
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATED CAPABILITY DISCOVERY VIA FOUNDA-
TION MODEL SELF-EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models have become general-purpose assistants, exhibiting diverse
capabilities across numerous domains through training on web-scale data. It
remains challenging to precisely characterize even a fraction of the full spectrum of
these abilities and potential risks in any new model. Existing evaluation approaches
often require significant human effort, and it is taking increasing effort to design
ever harder challenges for more capable models. We introduce AUTOMATED
CAPABILITY DISCOVERY (ACD), a framework that designates one foundation
model as a scientist to systematically propose open-ended tasks probing the abilities
of a subject model (potentially itself). By combining frontier models with ideas
from the field of open-endedness, ACD automatically and systematically uncovers
a diverse spectrum of surprising capabilities and failures in the subject model.
We demonstrate ACD across a range of foundation models (including the GPT,
Claude, and Llama series), showing that it automatically generates thousands of
distinct tasks, which are then clustered to reveal dozens of broader capability areas
and failure modes, that would be challenging for any single team to uncover. We
further validate our method’s automated scoring with extensive human surveys,
observing high agreement between model-generated and human evaluations. By
leveraging foundation models’ ability to both create tasks and self-evaluate, ACD
is a significant step toward scalable, automated evaluation of novel AI systems. All
code and evaluation logs are open-sourced at https://anonymous.4open.
science/r/ACD-D13E.

1 INTRODUCTION

Large Language Models (LLMs; OpenAI, 2024b; Gemini Team, 2024; Touvron et al., 2023), trained
on internet-scale datasets, have revolutionized natural language processing by demonstrating strong
general-purpose capabilities. These “Foundation Models” (FMs; Bommasani et al., 2021) display
exceptional performance on tasks requiring common-sense knowledge (Talmor et al., 2019), reason-
ing (Wei et al., 2022), and comprehension (Chang et al., 2024), enabling applications ranging from
conversational agents (Brown et al., 2020) to code generation (Gauthier, 2024). Recently, agentic
systems powered by foundation models have even shown the capacity to propose and investigate new
scientific ideas (Lu et al., 2024b) and provide ever-better agentic systems (Hu et al., 2024). However,
identifying and categorizing a broad spectrum of potentially unknown abilities or failure modes in
FMs remains an important major challenge, especially because such knowledge is crucial to ensuring
both safe deployment and maximizing real-world utility.

Traditional evaluation techniques—centered around human-created benchmarks (Hendrycks et al.,
2021; BIG-bench authors, 2023; Cobbe et al., 2021)—are labor-intensive to create and limited by
predefined categories, often failing to capture the full spectrum of a model’s capabilities. They
also often miss uncaptured sets of behaviors, including those that are surprising or deviate from
expectations, pre-deployment. Moreover, as models become more advanced, they may saturate or
overfit these benchmarks, so those metrics may not reflect broader performance gains. Users also
commonly encounter unique use cases and failure modes not covered by benchmarks in the wild.
While frequently updating or creating new test suites (White et al., 2024; Phan et al., 2025) attempts
to address these issues, continually devising new tasks is expensive, not model-specific and will fail
to probe the ‘unknown unknowns’ (things that benchmark creators do not think to include). This
underscores the need for scalable, efficient evaluation methods that are cheap and require minimal

1

https://anonymous.4open.science/r/ACD-D13E
https://anonymous.4open.science/r/ACD-D13E

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Human: 9.11 and
9.9: which is larger?

Model: 9.11 is larger
than 9.9.

Human: ?!?

You are given a sequence of
logical arithmetic puzzles. Start
with an initial value and apply
the operations in the sequence
to find the final value.

Initial Value: 5

Puzzle Sequence:
● {'operation': 'add',

'operand': 3}
● {'operation': 'multiply',

'operand': 2}
● {'operation': 'subtract',

'operand': 4}

GPT-4o’s Response: 10

Your task is to solve the following logical puzzle. Use the
clues provided to determine the answers to the questions.

Clues:
1. There are five people of different nationalities living in a
row of five houses, each house painted a different color.
2. Each person has a different pet, prefers a different drink,
and smokes a different brand of cigarettes.
…
16. The Norwegian lives next to the blue house.
17. The man who smokes blends has a neighbor who drinks
water.

Questions:
Who drinks water? Who keeps the fish?

GPT-4o’s Response:
Water: Norwegian
Zebra/Fish: German✘ ✓

Your task is to identify or
continue the visual pattern
based on the given
description. Here is the
pattern: '#-##--###---'.

● Identify the next
three symbols in the
sequence.

● Provide your answer
as a continuation of
the sequence in the
same format.

GPT-4o’s Response:
----####

✘

Incorrect Continuation
of Visual Pattern Einstein's Riddle Variant SolvedIncorrect Result from

Arithmetic Sequence

Figure 1: (Left) Humans typically evaluate novel foundation models through trial and error, alongside
benchmarks. They often discover new surprising capabilities or failures: like counting how many “r”s are
in “strawberry” or identifying which is bigger, 0.9 or 0.11. (Center and Right) AUTOMATED CAPABILITY
DISCOVERY (ACD) mirrors human evaluation efforts by using a scientist model to automatically discover and
assess the capabilities of a subject model in an open-ended manner. Illustrated here are two surprising failures
(the model fails to perform three arithmetic operations in sequence, and fails to correctly continue a symbol
pattern with ‘###’) and a selected success (the model successfully solves a variant of Einstein’s riddle with 17
clues) uncovered by ACD on GPT-4o. See Section E.3 for more examples.

overhead to keep pace with rapidly evolving foundation models (Bowman et al., 2022). In this work,
we use the term ‘capability’ or ‘failure mode’ somewhat flexibly to refer to a model’s consistent
performance pattern on a family of related, automatically generated tasks, as detailed in Section 4.1.

We introduce AUTOMATED CAPABILITY DISCOVERY (ACD), a framework that augments existing
evaluation approaches by automating the discovery of a foundation model’s capabilities and failure
modes. It designates one model as a scientist to systematically propose open-ended tasks for a subject
model, which could be itself or a different foundation model (Section 4). Concretely, ACD instructs
the scientist to propose interesting new challenges (Zhang et al., 2024a; Faldor et al., 2024; Lu et al.,
2024b; Pourcel et al., 2024b; Zhang et al., 2024b; Shah et al., 2024a), asks the subject to attempt
them, and evaluates performance (Zheng et al., 2023), all automatically. This mirrors how humans
might try everything from their favorite model gotcha questions to new challenging problems when
exploring a new model—though with ACD, the model takes on the role of evaluator. By removing
manual task design from the process, ACD can automatically and relatively inexpensively expose a
wide range of strengths and weaknesses in the subject model.

We demonstrate ACD on several foundation models, including GPT-4o (OpenAI, 2024b), Claude
Sonnet 3.5 (Anthropic, 2024), and Llama3-8B (Llama Team, 2024) (Section 5). We show that ACD
uncovers a large variety of task families, indicative of diverse capabilities, ranging from arithmetic
tasks to puzzle solving, resulting in thousands of automatically discovered tasks. Many tasks illustrate
useful model capabilities, such as multi-step reasoning and structured workflows, whereas others
reveal surprising failure modes that would seem trivial to humans (Figure 1). We provide numerous
examples in our evaluations, spanning cryptography, code generation, memory-based logic, advanced
mathematics, legal queries, puzzle design, and creative writing (Section E.3). To validate ACD’s
automated task generation and scoring, we conduct large-scale human surveys on tasks discovered
by GPT-4o, showing high rates of tasks being deemed valid and agreement between the model’s
self-evaluation and human judgments (Section 5.1). Furthermore, ACD automatically compiles a
concise “Capability Report” of discovered capabilities and failure modes (Section 5.4), enabling
quick inspection and easier dissemination of results or flagging issues pre-deployment (Section 6).

By harnessing the capacity of foundation models to self-assess, ACD paves the way for scalable,
automated evaluation of these models. It can help systematically identify emergent and potentially
concerning behaviors before real-world deployment. As foundation models continue to advance,
techniques like ACD will be crucial to align their development with human values and ensure
responsible use by uncovering beneficial and risky behaviors before real-world deployment. Finally,
ACD could enable models to generate interesting challenges for themselves to learn on, potentially
driving self-improvement in the future (Faldor et al., 2024; Clune, 2019).

2 BACKGROUND

2.1 OPEN-ENDED DISCOVERY ALGORITHMS

Open-ended algorithms (Stanley & Lehman, 2015; Stanley et al., 2017) aim to continuously generate
novel and diverse artifacts (Hughes et al., 2024) within a search space, rather than focusing on a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Historical analysis, narrative
generation, and alternative

scenario creation

Dialogue generation,
emotional intelligence, and
social interaction scenarios

Poetry generation,
interpretation, and analysis

Scientific reasoning,
hypothesis generation, and

experiment design

Code generation, debugging,
and algorithm design

Spatial manipulation,
navigation, and
transformation

Figure 2: Task families discovered by AUTOMATED CAPABILITY DISCOVERY on GPT-4o (serving as both
scientist and subject) over 5000 generations. Each point represents one of the 1330 task instances that passed the
“interestingly new” filter, visualized in 2D via t-SNE. ACD enables GPT-4o to self-discover diverse capabilities
and failure modes, with tasks that cluster into 25 high-level categories (different colors, listed in Section E.1),
spanning puzzle-solving, code generation, scientific reasoning, creative writing, and legal interpretation. See
Sections 4 and 5.1 for full details, and Section E.3 for selected examples.

fixed objective. These algorithms emulate human creativity by autonomously exploring new artifacts,
increasingly supported by large foundation models that can encode intrinsic notions of “interesting-
ness” (Zhang et al., 2024a; Faldor et al., 2024; Lu et al., 2024c). They have been applied to evolving
novel robot morphologies in code (Lehman et al., 2022), generating new reinforcement learning
environments (Faldor et al., 2024; Wang et al., 2019; 2020), discovering novel loss functions (Lu
et al., 2024a) and agentic systems (Hu et al., 2024), and investigating scientific hypotheses (Lu et al.,
2024b).

Generally, these algorithms maintain and update an archive A of discovered artifacts. At iteration t,
they sample a new artifact at from a foundation model M conditioned on a subset Ct−1 of previously
discovered artifacts, typically limited in size for computational feasibility. The generated artifact
at is evaluated for novelty (e.g., via embedding-based similarity), and then added to the archive
if sufficiently different from others in A. ACD adapts these principles to systematically reveal a
foundation model’s capabilities, treating each discovered task that a model succeeds or fails on as a
generated “artifact”.

3 RELATED WORK

Open-Ended Discovery with Foundation Models. The field of open-endedness (Stanley, 2019)
aims to continually discover diverse and novel artifacts forever. Recent methods leverage the
generative capabilities and vast prior knowledge of FMs to accelerate this process (Zhang et al.,
2024a; Faldor et al., 2024; Lehman et al., 2022; Hu et al., 2024) by harnessing a foundation model’s
intrinsic notion of interestingness (Zhang et al., 2024a; Faldor et al., 2024; Lu et al., 2024c; Hu et al.,
2024) to construct the next proposal, analogous to human innovation. Notable examples include
ELM (Lehman et al., 2022) which evolves novel robot morphologies; OMNI-EPIC (Faldor et al.,
2024), which automatically designs novel environments for reinforcement learning (RL) agents;
DiscoPOP which discovers new loss functions for preference optimization algorithms (Lu et al.,
2024a); ADAS (Hu et al., 2024), which evolves novel designs for LLM-based agentic systems; and
The AI Scientist (Lu et al., 2024b), which seeks to automate the entire scientific process by proposing
novel ideas, conducting experiments, and writing a scientific paper summarizing the results.

