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Improving the Training of GANs with Limited Data via
Dual Adaptive Noise Injection

Anonymous MM submission∗

ABSTRACT
Recently, many studies have highlighted that training Generative
Adversarial Networks (GANs) with limited data suffers from the
overfitting of the discriminator (𝐷). Existing studies mitigate the
overfitting of 𝐷 by employing data augmentation, model regulariza-
tion, or pre-trained models. Despite the success of existing methods
in training GANs with limited data, noise injection is another plau-
sible, complementary, yet not well-explored approach to alleviate
the overfitting of 𝐷 issue. In this paper, we propose a simple yet
effective method called Dual Adaptive Noise Injection (DANI), to
further improve the training of GANs with limited data. Specifi-
cally, DANI consists of two adaptive strategies: adaptive injection
probability and adaptive noise strength. For the adaptive injection
probability, Gaussian noise is injected into both real and fake im-
ages for generator (𝐺) and 𝐷 with a probability 𝑝 , respectively,
where the probability 𝑝 is controlled by the overfitting degree of
𝐷 . For the adaptive noise strength, the Gaussian noise is produced
by applying the adaptive forward diffusion process to both real
and fake images, respectively. As a result, DANI can effectively
increase the overlap between the distributions of real and fake data
during training, thus alleviating the overfitting of 𝐷 issue. Exten-
sive experiments on several commonly-used datasets with both
StyleGAN2 and FastGAN backbones demonstrate that DANI can
further improve the training of GANs with limited data and achieve
state-of-the-art results compared with other methods.

CCS CONCEPTS
• Computing methodologies → Image representations; Com-
puter vision representations; Neural networks.
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1 INTRODUCTION
In recent years, Generative Adversarial Networks (GANs) [14]
have achieved great success in generating contents, e.g., images
[24, 27, 28, 59], videos [8, 17, 41], text [18, 53] and audio [29], for
social media. These generated contents can be applied in various
multimedia applications, such as talking face [55, 60]. However,
the success of GANs relies on the availability of a large amount of
data. Collecting and cleaning these large datasets can be expensive,
time-consuming, and even infeasible. Consequently, training GANs
with limited data has received great attention.

Recently, several approaches [7, 26, 65] have demonstrated that
training GANs with limited data suffers from the overfitting of the
discriminator (𝐷), i.e.,𝐷 becomes overly confident in distinguishing
between real and fake data. To address this, existing methods em-
ploy various strategies such as data augmentation [7, 9, 23, 26, 65],
model regularization [12, 33, 51], or pre-trained models [30, 45].
Despite the success of existing methods, noise injection [1, 4] is
another plausible, complementary, yet not well-explored approach
to alleviate the overfitting of 𝐷 . Recent noise injection methods in
GANs [2, 13, 22, 43, 47] have already shown their effectiveness in im-
proving the training of GANs with a large amount of data. However,
as stated in ADA [26], directly applying noise injection to GANs
with limited data suffers from the leaking problem [26, 63, 64, 66],
i.e., “noise augmentation leads to noisy results, even if there is
none in the dataset”, which can highly influence the performance
of GANs training under limited data settings.

In this paper, we propose a novel noise injection method for
GANs with limited data, called Dual Adaptive Noise Injection
(DANI). Specifically, DANI consists of two adaptive strategies, i.e.,
adaptive injection probability and adaptive noise strength. For the
adaptive injection probability, we inject Gaussian noise into both
real and fake images for 𝐺 and 𝐷 with a probability 𝑝 , where the
𝑝 is controlled by the overfitting degree of 𝐷 adaptively. For the
adaptive noise strength, we apply the adaptive forward diffusion
process [20] to both real and fake images, respectively, to produce
the Gaussian noise. Consequently, both adaptive strategies in DANI
can effectively prevent the leaking problem caused by the noise in-
jection. Furthermore, DANI can effectively alleviate the overfitting
of 𝐷 problem, i.e., 𝐷 becomes overly confident in distinguishing
the real and fake data. Specifically, we prove that DANI effectively
increases the overlap between the supports of real and fake data
distributions in GANs during training (see Theorem 3 in §3.2), as
illustrated in Figure 1. Then, based on the conclusion in ADA [26],
the increased overlap between the supports of real and fake data
distributions provided by DANI strongly indicates that DANI miti-
gates 𝐷 becoming overly confident in distinguishing real from fake
data. This demonstrates that DANI alleviates the overfitting of 𝐷
problem.
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Figure 1: Schematic overview illustrating how DANI can benefit the training of GANs with limited data. Top: The real and
fake data distributions observed by 𝐷 during training. As the overfitting of 𝐷 increases, 𝐷 becomes increasingly confident in
distinguishing between real and fake data, leading to a decrease in the overlap between the supports of real and fake data
distributions observed by 𝐷 . Finally, when 𝐷 becomes overly confident, i.e., when 𝐷 reaches optimality as pointed out in [2, 14],
the overlapping parts disappear or can be ignored. Bottom: The real and fake data distributions with DANI observed by 𝐷

during training. Applying DANI for both real and fake samples can effectively provide more overlapping parts between the
supports of real and fake distributions during training, thus resulting in better performance [2, 54].

