to the augmentation-based550

approach. However, the highly overconfident mod-551

els (↑conf, ddi-at, pgd∗, ascc∗) indicate a signifi-552

cantly higher (two/three-fold increase) adversarial553

robustness relative to the other AT approaches.554

5.3 Piercing the Illusion555

We argue that the apparent increase in adversar-556

ial robustness of the extreme confidence models557

(↓conf, ↑conf, ddi-at, pgd∗, ascc∗) in Table 2 is due558

to the out-of-the-box attack search process being559

disrupted,5 i.e. the models are actually suscepti-560

ble to adversarial examples6 but the adversarial at-561

tacks are unable to find these adversarial examples.562

5Appendix E empirically shows that extreme confidence
results in a noisier search for regular adversarial attacks.

6We know this must be true for the temperature-scaled
models as the predicted class for any input for these models is
identical to the std model.

Method clean bae tf pwws dg

std 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf (§3.1) 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

↑conf (§3.1) 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

ddi-at (§3.2) 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

pgd∗ 88.36
±0.68

39.94
±0.55

58.02
±1.04

64.45
±0.77

67.02
±0.83

ascc∗ 87.80
±0.42

40.01
±0.69

54.32
±1.57

63.99
±0.86

67.43
±0.93

aug 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

pgd 88.24
±0.73

33.65
±0.57

19.92
±0.47

26.70
±0.87

26.05
±0.61

ascc 87.77
±0.36

33.61
±0.64

15.13
±2.17

23.50
±0.77

26.80
±2.11

freelb 88.74
±0.32

32.52
±0.52

19.51
±1.70

24.55
±0.70

24.52
±0.73

Table 2: Accuracy (%) of extreme confidence systems
compared to standard AT methods on out-of-the-box
adversarial attacks.

Hence, the observed robustness is an IOR. 563

In Section 4, we presented two simple ap- 564

proaches an adversary could employ to mitigate 565

the disruption of the adversarial attack search pro- 566

cesses and remove the IOR. First, temperature cal- 567

ibration (cal) can be applied to the trained model 568

to learn an adversarial calibrating temperature Ta. 569

This temperature is learnt by minimizing the NLL 570

on the validation data (Equation 9) with a gradient- 571

descent based optimizer. The learning rate is set to 572

0.01 with a maximum of 5000 iterations. Alterna- 573

tively, the adversary can optimize the temperature 574

Ta (opt) by accounting for the adversarial examples 575

for a validation set (Equation 11). Here, DeepWord- 576

Bug is used to attack the validation set to optimize 577

for Ta. For both approaches, the target model is 578

modified by scaling the predicted logits by Ta and 579

then the out-of-the-box adversarial attacks are run 580

on the modified model to find adversarial exam- 581

ples. These adversarial examples are evaluated on 582

the original, unmodified model. Table 3 shows the 583

impact of the different adversarial approaches (cal 584

and opt) to learn Ta on the adversarial robustness 585

of the models. For the overconfident models, ↑conf, 586

ddi-at, pgd∗ and ascc∗, simple temperature calibra- 587

tion (cal) is sufficient to cause a significant drop in 588

model robustness. For the low confidence model, 589

the more computationally expensive temperature 590

optimization approach (opt) is necessary to signifi- 591

cantly reduce model robustness. This demonstrates 592

that an adversary can remove the IOR of highly 593

miscalibrated systems by optimizing for the adver- 594
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sarial scaling temperature Ta.7595