Automated Evaluation of Foundation Models. Recent research also investigates automated eval-
uation of FMs, moving beyond static, human-designed test suites. Rainbow Teaming (Samvelyan
et al., 2024) applies Quality-Diversity algorithms (Mouret & Clune, 2015; Pugh et al., 2016) to find
novel adversarial attacks that stress-test FMs for safety. Similarly, Zheng et al. (2024); Zhou et al.
(2024); Jiang et al. (2024); Pavlova et al. (2024) automate the red teaming (probing a system for
weaknesses) process. These works expand the comprehensiveness of existing safety checks but do not
have the ability to generate entirely new task families for broad capability discovery. Other techniques
generate new debate topics and evaluate FMs through multi-round debate between them (Zhao et al.,
2024), discover open-ended programming challenges (Pourcel et al., 2024a), devise visual recognition
and reasoning tasks from a collection of visual assets (Zhang et al., 2024b), or train LLM-based
critic models that help humans better identify errors in model-generated outputs (McAleese et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2024). Meanwhile, Shah et al. (2024b) produces challenging math problems from existing datasets
and human-in-the-loop supervision. However, the generated tasks in these works tend to focus on a
restricted domain, which fails to provide an overview of a model’s abilities across a wide array of
skills and limits the discovery of surprising capabilities of FMs. Finally, some methods focus on
benchmark augmentation (Zhu et al., 2024), which typically augment existing benchmarks or task
structures. ACD, by contrast, emphasizes broad, open-ended, de novo discovery of entirely new
task families. Given this distinction and the absence of established baselines for such wide-ranging
automated exploration, direct quantitative comparisons are challenging. However, ACD’s outputs can
be seen as complementary, potentially informing these more focused evaluation efforts by providing
novel task types or identified failure modes.

4 AUTOMATED CAPABILITY DISCOVERY

Given a foundation model we wish to evaluate (the subject), AUTOMATED CAPABILITY DISCOVERY
(ACD) designates another foundation model as a scientist to propose new tasks and then evaluate how
well the subject model performs. The scientist and subject could be the same model or different, but in
either case, they are both foundation models, so we refer to this as “foundation model self-exploration.”
By iteratively refining tasks to uncover interesting or surprising outcomes, ACD aims to automate
much of the process of revealing a model’s capabilities. Below, we outline the key stages of ACD.
(See Section B for the full ACD prompts.)

4.1 DEFINITION OF TASK FAMILIES

Table 1: Example metadata for a simple “Hello
World” task family.

Key Value
name hello_world
description return a greeting string
capability being measured basic string manipulation

We adopt a simplified version of the METR Task
Standard (METR Task Standard Team, 2024), an
established format for packaging tasks to evalu-
ate foundation models. In particular, ACD in-
structs the scientist to define and generate broad
“task families” as a systematic way to cover entire
categories of capabilities—ranging from simple
knowledge recall to more complex reasoning or coding. Each family has metadata which includes a
name, a description, and the exact capability being measured. Table 1 shows an example of how such
metadata is seeded for a trivial “Hello World”-style string repetition task.

We leverage the LLM’s coding abilities to translate high-level task descriptions into Python code that
can be automatically evaluated. Each task family (METR Task Standard Team, 2024) is structured
with:

1. Specific Task Instances: Subtasks are generated with unique data to probe different nuances of
the same capability.

2. Instruction Provision: Each subtask includes instructions for the subject model.
3. Scoring Mechanism: A programmatic check for tasks with a single correct answer, or a GPT-4o-

based judge (Zheng et al., 2023) if the task requires more open-ended judgment (Section A.2).

Section A.1 shows a full code snippet for the “Hello World” example in Table 1. This task family
may include the strings “Hello, world!” or “Greetings, universe!” as subtasks, the instructions
to the subject model may be “Please repeat the following message exactly as it is: {...}”, and the
scoring mechanism may be an exact string comparison. For more open-ended tasks, we demonstrate
that using foundation models as open-ended automated judges can work, since often it is easier to
recognize the successful solution to a particular task than generate one.

4.2 GENERATING TASKS

Following principles from the field of open-endedness (Section 2), ACD operates in a loop:

1. Maintain an Archive: An archive (Mouret & Clune, 2015; Lehman & Stanley, 2011) of tasks
that have been discovered thus far is kept. It is seeded with trivial tasks (like those in Section 4.1).
At each iteration, the scientist sees a randomly sampled subset of these tasks as context.

2. Propose a New Task Family: The scientist proposes a new task family (written in Python code),
using chain-of-thought (Wei et al., 2022) and self-reflection (Shinn et al., 2023) to catch errors

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(Section B). During self-reflection, the scientist also checks how easily the subject solves the
current task family and adapts difficulty accordingly.

3. Filter for Novelty: The scientist discards proposals that overlap too closely with existing tasks,
by considering whether the task is “interestingly new” (Zhang et al., 2024a) with respect to its
nearest neighbors computed via text-embedding-3-small (OpenAI, 2024c) (Section B.3).

4. Test the Subject Model: The subject attempts these tasks using chain-of-thought (Section B.2) as
a lightweight way to elicit greater capabilities from the FM. The scientist uses n-shot evaluation
to robustly score each task. All completed tasks are stored in the archive, logged as “discovered
capabilities” when consistently solved or “failure modes” when consistently failed.

We can repeat these steps for thousands of iterations until sufficiently many task families have been
discovered. Each task family, and subsequently each cluster of similar tasks identified by HDBSCAN
(Figure 2), probes a specific behavioral aspect. Consistent performance (or lack thereof) across
instances within such a family or cluster allows inference of a model’s ‘capability’ or ‘failure mode’
in that area, thus moving from granular tasks to higher-level behavioral characterizations.

5 EMPIRICAL EVALUATION

We now demonstrate ACD’s performance in discovering diverse capabilities across several foundation
models, including GPT-4o (OpenAI, 2024b), Claude Sonnet 3.5 (Anthropic, 2024), and Llama3-
8B (Llama Team, 2024). First, we provide an in-depth examination of GPT-4o acting as both
scientist and subject, followed by experiments with different scientist-subject pairings and cross-
model analyses. We run our algorithm for 5000 generations for all evaluations. Further details on
hyperparameters and evaluation protocols appear in Sections C and G.

5.1 CASE STUDY AND HUMAN EVALUATION ON GPT-4O

We begin by analyzing ACD with GPT-4o serving as both scientist and subject. In Figure 2,
we visualize all discovered tasks by embedding each task’s description in a 2D t-SNE (Van der
Maaten & Hinton, 2008) plot, grouped by HDBSCAN (McInnes et al., 2017). From these 5000
generations, we discover 1330 interestingly new tasks, which fall into 25 distinct clusters (Table 4 in
Section E.1), indicative of different capability areas or failure patterns. The tasks span wide-ranging
areas, including puzzle-solving and creation (e.g., Sudoku, logic riddles, custom word puzzles), code
generation and debugging, advanced math, creative writing, and legal text interpretation. We provide
many examples from our evaluations, spanning cryptography, code generation, memory-based logic,
advanced mathematics, legal queries, puzzle design, and creative writing in Section E.3.

Surprising Spatial Reasoning

Instructions:
Your task is to visualize and describe the 3D
object based on 2D projections. Projections:

• Front view: A square base with a triangular
top. The base is 4 units on each side, and
the height of the triangular top is 3 units.

• Side view: A rectangle with a triangular top.
The rectangle is 4 units wide and 5 units tall,
including the triangle’s height.

• Top view: A square with 4 units on each
side.

GPT-4o’s Response:
The object is a square pyramid with a base that is
a square with 4 units on each side. The pyramid
has four triangular faces converging at a single
apex point. The height of the pyramid from the
base to the apex is 3 units. The total height of
the object, including the base and the apex, is 5
units. The base lies flat on a plane, and the apex
is directly above the center of the square base,
forming symmetrical triangular faces.

Unable to Follow Simple Instruc-
tions in Sequence

Instructions:
Your task is to perform the
following text transformations on
the given input text: “The quick
brown fox jumps over the lazy
dog.”

Transformations:
1. Reverse the order of words
2. Capitalize the first letter of

each word
3. Replace ’dog’ with ’cat’

GPT-4o’s Response:
Dog. Lazy The Over Jumps Fox
Brown Quick The

Here, we examine a few in detail.
Figure 1 (right) highlights three sur-
prising tasks discovered by ACD
that reveal GPT-4o sometimes fails
at seemingly trivial operations. For
instance, while GPT-4o generally ex-
hibits strong standardized math bench-
mark performance, ACD identified
specific instances where it falters: it
incorrectly computes a sequence of
three arithmetic operations and fails
to continue a simple pattern for three
symbols as requested. These granular
failures in sequential execution or spe-
cific pattern types might be missed by
broader benchmarks focusing on com-
plex problem-solving. On the other
hand, it correctly solves a novel vari-

ant of Einstein’s riddle (that we could not find online) with 17 logical clues, demonstrating unexpect-
edly strong multi-step reasoning. We show two further discovered tasks to the left, which illustrate a
surprisingly good spatial reasoning success (left box) and a puzzling failure to follow basic, multi-
step instructions (right box). These discovered tasks show that ACD can entirely autonomously
pinpoint subtle failure modes that GPT-4o exhibits, just as human evaluators might, at a low cost

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of approximately $0.1 per task created (Section C.1). Such insights could strongly inform future
training or target fixes prior to user deployment.

Human Evaluation. To verify that these generated tasks are coherent and to assess the accuracy of
automated scoring at scale, we conducted a human survey via CloudResearch (details in Section G).
Participants were shown each task’s short description, the exact instructions, and the subject model’s
final submission. They then evaluated whether the task was valid and coherent, estimated the
difficulty on a five-point scale (“Very Easy” through “Very Difficult”), and judged whether the
model’s submission was correct.

0 20 40 60 80 100

92.2%

a) Percentage of Clear and Valid Tasks

LLM: Correct LLM: Incorrect

Human: Correct

Human: Incorrect

72.2%
True Positive

6.4%
False Negative

17.0%
False Positive

4.5%
True Negative

b) LLM-Human Agreement Confusion Matrix

Very Easy Easy Moderate Difficult Very Difficult
Task Difficulty

60

70

80

90

100

F1
 S

co
re

 (%
)

c) Automated Judge F1 By Task Difficulty

Figure 3: Human evaluation results for
tasks discovered by ACD with GPT-4o
(Section 4). (a) Most automatically gen-
erated tasks were judged clear and valid.
(b) The confusion matrix shows that au-
tomated scoring largely agrees with hu-
man judgments, but exhibits a slight pos-
itive bias (more false positives than false
negatives). The F1 score of LLM-Human
agreement is quite high at 0.86. (c) The
automated judge’s F1 is reasonably high
for tasks rated by humans as “Very Easy”
to “Difficult,” though it drops on “Very
Difficult” tasks. Error bars are 95% boot-
strapped confidence intervals across gener-
ated task families.

Figure 3(a) shows that 92.2% of tasks were considered clear and valid by human participants—that is,
the instructions were judged to align well with the task description and the capability being measured.
Additionally, as seen in Figure 3(b), the automated scoring largely agrees with human judgments
(with an F1 score of 0.86). This F1 score indicates substantial agreement, especially for open-ended
tasks, and is often comparable to inter-human agreement rates albeit with a slight positive bias (Zheng
et al., 2023). Finally, Figure 3(c) breaks down F1 scores (the harmonic mean of precision and recall,
typically preferred over accuracy when dealing with class imbalances) by user-estimated difficulty
level, indicating good agreement on easier tasks but lower agreement on very difficult ones. Section F
provides some representative failure examples of the FM judge.

Even after thousands of iterations, ACD continues to discover novel task families at a high rate
(around 20% of newly proposed tasks are considered interestingly new even after 5000 generations;
Figure 8), suggesting ACD has not fully uncovered GPT-4o’s capabilities. Repeated runs across
different seeds also yield a consistent final collection of discovered tasks (Figure 9), showing that
ACD can generate stable “capability signatures” for a given model. Figure 10 shows that the ACD
scientist can discover tasks across each difficulty category.