To sum up, the main contributions of this paper are as follows:

(1) We propose a novel method called Dual Adaptive Noise In-
jection (DANI) for training GANs with limited data. DANI
can effectively alleviate the overfitting of 𝐷 and avoid the
leaking problem.

(2) We provide the theoretical analysis of DANI for training
GANs with limited data, proving its convergence and ratio-
nality on both StyleGAN2 [28] and FastGAN [33] backbones.
Furthermore, we prove that applying DANI to GANs can
provide more overlapping parts between the supports of the
real and fake data distributions.

(3) Extensive experiments on several commonly used datasets
demonstrate that the proposed DANI can further improve the
training of GANs with limited data and achieve state-of-the-
art performance compared with other methods. Additionally,
DANI achieves these benefits with only a negligible increase
in computational cost.

2 PRELIMINARIES
2.1 Generative Adversarial Networks (GANs)
Generative adversarial networks (GANs) [14] is a form of genera-
tive models [40, 52] in which a game is played between two players:
A generator (𝐺) and a discriminator (𝐷). Specifically,𝐺 aims to pro-
duce realistic-looking samples with some given noise 𝑧 to deceive
𝐷 , while 𝐷 aims to distinguish whether the input sample is from
the generator’s output or real data. The objective function of GANs
can be formulated as follows:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑃𝑅 [log𝐷 (𝑥)]

+ E𝑥∼𝑃𝐺 [log(1 − 𝐷 (𝑥))] .
(1)

The parameters of 𝐺 and 𝐷 are updated iteratively with gra-
dient descent methods. GANs are known to suffer from training
instability, yielding poor quality and low diversity of generated
images. To stabilize GANs training as well as improve the quality
and diversity of generated images, various approaches have been
proposed, focusing on more sophisticated network architectures [6,
38, 39, 42, 58, 61], more stable objective functions [3, 15, 16, 36, 44],
and better training strategies [10, 24, 31, 34, 35, 56, 62] to achieve
photorealistic results.

2.2 Training GANs with Limited Data
Training GANs with limited data using data augmentation.
Recently, data augmentation (DA) has played an important role
in improving performance when training GANs with limited data.
Many studies [7, 26, 50, 65] apply DA to both real and fake im-
ages for 𝐷 and 𝐺 to guide the discriminator avoiding overfitting.
The most popular methods are Diff-Augment [65], ADA [26], and
Diffusion-GAN [54]. Diff-Augment applies the DAs to both real
and fake images for the 𝐷 and the 𝐺 without manipulating the
target distribution. ADA is similar to Diff-Augment, while it further
devises an adaptive approach that controls the strength of data aug-
mentations. Diffusion-GAN applies the adaptive forward diffusion
process [20] as DA to both real and fake images.
Training GANs with limited data using model regularization.
In recent years, several approaches have proposed novel model reg-
ularization methods to alleviate the overfitting of𝐷 , thus improving
the training of GANs with limited data. The most significant meth-
ods include 𝑅𝐿𝐶 [51] and DigGAN [12]. Specifically, 𝑅𝐿𝐶 applies a
regularized objective function for the discriminator to improve the
training of GANs with limited data. DigGAN applies discriminator
gap regularization to alleviate the overfitting of 𝐷 .
Training GANs with limited data using a pre-trained net-
work. Recently, employing pre-trained network has been shown to
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Figure 2: An overview of applying DANI to GANs with limited data. DANI consists of the adaptive injection probability strategy
and the adaptive noise strength strategy. For the adaptive injection probability strategy, the Gaussian noise is adaptively
injected into both the real and fake images for 𝐺 and 𝐷 with a probability 𝑝, where 𝑝 is controlled by the overfitting degree 𝜂.
For the adaptive noise strength strategy, the Gaussian noise is produced by applying an adaptive forward diffusion process to
both the real and fake images for 𝐷 and𝐺 , controlled by Eq.(7). In DANI, the parameters of 𝐷 are optimized using noise-injected
real and fake samples (all paths), and the parameters of 𝐺 are optimized using noise-injected fake samples (red paths).

significantly improve GANs training when using limited data. Many
approaches [30, 45] apply a pre-trained network to the discrimina-
tor to extract the features from both the real and fake images to
improve the training of GANs with limited data. One of the pioneer-
ingmethods is Projected GAN. Specifically, Projected GAN applies a
pre-trained network, i.e., EfficientNet-lite1 [48], to both the real and
fake images to extract projected features in image space. Then, Pro-
jected GAN applies a multi-scale discriminator architecture which
can better utilize deeper layers of the pre-trained network. As a
result, Projected GAN can effectively utilize the obtained projected
features to benefit the training of GANs with limited data. The loss
function of the Projected GAN can be formulated as:

min
𝐺

max
{𝐷𝑙 }

∑︁
𝑙∈L

{E𝑥∼𝑃𝑅 [log𝐷𝑙 (𝑃𝑙 (𝑥))]

+ E𝑥∼𝑃𝐺 [log(1 − 𝐷𝑙 (𝑃𝑙 (𝑥)))]},
(2)

where {𝑃𝑙 } is the set of feature projectors which map real and gen-
erated images to the discriminator’s input space, {𝐷𝑙 } is a set of
independent discriminators operating on different feature projec-
tions and L = {1, ..., 𝑛} is index set for the different projectors.

