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ABSTRACT

Reinforcement learning (RL) policies are prone to high frequency oscillations,
specially undesirable when deploying to hardware in the real-world. In this pa-
per, we identify, categorize, and compare methods from the literature that aim
to mitigate high frequency oscillations in RL. We define two broad classes: loss
regularization and architectural methods. At their core, they incentivize learn-
ing a smooth mapping, such that nearby states in the input space produce nearby
actions in the output space. We present benchmarks in terms of policy perfor-
mance and smoothness with staple RL environments from Gymnasium, as well
as two robotics locomotion tasks that include deployment and evaluations in the
real-world. Finally, we also propose hybrid methods that combine elements from
both loss regularization and architectural methods, and outperform the existing
approaches in the simulation benchmarks as well as in the real-world.

1 INTRODUCTION

Reinforcement learning (RL) policies are prone to high frequency oscillations. When no limitations
or constraints are imposed in either the learning or in the environment, RL agents easily develop
exploitative behavior that maximizes reward to the detriment of everything else. While chasing high
task performance (reward) is the goal of learning, there are scenarios where other factors must also
be considered. For example, when deploying a policy to hardware in the real-world high-frequency
oscillations are specially undesirable as they can cause damage.

A straightforward way to mitigate the issue is to include a penalization term as part of the reward
term. However, the learning algorithm tends to exploit the reward function and it can lead to situ-
ations where the policy has subpar performance. For many tasks it is difficult to design a reward
function in the first place. Adding a penalization term for high frequency oscillations essentially
modifies the original learning objective, and can be difficult to tune. If the penalization weight is
too large, the agent might prefer to not do much to avoid large negative rewards. On the other hand,
if the weight is too small it might choose to ignore it and still generate high-frequency oscillations.
Ideally, a method should allows us to keep the original learning objective and avoid adding new
elements of complexity to the reward design.

Another approach to reduce high-frequency oscillations is to filter the actions outputted from the
policy, for example with a low-pass filter. Thinking of the classic agent – environment diagram in
RL (Sutton & Barto, 2018), we argue that this type of approach is effectively adding a constraint to
the environment rather than the agent (or policy) itself. In fact, filtering the actions could lead to
even greater oscillations in the raw outputs of the policy. That being said, filtering is effective and
quite common in practice, specially in robotics applications (Peng et al., 2020). The biggest issue
when using a traditional filter is that it has memory. This means that if the observation space does
not include past actions and past observations the policy will not be able to learn an effective model,
as it violates the MDP assumption (Van Otterlo & Wiering, 2012). Also discussed in Mysore et al.
(2021), this leads to a larger model in terms of parameters and complexity.

In this work, we categorize, adapt, and compare methods that aim to mitigate the problem of high
frequency oscillations in RL. We focus on methods that do not rely on reward penalization, or envi-
ronment modifications such as post processing actions. Rather, we identify two classes of methods
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in the literature: loss regularization and architectural methods. At their core, the methods incen-
tivize or impose constraints such that the policy learns to produce smooth mappings between input
and output space. A smooth mapping is usually expressed as having states that are nearby in input
space produce nearby actions in output space (Shen et al., 2020). A common mechanism employed
by multiple existing works is to constrain the upper bound of the Lipschitz constant of the policy
network (Fazlyab et al., 2019), either globally Liu et al. (2022) or in a local manner (Kobayashi,
2022; Song et al., 2023).

We benchmark multiple algorithms on classic RL environments in terms of policy performance and
action smoothness with Gymnasium (Towers et al., 2023). Additionally, we also benchmark on two
robotics locomotion tasks, including evaluation and deployment of the best-performing method in
the real-world. Finally, we propose new, hybrid methods that outperform the existing approaches.
Our contributions can be summarized as follows:

• Benchmarking existing methods both in classic RL environments and more application
focused environments;

• Categorizing existing methods in two broad classes: loss regularization methods and archi-
tectural methods;

• Proposing new hybrid methods that combine elements from other existing methods.