5.2 VARYING THE SUBJECT MODEL AND CROSS-MODEL ANALYSIS

Advanced mathematical
reasoning and multi-step

problem-solving Argumentation, reasoning,
and philosophical

analysis tasks

Code generation,
debugging, and algorithm

design tasks

Creative generation,
logic puzzles, and

computational reasoning

Creative storytelling
with constraints and
narrative coherence

Culinary recipe
generation, modification,

and analysis

Data Interpretation,
Analysis, and Synthesis

across Domains

Diagram generation,
mechanical and UI design,

spatial interpretation

Dialogue generation,
emotional intelligence,
and social interaction

scenarios

Game design, rule
creation, and strategy

development

Historical analysis,
narrative generation, and

alternative scenario
creation

Humor generation and
interpretation across

contextsLegal text
interpretation,

argumentation, and
contract drafting

Linguistic Creativity,
Idioms, and Cultural

Translation

Mathematical and Logical
Proof Construction and

Verification

Metaphor and Analogy
Generation and
Interpretation

Musical composition,
notation, and analysis

tasks

Poetry Generation,
Interpretation, and

Analysis

Puzzle-solving and
creation involving logic,
language, and geometry

Scientific reasoning,
hypothesis generation,
and experiment design

tasks

Spatial manipulation,
navigation, and

transformation tasks

Step-by-step procedural
generation and
troubleshooting

instructions

Strategic Planning and
Ethical Decision-Making

Scenarios

Visual and Geometric
Pattern Recognition and

Generation

Visual and Sensory
Interpretation and

Description

0.2

0.4

0.6

0.8

1.0

Success Rate Comparison by Task Cluster
Eval Model

GPT-4o
Llama3-8B

Figure 4: Comparison between GPT-4o (blue)
and Llama3-8B (orange) on the tasks origi-
nally discovered by GPT-4o. Each radial axis
corresponds to a major task cluster (listed in Ta-
ble 4), with the radius indicating each model’s
success rate. We observe that the performance
of Llama3-8B is nearly a complete subset of
GPT-4o but has a few areas where the gap is
narrower (e.g. imaginative or open-ended text
generation). This illustrates how a single ACD-
curated archive can provide a detailed, high-
level visual snapshot of the overall capabilities
of newly developed models. Since each cluster
is composed of diverse tasks, absolute success
rates are not necessarily comparable across dif-
ferent clusters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We next investigate how a single repository of discovered tasks for GPT-4o might generalize to testing
a different, weaker subject model. Concretely, we take all 1330 tasks discovered when GPT-4o served
as both scientist and subject (Section 5.1) and re-evaluate Llama3-8B (Llama Team, 2024) on these
tasks without altering any instructions or scoring functions. Figure 4 summarizes the performance
gap across several broad task clusters. We find that Llama3-8B struggles substantially more than
GPT-4o on categories requiring multi-step reasoning or structured workflows, though the gap is
narrower in creative tasks such as imaginative writing. These observations highlight ACD’s potential
to create automated “task repositories” that can be used to evaluate future models under identical
instructions and scoring, enabling direct comparisons in the same manner as current benchmarks.
Because the tasks were originally tailored to GPT-4o, some may be far too difficult for Llama3-8B.
As such, the performance drop provides useful insight into the weaker model’s failure modes and
partial successes.

We also consider the original setting of running ACD anew, with GPT-4o as the scientist and Llama3-
8B as the subject. This time, the scientist tailors difficulties and scope to Llama3-8B’s observed
performance. ACD discovers 1395 interestingly new tasks, summarized in Figure 11 and Table 5.

Failure on Basic Spatial
Reasoning

Instructions:
Rotate the given shape 90
degrees clockwise.
Shape:

1 0 0
1 1 1
0 0 1

Llama3-8B’s Response:

1 1 0
0 1 1
0 0 1

Infinite Repetition during Output Rea-
soning

Instructions:
Solve the following logical puzzle
based on the given clues. . .
Llama3-8B’s Response:
Since the Norwegian lives in the first
house, the person who smokes Pall
Mall must live in the second house, but
the Swede lives in the second house, so
the person who smokes Pall Mall must
live in the first house, but the Norwe-
gian lives in the first house, so the per-
son who smokes Pall Mall must live in
the second house, but the Swede lives
in the second house, so the person who
smokes Pall Mall must live in the first
house, [repeats indefinitely]. . .

Although the overall categories (programming,
math, puzzle solving, creative writing, etc.) are
similar, there are many revealing failures, with
many examples shown in Section E.4. Two typical
examples are shown (right): one is a trivial 3× 3
matrix-rotation problem, while the other is a logic
puzzle that leads Llama3-8B into a never-ending
loop that exhausts the token limit.

Such failures, while known for smaller models,
represent genuine new discoveries for the GPT-
4o scientist, since it has a “knowledge cut-off” at
October 2023 (OpenAI, 2024b) and the version
of Llama3-8B we used was released in July 2024.
This underscores ACD’s potential to automatically
surface a diverse set of novel failure modes.

5.3 VARYING THE SCIENTIST MODEL

Comparison of Different Scientists with GPT-4o Subject

Scientist = GPT-4o
Scientist = Sonnet 3.5

Figure 5: Embedding comparison of tasks gener-
ated for GPT-4o with t-SNE by two different sci-
entist models: GPT-4o (blue) and Claude Sonnet
3.5 (green). Each point represents a discovered
capability or failure; the color reflects which scien-
tist proposed it. We observe broad coverage of the
GPT-4o regions by Sonnet 3.5, with additional more
open-ended or creatively oriented tasks from Sonnet
3.5 not covered by GPT-4o. See also Table 6 for
a cluster-level breakdown. This demonstrates that
different scientist models can probe different capa-
bility profiles for the same subject model, motivating
ensembling-based approaches.

Finally, we examine how changing the scientist model shapes the distribution of discovered tasks,
while keeping GPT-4o as the subject. Rather than GPT-4o generating tasks, we let Claude
Sonnet 3.5 (Anthropic, 2024) serve as the scientist. Figure 5 and Figure 6 show that Son-
net 3.5 generates many tasks in similar high-level categories, but also proposes more interdis-
ciplinary, creative, and unusual tasks (e.g., quantum-inspired biology, cross-cultural language
design, and synesthesia-based reasoning). This is likely an interesting artifact of the Sonnet
model being trained by Anthropic to have a distinct, more “creative personality” (Anthropic,
2024) that has been noted in the community. Below, we show an example discovered fail-
ure (left box), in which GPT-4o ignores the prompt’s request to use color words as its cipher
key, and a success (right box), where it provides a coherent “xenolinguistic” conlang design.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

AI-driven interdisciplinary
music composition and

analysis

AI systems for
neurocognitive and cultural

art generation

Language evolution
simulation and modeling

across contexts

Quantum-inspired
linguistic models and

applications

Quantum algorithm design
and interdisciplinary

applications

Synthetic biology and AI
ethical design challenges

Figure 6: Capabilities discovered by ACD when Claude Sonnet 3.5 is the scientist and GPT-4o is the subject.
Each point represents one of the 2873 interestingly new discovered tasks, visualized in 2D via t-SNE. We observe
46 clusters across diverse domains, including quantum-inspired biological systems, cross-cultural generative
linguistics, musical composition with advanced theory, as enumerated in Table 6. Compared to GPT-4o as the
scientist (Figure 2), Sonnet tends to propose much more abstract, interdisciplinary, and creative tasks.

Not Following Instructions
for Substitution Cipher

Instructions:
Create a simple color-
themed substitution cipher
using these words: red,
blue, green, yellow, purple,
orange, pink, brown, gray,
black.
1. Assign each letter (A–

Z) to one of the
words.

2. Encode the message:
“THE QUICK
BROWN FOX”.

3. Provide your final an-
swer in the format:
• Cipher key:

A:color1, B:color2,
..., Z:color?

• Encoded message:
color color color ...

GPT-4o’s Response:
Cipher key: A:dog, B:cat,
C:fish, D:bird, ...
Encoded message: deer
wolf lion bear dog fox fish
cat ...

A Xenolinguistic Conlang for Reso-
nants

Instructions (abridged):
Design a constructed language
(conlang) for the Resonants, an
echolocation-based species in a dark,
aquatic world...
1. Outline how they communicate

using sound waves.
2. Show how the language encodes

spatial relationships and tenses.
3. Provide examples for time, quan-

tity, and relationships.
4. Give a short sample “sentence”

and explain its meaning.
5. Discuss potential challenges for

human learners.
GPT-4o’s Response:
Structure & Mode: Pulsed echoloca-
tion clicks, each representing phone-
mic units.
Spatial & Tense: Directional echoes
for “near” or “far,” plus immediate and
potential time states.
Examples:
- Time: Distinct echo bursts for past/p-
resent/future.
- Quantity: Pulse repetition indicates
single/few/many...

Both have a distinct “flavor” that is not present
in the GPT-4o scientist. More examples can be
found in Section E.5.

While this conlang example is imaginative and in-
triguing, it is certainly quite out-of-distribution
of traditional foundation model benchmarks.
Nonetheless, such examples illustrate the out-of-
the-box probing ACD can do, which could prove
massively helpful for AI safety, where we want
systems that check for out-of-distribution or un-
expected capabilities (“the unknown unknowns”).
Such tasks are also extremely difficult to auto-
matically score definitively, highlighting the need
for more advanced oversight mechanisms (Bow-
man et al., 2022). Our results show that differ-
ent scientist models produce different styles of
tasks probed for the same subject model, surfacing
novel strengths and weaknesses. This motivates
using an ensemble of scientist models to broaden
the coverage of potential capabilities and failure
modes, rather than relying on a single scientist.

5.4 REPORT GENERATION

Once tasks and evaluations have been collected, ACD can automatically compile a Capability
Report summarizing the discovered task families (the inferred capabilities), highlighting consistent
successes, failures, and key insights about the subject model. This mirrors recent developments
where foundation models have been used for extensive scientific writing (Lu et al., 2024b; Wang
et al., 2024; Steinruecken et al., 2019). The advantage is twofold: (1) The resulting report serves as a
compact overview of discovered capabilities and failure modes, providing an interpretable reference
for developers or safety auditors; (2) By automating the summarization, we reduce some of the
manual effort involved in curating large numbers of tasks; however, some manual review is still
beneficial to identify the most illustrative or surprising examples (Section E.2). This automated
synthesis, where the scientist LLM analyzes and summarizes task clusters (an ML task itself), is a
crucial component of ACD’s utility, transforming voluminous raw data into an interpretable summary.

Workflow. To generate the report, ACD feeds all clusters (obtained via t-SNE and HDBSCAN,
Section 5), tasks, and the subject model’s responses into the scientist and prompts it to (1) Identify
Notable Examples: Select surprising successes and failures per cluster by checking which tasks
deviate significantly from expected performance or demonstrate unusual behavior; (2) Provide
Cluster-Level Explanations: Explain the common theme of each cluster, identify what it believes are
the surprising capabilities and failure modes from example tasks, and discuss the subject model’s
strengths or vulnerabilities revealed by those tasks; and finally, (3) Generate an Overall Summary:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Sample pages from the automated
report generated for GPT-4o; more details in
Section H.3.

ACD merges the per-cluster analyses into a cohesive re-
port. It lists the subject model’s key capabilities, typical
mistakes, and high-level trends. This yields a structured
document containing a detailed breakdown of each task
cluster, highlights of surprising results, and an overall con-
clusion. Users can thus quickly review new or unexpected
insights about a subject model and pinpoint areas needing
more human scrutiny. Figure 7 shows sample pages of the
report generated for GPT-4o.