2.3 Diffusion-based Generative Model
In recent years, Diffusion-based generative models [11, 20, 25] have
shown their superiority in image-generation tasks. Diffusion-based
generative models assume that 𝑝𝜃 (𝑥0) :=

∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 , where

𝑥1, ..., 𝑥𝑇 are latent variables of the same dimensionality as the data
𝑥0 ∼ 𝑝 (𝑥0). There is a forward diffusion chain that gradually adds
noise to the data 𝑥0 ∼ 𝑞(𝑥0) with pre-defined variance schedule 𝛽𝑡
and variance 𝜎2 in 𝑇 steps:

𝑞(𝑥1:𝑇 |𝑥0) :=
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1),

𝑞(𝑥𝑡 |𝑥𝑡−1) := 𝑁 (𝑥𝑡 ;
√︁

1 − 𝛽𝑡 , 𝛽𝑡𝜎
2𝐼 ) .

(3)

A notable property is that 𝑥𝑡 at an arbitrary time-step 𝑡 can be
sampled in closed form as:

𝑞(𝑥𝑡 |𝑥0) := 𝑁 (𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝜎2𝐼 ), (4)

where 𝛼𝑡 := 1 − 𝛽𝑡 , 𝛼𝑡 :=
∏𝑡

1 𝛼𝑠 . A variational lower bound [5] is
then used to optimize the reverse diffusion chain as:

𝑝𝜃 (𝑥0:𝑇 ) := 𝑁 (𝑥𝑇 ; 0, 𝜎2𝐼 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ).

2.4 Improving GANs Training via Noise
Injection

In recent years, several studies have injected noise [2, 22, 43, 47]
into the discriminator’s input to improve the training of GANs.
Specifically, they add random Gaussian noise to the discriminator’s
input in GANs to achieve better performance. The technique can
be formulated as follows:

𝑐′ = 𝑐 + 𝜆𝑋, 𝑋 ∼ 𝑁
{
0, 𝜎2} , (5)

where 𝜆 is the parameter to scale the noise, 𝑐 represents the original
data, and 𝑐′ represents the data obtained after noise injection.

3 METHODOLOGY
3.1 Dual Adaptive Noise Injection (DANI)
Despite the success of existing methods, noise injection is another
plausible, complementary, yet not well-explored approach to allevi-
ate the overfitting of 𝐷 issue. To effectively utilize noise injection
to improve GANs training with limited data, in this paper, we pro-
pose a novel noise injection method for training GANs with limited
data, called Dual Adaptive Noise Injection (DANI). The overview of
applying Dual Adaptive Noise Injection (DANI) to the GANs with
limited data is shown in Figure 2. DANI consists of two adaptive
strategies, i.e., adaptive injection probability and adaptive noise
strength.

For the adaptive injection probability, we perform the noise
injection based on a form of probability, 𝑝 ∈ [0, 1) for each real and
fake sample. It is intuitive to let 𝑝 be adjusted adaptively based on
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the degree of overfitting without manual tuning regardless of data
scales and properties. To achieve this goal, following ADA [26] and
APA [23], we apply an overfitting heuristic 𝜂 that quantifies the
degree of 𝐷’s overfitting as follows:

𝜂 = E(sign(𝐷𝑟𝑒𝑎𝑙 )), (6)

where sign() indicates the sign function that returns +1 for a non-
negative input; −1, otherwise; 𝐷𝑟𝑒𝑎𝑙 is the discriminator output on
the real training data. Then, we set a threshold value 𝑑target and
follow the same step as in ADA [26] and APA [23] for using 𝜂 to
adjust 𝑝 . Specifically, we initialize 𝑝 to zero and adjust its value once
every four minibatches based on the chosen overfitting heuristic
𝜂. If 𝜂 signifies too much/little overfitting regarding 𝑑target (i.e.,
larger/smaller than 𝑑target ), 𝑝 will be increased/decreased by one
fixed-step. Using this step size, 𝑝 can increase from zero to one in
500k images shown to 𝐷 . We adjust 𝑝 once every four iterations
and clamp 𝑝 from below to zero after each adjustment. In this way,
the noise injection probability can be adaptively controlled based
on the degree of overfitting.

For the adaptive noise strength, we follow Diffusion-GAN, aim-
ing for the strength of the injected noise to be effectively controlled
by the forward diffusion process. To this end, we use the same 𝜂 and
𝑑target from the adaptive injection probability strategy to control
the time-step 𝑡 in the forward diffusion process as follows:

𝑡 = 𝑡 + sign
(
𝜂 − 𝑑target

)
×𝐶, (7)

where𝐶 is a constant. We update 𝑡 every four minibatches based on
the chosen overfitting heuristic 𝜂. In this case, the strength of the
noise in DANI can be controlled with an adaptive forward diffusion
process.

To sum up, DANI can be formulated as:
𝑥 = 𝑥 + 𝑝𝐴𝑡 (𝑥), (8)

where 𝐴𝑡 is the adaptive forward diffusion process, 𝑥 represents
the original data, and 𝑥 represents the data obtained after noise
injection. Following Diffusion-GAN [54], we select the priority dis-
tribution for the forward diffusion process and the time step 𝑡 is
controlled adaptively following Eq.(7). According to [54], the for-
ward diffusion process variances 𝛽𝑡 in Eq.(3) are increased linearly
from 𝛽1 = 10−4 to 𝛽𝑇 = 0.02.