2 RELATED WORKS AND METHODS CATEGORIZATION

Benchmarking in RL. Reinforcement learning is a diverse field with a large variety of tasks and
algorithms. With a large array of possibilities it is common for practitioners to look for benchmarks
to aid in algorithm selection. Duan et al. (2016) presented a benchmark for continuous control
policies in several classic tasks as well as more complex tasks such as humanoid locomotion in 3D
simulation. Other works have performed benchmarks that focus in domains such as meta reinforce-
ment learning (Yu et al., 2020), manipulation tasks (Fan et al., 2018), and real-world deployment
(Mahmood et al., 2018; Gürtler et al., 2023). In the context of smooth policies, past works have
presented a few benchmarks (Song et al., 2023; Kobayashi, 2022; Mysore et al., 2021), but this
usually takes the form of direct comparisons with previous methods. In our work, we aim to fill the
comparison gap with more extensive comparisons between methods that learn smooth policies. In
the remainder of this section we introduce and describe two classes along with existing works that
fit this description.

2.1 LOSS REGULARIZATION METHODS

Loss regularization methods aim to reduce the oscillation frequency of the actions by adding regu-
larization components to the standard RL loss function. They take the form of

L = LRL + LReg (1)

where LRL is a policy gradient loss such as PPO (Schulman et al., 2017), TRPO (Schulman et al.,
2015), and similar methods; and LReg is the regularization loss. We investigate two recent works
that propose loss regularization methods.

CAPS (Mysore et al., 2021). Uses two regularization components. The first is a temporal compo-
nent LT , which minimizes the distance between the actions of two consecutive states st and st+1.
The second is a spatial component LS that minimizes the difference between the state st and a state
s̄t sampled from a normal distribution in the neighborhood of st. This takes the form of

LT = D(πθ(st), πθ(st+1)) (2)
LS = D(πθ(st), πθ(s̄t)), where s̄t ∼ N (st, σ)

LCAPS = λTLT + λSLS

where πθ is the actor network, D(·) is a distance function, and λT , λS , and σ are hyperparameters to
be tuned. This method is similar to the one proposed by Shen et al. (2020), with the main distinction
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that CAPS uses the L2 distance between sampled actions, while Shen et al. (2020) employed KL
divergence on the output distributions.

For the overlapping environments we use the same hyperparameters from the original paper (Mysore
et al., 2021). For the new locomotion environments we performed a short hyperparameter search
and chose the best values. The complete hyperaparameter details are presented in the Appendix
Tables 2, 5, and 9.

L2C2 (Kobayashi, 2022). Uses two regularization components with a similar mechanism to the
spatial component in CAPS. Notably, the regularization is employed both to the outputs of the
actor network πθ and the value network Vθ. Moreover, the sampling distance is bounded relative
to the distance of two consecutive states st and st+1, rather than a hyperparameter. The L2C2
regularization is computed in the following way

s̄t = st + (st+1 − st) · u, where u ∼ U(.) (3)
Ls,π = D(πθ(st), πθ(s̄t))

Ls,V = D(Vθ(st), Vθ(s̄t))

LL2C2 = λπLs,π + λV Ls,V

where U is a uniform distribution, D is a distance metric, πθ and Vθ are the actor and value network,
and λπ and λV are weights for each regularization component. For brevity, the uniform sampling
details and its hyperparameters are omitted here. We invite the reader to read the original work
from Kobayashi (2022) for an in-depth discussion of the state sampling and definition of the hyper-
parameters. Our training hyperparameter choices are presented in the Appendix Tables 2, 5, and
9.

L2C2 and CAPS are similar, with the main difference coming from the sampling method. One could
argue that the temporal element of CAPS is redundant, since a state that is sampled nearby and two
consecutive states should produce more or less the same regularization signal. As such, L2C2 drops
the temporal element in favor of optimizing both the actor and the value network outputs.

2.2 ARCHITECTURAL METHODS

Architectural methods aim to reduce the oscillation frequency of the actions by modifying the learn-
ing components of the network. In the case of the Lipschitz based methods they also add an element
to the loss function. However, the objective function is used to bring down the upper bound of the
Lipschitz value of the network, rather than directly optimizing for action differences or the mapping
function as in the loss regularization category.