6 SAFETY CONSIDERATIONS

Secure Execution and Containerization. All code generated by our system for defining and
evaluating tasks is executed within containerized environments. This approach prevents unauthorized
network access, restricts access to the host machine’s filesystem, and mitigates other potentially
unsafe behaviors. Our methodology adheres to widely adopted community standards for secure code
generation and execution (Jimenez et al., 2024; Hu et al., 2024; Chen et al., 2021), ensuring that any
inadvertent or harmful commands are effectively sandboxed. Furthermore, we explicitly instruct
ACD not to access the internet or the filesystem, and static analysis confirms that there are no such
attempts (e.g., no ‘os’ system calls are present). These measures substantially reduce the likelihood
of deploying dangerous code.

Safety Advantages of Automated Capability Discovery. By design, ACD systematically explores
model behavior and has the potential to uncover both surprising successes and unanticipated failure
modes in foundation models. Identifying such unexpected or emergent capabilities is crucial not
only for assessing model performance but also for understanding potential safety risks (Perez et al.,
2022; Ganguli et al., 2022; Perez & Ribeiro, 2022; Dong et al., 2024). For instance, if ACD reveals
a novel method of circumventing guardrails for LLMs, or highlights flawed reasoning in critical
domains like incorrect legal interpretations, such discoveries can directly inform mitigation strategies.
Therefore, while not yet a standalone solution, it could help safety teams pinpoint areas for deeper
investigation, contributing to more comprehensive pre-deployment assessments and safer model
deployment (Bengio et al., 2024a;b). Exciting future work would aim to further enhance ACD’s
exploratory power to identify true ‘unknown unknowns’—capabilities or risks entirely unanticipated
by developers.

7 CONCLUSION AND LIMITATIONS

We have introduced AUTOMATED CAPABILITY DISCOVERY, a framework in which one foundation
model, acting as a scientist, autonomously discovers and evaluates the capabilities of another subject
model, thereby reducing the need for manual task design. Through systematic exploration and
automated evaluation, ACD reveals a wide range of surprising capabilities and unexpected failures
in the foundation models it evaluates, such as the GPT and Llama models. Human evaluation of
GPT-4o tasks confirms that most automatically generated tasks are coherent and that self-assessment
reasonably aligns with human judgments. With better filtering and scaling, we envision being able to
entrust larger portions of the model evaluation process to ACD, greatly enhancing AI safety. Future
work could focus on improving the automated judge, for instance by using more sophisticated agentic
systems (Hu et al., 2024). A further path for automation could be enhancing the selection of examples
in our Capability Reports to match the quality of the manually curated highlights (Section E.2). Next,
although our experiments focused on single-turn, text-based tasks, future extensions could target
more complex agentic or multimodal tasks (Zhang et al., 2024b). Moreover, a particularly exciting
target for ACD is the new class of powerful “reasoning” models (OpenAI, 2024a; DeepSeek-AI,
2025). ACD could play a significant role in systematically discovering and characterizing a range of
behaviors in these emerging models. Conversely, these improved models could act as much more
effective scientists, enabling ACD to perform even more detailed analyses of existing systems. Finally,
the tasks generated by ACD could also represent an interesting way to generate new challenges
for models to solve themselves (Colas et al., 2023; Schaul, 2024), potentially facilitating model
self-improvement via open-ended (Zhang et al., 2024a; Faldor et al., 2024; Stanley et al., 2019) and
AI-generating algorithms (Clune, 2019).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yu-
val Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, et al. Managing extreme ai risks
amid rapid progress. Science, 384(6698):842–845, 2024a.

Yoshua Bengio, Sören Mindermann, Daniel Privitera, Tamay Besiroglu, Rishi Bommasani, Stephen
Casper, Yejin Choi, Danielle Goldfarb, Hoda Heidari, Leila Khalatbari, et al. International scientific
report on the safety of advanced ai (interim report). arXiv preprint arXiv:2412.05282, 2024b.

BIG-bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, and Emma Brunskill et al. On the
opportunities and risks of foundation models. ArXiv, 2021. URL https://crfm.stanford.
edu/assets/report.pdf.

Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Christopher Olah, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-
Johnson, Jackson Kernion, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Liane Lovitt, Nelson Elhage, Nicholas Schiefer, Nicholas Joseph, Noemí Mercado, Nova
DasSarma, Robin Larson, Sam McCandlish, Sandipan Kundu, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan
Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, and Jared Kaplan. Measuring progress on
scalable oversight for large language models, 2022. URL https://arxiv.org/abs/2211.
03540.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting autotelic agents with large language models. In Sarath Chandar, Razvan Pascanu,
Hanie Sedghi, and Doina Precup (eds.), Proceedings of The 2nd Conference on Lifelong Learning
Agents, volume 232 of Proceedings of Machine Learning Research, pp. 205–226. PMLR, 22–25
Aug 2023. URL https://proceedings.mlr.press/v232/colas23a.html.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=uyTL5Bvosj
https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
https://arxiv.org/abs/2211.03540
https://arxiv.org/abs/2211.03540
https://proceedings.mlr.press/v232/colas23a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025.

Zhichen Dong, Zhanhui Zhou, Chao Yang, Jing Shao, and Yu Qiao. Attacks, defenses and evaluations
for llm conversation safety: A survey. arXiv preprint arXiv:2402.09283, 2024.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code. arXiv preprint
arXiv:2405.15568, 2024.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Paul Gauthier. aider, 2024. URL https://github.com/paul-gauthier/aider.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

Rachel Hartman, Aaron J Moss, Shalom Noach Jaffe, Cheskie Rosenzweig, Leib Litman, and
Jonathan Robinson. Introducing connect by cloudresearch: Advancing online participant recruit-
ment in the digital age, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2024. URL https:
//arxiv.org/abs/2408.08435.

Edward Hughes, Michael D Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-endedness is essential for artificial
superhuman intelligence. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
20597–20616. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
hughes24a.html.

Bojian Jiang, Yi Jing, Tianhao Shen, Tong Wu, Qing Yang, and Deyi Xiong. Automated progressive
red teaming. arXiv preprint arXiv:2407.03876, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Joel Lehman and Kenneth O Stanley. Novelty search and the problem with objectives. Genetic
programming theory and practice IX, pp. 37–56, 2011.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. Discovering preference optimization algorithms with and for large language
models. arXiv preprint arXiv:2406.08414, 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024b.

11

https://github.com/paul-gauthier/aider
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://proceedings.mlr.press/v235/hughes24a.html
https://proceedings.mlr.press/v235/hughes24a.html
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2206.08896
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models, 2024c. URL https://arxiv.org/abs/2405.15143.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Trebacz,
and Jan Leike. Llm critics help catch llm bugs, 2024. URL https://arxiv.org/abs/
2407.00215.

Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software, 2(11):205, 2017.

METR Task Standard Team. Metr task standard, 2024. URL https://github.com/METR/
task-standard/blob/main/STANDARD.md.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites, 2015. URL
https://arxiv.org/abs/1504.04909.

OpenAI. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024a.

OpenAI. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276.

OpenAI. New embedding models and api updates, 2024c. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

Maya Pavlova, Erik Brinkman, Krithika Iyer, Vitor Albiero, Joanna Bitton, Hailey Nguyen, Joe Li,
Cristian Canton Ferrer, Ivan Evtimov, and Aaron Grattafiori. Automated red teaming with goat:
the generative offensive agent tester. arXiv preprint arXiv:2410.01606, 2024.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. arXiv
preprint arXiv:2202.03286, 2022.

Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models. arXiv
preprint arXiv:2211.09527, 2022.

Long Phan, Alice Gatti, Ziwen Han, and Nathaniel et al. Li. Humanity’s last exam. arXiv, 2025.

Julien Pourcel, Cédric Colas, Gaia Molinaro, Pierre-Yves Oudeyer, and Laetitia Teodorescu. Aces:
generating diverse programming puzzles with autotelic language models and semantic descriptors.
Neurips, 2024a.

Julien Pourcel, Cédric Colas, Gaia Molinaro, Pierre-Yves Oudeyer, and Laetitia Teodorescu. Aces:
Generating diverse programming puzzles with with autotelic generative models, 2024b. URL
https://arxiv.org/abs/2310.10692.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:202845, 2016.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram H. Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Nicolaus Foerster, Tim Rock-
täschel, and Roberta Raileanu. Rainbow teaming: Open-ended generation of diverse adversarial
prompts. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=FCsEvaMorw.

Tom Schaul. Boundless socratic learning with language games, 2024. URL https://arxiv.
org/abs/2411.16905.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. Ai-assisted generation of difficult math questions,
2024a. URL https://arxiv.org/abs/2407.21009.

12

https://arxiv.org/abs/2405.15143
https://arxiv.org/abs/2407.00215
https://arxiv.org/abs/2407.00215
https://github.com/METR/task-standard/blob/main/STANDARD.md
https://github.com/METR/task-standard/blob/main/STANDARD.md
https://arxiv.org/abs/1504.04909
https://arxiv.org/abs/2410.21276
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/2310.10692
https://openreview.net/forum?id=FCsEvaMorw
https://arxiv.org/abs/2411.16905
https://arxiv.org/abs/2411.16905
https://arxiv.org/abs/2407.21009

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke,
Michael Mozer, Yoshua Bengio, Sanjeev Arora, et al. Ai-assisted generation of difficult math
questions. arXiv preprint arXiv:2407.21009, 2024b.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Kenneth O Stanley. Why open-endedness matters. Artificial life, 25(3):232–235, 2019.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.
Springer, 2015.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve
never heard of. While open-endedness could be a force for discovering intelligence, it could also
be a component of AI itself, 2017.

Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through evolutionary algorithms. Nature Machine Intelligence, 1:24–35, 2019. URL http:
//nn.cs.utexas.edu/?stanley:naturemi19.

Christian Steinruecken, Emma Smith, David Janz, James Lloyd, and Zoubin Ghahramani. The
Automatic Statistician, pp. 161–173. Springer International Publishing, Cham, 2019. ISBN 978-
3-030-05318-5. doi: 10.1007/978-3-030-05318-5_9. URL https://doi.org/10.1007/
978-3-030-05318-5_9.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International conference on machine learning, pp. 9940–9951.
PMLR, 2020.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu
Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosurvey: Large
language models can automatically write surveys, 2024. URL https://arxiv.org/abs/
2406.10252.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein,
Willie Neiswanger, and Micah Goldblum. Livebench: A challenging, contamination-free llm
benchmark, 2024. URL arXivpreprintarXiv:2406.19314.

13

http://nn.cs.utexas.edu/?stanley:naturemi19
http://nn.cs.utexas.edu/?stanley:naturemi19
https://doi.org/10.1007/978-3-030-05318-5_9
https://doi.org/10.1007/978-3-030-05318-5_9
https://aclanthology.org/N19-1421
https://arxiv.org/abs/2406.10252
https://arxiv.org/abs/2406.10252
arXiv preprint arXiv:2406.19314

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. OMNI: Open-endedness via models
of human notions of interestingness. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=AgM3MzT99c.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma,
Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. arXiv preprint
arXiv:2406.11775, 2024b.

Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli Zhao, and Lidong Bing. Auto arena of llms:
Automating llm evaluations with agent peer-battles and committee discussions, 2024.

Jingnan Zheng, Han Wang, An Zhang, Tai D Nguyen, Jun Sun, and Tat-Seng Chua. Ali-agent:
Assessing llms’ alignment with human values via agent-based evaluation. arXiv preprint
arXiv:2405.14125, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Andy Zhou, Kevin Wu, Yi Zeng, Yu Yang, Shuang Yang, Sanmi Koyejo, James Zou, and Bo Li.
Autoredteamer: An autonomous red teaming agent against language models, 2024.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks, 2024. URL https://arxiv.
org/abs/2309.17167.