3.2 Theoretical Analysis
Let 𝑃𝑅 be the distribution of real data and 𝑃𝐺 be the distribution
of generated data. For the sample 𝑥 , 𝐷 (𝑥) represents the estimated
probability of sample 𝑥 being real or fake. To examine the rationality
of DANI, we analyze it in a non-parametric setting, where a model
is represented with infinite capacity by exploring its convergence
in the space of probability density functions. Ideally, the estimated
probability distribution 𝑃𝐺 should perfectly model the distribution
𝑃𝑅 without bias if given enough capability and training time.

Since the probability 𝑝 is adaptively adjusted, to facilitate this
theoretical analysis, we assume that 𝛼 is the expected strength,
which approximates the effect of dynamic adjustment of distri-
bution during the entire training procedure. Since 𝑝 ∈ [0, 1), we
have 0 ≤ 𝛼 < 𝑝𝑚𝑎𝑥 < 1, where 𝑝𝑚𝑎𝑥 is the maximum probability
throughout training. Based on Eq.(1), the saturating loss function

of DANI in GANs is shown as follows:
min
𝐺

max
𝐷

E𝑥∼𝑃𝑅 [log𝐷 (𝑥 + 𝛼𝐴𝑡 (𝑥))]

+ E𝑥∼𝑃𝐺 [log(1 − 𝐷 (𝑥 + 𝛼𝐴𝑡 (𝑥)))],
(9)

where 𝐴𝑡 is the adaptive forward diffusion process, where the for-
ward diffusion process is based on Eq.(3) and the time step 𝑡 is
controlled adaptively following Eq.(7). Ideally, for ∀𝑥 , 𝐴𝑡 (𝑥) ∼
𝑁

{
0, 𝜎2}, it demonstrates that 𝐴𝑡 (𝑥) can be directly regarded as

Gaussian noise with different strengths during training. As a result,
DANI in the GANs can be theoretically regarded as adding a set
of Gaussian noise during training. In this case, we follow [22] to
analyze the convergence of Eq. (9).

For ∀𝑥 , let 𝜀 = 𝛼𝐴𝑡 (𝑥) represent the random Gaussian noise.
Then, Eq.(9) can be formulated as:

min
𝐺

max
𝐷

∑︁
𝑃𝜀 ∈𝑆

{E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝑅 [log𝐷 (𝑥 + 𝜀)]]

+ E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝐺 [log(1 − 𝐷 (𝑥 + 𝜀))]]},
(10)

according to [22], we introduce a set 𝑆 of probability density func-
tions in Eq.(10), where 𝜀 ∼ 𝑃𝜀 ∈ 𝑆 . Then, based on [22, 45], the
optimal discriminator in Eq.(10) can be formulated as:

𝐷∗ (𝑥) =
∑
𝑃𝜀 ∈𝑆 𝑃𝑅,𝜀 (𝑥)∑

𝑃𝜀 ∈𝑆 [𝑃𝑅,𝜀 (𝑥) + 𝑃𝐺,𝜀 (𝑥)]
. (11)

Then, according to [22], the optimization of 𝐺 under optimal
discriminator 𝐷∗ (𝑥) for Eq.(10) can be formulated as:

min
𝐺

JSD( 1
|𝑆 |

∑
𝑃𝜀 ∈𝑆 𝑃𝑅,𝜀 | |

1
|𝑆 |

∑
𝑃𝜀 ∈𝑆 𝑃𝐺,𝜀 ), (12)

where JSD is the Jensen-Shannon divergence. Following Theorem
1 in [22], we can simplify Eq.(12) as:

min
𝐺

JSD( 1
2
(𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 ) | |

1
2
(𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 )), (13)

where 𝑃𝜀 is a zero-mean Gaussian function produced by DANI
with a positive definite covariance Σ. Then, based on the proofs of
Theorem 1 in [22], we can conclude that the optimization of Eq.(13)
is equal to the optimization between the distributions 𝑃𝐺 and 𝑃𝑅 ,
which is the same as in the original GAN [14], indicating that the
proposed DANI does not influence the convergence.

Next, we theoretically analyze the widely-used GANs with lim-
ited data backbones, i.e., StyleGAN2 and FastGANwith non-saturating
loss and hinge loss, respectively.

3.2.1 Discussion of the non-saturating loss formulation in
StyleGAN2. For the StyleGAN2, the non-saturating loss function
can be formulated as:

𝑉𝐷 (𝐷,𝐺) = E𝑥∼𝑃𝑅 [log𝐷 (𝑥)] + E𝑥∼𝑃𝐺 [log(1− 𝐷 (𝑥))],
𝑉𝐺 (𝐷,𝐺) = −E𝑥∼𝑃𝐺 [log(𝐷 (𝑥))] . (14)

Based on the theoretical analysis of the saturating loss above, the
non-saturating loss with DANI can be formulated as:

𝑉𝐷 (𝐷,𝐺) =
∑︁
𝑃𝜀 ∈𝑆

{E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝑅 [log𝐷 (𝑥 + 𝜀)]]

+ E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝐺 [log(1− 𝐷 (𝑥 + 𝜀))]]},

𝑉𝐺 (𝐷,𝐺) = −
∑︁
𝑃𝜀 ∈𝑆
E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝐺 [log(𝐷 (𝑥 + 𝜀))]] .