Method Adv. clean bae tf pwws dg

std - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf - 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

cal 88.96
±0.30

31.52
±0.34

21.89
±0.43

27.58
±1.31

31.52
±0.34

opt 88.96
±0.30

31.44
±1.15

17.82
±0.49

20.86
±0.64

21.98
±1.66

↑conf - 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

cal 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.45
±0.74

21.64
±1.46

opt 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.90
±0.94

21.06
±0.82

ddi-at - 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

cal 87.90
±0.49

31.80
±0.57

18.36
±3.01

23.08
±1.96

22.89
±3.38

opt 87.90
±0.49

31.80
±0.57

18.88
±3.32

22.16
±1.03

22.28
±1.12

pgd∗ - 88.36
±0.68

39.94
±0.55

58.02
±1.04

64.45
±0.77

67.02
±0.83

cal 88.36
±0.68

33.64
±0.61

19.95
±1.02

26.78
±0.73

26.22
±0.69

ascc∗ - 87.80
±0.42

40.01
±0.69

54.32
±1.57

63.99
±0.86

67.43
±0.93

cal 87.80
±0.42

33.53
±0.78

16.22
±2.54

23.78
±0.75

26.90
±1.54

Table 3: Clean and adversarial accuracy (%) for the
adversarial mitigation of the Illusion of Robustness of
highly miscalibrated systems with temperature calibra-
tion (cal) or optimized temperature scaling (opt).

It is apparent that there is the risk that proposed596

AT approaches, such as with the naive use of the597

DDi gradients within AT or the use of gradient nor-598

malization (e.g. pgd∗ and ascc∗), can give the illu-599

sion of robustness when in reality these approaches600

do not give inherently robust models. However, it601

can perhaps be argued that to expose this weakness602

it may not be necessary for an adversary to modify603

the model with adversarial temperature scaling to604

find adversarial examples. Instead, adversarial ex-605

amples can be found for another model (e.g., std)606

and directly transferred to the target model. This607

follows from Demontis et al. (2018) where it is608

shown that similar architectures can be susceptible609

to the same adversarial examples. This is explored610

in Table 4, where adversarial examples are found611

for the source model and evaluated on the target612

model. It is clear from these results that although613

the transfer attack from std to ddi-at is effective in614

reducing the adversarial accuracy, it is unable to615

bring the adversarial accuracy down to the values616

for std, as is achieved by the temperature optimiza-617

tion approaches in Table 3.618

7Appendix D.3 discusses the relationship between the cali-
bration error and the model confidence.

tgt src clean bae tf pwws dg

std std 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

ddi-at ddi-at 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

ddi-at std 87.90
±0.49

48.91
±0.60

52.47
±1.15

50.00
±1.64

48.53
±0.99

Table 4: Transferability: adversarial examples for each
attack method are generated for the source model and
adversarial accuracy (%) is given for the target model.

Overall, these results demonstrate that highly 619

miscalibrated systems can appear robust to out-of- 620

the-box attack methods by disrupting adversarial 621

attack search processes. However, in reality this 622

robustness is an illusion as simple modifications 623

can mitigate the disruption of the search process. 624

Therefore, we encourage future work in adversar- 625

ial robustness to incorporate model calibration or 626

temperature optimization at test-time to ensure that 627

any proposed AT schemes do not unintentionally 628

include underlying mechanisms that cause extreme 629

miscalibration and thus present an IOR, giving a 630

false sense of security. 631

6 Conclusion 632

Modern NLP models are susceptible to adversarial 633

attacks, where small changes in the input cause the 634

model to predict the incorrect class. A range of 635

Adversarial Training (AT) approaches have been 636

proposed to encourage model robustness to adver- 637

sarial attacks. However, the observed robustness 638

gains may not be entirely due to inherent model 639

robustness gains. In this work, we demonstrate that 640

AT schemes can unknowingly (or intentionally) 641

create highly miscalibrated models, such that the 642

predicted class confidence is extreme. The extreme 643

confidence in the class prediction disrupts out-of- 644

the-box adversarial attack search methods, giving 645

observed gains in robustness. However, this is an 646

illusion of robustness (IOR). We propose simple 647

approaches an adversary could use to mitigate such 648

robustness gains. Specifically, we demonstrate that 649

various optimized temperature scaling approaches 650

can reduce the extremity of the class confidence, 651

which mitigates the disruption to the adversarial 652

attack search processes, obviating the IOR. There- 653

fore, we recommend that future adversarial robust- 654

ness evaluation frameworks incorporate adversarial 655

temperature scaling at test-time to ensure that any 656

observed robustness is genuine and not an illusion. 657
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7 Limitations658