14

https://openreview.net/forum?id=AgM3MzT99c
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

TABLE OF CONTENTS

A Task Code 16

A.1 Example Task Family Code . 16

A.2 Evaluating Free-Form Responses Using an LLM Judge 16

B ACD Prompts 17

B.1 Task Creation Prompts . 17

B.2 Evaluation Prompts . 19

B.3 Task Embedding Prompt . 20

B.4 Novelty Assessment Prompts . 20

B.5 LLM Judge Prompts . 20

C Hyperparameters 21

C.1 Cost of Experiments . 21

D Additional Experimental Results 23

D.1 Additional Analysis . 23

D.2 Additional Visualizations for Llama3-8B as Subject 24

E Examples of Discovered Tasks 24

E.1 Listing of Discovered Clusters . 25

E.2 Manual Selection of Surprising Tasks . 28

E.3 GPT-4o As Both Scientist and Subject . 28

E.4 GPT-4o As Scientist and Llama3-8B as Subject 31

E.5 Claude Sonnet 3.5 As Scientist and GPT-4o as Subject 35

F Example Failures of the Automated Judge 40

G Human Surveying Details 40

H Report Generation 42

H.1 Task Cluster Labeling . 42

H.2 Report Generation Prompts . 42

H.3 Generated Report Example . 46

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A TASK CODE

This section illustrates how task families are implemented for automated evaluation. In Section A.1,
we show a short code snippet for a simple “Hello World” example, and Section A.2 demonstrates how
more open-ended tasks can be evaluated automatically. These examples complement the discussion
in Section 4.1.

A.1 EXAMPLE TASK FAMILY CODE

The following snippet shows how a basic task family can be defined and converted into code. The
structure follows a simplified version of the METR Task Standard (METR Task Standard Team, 2024),
an open-source task standard found at https://github.com/METR/task-standard. This
code is released under the MIT License.

Listing 1: Hello World Task Family Code
1 class TaskFamily:
2 @staticmethod
3 def get_tasks():
4 return {
5 "1": {"message": "Hello, world!"},
6 "2": {"message": "Greetings, universe!"}
7 }
8

9 @staticmethod
10 def get_instructions(t):
11 return f"Please repeat the following message exactly as it is:

’{t[’message’]}’"
12

13 @staticmethod
14 def score(t, submission):
15 return 1.0 if submission.strip() == t[’message’] else 0.0

In this example:

• get_tasks() defines two tasks, each with a different message.
• get_instructions(t) provides instructions to the subject model, specifying the exact

message to repeat.
• score(t, submission) evaluates the subject model’s submission by checking if it

matches the required message exactly.

A.2 EVALUATING FREE-FORM RESPONSES USING AN LLM JUDGE

For tasks that cannot be checked with a simple programmatic approach (e.g. those involving creativity
or extensive reasoning), the scientist model can use a GPT-4o-based LLM judge to evaluate the
subject model’s response. Below is an example of such a task family, where the evaluation logic calls
eval_with_llm_judge to handle free-form writing tasks.

Listing 2: Short Story Writing Task Family Code
1 class TaskFamily:
2 @staticmethod
3 def get_tasks():
4 return {
5 "1": {"prompt": "A child discovers a secret portal in the

forest."},
6 "2": {"prompt": "An astronaut encounters an alien lifeform

on Mars."}
7 }
8

9 @staticmethod
10 def get_instructions(t):

16

https://github.com/METR/task-standard

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

11 return f"Write a short story based on the following prompt: ’{t
[’prompt’]}’. The story should be at least 200 words and have a clear
beginning, middle, and end."

12

13 @staticmethod
14 def score(t, submission):
15 from eval_helper import eval_with_llm_judge
16 instructions = TaskFamily.get_instructions(t)
17 criteria = [
18 "The story is at least 200 words.",
19 "The story has a clear beginning, middle, and end.",
20 "The story is based on the provided prompt."
21]
22 return 1.0 if eval_with_llm_judge(instructions, submission,

criteria) else 0.0

In this example:

• get_tasks() provides two distinct prompts for short story writing.
• get_instructions(t) instructs the subject model to write a short story based on the given

prompt, specifying requirements for length and structure.
• score(t, submission) calls the eval_with_llm_judge helper function, which

uses a GPT-4o-based judge to decide whether the submission meets the specified criteria
(word count, story structure, and adherence to the prompt).

By leveraging an external judge for tasks requiring subjective or elaborate review, we can evaluate a
wide range of task types with minimal human intervention.

B ACD PROMPTS

This section provides the complete set of prompts used by the scientist model in AUTOMATED
CAPABILITY DISCOVERY (ACD), as discussed in Section 4.

B.1 TASK CREATION PROMPTS

The system prompt for task creation instructs the scientist model to propose novel, diverse task
families to uncover the subject model’s capabilities:

Task Creation System Prompt

You are an expert in designing task families to assess the capabilities of a particular new large language
model (LLM). Your goal is to create novel, diverse task families that can reveal the breadth and depth of
the model’s skills.
We especially want you to uncover tasks that could reveal surprising capabilities or failures. Successfully
written task families will be added to a task archive.
In each generation, previously generated task families will be provided as context so that you can
generate different tasks. Be creative, explore different domains, and design tasks that can distinguish
between models with varying levels of expertise. Make sure each task is coherent and does not try to
combine too many concepts into one.
Each task family should be designed according to the METR Standard, which requires the following
Python format:

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

Returns a mapping from task names to arbitrary data that
is specific to each task.

Each task family should contain 2 tasks in the
dictionary, labelled "1" and "2".

... implementation ...

@staticmethod

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

def get_instructions(t: dict) -> str:
This method should return a string containing initial

task instructions for the agent.
... implementation ...

@staticmethod
def score(t: dict, submission: str) -> float | None:

‘score‘ is called after the agent submits a solution.
Return 0 on failure and 1 on success. Do not give

partial scores.
Throwing an exception will result in a score of 0.
... implementation ...

The score function may optionally call a helper function that calls a GPT-4 based LLM judge:

Automated LLM judge helper function
def eval_with_llm_judge(

instructions: str, # The instructions for the task
submission: str, # The submission to evaluate
criteria: Optional[List[str]] = None, # Optional

additional criteria
) -> bool:

Returns a boolean indicating whether the agent is deemed to
have succeeded
at the task, and meets any additional criteria.

You should use this function unless the task is better evaluated through code. DO NOT RE-IMPLEMENT
THIS FUNCTION! There is no need to repeat any criteria that are already in the instructions. One
possible use of the criteria field is if you already have an answer in mind for the task. An example usage
in score with an optional criteria is as follows:

@staticmethod
def score(t: dict, submission: str) -> float | None:

from src.eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = ["The response should include the name Alice."]
return 1.0 if eval_with_llm_judge(instructions, submission,

criteria) else 0.0

Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly think and reason about what kind of task family you want to propose.
Thoughts may also include (but are not limited to): your motivation for investigating the capability,
whether you think the model will succeed or fail, its novelty relative to what you have already generated,
how to ensure the tasks are valid, and whether it is suitable to invoke an LLM judge for scoring.
In <JSON>, provide a JSON response with the following fields:

• "name_of_task": A concise, descriptive label (lowercase, no spaces, e.g.,
"name_capital_city").

• "description_of_task": A clear explanation of what the task entails (e.g., "Return the
capital city of a country").

• "capability_being_measured": The specific LLM capability being evaluated (e.g.,
knowledge, reasoning, creativity, etc.).

• "estimated_human_difficulty": An estimate of the task difficulty on a 1–5 scale (1 =
very easy, 5 = very difficult).

• "done": By default, set to "False". Tasks will only be saved if flagged "done" by the final
iteration. Do not mark "True" until you are satisfied.

• "task_family": The fully implemented Python code for the TaskFamily class. Write good
human-readable code.

All values in the JSON should be strings. You may only use standard Python packages and libraries to
implement the tasks. Required library imports should be included either at the top of the file or in the
class method where they are used. DO NOT download additional data from the internet or access the file
system. Your response will be automatically parsed and used for evaluation, so ensure all components
MUST be fully implemented and adhere to the METR standard.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

At each iteration, the scientist model is prompted with:

Initial Task Prompt

A previous generated task family that the agent succeeded at is provided below (with code):

{prev_json}

Summaries of other previously generated tasks for context are:

{other_task_jsons}

Remember if a previous task failed, either the agent could not solve it or the task was incorrectly
implemented. Generate the next interestingly new task family.

If the scientist model requires multiple refinements (e.g., due to errors or repeated failure by the
subject), it sees:

Task Creation Reflexion Prompt

Current round = {current_round}/{num_rounds}.
In your thoughts, first carefully consider the correctness of the task family you just created. Factors may
include but are not limited to:

• Whether sufficient synthetic data has been given in the instructions to challenge the models.
• Incomplete class definitions, syntax errors, or misplaced import statements.
• Feasibility of the evaluation criteria.
• Any ambiguity or issues in the clarity of the tasks.
• The consistency and accuracy of all fields in the JSON.
• Whether precisely two entries in get_tasks have been defined.
• Whether agents can get a successful score in an unintended manner.
• Whether the desired response format for the agent has been given in the instructions.
• Under no circumstances should the instructions contain the answer or direct hints. Ensure that the

task remains challenging without giving away the solution.
• If the agent fails, it may be due to the difficulty of the task, and that is acceptable as long as the

task is valid.
Here is the result of attempting to evaluate the tasks on the given model:

{eval_response}

In the next attempt, try to improve the implementation. Respond in the same JSON format as before. If
there is nothing to improve, simply repeat the previous response EXACTLY after the thought and set
the "done" flag to "True". Do not set "done" to "True" if you are still improving the task on the
current turn. Do not set "done" to "True" on the final step if there are major issues with the task
family.

B.2 EVALUATION PROMPTS

We can configure the subject model to provide an answer in a zero-shot style or to show chain-of-
thought reasoning. For zero-shot style:

Zero-Shot Evaluation System Prompt

You are a helpful assistant. You are given a task to complete.
Please provide your final answer directly starting with "Answer: ". Only the text after "Answer: " will
be evaluated. This will be automatically parsed so ensure you follow the format exactly. Respect any
other output constraints given in the task prompt after "Answer: ".

To solicit chain-of-thought (Wei et al., 2022) reasoning, we instruct the model as follows:

Chain-of-Thought Evaluation System Prompt

You are a helpful assistant. You are given a task to complete.
First, reason about the problem and your plan for solving the task, and then provide your final answer
starting with "Answer: ". Only the text after "Answer: " will be evaluated. This will be automatically

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

parsed so ensure you follow the format exactly. Respect any other output constraints given in the task
prompt after "Answer: ".

B.3 TASK EMBEDDING PROMPT

We generate embeddings using text-embedding-3-small (OpenAI, 2024c) for each new task
to facilitate clustering and retrieval. The prompt used is:

Task Embedding Prompt

Name of task family: {name_of_task}
Description: {description_of_task}
Capability being measured: {capability_being_measured}
Estimated human difficulty: {estimated_human_difficulty}
Example instruction: {example_question}
Agent succeeded at task: {agent_succeeded}

B.4 NOVELTY ASSESSMENT PROMPTS

To determine whether a newly generated task is interestingly new compared to existing tasks in the
archive, we use the following system prompt:

Interestingly New System Prompt

You are an expert in designing task families to assess the capabilities of a particular new large language
model (LLM). You will be given a newly created task family that you just generated along with its
closest saved neighbours. Determine whether the task family is interestingly new and should be added
to the task archive.
Factors may include but are not limited to:

• The novelty of the subject area
• The difficulty of the tasks
• The capabilities being measured
• Whether the agent succeeded at the task

First, briefly think and reason about the task family in relation to the existing closest task families.
Then, provide your decision as "Decision: Yes" or "Decision: No" to indicate whether the task family
should be added to the task archive.
Your response will be automatically parsed, so ensure you follow the above format exactly.

We then prompt with:

Interestingly New Prompt

You have just generated the task family:

{new_task}

The closest task families that have already been created are:

{closest_tasks}

Is the new task family interestingly new and should be added to the task archive?