(15)

2024-04-13 09:10. Page 4 of 1–10.
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Then, according to the original GAN and Theorem 2.5 as in
[2], optimizing the non-saturating loss in GANs is equivalent to
minimizing the KL-2JS divergence item (under optimal 𝐷∗). In this
case, we follow [22] to consider images of𝑚 × 𝑛 pixels and with
values in a compact domain Ω ⊂ R𝑚×𝑛 , then 𝑃𝑅 can be represented
as 𝐿2 (Ω). In this case, the optimization of 𝐺 under Eq.(15) can be
formulated as Theorem 1 as follows.
Theorem 1. Let us choose 𝑆 such that the optimization of 𝐺 in
Eq.(15) can be written as

min
𝐺

KLD((𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 ) | | (𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 ))

− JSD( 1
2
(𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 ) | |

1
2
(𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 )),

(16)

where 𝑃𝜀 is a zero-mean Gaussian function produced by DANI with
a positive definite covariance Σ. Let us also assume that the domain
of 𝑃𝐺 is restricted to Ω (and thus 𝑃𝐺 ∈ 𝐿2 (Ω)). Then, the global
optimum of Eq.(15) is 𝑃𝐺 (𝑥) = 𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.
Proof. See supplementary materials.

3.2.2 Discussion of the hinge loss formulation in FastGAN.
For the FastGAN, the hinge loss function can be formulated as:

𝑉𝐷 (𝐷,𝐺) = E𝑥∼𝑃𝑅 [min(0,−1 + 𝐷 (𝑥))]
+ E𝑥∼𝑃𝐺 [min(0,−1 − 𝐷 (𝑥))],

𝑉𝐺 (𝐷,𝐺) = −E𝑥∼𝑃𝐺 [𝐷 (𝑥)] .
(17)

Based on the theoretical analysis of the saturating loss above, the
hinge loss with DANI can be formulated as:

𝑉𝐷 (𝐷,𝐺) =
∑︁
𝑃𝜀 ∈𝑆

{E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝑅 [min(0,−1 + 𝐷 (𝑥 + 𝜀))]]

+ E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝐺 [min(0,−1 − 𝐷 (𝑥 + 𝜀))]]},

𝑉𝐺 (𝐷,𝐺) = −
∑︁
𝑃𝜀 ∈𝑆
E𝜀∼𝑃𝜀 [E𝑥∼𝑃𝐺 [𝐷 (𝑥 + 𝜀)]] .

(18)

According to [32, 38, 49], optimizing the hinge loss is equivalent to
minimizing the so-called reverseKL divergence item (under optimal
𝐷∗). Therefore, following the definition in §3.2.1, the optimization
of 𝐺 under Eq.(18) can be formulated as Theorem 2 as follows.
Theorem 2. Let us choose 𝑆 such that the optimization of 𝐺 in
Eq.(18) can be written as

min
𝐺

KLD((𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 ) | | (𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 )), (19)
where 𝑃𝜀 is a zero-mean Gaussian function produced by DANI with
a positive definite covariance Σ. Let us also assume that the domain
of 𝑃𝐺 is restricted to Ω (and thus 𝑃𝐺 ∈ 𝐿2 (Ω)). Then, the global
optimum of Eq.(18) is 𝑃𝐺 (𝑥) = 𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.
Proof. See supplementary materials.

3.2.3 Discussion of Regularization in StyleGAN2 and Fast-
GAN. Both StyleGAN2 and FastGAN apply regularization to 𝐷 in
their loss function to enhance the training of GANs. To demonstrate
the rigour and reasonableness of our theory above, we point out
that regularization in both StyleGAN2 and FastGAN aims to avoid
𝐷 becoming overly confident. Therefore, regularization does not
influence the soundness of our theoretical insights under optimal

𝐷∗. Additionally, based on the theory in [37], applying regulariza-
tion in GANs can still be convergent when initialized sufficiently
close to the equilibrium point, which demonstrates that our theory
analysis is reasonable.

Next, we prove the proposed DANI can increase the overlapping
parts between the supports of 𝑃𝐺 and 𝑃𝑅 , as shown in Theorem 3.
Theorem 3. For two supports of the distributions 𝑃 and 𝑄 consist-
ing of overlapping parts, if there exists one sample 𝑥 ∈ 𝑃 ∩ 𝑄 , ∀
function 𝐴𝑡 , [𝑥 + 𝑝𝐴𝑡 (𝑥)] ∈ [𝑃 + 𝑝𝐴𝑡 (𝑃)] ∩ [𝑄 + 𝑝𝐴(𝑄)].
Proof. [𝑥 ∈ 𝑃 ∩𝑄] ⇒ [𝑥 ∈ 𝑃 and 𝑥 ∈ 𝑄] ⇒ [𝑝𝐴𝑡 (𝑥) ∈ 𝑝𝐴𝑡 (𝑃) and
𝑝𝐴𝑡 (𝑥) ∈ 𝑝𝐴𝑡 (𝑄)] ⇒ [𝑥+𝑝𝐴𝑡 (𝑥)] ∈ [𝑃+𝑝𝐴𝑡 (𝑃)]∩[𝑄+𝑝𝐴𝑡 (𝑄)]] .