This work demonstrates that a model developer can659

create an illusion of robustness (IOR) to adversar-660

ial attacks by serving highly miscalibrated systems.661

An aware adversary can mitigate the IOR by per-662

forming targeted temperature calibration at infer-663

ence time. The following limitations have been664

identified for this work:665

• Empirical results are presented for state-of-666

the-art encoder-based Transformer models.667

However, recently with the rise of genera-668

tive models, classification tasks are being ap-669

proached with the use of decoder-based mod-670

els. Although many of the out-of-the-box ad-671

versarial attack approaches cannot be applied672

directly to decoder models, it would be useful673

to investigate how susceptible decoder models674

are to the IOR.675

• In this work we consider popular Adversar-676

ial Training (AT) baselines the IOR. How-677

ever, future work would benefit from con-678

sidering other recently proposed alternative679

approaches for adversarial robustness, e.g.,680

contrastive learning based approaches (Rim681

et al., 2021) and Textual Manifold De-682

fence (Nguyen Minh and Luu, 2022), where683

all inputs are mapped to a robust manifold. It684

would be interesting to also explore to what685

extent these proposed approaches are offering686

true robustness and to what extent they may687

be unknowingly creating an IOR.688

8 Risks and Ethics689

This work presents results on the topic of adversar-690

ial training. The contributions in this work encour-691

age the development of truly robust systems and692

therefore there are no identified ethical concerns.693
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A Danksin’s Descent Direction for NLP932

A.1 Original Theory933

Latorre et al. (2023) demonstrate that the standard934

formulation and implementation of AT (as in Equa-935

tion 3) is potentially flawed. Specifically, solv-936

ing the inner maximization to find the worst-case937

adversarial example x̃, can give a gradient direc-938

tion (in standard stochastic gradient descent ap-939

proaches), that can in fact increase the robust loss940

(the new worst-case adversarial example, x̃, with941

the updated model parameters, θ, can give a robust942

loss that is greater than before the update step),943

i.e. worsening the adversarial robustness of the944

model. This flaw is attributed to the reliance on a945

single adversarial example, as a parameter gradient946

step to reduce the model’s sensitivity to a particular947

adversarial example does not guarantee reduction948

in the model’s sensitivity to all adversarial exam-949

ples (the model may now be less robust to other950

adversarial examples) for a specific sample x. The951

paper argues that their exist multiple solutions to952

the inner-maximization for the robust loss and the953

optimal parameter gradient direction depends on954

all of those solutions. Thus, Equation 3 can the-955

oretically be adapted to selecting the adversarial956

example that maximises the gradient direction in957

each gradient update step for a batch size of K958

samples,959

θi+1 = Φ

(
θi,γ

∗ = − ∇θg(x1:K , θi, ˆ̃x1:K)

||∇θg(x1:K , θi, ˆ̃x1:K)||2

)
,960

g(x1:K , θi, ˆ̃x1:K) =
1

K

∑
k

L(ˆ̃xk, θi),961

ˆ̃xk = argmax
x̃∈S∗(θi,xk)

||∇θ=θiL(x̃, θ)| |2,

(12)

962

where Φ(θ,γ) is the first-order stochastic gradi-963

ent descent (SGD) algorithm used to update θ as964

per descent direction γ, e.g. in standard SGD,965

Φ(θ, γ) = θ + βγ, where β is the step-size (learn-966

ing rate). Further S∗(θi,xk) represents the set of967

all maximizers of the robust loss,968

S∗(θ,x,G) = argmax
x̃:

G(x,x̃,)≤ϵ, x̃∈A

L(x̃, θ). (13)969

This set of (robust loss) maximizers, S∗(θ,x,G)970

can theoretically be infinite. However, if assume971

we have access to a finite set with M adversarial972

examples, such that they define,973

S∗(M)(θ,x) = {x̃(1), . . . , x̃(M)}, (14)974

then Latorre et al. (2023) propose an efficient algo- 975

rithm termed, Danskin’s Descent Direction (DDi), 976

that provides a method to approximate the steepest 977

direction, γ∗ as though as if we are still selecting 978

from the infinite set S∗ 8, despite only having ac- 979

cess to S∗(M). The optimization problem over an 980

infinite set in Equation 12 can be solved by find- 981

ing an optimal linear combination, α ∈ △M of 982

the gradients of the loss, ∇θg for each different 983

adversarial example. Note that △M defines the 984

M -dimensional simplex (on which α lies). If we 985

let ∇θg(θ, S
∗(M)
1:K (θ)) be the matrix with columns 986

∇θg(x1:K , θi, x̃
(m)
1:K)) for m = 1, . . . ,M , then 987

γ∗ = −
∇θg(θ, S

∗(M)
1:K (θ))α∗

||∇θg(θ, S
∗(M)
1:K (θ))α∗||2

, 988

α∗ = argmin
α∈△M

||∇θg(θ, S
∗(M)
1:K (θ))α||22. (15) 989

A.2 DDi-AT for NLP classification 990

The challenge with NLP is that generating strong 991

textual adversarial examples as per Equation 14 992

can be extremely slow. Hence to increase speed, 993

we generate adversarial examples in the token em- 994

bedding space, such that we follow Equation 15, 995

but adapt Equation 12 to, 996

g(x1:K , θi,
ˆ̃h1:K) =

1

K

∑
k

L(ˆ̃hk, θi), 997

ˆ̃hk = argmax
h̃∈S∗(θi,hk)

∣∣∣|∇θ=θiL(h̃, θ)
∣∣∣ |2, (16) 998

where hk = {hk,1, . . . ,hk,L} represents the se- 999

quence of token embeddings for tokens xk = 1000

{xk,1, . . . ,xk,L}. We can create our proxy finite 1001

set of maximizers, S∗(M) (Equation 14) by using a 1002

computer-vision style Projected Gradient Descent 1003

(PGD) attack (Madry et al., 2019) in each token 1004

embedding space with initialisations of the PGD 1005

attack at different points to create multiple adver- 1006

sarial examples, 1007

S∗(M)(θ,h) = {PGD(1)(θ,h), . . . ,PGD(M)(θ,h), }.
(17) 1008

In this work we refer to DDi gradients applied to 1009

PGD AT as, DDi-AT. 1010

B Gradient Normalization and 1011

Overconfidence 1012

It is shown in Table 1 that the use of the DDi gradi- 1013

ents with the PGD AT approach (ddi-at) gives rise 1014

8Theorem 3 in the paper justifies the conditions to certify
that the approximation is the steepest descent direction
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to a highly overconfident model, which is responsi-1015

ble for the IOR. This section aims to determine the1016

route cause of this overconfidence in the DDi gradi-1017

ent update algorithm. Equation 12 indicates that in1018

the DDi gradient update algorithm global gradient1019

normalization is applied. Note that this is different1020

to standard training algorithms where either no nor-1021

malization is applied or gradient clipping is used1022

where global gradient normalization is only applied1023

if the global gradient norm is larger than a thresh-1024

old (Pascanu et al., 2012). Table 5 demonstrates1025

that the use of the global gradient normalization in1026

DDi-AT is responsible for the overconfidence and1027

thus IOR. Interestingly, Table 6 reveals that gradi-1028

ent normalization can also induce overconfidence1029

for the standardly trained std model.1030

Normalization clean P̄ (ĉ|xclean) P̄ (ĉ|xadv)

gradient norm 87.90
0.49

99.97
0.03

99.91
0.01

gradient clipping 88.28
0.68

97.16
0.30

86.12
0.72

none 88.20
0.55

96.98
0.42

86.16
0.66

Table 5: Model Confidence on clean and adversarial
(pwws) examples for DDi-AT model with different
forms of gradient normalization in the DDi gradient
update step. Rotten Tomatoes dataset, DeBERTa model.