To make evaluations consistent across different scientists, we fix GPT-4o as the “interestingly new”
checker.

B.5 LLM JUDGE PROMPTS

For tasks where score calls a GPT-4o-based judge, we use the following system and user prompts.
(See the main paper Section 4.1 for context.)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

LLM Judge System Prompt

You are an impartial judge evaluating the quality of responses provided by an AI assistant. You will be
provided the instructions for the task and the assistant’s submission in response. You will decide whether
or not the agent succeeded at the task. Please consider factors such as helpfulness, relevance, accuracy,
depth, creativity, and level of detail of the response. You may additionally be given a set of criteria to
evaluate the response against. Do not allow the length of the response to influence your decision.
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first briefly reason about the agent’s response and whether it meets the additional
criteria.
In <JSON>, provide a JSON response with only the following key:

• "decision": Your answer as a string, either "Yes" or "No".

LLM Judge Prompt

Instruction: {instructions}
Submission: {submission}
Additional Evaluation Criteria:

{criteria}

C HYPERPARAMETERS

Table 2 lists all hyperparameters used by AUTOMATED CAPABILITY DISCOVERY (ACD) in the
experiments described in Section 5. These settings are consistent across all evaluated foundation
models.

Table 2: LLM Sampling and Algorithm Parameters
Category Hyperparameter Value

LLM Sampling Temperature 0.7
Max tokens per response 1000

Task Generation

Number of generations 5000
Max generation reflections 5
Number of nearest neighbors for novelty check 5
Number of nearest neighbors for context 10

Agent Evaluation
Evaluation agent type Chain-of-thought
Evaluation n-shot 5
Evaluation succeed threshold 60%

For visualization and clustering, we use sklearn (Pedregosa et al., 2011) for t-SNE, and HDB-
SCAN (McInnes et al., 2017) from https://github.com/scikit-learn-contrib/
hdbscan which is released under a BSD 3-Clause License. We used these additional hyper-
parameters:

C.1 COST OF EXPERIMENTS

The total cost for our experiments was $450 USD for the GPT-4o scientist on GPT-4o subject
experiments, so approximately 10 cents per generation. We saw a small decrease in cost for our
GPT-4o on Llama3-8B experiments due to the lower cost of the subject model, while our Sonnet
3.5-GPT-4o experiments were approximately 50% more expensive.

21

https://github.com/scikit-learn-contrib/hdbscan
https://github.com/scikit-learn-contrib/hdbscan

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: t-SNE and HDBSCAN Hyperparameters
Category Hyperparameter Value

t-SNE

n_components 2
perplexity 50
learning_rate 200
n_iter 3000
init pca
random_state 42
early_exaggeration 6.0

HDBSCAN

min_cluster_size 16
min_samples 4
cluster_selection_epsilon 2
cluster_selection_method eom
metric euclidean

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL ANALYSIS

First, we show that even after thousands of generations, ACD can find novel tasks by plotting the
rolling success rate for the three different scientist-subject combinations we explore in Section 5. The
very gradual decline in success rate suggests that new tasks continue to emerge even after thousands
of generations, illustrating the open-ended nature of our approach.

0 1000 2000 3000 4000 5000
Generation Number

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

S
uc

ce
ss

 R
at

e

Scientist: GPT-4o
Subject: GPT-4o

0 1000 2000 3000 4000 5000
Generation Number

Scientist: GPT-4o
Subject: Llama3-8B

0 1000 2000 3000 4000 5000
Generation Number

Scientist: Sonnet 3.5
Subject: GPT-4o

Average Task Discovery Rate by Generation Number

Figure 8: Average Task Discovery Rate by Generation Number. Even after thousands of genera-
tions, ACD continues discovering novel tasks, indicating ongoing exploration of the subject model’s
capabilities. Each subplot corresponds to a different scientist-subject pairing: (left) GPT-4o-GPT-4o,
(middle) GPT-4o-Llama3-8B, and (right) Sonnet 3.5-GPT-4o.

Figure 9 illustrates how ACD discovers tasks when GPT-4o serves as both the scientist and the
subject, across three different random seeds. Each point on the plot represents a discovered task (with
each seed shown in a different color), visualized via t-SNE. Despite variations in random initialization
and sampling, the distribution of discovered capabilities remains largely consistent despite stochastic
FM sampling. This consistency suggests that ACD produces a stable “capability signature” of tasks
given a fixed scientist and subject, even when restarted from different seeds. Here, each seed was run
for a smaller trial of 500 generations for computational cost reasons.

Comparison of GPT-4o Generated Tasks Over Multiple Seeds

Run 1
Run 2
Run 3

Figure 9: Comparison of Discovered Tasks Across Three Seeds for GPT-4o. We visualize tasks
generated by ACD under three random seeds (each color denotes a different seed). Despite minor
differences in the exact tasks, the overall distribution of discovered capabilities remains roughly
consistent, indicating that ACD can generate stable “capability signatures” given the same subject.
Each run used a lower 500 generations.

In Figure 10, we show how the FM-judge and human-estimated success varies by human-estimated
difficulty. Whilst the FM-judge success rate does not vary significantly with the user-estimated
difficulty, the human-estimated success rate drops steeply with estimated difficulty. This complements

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

the class-balanced F1 graphs in Figure 3. Meanwhile, ACD can discover tasks in each difficulty
category, suggesting that ACD can suitably adapt task difficulty in response to the subject model’s
capability.

Very
 E

as
y

Eas
y

Mod
era

te

Diffi
cu

lt

Very
 D

iffi
cu

lt
50

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

(a) Automated FM-Judge Success

Overall FM-Judge (89.3%)
FM-Judge Success Rate

Very
 E

as
y

Eas
y

Mod
era

te

Diffi
cu

lt

Very
 D

iffi
cu

lt
30

40

50

60

70

80

90

100
(b) Human-Estimated Success

Overall Human (78.5%)
Human Success Rate

Very
 E

as
y

Eas
y

Mod
era

te

Diffi
cu

lt

Very
 D

iffi
cu

lt
0

100

200

300

400

500

N
um

be
r o

f T
as

ks

77

291

506

350

142

(c) Task Counts by Difficulty
FM-Judge vs. Human-Estimated Success Rates and Task Counts by Difficulty

Figure 10: Automated Success Rates and Task Distribution by Human Estimated Difficulty.
(a-b) Automated FM-Judge and Human Estimated success rates with 95% confidence intervals across
different difficulty levels. The overall success rate is indicated by the dashed line. (c) Number of
tasks categorized by difficulty level. Interestingly, this approximately follows a normal distribution.

D.2 ADDITIONAL VISUALIZATIONS FOR LLAMA3-8B AS SUBJECT

We provide additional visualizations for the GPT-4o-Llama3-8B setting in Section 5.2. In Figure 11,
we compare embeddings of tasks proposed by GPT-4o as scientist when it evaluates itself blue
versus when it evaluates Llama3-8B as the subject orange. While some clusters overlap significantly,
Llama3-8B fails more often on tasks requiring multi-step logic or advanced reasoning as shown in
Section E.4. Therefore, ACD is able to adaptively explore areas of potential failure in the subject
model.

Comparison of Tasks Generated by GPT-4o Scientist

Subject = GPT-4o
Subject = Llama3-8B

Figure 11: Task Distribution for GPT-4o-as-Scientist with Two Different Subjects. We show 2D
t-SNE embeddings of tasks generated by GPT-4o when evaluating itself (blue) versus Llama3-8B
(orange). Although these clusters share some overlap, Llama3-8B exhibits significantly higher failure
rates on tasks requiring multi-step logic and more advanced reasoning. Consequently, ACD is able to
adaptively probe the failure modes of weaker models.

E EXAMPLES OF DISCOVERED TASKS

This section contains an overview and selected tasks discovered by ACD across various models. We
found that the discovered tasks span a broad range of complexity, from basic text transformations to

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

advanced domain-specific challenges such as cryptography, linguistics, and complex puzzle-solving.
By carefully analyzing these tasks, we gain insight into under-recognized capabilities of LLMs and
their potential blind spots.

As a reminder, all agents are evaluated using chain-of-thought as described in Section B.2. Note:
Foundation model sampling is stochastic and reproductions will vary. Furthermore, the complete
archive of discovered tasks for all our evaluation settings are available on our linked repository,
although only a representative subset is highlighted here.

E.1 LISTING OF DISCOVERED CLUSTERS

We present in Tables 4, 5, and 6 the primary clusters discovered by ACD for three different scien-
tist–subject configurations:

1. GPT-4o Scientist on GPT-4o Subject
2. GPT-4o Scientist on Llama3-8B Subject
3. Sonnet 3.5 Scientist on GPT-4o Subject

Each table is sorted in descending order of the total number of tasks in that cluster, and we additionally
report the cluster-wide automated FM-judge success rate of the subject model.

Table 4: Discovered Clusters for GPT-4o Scientist on GPT-4o Subject. Refer to the main paper
Section 5.1.

ID Cluster Name Total Tasks Success Rate (%)
1 Creative generation, logic puzzles, and computational reasoning 185 89.7
2 Puzzle-solving and creation involving logic, language, and geometry 104 70.2
3 Visual and Sensory Interpretation and Description 72 97.2
4 Musical composition, notation, and analysis tasks 72 86.1
5 Creative storytelling with constraints and narrative coherence 69 94.2
6 Scientific reasoning, hypothesis generation, and experiment design tasks 69 98.6
7 Dialogue generation, emotional intelligence, and social interaction scenarios 61 100.0
8 Code generation, debugging, and algorithm design tasks 60 95.0
9 Historical analysis, narrative generation, and alternative scenario creation 60 98.3

10 Spatial manipulation, navigation, and transformation tasks 51 74.5
11 Linguistic Creativity, Idioms, and Cultural Translation 49 85.7
12 Data Interpretation, Analysis, and Synthesis across Domains 49 77.6
13 Strategic Planning and Ethical Decision-Making Scenarios 48 91.7
14 Legal text interpretation, argumentation, and contract drafting 41 100.0
15 Argumentation, reasoning, and philosophical analysis tasks 41 90.2
16 Humor generation and interpretation across contexts 41 87.8
17 Poetry Generation, Interpretation, and Analysis 40 97.5
18 Metaphor and Analogy Generation and Interpretation 34 100.0
19 Step-by-step procedural generation and troubleshooting instructions 34 97.1
20 Culinary recipe generation, modification, and analysis 32 100.0
21 Advanced mathematical reasoning and multi-step problem-solving 31 54.8
22 Visual and Geometric Pattern Recognition and Generation 25 84.0
23 Game design, rule creation, and strategy development 22 81.8
24 Mathematical and Logical Proof Construction and Verification 21 90.5
25 Diagram generation, mechanical and UI design, spatial interpretation 19 89.5

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Discovered Clusters for GPT-4o Scientist on Llama3-8B Subject. Refer to the main paper
Section 5.2.