The 𝑃 and 𝑄 in Theorem 3 can be replaced as 𝑃𝐺 and 𝑃𝑅 for
the GANs, and the function 𝐴𝑡 is the same as the adaptive forward
diffusion function 𝐴𝑡 in DANI. Theorem 3 shows that with the
function 𝐴𝑡 , if the sample 𝑥 is in the overlapping parts between the
supports of 𝑃𝐺 and 𝑃𝑅 , 𝑥 + 𝑝𝐴𝑡 (𝑥) can still be in the overlapping
parts between the supports of 𝑃𝐺 + 𝑝𝐴𝑡 (𝑃𝐺 ) and 𝑃𝑅 + 𝑝𝐴𝑡 (𝑃𝑅).
Because the probability 𝑝 and the function 𝐴𝑡 in DANI are both
controlled by the overfitting degree of 𝐷 adaptively, this means
that 𝑝 and 𝐴𝑡 will vary adaptively during training. In this case,
one sample 𝑥 can produce a set of samples {𝑥 + 𝑝𝐴𝑡 (𝑥)} during
training. This demonstrates that the overlapping parts between the
DANI distribution 𝑃𝐺 +𝑝𝐴𝑡 (𝑃𝐺 ) and 𝑃𝑅 +𝑝𝐴𝑡 (𝑃𝑅) consist of more
samples, thus providing more overlapping parts, leading to better
performance.

3.3 Discussion of the Difference between DANI
and Diffusion-GAN

Although the adaptive forward diffusion process has been already
applied to the Diffusion-GAN, the two main differences between
DANI and Diffusion-GAN are shown as follows. First, same to the
data augmentation methods in GANs with limited data [26, 50, 54,
65], the noise injection formulation in Diffusion-GAN is to trans-
form both real and fake samples by an adaptive forward diffusion
process. This design can cause the original real and fake data not
to be visible to 𝐷 during training, which decreases the training of
GANs under limited data settings, leading to sub-optimal perfor-
mance. In contrast, the noise injection form of the proposed DANI
allows the original real and fake data to be visible to 𝐷 during train-
ing (under adaptive injection probability 𝑝 = 0), which can improve
the training of GANs under limited data settings, resulting in better
performance. Second, according to [64], the leaking problem still
exists in Diffusion-GAN. Compared with the Diffusion-GAN, which
only employs the adaptive noise strength to alleviate the leaking
problem, the proposed DANI has an additional adaptive injection
probability to further alleviate the leaking problem, therefore lead-
ing to better performance.

4 EXPERIMENT
4.1 Datasets and Implementation Details
We select FFHQ [28], LSUN-CAT [46] and low-shot datasets for
experiments. For fair comparisons, we follow the official open-
source codes1 for preprocessing and resizing the FFHQ and LSUN-
CAT dataset to 256×256, as was the case in recent studies [26, 31, 65].

1https://github.com/NVlabs/stylegan2-ada-pytorch
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FID 3.04 (-0.94) FID 14.92 (-0.88) FID 17.72 (-0.29) FID 16.81 (-1.07)

(a) (b) (c) (d) (e)

FID 10.08 (-1.13)

Figure 3: Images generated by Projected GAN + DANI on (a) 100-shot Obama dataset, (b) 100-shot Panda dataset, (c) 100-shot
Grumpy Cat dataset, (d) Animal-Face Cat dataset and (e) Animal-Face Dog datasets. The decreasing value of FID in red color
demonstrates the improvement of Projected GAN + DANI compared with baseline Projected GAN. Best viewed in color.

Method MA Backbone
100-shot Animal-Face

Obama Grumpy Cat Panda Cat Dog
StyleGAN2 [28] Yes StyleGAN2 65.57 39.92 22.08 51.66 77.96
Diff-Augment [65] Yes StyleGAN2 46.87 27.08 12.06 42.44 58.85
ADA [26] Yes StyleGAN2 45.69 26.62 12.90 40.77 56.83
Diffusion-GAN [54] Yes StyleGAN2 28.55 21.87 8.69 33.18 68.15
AugSelf-StyleGAN2 [21] Yes StyleGAN2 26.00 19.81 8.36 30.53 48.19
FakeCLR [31] Yes StyleGAN2 26.95 19.56 8.42 26.34 42.02
InsGen [57] Yes StyleGAN2 32.42 22.01 9.85 33.01 44.93
InsGen + DANI Yes StyleGAN2 23.25 18.83 6.99 24.14 34.19
FastGAN [33] Yes FastGAN 35.80 25.75 9.70 33.85 52.46
FreGAN [58] Yes FastGAN 33.39 24.93 8.97 31.05 47.85
Projected GAN [45] Yes FastGAN 11.21 15.80 3.98 18.01 17.88
Projected GAN + DANI Yes FastGAN 10.08 14.92 3.04 17.72 16.81

Table 1: FID score (lower is better) on several low-shot datasets (256 × 256). We follow the setting as in [65]. MA means Massive
Augmentation, i.e., xflipping, which has the same meaing as in [9]. For a fair comparison, the FIDs are averaged over five runs;
all standard deviations are less than 1% relatively. The results of the Projected GAN are run by ourselves based on the official
open-source codes https://github.com/autonomousvision/projected-gan.