Normalization clean P̄ (ĉ|xclean) P̄ (ĉ|xadv)

gradient norm 87.93
0.44

99.96
0.04

99.93
0.02

gradient clipping 88.94
0.31

97.02
0.29

86.74
0.84

none 88.96
0.30

97.08
0.26

86.04
0.68

Table 6: Model Confidence on clean and adversarial
(pwws) examples for std model with different forms
of gradient normalization in training. Rotten Tomatoes
dataset, DeBERTa model.

C Hyperparameter selection1031

We train the Transformer std models using standard1032

hyper-parameter settings (He et al., 2020): initial1033

learning rate of 1e − 5; batch size of 8; total of 51034

epochs; 0 warm-up steps 9; ADAMW optimizer,1035

with a weight decay of 0.01 and parameters β1 =1036

0.9, β2 = 0.999, ϵ = 1e− 8.1037

The Adversarial Training (AT) baseline ap-1038

proaches are trained with the same hyperparam-1039

9We follow TextDefender (Li et al., 2021a) (presenting
benchmark comparisons for AT approaches) in setting no
warm-up steps. Further, empirically validation accuracy re-
mained the same with warm-up of 50 and 100 steps.

eters as for the std model and AT specific hyperpa- 1040

rameters are as described in Li et al. (2021b). The 1041

default hyperparameters for each baseline (pgd, 1042

ascc and freelb) are: 5 adversarial iterations; adver- 1043

sarial learning rate of 0.03; adversarial initialisation 1044

magnitude of 0.05; adversarial maximum norm of 1045

1.0; adversarial norm type of l2; α for ascc is 10.0; 1046

and β for ascc is 40.0. For DDi-AT, DDi gradients 1047

are applied to the PGD AT approach, with M = 3 1048

gradients and K = 3 PGD iteration steps. 1049

C.1 DDi-AT Ablation 1050

The main results report DDi-AT results for DDi gra- 1051

dients applied to PGD AT with K = 3 PGD steps 1052

to find each adversarial example (in the embedding 1053

space) during training and M = 3 adversarial ex- 1054

amples (refer to Section A.2). Table 7 gives the 1055

impact on adversarial accuracy (with and with out 1056

adversarial temperature calibration) of varying K 1057

and M . It appears that with greater iteration steps, 1058

K, the model presents a smaller IOR and a greater 1059

true robustness as the robustness accuracy does not 1060

degrade as much after calibration. 1061

M K Adv clean pwws dg

3 3 - 87.90
±0.49

61.07
±0.99

66.73
±1.01

cal 87.90
±0.49

23.08
±1.96

22.89
±3.38

3 5 - 87.87
±0.57

55.53
±10.10

61.73
±10.06

cal 87.87
±0.57

31.08
±4.61

32.90
±6.31

3 7 - 88.12
±0.11

40.06
±12.24

44.50
±15.79

cal 88.12
±0.11

31.21
±1.26

30.93
±0.61

5 5 - 87.65
±1.17

50.59
±21.23

54.00
±26.22

cal 87.65
±1.17

28.08
±2.05

27.95
±4.29

5 7 - 88.15
±0.38

31.68
±2.96

34.96
±4.79

cal 88.15
±0.38

29.92
±1.17

31.61
±0.84

Table 7: Ablation: DDi-AT with M PGD adversarial
examples, with each PGD adversarial example search
during training using K iteration steps.

D Further Experiments 1062

D.1 Other Datasets 1063

Equivalent results are presented for Twitter (6 emo- 1064

tion classes) in Table 8 and for the AGNews dataset 1065

(4 news classes) in Table 9. 1066
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Method clean bae tf pwws dg

std 93.13
±0.24

30.17
±0.85

5.77
±0.55

11.80
±2.01

8.32
±2.98

↓conf (§3.1) 93.13
±0.24

29.63
±0.80

6.78
±0.58

15.22
±1.55

14.68
±3.01

↑conf (§3.1) 93.13
±0.24

30.62
±0.76

16.62
±0.51

28.85
±1.01

31.03
±2.07

ddi-at (§3.2) 93.40
±0.18

27.92
±1.23

9.90
±0.79

18.57
±0.67

18.17
±1.65

aug 92.58
±0.11

31.52
±2.82

4.68
±0.25

9.33
±0.11

29.45
±0.64

pgd 93.48
±0.03

28.83
±0.43

4.88
±1.24

9.95
±0.69

5.45
±1.08

ascc 91.15
±0.57

34.65
±0.23

4.60
±1.05

12.15
±0.22

11.28
±1.40

freelb 93.67
±0.23

29.15
±1.00

4.93
±1.25

10.15
±0.30

5.48
±0.73

Table 8: Twitter: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks.