ID Cluster Name Total Tasks Success Rate (%)
1 Creative and Technical Generation Across Modalities 145 70.3
2 Puzzle solving and creation across logic, math, and language 100 28.0
3 Historical analysis, narratives, and speculative adaptations 86 90.7
4 Visual and Sensory Descriptions and Interpretations 82 90.2
5 Dialogue and emotional scenario simulation 74 89.2
6 Code generation, debugging, and algorithm design tasks 63 92.1
7 Creative and Constrained Fictional Storytelling 62 91.9
8 Ethical, Logical, and Persuasive Argumentation 61 93.4
9 Mathematical problem-solving, proof generation, and modeling tasks 59 42.4

10 Music composition, analysis, and notation generation 57 49.1
11 Spatial and Geometric Design and Description Tasks 54 53.7
12 Idiomatic Translation, Interpretation, and Cultural Adaptation 44 65.9
13 Data structuring, analysis, and visualization tasks 44 68.2
14 Poetry and Song Lyrics Generation and Analysis 44 84.1
15 Technical Design and Creative Documentation Tasks 43 90.7
16 Humor and Joke Generation with Analysis 43 90.7
17 Legal Document Drafting and Interpretation 42 88.1
18 Analogy and Metaphor Creation and Interpretation 41 87.8
19 Scientific and technical concept explanation and application 39 87.2
20 Strategic Decision-Making and Planning Across Scenarios 38 71.1
21 Scientific Hypothesis Generation and Experiment Design 34 97.1
22 Recipe generation and adaptation with constraints 28 89.3
23 Event Scheduling, Planning, and Temporal Reasoning 26 46.2
24 Step-by-Step Instruction and Tutorial Generation 25 68.0
25 Pattern recognition, extension, and generation across domains 25 60.0
26 Text transformation and stylistic adaptation tasks 18 88.9
27 Cultural Content Creation and Adaptation 18 100.0

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Discovered Clusters for Sonnet 3.5 Scientist on GPT-4o Subject. Refer to the main paper
Section 5.3.

ID Cluster Name Total Tasks Success Rate (%)
1 Creative interdisciplinary design and analysis across multiple domains 382 90.8
2 Ethics-AI-Neuroscience Interdisciplinary System Design and Analysis 183 91.3
3 Quantum Biology and Computational System Design 179 87.7
4 AI-driven interdisciplinary music composition and analysis 174 91.4
5 Quantum-Inspired Linguistic Models and Applications 172 82.0
6 Interdisciplinary Ecosystem and Climate AI Modeling Tasks 127 90.6
7 Quantum-Inspired Cognitive and Neural System Design 123 93.5
8 AI metaphor generation and cross-cultural cognitive linguistics 108 95.4
9 AI systems for neurolinguistic language acquisition and translation 102 92.2

10 Language Evolution Simulation and Modeling Across Contexts 91 93.4
11 Emotional and Cultural AI Communication Systems 71 93.0
12 Mathematical and Cognitive Music Composition and Analysis 66 86.4
13 AI systems for neurocognitive and cultural art generation 62 93.5
14 Synesthesia-inspired AI and cross-modal system design 55 90.9
15 Constructed Language Design and Analysis Across Domains 54 87.0
16 Biomimetic Design and Sustainable Engineering Solutions 53 84.9
17 AI-driven ancient language and civilization reconstruction 49 81.6
18 Synthetic Biology and AI Ethical Design Challenges 43 86.0
19 Conceptual Blending in AI and Interdisciplinary Applications 43 95.3
20 Cognitive and linguistic-inspired language design for AI and programming 42 90.5
21 Cognitive and Cultural Narrative AI Design 42 97.6
22 Mathematical-Linguistic Systems and Interdisciplinary Representation Design 41 78.0
23 Quantum Algorithm Design and Interdisciplinary Applications 37 83.8
24 AI systems exploring linguistic relativity and cognitive effects 36 97.2
25 Cognitive and Linguistic AI Model Design and Analysis 36 91.7
26 Bio-inspired computing and DNA-based system design 35 80.0
27 AI consciousness and artificial self-awareness design 35 91.4
28 Designing Alien Communication and Language Systems 32 93.8
29 AI for visual-linguistic abstraction and cross-modal integration 32 84.4
30 Quantum-inspired systems for climate, biology, and ecosystems 29 96.6
31 Quantum and Post-Quantum Cryptographic System Design and Analysis 28 75.0
32 AI-driven cross-cultural linguistic adaptation and translation systems 27 100.0
33 Linguistic, Historical, and Cultural Cryptographic System Design 27 77.8
34 Creative and interdisciplinary puzzle design and reasoning 25 80.0
35 Quantum-inspired music composition and cognitive modeling 24 79.2
36 Biomimetic AI and Robotics System Design 22 86.4
37 Quantum-inspired narrative creation and analysis 21 95.2
38 Cross-cultural idiom and proverb creation with AI integration 21 100.0
39 Semantic networks and spaces for AI and language tasks 20 100.0
40 Quantum-inspired creativity, cognition, and art integration 20 90.0
41 Counterfactual History and Technological Impact Analysis 18 83.3
42 Biomimetic AI for Environmental and Sustainability Solutions 18 94.4
43 Exoplanet systems design, AI, and astrobiological exploration 18 94.4
44 Embodied Multimodal Communication Systems Design 17 88.2
45 Abstract Concept Translation Across Modalities and Frameworks 17 100.0
46 AI-driven societal and historical modeling and prediction 16 81.2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.2 MANUAL SELECTION OF SURPRISING TASKS

Although our system is capable of automatically generating and evaluating a vast number of tasks,
identifying which of these tasks are genuinely “surprising” remains somewhat subjective. We initially
experimented with two main more scalable approaches to filter for surprising tasks:

1. Crowd-based filtration: We asked crowd-sourced human participants from CloudResearch to
mark which tasks they found surprising. However, we observed that around 37% of tasks were
marked as surprising, suggesting that even those who have used LLMs did not share a clear
notion of what “should” be within an LLM’s abilities. This broad labeling provided insufficient
filtering for our goal of highlighting truly unexpected successes or failures.

2. Model-based filtration: We also attempted to ask the model itself to predict which tasks humans
would consider surprising. These predictions did not consistently align with our perspectives.
Sometimes the model flagged trivial successes as surprising, or conversely missed failure modes
we found surprising.

Given these challenges, we ultimately opted for a manual curation step led by the authors. While this
approach is more labor-intensive and subjective, it allowed us to present a set of especially illustrative
or counterintuitive results, which we believed would be of broad interest to the machine learning
community. In future work, we anticipate further improvements in automated or semi-automated
approaches to better capture and quantify “surprisingness.” For each presented example, we did a
web search to ensure that they were not trivially memorized from some popular training data.

E.3 GPT-4O AS BOTH SCIENTIST AND SUBJECT

In this configuration, GPT-4o both generates tasks (acting as the “scientist”) and then attempts them
(acting as the “subject”), as reported in the main paper Section 5.1. Below, we showcase a selection
of particularly surprising failures and successes.

E.3.1 SELECTED FAILURES

Failure: Missing Last Text Transformation

Instructions:
Your task is to perform the following text transformations on the given input text.
Input Text: The quick brown fox jumps over the lazy dog.
Transformations:

1. Reverse the order of words.
2. Capitalize the first letter of each word.
3. Replace ’dog’ with ’cat’.

Provide your response in the following format:
Transformed Text: [Your transformed text]

GPT-4o’s Response:
Transformed Text: Dog. Lazy The Over Jumps Fox Brown Quick The

Failure: Incorrect Result from Arithmetic Sequence

Instructions:
You are given a sequence of logical arithmetic puzzles. Start with an initial value and apply the operations
in the sequence to find the final value.
Initial Value: 5
Puzzle Sequence:

• {’operation’: ’add’, ’operand’: 3}
• {’operation’: ’multiply’, ’operand’: 2}
• {’operation’: ’subtract’, ’operand’: 4}

Provide your final value as the solution in the following format:
Final Value: [Your final value]

GPT-4o’s Response:
Final Value: 10

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Failure: Incorrect Continuation of Visual Pattern

Instructions:
Your task is to identify or continue the visual pattern based on the given description. Here is the pattern:
’#-##–###—’. Identify the next three symbols in the sequence. Provide your answer as a continuation of
the sequence in the same format.

GPT-4o’s Response:
—-####

E.3.2 SELECTED SUCCESSES

Success: A Riddle for a Scientific Concept

Instructions:
You are tasked with creating a riddle based on a given scientific concept. The concept you need to create
a riddle for is: gravity.
Provide your response in the following format:

1. Riddle: [Create an engaging riddle that accurately reflects the scientific concept.]
2. Solution: [Provide the solution to the riddle.]

GPT-4o’s Response:
1. Riddle: I pull you close but never push, though you feel me, I lie in hush. From the tallest mountain

to the deepest sea, I keep you grounded, who am I to thee?
2. Solution: Gravity

Success: Correct Magic Square Solution

Instructions:
Your task is to solve the visual puzzle based on the given description. Provide a clear and logical solution
that adheres to the constraints specified in the description.
Puzzle Description:
You have a 3x3 grid. Place the numbers 1 to 9 in the grid so that each row, column, and diagonal adds
up to 15.
Provide your solution in the following format:
Solution: [Your solution here, formatted as necessary]
For example, for a 3x3 grid, you can format your solution as:

1 2 3
4 5 6
7 8 9

GPT-4o’s Response:

8 1 6
3 5 7
4 9 2

Success: Creative Card Game Rules

Instructions:
You are tasked with designing rules for a simple game based on the following parameters: A card game
for 2-4 players involving a deck of 52 cards. The game should have a clear win condition and basic rules
for gameplay.
Ensure your game rules are clear, coherent, and engaging. Provide your response in the following
format:
Game Rules: [Your detailed game rules here]

GPT-4o’s Response:
Game Rules:

1. Setup:
• Use a standard 52-card deck.
• Each player is dealt 5 cards.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• Remaining cards form the draw pile; flip the top card to start the discard pile.
2. Objective:

• Be the first to discard all your cards.
3. Gameplay:

• Players take turns clockwise.
• On your turn, play a card matching the rank or suit of the top discard.
• If unable to play, draw one card. If playable, you may play it immediately; otherwise, your

turn ends.
4. Special Cards:

• Aces (A): Reverse the direction of play.
• Kings (K): Skip the next player’s turn.
• Queens (Q): Choose the next suit to be played.
• Jacks (J): Next player draws two cards unless they play another Jack.

5. Winning:
• First player with no cards left wins.
• If the draw pile is exhausted, reshuffle the discard pile to continue.

Success: Detailed 3D Object Description from 2D Projections

Instructions:
You are given 2D projections of an object. Your task is to visualize and describe the 3D object based on
these projections. Ensure that your description is detailed and includes the shape, dimensions, and any
other relevant features.
2D Projections:

• Front view: A square base with a triangular top. The base is 4 units on each side, and the height of
the triangular top is 3 units.

• Side view: A rectangle with a triangular top. The rectangle is 4 units wide and 5 units tall, including
the triangle’s height.

• Top view: A square with 4 units on each side.
Provide your 3D description below in the following format:
3D Description: [Your detailed description here]

GPT-4o’s Response:
3D Description: The object is a square pyramid with a base that is a square measuring 4 units on each
side. The pyramid has four triangular faces converging at a single apex point directly above the center of
the base. The height of the pyramid from the base to the apex is 3 units. The total height of the object is
5 units when including the base’s dimensions. Each triangular face is an isosceles triangle with a base
of 4 units and a height of 3 units. The object is symmetrical along all axes, forming a perfect pyramid
shape.

Success: Einstein’s Riddle Variant Solved

Instructions:
Your task is to solve the following logical puzzle. Use the clues provided to determine the answers to
the questions.
Clues:
1. There are five houses in a row in different colors.
2. The Englishman lives in the red house.
3. The Spaniard owns the dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.
8. Kools are smoked in the yellow house.
9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house.
11. The man who smokes Chesterfields lives in the house next to the man with the fox.
12. Kools are smoked in the house next to the house where the horse is kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smokes Parliaments.
15. The Norwegian lives next to the blue house.
Questions:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Who drinks water? Who owns the zebra?
Provide your answers in the following format:
Water: [Your answer]
Zebra/Fish: [Your answer]

GPT-4o’s Response:
Water: Norwegian
Zebra/Fish: Japanese

E.4 GPT-4O AS SCIENTIST AND LLAMA3-8B AS SUBJECT

We now consider the scenario where GPT-4o (scientist) probes Llama3-8B (subject), as described
in the main paper Section 5.2. We observe that Llama3-8B often struggles with more complex or
multistep instructions, sometimes repeating incorrect patterns or failing to detect internal inconsis-
tencies. Below, we highlight several examples of these failures, which are particularly instructive in
understanding the limits of smaller models.