Spectral Normalization – Local SN (Takase et al., 2022). Spectral normalization is commonly
used to stabilize the training of Generative Adversarial Networks (Miyato et al., 2018). It consists of
a rescaling operation on the weights of a network layer by its spectral norm σ(W ). The normalized
weights are simply given by WSN = δ · W

σ(W ) . In the context of reinforcement learning, Takase et al.
(2022) proposed global and local variants of the spectral normalization. The difference between the
global and local variants, is that spectral normalization is applied to every layer in the global version,
and only in the output layer for local version. Based on their results, we chose the Local SN variant
to investigate in this work.

We implemented this method using the spectral normalization implementation in PyTorch. This is
equivalent to the original description in the paper (Takase et al., 2022) with a δ = 1.0. This method
does not have any other hyperparameters.

Liu-Lipschitz (Liu et al., 2022). Originally used to learn a smooth mapping for neural distance
fields, such that interpolation and extrapolation of shapes is possible. The method constrains the
Lipschitz upper bound of the network, as a learnable parameter ci per layer. The weights of each
network layer are normalized with regards to ci and the layer’s outputs are computed as such

y = σ(Ŵi · x+ bi) Ŵi = normalization(Wi, softplus(ci)), (4)
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where Ŵi is the normalized weights and σ(.) is an activation function. For brevity, we omit the
normalization details here and invite the reader to verify the implementation in the original work of
Liu et al. (2022). This method also includes a loss function element that minimizes the values of ci
and has the form

Lc = λ

N∏
i

softplus(ci) (5)

where λ is a hyperparameter to tune, and N is the number of layers in the network, with one ci
per layer. In our work we use λ = 0.000001 as reported in the experiments of the original paper
(Liu et al., 2022). For initializing the values of ci, we decided for the value of 10.0 after some
experimentation.

LipsNet (Song et al., 2023). The most recent out of all the methods we investigate. It proposes
a network structure called LipsNet that replaces a traditional feedforward layer. Specifically, we
investigate the variant LipsNet-L, whose output is computed as such

y = K(x) · f(x)

||∇f(x)||+ ϵ
, (6)

where f(x) is a regular feedforward layer and ||∇f(x)|| is the 2-norm of the Jacobian matrix relative
to the input x, K(x) is the Lipschitz value modeled by a feedforward network and also conditioned
on x, and ϵ is a small positive value to avoid division by zero.

The authors of LipsNet open-sourced an implementation of their method. However, we found a
few differences from the original description in their work. Specifically, Song et al. (2023) states
that the activation of the K(x) module is a softplus function, but in the open-source code a linear
activation is used. In our implementation, we used a softplus activation as in the original paper.
Additionally, we opted to not use a tanh squashing function in the outputs of the network and use
a linear activation, the same as every other method we experiment. The complete hyperparameters
are presented in the Appendix Tables 2, 5, and 9.

3 METHOD AND EXPERIMENTAL SETUP

All experiments are run using PPO with a focus in continuous observations and continuous action
spaces. We benchmark traditional RL environments using Gymnasium (Towers et al., 2023), and
robotics application scenarios with Isaac Gym (Makoviychuk et al., 2021) and deployment in the
real-world. The base PPO implementation used are Stable Baselines Hill et al. (2018) for the Gym-
nasium environments and the RL Games Makoviichuk & Makoviychuk (2021) implementation for
Isaac Gym. Our implementations are written using PyTorch.

For every environment and for every method, we trained policies from scratch using 9 different
random seeds. Where applicable, we utilized the same hyperparameters for the same environments
presented in the original works. Additionally, in Appendix Sections A.1, A.2 and A.3 we present the
complete hyperparameters for every method and environment, including the implementation details
and reward functions of the locomotion environments introduced in this work.

3.1 HYBRID METHODS

We investigate the effectiveness of hybrid methods that combine elements the architectural as well
as loss regularization approaches. While we could experiment with every possible combination, we
chose to focus on the combination of the LipsNet approach with the L2C2 and CAPS regulariza-
tions. We decided to exclude Local SN due to inferior performance and inferior training stability,
and exclude Liu-Lipschitz due to the method similarity with LipsNet paired with inferior perfor-
mance. Specifically, we propose and experiment with two hybrid methods: LipsNet + CAPS, and
LipsNet + L2C2.
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3.2 METRICS

Cumulative Return. The cumulative sum of the reward at every step throughout a whole episode
C =

∑N
t=0 Rt. It provides a measure of the performance of the policy. This metric is environment

dependent, and is used primarily to analyze the trade-off between smoothness and performance.