Method clean bae tf pwws dg

std 93.75
±0.25

78.46
±0.51

31.63
±1.11

42.25
±2.93

46.21
±1.31

↓conf (§3.1) 93.75
±0.25

81.08
±0.51

59.17
±0.19

70.79
±2.24

75.71
±1.06

↑conf (§3.1) 93.75
±0.25

85.71
±0.80

84.79
±0.89

88.21
±0.36

88.17
±0.31

ddi-at (§3.2) 94.25
±0.33

88.00
±0.75

88.08
±1.00

88.96
±0.36

89.25
±0.13

aug 94.13
±0.43

74.58
±1.63

33.92
±0.19

50.33
±1.25

56.38
±0.38

pgd 94.00
±0.50

85.13
±0.50

45.86
±1.27

59.58
±0.95

57.00
±1.44

ascc 94.03
±0.46

83.19
±0.87

49.80
±1.95

54.04
±1.86

58.70
±1.32

freelb 93.58
±0.07

83.46
±0.71

44.13
±0.66

58.13
±1.73

54.25
±2.05

Table 9: AGNews: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks. *Evaluation on 1000 samples.

D.2 Other Models1067

The illusion of robustness is presented for an over-1068

confident, underconfident and DDi-AT DeBERTa1069

model in the main paper in Table 2. The same1070

trends are observed for other popular Transformer-1071

encoder (base) models: RoBERTa (Table 10); and1072

BERT (Table 11).1073

Method clean bae tf pwws dg

std 88.27
±0.47

32.46
±0.74

17.01
±0.72

21.23
±0.05

24.30
±1.71

↓conf 88.27
±0.47

31.77
±0.33

20.42
±1.27

24.92
±1.43

32.99
±1.33

↑conf 88.27
±0.47

37.65
±0.76

53.63
±0.94

58.66
±0.61

66.32
±0.92

ddi-at 88.06
±0.62

36.24
±0.85

50.84
±0.41

54.85
±1.25

62.76
±1.27

Table 10: RoBERTa Model: Robustness of Mis-
calibrated systems.

Method clean bae tf pwws dg

std 85.08
±0.50

30.52
±0.76

21.01
±0.32

21.20
±0.34

23.14
±2.14

↓conf 85.08
±0.50

29.74
±0.19

20.95
±0.53

24.58
±1.36

30.64
±0.24

↑conf 85.08
±0.50

35.08
±1.11

45.84
±0.85

53.25
±1.37

57.50
±2.06

ddi-at 85.55
±0.43

36.80
±0.29

48.09
±0.69

51.50
±1.04

56.60
±1.16

Table 11: BERT Model: Robustness of Mis-calibrated
systems.

D.3 Calibration Error 1074

In Table 12 we verify that the calibration ap- 1075

proaches are effective in calibrating the models. 1076

We report the metrics: Expected Calibration Error 1077

(ECE) and Maximum Calibration Error (MCE). 1078

Method ECE MCE P̄ (ĉ|xclean) P̄ (ĉ|xadv )

std 48.82
±0.62

51.98
±1.15

97.08
±0.26

86.04
±0.68

↓conf 38.96∗
±0.30

38.96∗
±0.30

50.00007
±0.00

50.00004
±0.00

+cal 38.96∗
±0.30

38.96∗
±0.30

50.00004
±0.00

50.00002
±0.00

↑conf 51.31
±1.03

62.62
±11.8

99.98
±0.02

99.95
±0.01

+cal 42.30
±0.91

48.28
±1.04

90.36
±0.45

75.88
±0.58

ddi-at 52.41
±0.57

74.87
±20.97

99.97
±0.03

99.91
±0.05

+cal 42.60
±0.58

62.73
±18.36

90.13
±0.11

87.54
±0.80

Table 12: Calibration Error and Average Predicted Con-
fidence (on clean and adv-pwws). N.B. std is across
seeds. *off-the-shelf calibration error computation fails
here as all confidences very close to 50%, so manual
computation of CE here: accuracy - 50%.