Method MA Backbone
FFHQ

100 1K 2K 5K
StyleGAN2 [28] Yes StyleGAN2 179 100.16 54.3 49.68
ADA [26] Yes StyleGAN2 85.8 21.29 15.39 10.96
Diff-Augment [65] Yes StyleGAN2 61.91 25.66 24.32 10.45
APA [23] Yes StyleGAN2 65 18.89 16.90 8.38
AugSelf-StyleGAN2+ [21] Yes StyleGAN2 - 20.39 - 9.15
FakeCLR [31] Yes StyleGAN2 42.56 15.92 9.90 7.25
InsGen [57] Yes StyleGAN2 45.75 18.21 11.47 7.83
InsGen + DANI Yes StyleGAN2 41.79 15.63 9.78 7.21
Projected GAN Yes FastGAN 26.25 11.12 8.25 6.85
Projected GAN + DANI Yes FastGAN 23.98 10.81 7.73 6.20

Table 2: FID score (lower is better) on the 256×256 FFHQ dataset. Following FakeCLR [31], we perform experiments on 100, 1K, 2K
and 5K training samples on the FFHQ dataset. MA means Massive Augmentation, i.e., xflipping, which has the same meaing as
in [9]. For a fair comparison, the FIDs are averaged over five runs; all standard deviations are less than 1% relatively. The results
of the Projected GAN are run by ourselves based on the official codes https://github.com/autonomousvision/projected-gan.
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Method MA Backbone LSUN-CAT

1K 5K 10K 30K
Projected GAN Yes FastGAN 19.39 13.57 8.92 8.65
Projected GAN + DANI Yes FastGAN 16.82 11.27 8.53 8.21

Table 3: FID score (lower is better) on the 256 × 256 LSUN-CAT dataset. Following Diff-Augment [65], we perform experiments
on 1K, 5K, 10K and 30K training samples on the LSUN-CAT dataset. MA means Massive Augmentation, i.e., xflipping, which
has the same meaing as in [9]. For a fair comparison, the FIDs are averaged over five runs; all standard deviations are less than
1% relatively. The results of the Projected GAN are run by ourselves based on the official open-source codes.

The FFHQ dataset contains 70K high-resolution images of human
faces. Following FakeCLR [31], we select a subset of 100, 1K, 2K,
and 5K for a fair comparison. The LSUN-CAT dataset contains 200K
high-resolution images of cats. Based on Diff-Augment [65], we
select a subset of 1K, 5K, 10K and 30K for the comparison. The Low-
shot datasets contain five datasets (Obama, Grumpy Cat, Panda,
Animal-Face Cat, and Animal-Face Dog) with 100, 100, 100, 160,
and 389 training images, respectively. We select the state-of-the-art
StyleGAN2 and FastGAN methods, e.g., InsGen and Projected GAN
[45], as our backbone and set the batch size as 64 for all experiments.
More importantly, according to Eq.(2), the DANI in Projected GAN
is applied to the real and fake projected features rather than real
and fake images. The commonly used Fréchet Inception Distance
(FID) [19] is applied as the evaluation metric; the full dataset is
used as the reference distribution for FID calculation, following
prior work [26, 31, 65]. For the adaptive forward diffusion process
𝐴𝑡 in DANI, based on Diffusion-GAN [54], the initial value of 𝑡 is
set as 5. Then, we set 𝑡𝑚𝑖𝑛 = 5 and the 𝑡𝑚𝑎𝑥 = 1000 for InsGen,
and set the 𝑡𝑚𝑖𝑛 = 5 and the 𝑡𝑚𝑎𝑥 = 500 for Projected GAN. The
forward diffusion process variances are set to constants increasing
linearly from 𝛽1 = 10−4 to 𝛽𝑇 = 0.02. More details of experiments,
i.e., experimental results with the other evaluation metric Inception
Score (IS) [44] and the link of the pre-trained model with test code,
can be found in supplementary materials.

4.2 Results on Low-shot Datasets
The results on low-shot datasets with StyleGAN2 and FastGAN
are shown in Table 1. Applying DANI to both InsGen and Pro-
jected GAN can achieve better performance. Projected GAN +DANI
achieves the lowest FID compared with all of the other methods.
More importantly, Projected GAN has already applied DA, regular-
izations and pre-trained models to achieve state-of-the-art perfor-
mance on the low-shot datasets; adding DANI can further reduce
the FID score by about 5% to 10% and achieve novel state-of-the-art
performance. The images generated by Projected GAN + DANI on
low-shot datasets are shown in Figure 3.

4.3 Results on FFHQ and LSUN-CAT Datasets
The results on the FFHQ datasets are shown in Table 2. For the
FFHQ dataset, following the FakeCLR [31], we perform experiments
on the subset of 100, 1K, 2K and 5K. Applying DANI to both InsGen
and Projected GAN can achieve better performance and Projected
GAN + DANI achieves state-of-the-art performance compared with
other methods. The results on the LSUN-CAT datasets with the
state-of-the-art method, i.e., Projected GAN, are shown in Table 3.

For the LSUN-CAT dataset, based on Diff-Augment [65], we conduct
experiments on the subset of 1K, 5K, 10K and 30K. Applying DANI
to Projected GAN also achieves better performance.