Smoothness. We adopt the same smoothness metric as Mysore et al. (2021) based on frequency
spectrum from a Fast Fourier Transform (FFT). The smoothness measure Sm computes a normal-
ized weighted mean frequency and has the form

Sm =
2

n fs

n∑
i=1

Mifi, (7)

where n is the number of frequency bands, fs the sampling frequency, and, Mi and fi are the am-
plitude and frequency of band i, respectively. Higher values indicate the presence of high frequency
components of large magnitude, and lower values indicate a smoother control signal. In the same
manner as the cumulative return, a good smoothness value differs from environment to environment.

3.3 EVALUATION SCENARIOS

Gymnasium Baselines. Gymnasium Towers et al. (2023) provides standard and classical RL envi-
ronments for easy and diverse comparisons across different algorithms. We evaluate on 4 continuous
control environments: Pendulum-v1, Reacher-v4, LunarLander-v2 (Continuous), and Ant-v4. Be-
cause Pendulum-v1 is a simpler environment we train the policies for just 150k timesteps, while the
remaining environments train for a total of 400k timesteps. For evaluation, the metrics are computed
from 1000 episodes for each training seed.

Locomotion – Motion Imitation. Using Isaac Gym (Makoviychuk et al., 2021), we implemented a
motion imitation task (Peng et al., 2018; 2020). The quadruped agent is rewarded for matching the
reference animation of a pace motion. The agent is trained for a total of 150M timesteps. The evalu-
ation metrics are computed from 50k episodes for each training seed. The details of this environment
are presented in the Appendix Section A.2.

Locomotion – Velocity Controller. Also with Isaac Gym (Makoviychuk et al., 2021), we train
a quadruped agent to perform locomotion while following velocity commands. We employed the
same reward objectives as (Rudin et al., 2021), with the exception of action rate penalization which
we did not use. The agent is trained for a total of 300M timesteps. The evaluation metrics are
computed from 50k episodes for each training seed. The details of this environment are presented
in the Appendix Section A.3.

Locomotion in the Real-World. For the Motion Imitation and Velocity Controller above, we con-
duct an experiment with a real-world quadruped robot. First, we identify the best performing method
in simulation. Then, we train a policy with the best method and a baseline vanilla policy. To ensure
successful sim-to-real transfer these policies are trained with domain randomization (Tobin et al.,
2017). The parameters used for training the deployment version of the policies are presented in
Table A.2. At deployment time in the real-world, we record 8-second trajectories and disturb the
robot by pushing and lifting it off the ground. We compute and report the smoothness Sm of the
whole 8-second trajectory.

4 EXPERIMENTS AND RESULTS

The main results of our benchmark are condensed in Table 1. Also for reference, the training curves
depicting the episode mean reward are depicted in Figure 1.

We can observe that in most environments all methods successfully learn a smoother policy and
maintain considerable task performance compared to the Vanilla policy. The loss regularization
methods CAPS and L2C2 perform similarly in most cases, with a single notable exception in the
Locomotion - Imitation task, where CAPS performed worse than even the Vanilla baseline. For
the architectural methods, LipsNet outperforms Local SN and Liu-Lipschitz significantly. In the
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Cumulative Return ↑

Environment Vanilla CAPS
Mysore et al. (2021)

L2C2
Kobayashi (2022)

Local SN
Takase et al. (2022)

Pendulum −944± 56.8 −940± 50.6 −962± 43.7 −1099± 47
Ant 833± 110.2 1027± 134.5 791± 104.1 1108± 174.4

Reacher −6.05± 0.46 −5.98± 0.21 −6.14± 0.49 −8.73± 0.31
Lunar 170± 48.9 −117± 43.4 192± 31.6 −126± 27.5

Imitation 697± 19.3 689± 26.0 697± 16.6 522± 131.6
Velocity 5.98± 0.05 5.99± 0.03 5.86± 0.04 5.71± 0.19

Environment Liu-Lipschitz
Liu et al. (2022)

LipsNet
Song et al. (2023)

LipsNet + CAPS
Hybrid (Ours)

LipsNet + L2C2
Hybrid (Ours)

Pendulum −1056± 111.1 −934± 444.7 −737± 181.9 −870± 171.9
Ant 137± 209.5 959± 506.2 1683± 228.4 1684± 415.2