D.4 IOR in AT Approaches 1079

The main results demonstrate that highly miscali- 1080

brated systems have an illusion of robustness (IOR), 1081

where an adversary’s temperature calibration can 1082

mitigate this illusion of robustness. Considering the 1083

rotten tomatoes dataset and the DeBERTa model, 1084

Table 13 demonstrates that standard AT approaches 1085

considered in this work can also suffer from the 1086

IOR, when global gradient normalization is in- 1087

cluded in the training algorithm (Note that Table 6 1088

shows that gradient normalization can be a source 1089

of model overonfidence). Nevertheless, Table 14 1090

demonstrates that when global gradient normaliza- 1091

tion is excluded from the training algorithm, the 1092

baseline AT approaches considered in this work no 1093

longer present IOR as calibration does not degrade 1094

their adversarial accuracy. 1095
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Method Adv clean bae tf pwws dg

pgd∗ - 88.36
±0.68

39.94
±0.55

58.02
±1.04

64.45
±0.77

67.02
±0.83

cal 88.36
±0.68

33.64
±0.61

19.95
±1.02

26.78
±0.73

26.22
±0.69

ascc∗ - 87.80
±0.42

40.01
±0.69

54.32
±1.57

63.99
±0.86

67.43
±0.93

cal 87.80
±0.42

33.53
±0.78

16.22
±2.54

23.78
±0.75

26.90
±1.54

Table 13: Baseline AT approach (PGD and ASCC re-
sults here) can also suffer from IOR (calibration reduces
observed adversarial robustness) when global gradient
normalization used in the training algorithm. The IOR
was also observed for aug and freelb AT schemes.

Method Adv clean bae tf pwws dg

std - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

cal 88.96
±0.30

31.39
±1.20

17.80
±0.51

20.46
±0.66

20.05
±0.88

aug - 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

cal 87.12
±0.39

34.74
±1.59

22.36
±1.81

25.98
±2.32

37.45
±0.74

pgd - 88.24
±0.73

33.65
±0.57

19.92
±0.47

26.70
±0.87

26.05
±0.61

cal 88.24
±0.73

33.65
±0.57

19.90
±0.46

26.74
±0.90

26.10
±0.54

ascc - 87.77
±0.36

33.61
±0.64

15.13
±2.17

23.50
±0.77

26.80
±2.11

cal 87.77
±0.36

33.60
±0.63

15.10
±2.19

23.49
±0.79

26.75
±2.03

freelb - 88.74
±0.32

32.52
±0.52

19.51
±1.70

24.55
±0.70

24.52
±0.73

cal 88.74
±0.32

88.74
±0.32

19.50
±1.72

24.35
±0.55

24.54
±0.75

Table 14: Baseline AT approach can be freed of the IOR
when global gradient normalization is not used in the
training algorithm.