4.4 Computational Cost
The results of the training time on the Animal-Face Dog dataset
(256 × 256) with or without DANI using Projected GAN have been
demonstrated in Table 4. The increased computational cost with
DANI is negligible (< 1%).

Method Seconds per 1K images
Projected GAN 12.11
Projected GAN + DANI 12.20

Table 4: The training time on the Animal-Face Dog dataset
(256 × 256) with or without DANI. The results are calculated
by averaging over ten times on the four NVIDIA RTX TITAN
GPUs with batch size 64. All standard deviations are less than
1% relatively.

4.5 Ablation Study
Impact of two adaptive strategies in DANI. To demonstrate
that two adaptive strategies in DANI are reasonable, we conduct
an ablation study on the impact of adaptive strategies in DANI,
and the results are shown in Table 6. It is clear that directly adding
the Gaussian noise to the Projected GAN, i.e., Projected GAN +
DANI (without both adaptive strategies), can cause worse perfor-
mance compared with the baseline. Adding each adaptive strategy
in DANI to the Projected GAN increases the performance, which
demonstrates that the two adaptive strategies in DANI are suitable.
Furthermore, to further demonstrate that DANI can alleviate the
leaking problem, following [64], we also show the compared gen-
erated images of Projected GAN + DANI (without both adaptive
strategies) and Projected GAN + DANI on the 100-shot Obama
dataset, as shown in Figure 5. It is clear that directly adding the
Gaussian noise to the Projected GAN, i.e., Projected GAN + DANI
(without both adaptive strategies), still has slightly noisy results. In
contrast, applying DANI to Projected GANs, i.e., Projected GAN +
DANI, can avoid the leaking issue during training.
DANI v.s. Transforming both real and fake data by an adap-
tive forward diffusion. Recently, Diffusion-GAN [54] transforms
both real and fake samples by an adaptive and forward diffusion to
improve GANs training. To further show the superiority of DANI
compared with Diffusion-GAN, we also conduct an ablation study

2024-04-13 09:10. Page 7 of 1–10.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, 28 October - 1 November, 2024, Melbourne, Australia Anonymous

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(d)

FID 6.20 (-0.65)

(a)

FID 23.98 (-2.27) FID 10.81 (-0.31)

(b)

FID 7.73 (-0.52)

(c)

Figure 4: Images generated by Projected GAN + DANI on (a) FFHQ-100 dataset, (b) FFHQ-1K dataset, (c) FFHQ-2K dataset and (d)
FFHQ-5K dataset. The decreasing value of FID in red color demonstrates the improvement of Projected GAN + DANI compared
with baseline Projected GAN. Best viewed in color.

Method MA 100-shot Animal-Face

Obama Grumpy Cat Panda Cat Dog
Diffusion-Projected GAN [54] Yes 10.54 15.13 3.39 17.86 17.22
Projected GAN + DANI Yes 10.08 14.92 3.04 17.72 16.81

Table 5: FID score (lower is better) on several low-shot datasets (256 × 256). We follow the setting as in [65]. MA means Massive
Augmentation, i.e., xflipping, which has the same meaning as in [9]. For a fair comparison, the FIDs are averaged over three
runs; all standard deviations are less than 1% relatively. The results of the Diffusion-Projected GAN are run by ourselves based
on the official open-source codes.

(a) (b)

Figure 5: Compared generated images on the 100-shot Obama
dataset: (a) Images generated by Projected GAN + DANI (with-
out both adaptive strategies) and (b) Images generated by
Projected GAN + DANI. Best viewed in color.

comparing the proposed DANI with Diffusion-GAN with the Pro-
jected GAN backbone, and the results are shown in Table 5. Pro-
jected GAN + DANI can achieve better performance compared
with Diffusion-Projected GAN on low-shot datasets. More compar-
ison results on the FFHQ dataset can be found in supplementary
materials.

5 CONCLUSION
In this paper, to improve GANs training with limited data, we pro-
pose a novel noise injection method called Dual Adaptive Noise

Method FID
Projected GAN (baseline) 11.21
Projected GAN + DANI (𝑤/𝑜 both strategies) 11.62
Projected GAN + DANI (𝑤/𝑜 adaptive noise strength) 10.81
Projected GAN + DANI (𝑤/𝑜 adaptive injection probability) 10.33
Projected GAN + DANI 10.08

Table 6: FID score (lower is better) on the 100-shot-Obama
dataset (256 × 256). Massive Augmentation [9] is applied to
all of the methods. For a fair comparison, the FIDs are aver-
aged over three runs; all standard deviations are less than 1%
relatively.

Injection (DANI), with a negligible computational cost increase.
Specifically, DANI consists of two adaptive strategies, i.e., the adap-
tive injection probability and adaptive noise strength. For the adap-
tive injection probability, we inject Gaussian noise into both real
and fake images for 𝐺 and 𝐷 through a probability 𝑝 , where 𝑝 is
controlled adaptively by the overfitting degree of 𝐷 . For adaptive
noise strength, the Gaussian noise is produced by applying the
adaptive forward diffusion process to the images. Extensive experi-
ments on several commonly-used datasets demonstrate that DANI
can effectively improve the training of GANs with limited data and
achieve state-of-the-art results compared with other methods.
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