Reacher −7.68± 0.86 −6.34± 0.69 −6.13± 0.30 −6.27± 0.44
Lunar 92± 69.5 114± 71.2 −304± 22.1 −281± 72.0

Imitation 644± 53.1 682± 26.5 673± 26.6 678± 32.9
Velocity 5.98± 0.05 5.86± 0.12 5.91± 0.06 5.83± 0.13

Smoothness Sm ↓

Environment Vanilla CAPS
Mysore et al. (2021)

L2C2
Kobayashi (2022)

Local SN
Takase et al. (2022)

Pendulum 0.766± 0.037 0.732± 0.059 0.727± 0.078 0.395± 0.068
Ant 1.939± 0.565 1.111± 0.403 1.491± 0.427 0.697± 0.289

Reacher 0.062± 0.108 0.052± 0.005 0.056± 0.009 0.060± 0.011
Lunar 0.624± 0.705 0.220± 0.066 0.543± 0.078 0.390± 0.036

Imitation 0.679± 0.164 0.697± 0.156 0.524± 0.154 0.631± 0.0603
Velocity 0.402± 0.013 0.396± 0.015 0.524± 0.154 0.348± 0.189

Environment Liu-Lipschitz
Liu et al. (2022)

LipsNet
Song et al. (2023)

LipsNet + CAPS
Hybrid (Ours)

LipsNet + L2C2
Hybrid (Ours)

Pendulum 0.492± 0.106 0.944± 0.416 0.314± 0.076 0.640± 0.284
Ant 1.066± 0.278 1.380± 0.357 0.748± 0.095 0.870± 0.167

Reacher 0.047± 0.013 0.111± 0.123 0.035± 0.005 0.035± 0.011
Lunar 0.623± 0.076 0.550± 0.296 0.059± 0.011 0.095± 0.021

Imitation 0.657± 0.101 0.645± 0.132 0.603± 0.120 0.520± 0.067
Velocity 0.402± 0.013 0.298± 0.099 0.275± 0.068 0.255± 0.064

Table 1: Benchmark of task performance and smoothness of different algorithms in the literature.
Each method is trained from scratch with 9 different seeds. The table shows the mean and 1 standard
deviation of smoothness and return for 9 seeds. Pendulum, Ant, Reacher and Lunar are Gymnasium
environments, and Imitation and Velocity are locomotion tasks in Isaac Gym.

cases that Local SN and Liu-Lipschitz are smoother than LipsNet, it also resulted in reduced task
performance, evidenced by the lower mean cumulative return.

The hybrid methods LipsNet + CAPS and LipsNet + L2C2 outperforms the existing methods for
nearly every environment. The Lunar environment is the single exception where they are clearly
inferior. Although the smoothness is better, the cumulative return is too low. We hypothesize that
situations like this might happen due to the policy “getting stuck” too early in optimizing for smooth-
ness, rather than task performance. More extensive hyperparameters search and better scheduling of
learning rate and loss weights could yield better outcomes. In every other case, Table 1 shows that
the hybrids maintain the same level of task performance as the Vanilla baseline or even outperform
it. It also produces the smoothest policies overall.

For the locomotion tasks, we identify the hybrid LipsNet + L2C2 as the superior combination,
and choose it as the method for deployment in the real-world locomotion tasks. The reuslts of the
real-world deployment are presented in Figure 2. The measured smoothness shows that the hybrid
method resulted in smoother policies than the Vanilla baseline for both locomotion tasks. The
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Figure 1: Reward curves during training for 9 seeds. The hybrid methods LipsNet + CAPS and
LipsNet + L2C2 show superior or comparable all environments, except in Lunar. Note that Filter
is only employed in the Locomotion tasks.

difference is further magnified in the scenario where the agent is disturbed during task execution.
The improvement is easily noticeable when the agent is prevented from executing the task, such as
completely lifting the robot in the air. With the Vanilla policy the agent generates high-frequency
oscillations in sudden bursts, which are undesirable and could even cause hardware damage. On the
other hand, the hybrid policy LipsNet + L2C2 elegantly stops execution until the agent is set to the
ground again. A video showcasing this emergent behavior is included in the supplementary material
accompanying this paper.