D.5 Alternative Calibration Approaches1096

In the main results, temperature calibration was1097

implemented to detect adversarial examples based1098

on two central considerations: 1) Temperature cal-1099

ibration effectively facilitates the adversarial at-1100

tack search, especially for obviously mis-calibrated1101

models; and 2) Temperature calibration preserves1102

the rank order of logits, thereby ensuring transfer-1103

ability of adversarial examples from the calibrated1104

to the original uncalibrated model. To broaden the1105

analytical scope, alternative calibration techniques1106

are examined. The goal is to assess their potential1107

in mitigating the disruption to the adversarial attack1108

search processes and to determine the potency of1109

the resulting adversarial examples on the uncali-1110

brated model. Binning-based calibration is deemed1111

unsuitable due to its intrinsic non-differentiability,1112

which could prevent the adversarial search process.1113

Hence, the multi-class version of Platt Scaling is1114

explored as a viable calibration strategy and subse- 1115

quently contrasted against the benchmark temper- 1116

ature calibration approach from the main results. 1117

The performance of the calibration results is shown 1118

in Table 15, where it is evident that the Platt scaling 1119

approach is far less stable than temperature calibra- 1120

tion and can in fact excessively enhance the illusion 1121

of robustness. 1122

For automatic calibration, standard training hy- 1123

perparameters were employed. Specifically, the 1124

temperature calibration protocol was set at 5,000 it- 1125

erations with a learning rate of 0.01. Similarly, the 1126

Platt scaling protocol was also designed for 5000 1127

iterations with a learning rate of 0.01. A point 1128

to note for practical implementation: adversaries 1129

might need to refine calibrator hyperparameters to 1130

minimize the Expected Calibration Error (ECE) on 1131

a specified validation set. However, ECE determi- 1132

nation is nuanced, largely due to its sensitivity to 1133

chosen bin widths, as highlighted in Table 12 for 1134

instances of underconfidence. 1135

Method Adv clean bae tf pwws dg

std - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf - 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

temp 88.96
±0.30

31.52
±0.34

21.89
±0.43

27.58
±1.31

31.52
±0.34

platt 88.96
±0.30

72.08
±12.15

70.33
±18.00

72.70
±16.72

74.73
±17.11

↑conf - 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

temp 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.45
±0.74

21.64
±1.46

platt 88.96
±0.30

37.21
±3.73

34.55
±17.90

37.46
±19.70

41.09
±19.59

ddi-at - 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

temp 87.90
±0.49

31.80
±0.57

18.36
±3.01

23.08
±1.96

22.89
±3.38

platt 87.90
±0.49

43.34
±19.42

38.77
±32.23

42.25
±31.66

42.72
±32.72

Table 15: Adversarial mitigation of highly miscalibrated
systems using different test-time calibration approaches.

E Extreme miscalibration causes noisy 1136

gradients 1137

Section 3 argues that for heavily miscalibrated sys- 1138

tems, the ‘gradients’ of the output probabilities 1139

with respect to the input are extremely noisy. There- 1140

fore, of-the-shelf adversarial attack methods, that 1141

use these gradients to select which tokens in the 1142

input sequence to attack, receive noisy signals and 1143

fail to operate. In this section, we demonstrate that 1144

extreme miscalibration does indeed cause noisy 1145

gradients for of-the-shelf-adversarial attacks. 1146
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We consider two systems: the standard std sys-1147

tem from the main paper and the heavily miscali-1148

brated, overconfident system, ↑conf in the main pa-1149

per. Experiments are on the rt dataset and we con-1150

sider specifically the PWWS attack and Textfooler1151

attack. These off-the-shelf adversarial attack ap-1152

proach rank all tokens wi in the input sequence x1153

by their influence on the output of the model (N.B.1154

this is considered an approximation for the gradient1155

of the output with respect to each input token). The1156

PWWS attack refers to this influence as saliency,1157

whilst the Textfooler attack calls it importance. To1158

assess the impact of heavy miscalibration on the1159

rank ordering, Table 16 reports the Spearman Rank1160

Correlation between the rank of all input tokens1161

(in the first iteration of the attack) as per the two1162

models: std and ↑conf. The average correlation1163

and standard deviation are given over the entire1164

dataset. The average rank correlation is 0.28 for1165

PWWS and 0.29 Textfooler, which is very low and1166

demonstrates that by simply having heavy miscal-1167

ibration there is a significant impact on the attack1168

mechanism. Further, the standard deviation is also1169

large, suggesting that for many input sequences,1170

the correlation is even lower.

Attack Rank Correlation

pwws 0.28
±0.24

textfooler 0.29
±0.26

Table 16: Spearman Rank Correlation of input tokens’
importance with (overonfident model) and without (std
model) heavy miscalibration. The low rank correlation
demonstrates that the token importance is strongly im-
pacted by extreme confidence, which can explain the
observed IOR for highly miscalibrated models.
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