Figure 2: We deploy the best methods from the locomotion tasks to the real-world and measure
smoothness. The hybrid method LipsNet + L2C2 results in smoother policies both under regular
execution and when the agent is under disturbances.
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5 CONCLUSION

In this work we presented a benchmark of methods that can reduce the frequency of oscillations in
reinforcement learning policies. We identified existing methods from the literature and classified
them according to their mechanism. We proposed two broad categories: loss regularization and
architectural methods. Loss regularization methods rely purely on adding regularization elements to
the standard policy gradient loss. On the other hand, architectural methods also include introduction
and modification of network elements such as weight normalization and special modules that replace
feedforward layers. Additionally, by combining a few of the existing works, we also introduced the
concept of hybrid methods which have properties from both categories.

Our benchmark included 4 traditional RL environments and 2 robotics locomotion tasks. We ana-
lyzed every method in regards of task performance as well as smoothness of output actions. With few
exceptions, every method tested performed better than the standard Vanilla baseline in every task.
Overall, the hybrid method LipsNet + L2C2 showed the best trade-off between smoothness and
task performance, including in the real-world deployment scenario with disturbances. As such, we
would recommendation that practitioners that wish to deploy RL policies in the real-world consider
training the policies with a hybrid method or another one of the methods investigated here.

In the future, we wish to investigate tasks with an emphasis on more diverse robotics applications.
The reduction of high-frequency oscillations is essential for successful sim-to-real transfer and to
prevent hardware damage. As such, the community would benefit with a clear set of guidelines on
how to train policies for tasks such as locomotion, pick and place, contact rich manipulation, etc.
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A APPENDIX

A.1 GYMNASIUM ENVIRONMENTS

We experiment with 4 continuous control environments built with Gymnasium (Towers et al., 2023):
Pendulum-v1, Reacher-v4, LunarLander-v2, and Ant-v4. Table 2 shows the parameters for every
method we experiment in our work. Note that we maintain the same hyperparameters of each method
for every environment for a fair comparison.

Method Parameter Value

CAPS
σ 0.1
λT 0.1
λS 0.5

L2C2
σ 1.0
λ 0.01
λ 1.0
β 0.1

LipsNet

Weight λ 0.1
ϵ 0.0001
Initial Lipschitz constant Kinit 1.0
Hidden layers in f(x) [64, 64]
Activation in f(x) ELU
Hidden layers in K(x) [32]
Activation in K(x) Tanh

Liu-Lipschitz Weight λ 1× 10−6

Initial Lipschitz constant 10.0

Table 2: Hyperparameters for the methods investigated in our work for the Gymnasium environ-
ments. The same hyperparameters are used for every environment.

A.2 LOCOMOTION – MOTION IMITATION

The motion imitation policy trains a quadruped robot modeled after the Unitree A1 robot. The agent
is tasked with imitating an animation of a forward-moving pace motion. Our implementation uses
the same reward elements as Peng et al. (2018) and Peng et al. (2020) and its weights and parameters
are presented in Table 3. Table 4 shows the hyperparameters of the base PPO learning algorithm and
Table 5 the hyperparameters of the methods investigated in this work. The policy is a 2-layer feed-
forward neural network with 512, and 256 hidden units. Each layer uses ELU activations except
for the last layer which is linear. The actions are target joint positions for the PD controller with
stiffness kp = 50.0 and damping kd = 1.2.

Reward Term Value
Weight - DoF Position 0.5
Weight - DoF Velocity 0.05
Weight - End-effector Position 0.2
Weight - Root Position 0.15
Weight - Root Velocity 0.1
Scale - DoF Position 5.0
Scale - DoF Velocity 0.1
Scale - End-effector 40.0
Scale - Root position 20.0
Scale - Root velocity 2.0

Table 3: Reward terms for Locomotion - Motion Imitation environment.
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Parameter Value
Number of Environments 4096
Horizon Length 24
Batch size 98304
Learning rate 3× 10−4

Clip rate 0.2
KL-divergence 0.008
Entropy coefficient 0.00
Discount factor 0.95
GAE discount factor 0.95

Table 4: PPO hyperparameters for training the Locomotion - Motion Imitation environment.

Method Parameter Value

CAPS
σ 0.2
λT 0.01
λS 0.05

L2C2
σ 1.0
λ 0.01
λ 1.0
β 0.1

LipsNet

Weight λ 1× 10−3

ϵ 0.0001
Initial Lipschitz constant Kinit 1.0
Hidden layers in f(x) [512, 256]
Activation in f(x) ELU
Hidden layers in K(x) [32]
Activation in K(x) Tanh

Liu-Lipschitz Weight λ 1× 10−6

Initial Lipschitz constant 10.0

Butterworth Low-pass Filter
Order 2
Cutoff Frequency 4.0 Hz

Table 5: Hyperparameters for the methods investigated in our work for the Locomotion - Motion
Imitation environment.

Parameter Value Type
Action Noise 0.02 Additive
Rigid Bodies Mass [0.95, 1.05] Scaling
Stiffness Gain (PD Controller) [45, 55] –
Damping Gain (PD Controller) [0.9, 1.2] –
Ground Friction [0.1, 1.5] –
Sensor Noise - Orientation 0.06 Additive
Sensor Noise - Linear Velocity 0.25 Additive
Sensor Noise - Angular Velocity 0.3 Additive
Sensor Noise - Joint Angles 0.02 Additive
Sensor Noise - Feet Contacts 0.2 Probability

Table 6: Domain randomization parameters used to train the policies that are deployed to the real-
world.

A.3 LOCOMOTION – VELOCITY CONTROLLER

We use the Isaac Gym simulator with the legged gym library (Rudin et al., 2021) for training the
velocity controller. The observation consists of the base linear and angular velocities, measurement
of the gravity vector, joint positions and velocities, the previous action, binary feet contact, and the
velocity command. The reward is a weighted sum of 11 terms listed in Table 7. The policy is a
2-layer feed-forward neural network with both 256 hidden units. Each layer uses ELU activations
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except for the linear output layer. The actions are target joint positions for the PD controller with
stiffness kp = 30 and damping kd = 1.0. All smoothing methods use the same set of PPO hyper-
parameters list in Table 8. In Filter method, We added extra states from the past two timesteps to the
observation and selected the Butterworth filter as the action filter. Table 9 shows method-specified
parameters.

Reward Term Weight
Linear velocity tracking 0.02
Angular velocity tracking 0.01
Linear velocity penalty −0.04
Angular velocity penalty −0.001
Joint acceleration −5× 10−9

Joint position limit −0.2
Feet air time 0.03
Collisions 0.02
Base height −0.2
Orientation −0.02
Torques −4× 10−6

Table 7: Reward terms for Locomotion - Velocity Controller environment.

Parameter Value
Batch size 98304(4096× 24)
Learning rate 5× 10−4

Clip rate 0.2
KL-divergence 0.01
Entropy coefficient 0.02
Discount factor 0.99
GAE discount factor 0.95

Table 8: PPO hyper-parameters for training the Locomotion - Velocity Controller environment.

Method Parameter Value

CAPS
σ 0.2
λT 0.01
λS 0.05

L2C2 λπ 1.0
λV 0.1

LipsNet

Weight λ 1× 10−3

Initial Lipschitz constant Kinit 1.0
Hidden layers in K(x) [32]
Activation in K(x) Tanh

Liu-Lipschitz Weight λ 1× 10−6

Initial Lipschitz constant 10.0

Butterworth Low-pass Filter Order 2
Cutoff Frequency 4.0 Hz

Table 9: Method-specific hyper-parameters for Locomotion - Velocity Controller environment.

A.4 ALL RESULTS

In this section we present the results of all three environment types: Gymnasium, Locomotion -
Velocity Controller, and Locomotion - Motion Imitation. For every experiment we measured three
metrics: mean cumulative rewards (illustrated in Fig. 3, smoothness (depicted in Fig. 4 and action
fluctuation (displayed in Fig. 5). Action fluctuation is an alternative metric that can help evaluate the
smoothness of a learned policy. It is the mean action difference between two consecutive actions,
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where lower values indicating more smoothness and reduced instability. The action fluctuation is
computed as follows:

1

T

T∑
t=1

(at − at−1)
2, (8)

Figure 3: Average cumulative reward for every environment and method.

Figure 4: Smoothness evaluation for every environment and method.
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Figure 5: Action fluctuation for every environment and method.
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