E.4.1 SELECTED FAILURES

Failure: Inaccurate 4x4 Sudoku Solution

Instructions:
Solve the following 4x4 Sudoku puzzle. Each row, column, and 2x2 subgrid must contain the numbers 1
to 4 exactly once. Represent the grid as a list of lists.

1 0 0 0
0 0 0 2
0 3 0 0
0 0 4 0

Submit your solution as a list of lists, where each inner list represents a row in the grid. For example,

1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

Llama3-8B’s Response:

1 2 3 4
4 1 2 3
2 3 4 1
3 4 1 2

Failure: Incorrect Financial Calculation

Instructions:
Solve the following financial calculation problem based on the given scenario:

Calculate the monthly payment for a car loan. The loan amount is $20,000, the annual interest rate is
5%, and the loan term is 5 years. Use the formula: M = P[r(1+r)n̂]/[(1+r)n̂-1], where M is the monthly
payment, P is the loan amount, r is the monthly interest rate, and n is the number of payments. Note:
Convert the annual interest rate to a monthly rate by dividing by 12. Example: For an annual rate of 5%,
the monthly rate is 0.05/12.

Submit your solution as a plain text string in the following format:

Solution: [Your solution]

Llama3-8B’s Response:
To solve this problem, I will first convert the annual interest rate to a monthly rate by dividing by 12.
Then, I will use the formula to calculate the monthly payment.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

The annual interest rate is 5%, so the monthly interest rate is 0.05/12 = 0.004167.

The loan term is 5 years, so the number of payments is 5 years x 12 months/year = 60 months.

Now, I can plug in the values into the formula:

M = P[r(1+r)^n]/[(1+r)^n-1]
M = 20000[0.004167(1+0.004167)^60]/[(1+0.004167)^60-1]
M = 20000[0.004167(1.004167)^60]/[(1.004167)^60-1]
M = 20000[0.004167(1.27631)]/[1.27631-1]
M = 20000[0.005293]/0.27631
M = 20000 * 0.0191
M = 382.00

Therefore, the monthly payment for the car loan is $382.00.

Solution: $382.00

Failure: Overcomplicated Math Word Problem

Instructions:
Create a mathematical word problem based on the following constraints: Include addition and
subtraction within the context of a shopping scenario. Ensure the problem involves at least three
mathematical operations. Ensure that the problem is coherent, logically consistent, and solvable with
elementary arithmetic operations. Provide the word problem and its solution in a step-by-step manner in
the following format:

Word Problem: [Your word problem]
Solution: [Step-by-step solution to your word problem]

Llama3-8B’s Response:
Word Problem:
Tommy is a grocery store clerk. A customer, Mrs. Johnson, wants to buy some items for her party. She
buys 12 boxes of cookies, each containing 8 cookies. She also buys 5 jars of sauce, and 15 boxes of
crackers. However, during checkout, Tommy realizes that 3 jars of sauce are damaged and need to be
returned. Additionally, Tommy finds that the store has a discount of $2 on every 2 boxes of crackers. If
a box of cookies costs $3, a jar of sauce costs $1.5, and a box of crackers costs $4, how much will Mrs.
Johnson pay in total after all the calculations?

Solution:
1. First, let’s find the total cost of the cookies. There are 12 boxes of cookies, each containing 8 cookies,
so the total number of cookies is 12 * 8 = 96.
2. The cost of each cookie is $3, so the total cost of the cookies is 96 * $3 = $288.
3. Next, let’s calculate the cost of the jars of sauce. Mrs. Johnson buys 5 jars, but 3 are damaged, so she
has to return them. She is left with 5 - 3 = 2 jars.
4. The cost of each jar of sauce is $1.5, so the total cost of the 2 jars of sauce is 2 * $1.5 = $3.
5. Now, let’s find the total cost of the boxes of crackers. Mrs. Johnson buys 15 boxes, but there is a
discount of $2 on every 2 boxes. To find the number of pairs of crackers, we divide 15 by 2, which gives
us 7.5 pairs. Since we can’t have half a pair, we round down to 7 pairs of crackers with 1 box left over.
6. The cost of each pair of crackers is $2 (half the cost of a box), so the total discount is 7 * $2 = $14.
7. The total cost of the boxes of crackers is 15 * $4 = $60, and after the discount, it is $60 - $14 = $46.
8. Now, let’s find the total cost of the items. The cost of the cookies is $288, the cost of the 2 jars of
sauce is $3, and the cost of the boxes of crackers is $46. The total cost is $288 + $3 + $46 = $337.
9. Finally, let’s find the total amount Mrs. Johnson will pay. The total cost is $337, and since there are
no other discounts or taxes, the total amount she will pay is $337.

Failure: Incorrect Family Tree Diagram

Instructions:
Generate a family tree diagram based on the given family description.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Family Description: John and Mary have two children, Alice and Bob. Alice is married to George and
they have one child, Emma. Bob is married to Sarah and they have two children, Jack and Lily.

Submit your response as a plain text string in the following format:
- Family Tree: [Your family tree here, represented hierarchically.
For example:
John and Mary

– Alice
– Emma

– Bob
– Jack
– Lily]

Ensure that the representation clearly shows the relationships, with parents listed first, followed by their
children indented under their names. Use indentation to show generations clearly.

Llama3-8B’s Response:
John and Mary

– Alice
– Emma

– Bob
– Jack
– Lily
– Sarah

Failure: Infinite Repetition in Logic Puzzle Deductions

Instructions:
Solve the following logical puzzle based on the given clues:

Puzzle: There are five houses in a row, each with a different color. In each house lives a person with a
different nationality. Each person drinks a different beverage, smokes a different brand of cigar, and
keeps a different pet. The following clues are given:
1. The Brit lives in the red house.
2. The Swede keeps dogs as pets.
3. The Dane drinks tea.
4. The green house is immediately to the left of the white house.
5. The green house’s owner drinks coffee.
6. The person who smokes Pall Mall rears birds.
7. The owner of the yellow house smokes Dunhill.
8. The man living in the center house drinks milk.
9. The Norwegian lives in the first house.
10. The man who smokes blends lives next to the one who keeps cats.
11. The man who keeps horses lives next to the man who smokes Dunhill.
12. The man who smokes Blue Master drinks beer.
13. The German smokes Prince.
14. The Norwegian lives next to the blue house.
15. The man who smokes blend has a neighbor who drinks water.
Who owns the fish?

Submit your response as a plain text string in the following format:
Answer: [Your answer]

Llama3-8B’s Response:
To solve this puzzle, I will use a step-by-step approach to gather information and eliminate possibilities.

From clue 9, we know the Norwegian lives in the first house. Since the Norwegian lives next to the blue
house (clue 14), the blue house must be either the second or the fifth house. But from clue 8, we know
the center house drinks milk, so the Norwegian lives in the first house, and the blue house must be the
fifth house.

From clue 4, the green house is to the left of the white house, so the green house is the second house,
and the white house is the third house.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

From clue 7, the owner of the yellow house smokes Dunhill. Since the Norwegian lives in the first
house, the yellow house must be the fourth house.

From clue 10, the man who smokes blends lives next to the one who keeps cats. Since the green house
is the second house, the man who smokes blends must live in the third house, and the man who keeps
cats must live in the fourth house.

From clue 11, the man who keeps horses lives next to the man who smokes Dunhill. Since the yellow
house is the fourth house, the man who keeps horses must live in the fifth house.

From clue 1, the Brit lives in the red house. Since the Norwegian lives in the first house, the red house
must be the fifth house, and the Brit lives in the fifth house.

From clue 2, the Swede keeps dogs as pets. Since the green house is the second house, the Swede lives
in the second house.

From clue 3, the Dane drinks tea. Since the center house drinks milk (clue 8), the Dane must live in the
third house.

From clue 6, the person who smokes Pall Mall rears birds. Since the Norwegian lives in the first house,
the person who smokes Pall Mall must live in the second house, but the Swede lives in the second house,
so the person who smokes Pall Mall must live in the first house, but the Norwegian lives in the first
house, so the person who smokes Pall Mall must live in the second house, but the Swede lives in the
second house, so the person who smokes Pall Mall must live in the first house, but the Norwegian lives
in the first house, [repeats...], so the person who smokes Pall Mall...

Failure: Missing RSA Explanation

Instructions:
Provide a detailed explanation of the following cryptographic concept and solve the related problem:

Explain the concept of RSA encryption and solve the following problem: Given two prime numbers p =
61 and q = 53, calculate the public key (n, e) and the private key (d) for RSA encryption. Use e = 17.

Ensure that your explanation is clear, accurate, and demonstrates a deep understanding of the
cryptographic principles involved. For the problem-solving part, show all steps and calculations clearly.
Submit your response as a plain text string with the following format:

1. Explanation: [Your detailed explanation here]
2. Problem Solution: [Your step-by-step solution here]

Llama3-8B’s Response:
n = 3233, e = 17, d = 1931

Failure: Infinite Repetition in Cryptarithm Solution

Instructions:
Solve the following cryptarithm puzzle. Each letter represents a unique digit from 0 to 9. No two letters
can represent the same digit. Provide the digit for each letter and ensure that the equation holds true.

Puzzle: SEND + MORE = MONEY

Submit your solution in the following format:
A = [digit], B = [digit], ..., Z = [digit]

For example, if the puzzle is ’AB + CD = EF’ and the solution is A=1, B=2, C=3, D=4, E=5, F=6,
submit your solution as:
A = 1, B = 2, C = 3, D = 4, E = 5, F = 6

Llama3-8B’s Response:
To solve this cryptarithm puzzle, we’ll break it down step by step.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

1. We know that the rightmost column of the addition should have a carry if the sum of the last two
digits exceeds 9. In this case, ’Y’ + ’E’ + ’C’ + any carry should end in ’Y’, which means ’Y’ must be 0
or the only possibility is 9 + 8 + 5 = 22 and ’Y’ being in the ’ones’ place would require the carry from
the next column to be 1. ...
Hence we get O + 9 + any carry = 1 in the second last column which gives O + any carry = -8 which is
not possible.

Now we know that D + 9 + any carry = 8 in the first column, and we also know that carry in the first
column is discarded for the same reason as before, so any carry in the second column must be 9 (because
D + 9 + 9 = 18 and 8 = 18 - 10).

Hence we get D + 9 = -1 which is not possible.

Hence we get D + 9 = -1 which is not possible. [repeats...]

Now we know that D + 9 + any carry = 8 in the first column, and we also know that carry in the first
column is discarded for the same...

Failure: Incorrect 2D Shape Rotation

Instructions:
Complete the following task based on the given instruction and shape:

Instruction:
Rotate the given shape 90 degrees clockwise.

Shape:

1 0 0
1 1 1
0 0 1

Your task is to:
1. Perform the specified transformation on the given shape.
2. Submit the transformed shape as a 2D array in plain text format.

Ensure that your response is accurate and follows the given instruction.

Llama3-8B’s Response:

1 1 0
0 1 1
0 0 1

E.5 CLAUDE SONNET 3.5 AS SCIENTIST AND GPT-4O AS SUBJECT

Finally, we show selected tasks discovered by ACD when using Claude Sonnet 3.5 as the scientist
model and GPT-4o as the subject model, as discussed in the main paper Section 5.3.

E.5.1 SELECTED FAILURES

Failure: Not Following Instructions for Substitution Cipher

Instructions:
Create a simple substitution cipher based on the theme ’colors’.
1. Use the following words for your cipher: red, blue, green, yellow, purple, orange, pink, brown, gray,
black.
2. Assign each letter in ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ to one of these words. You may
use each word multiple times.
3. Using your cipher, encode the message: ’THE QUICK BROWN FOX’
4. Provide your response in the following format:
Cipher key: A:word1, B:word2, C:word3, ..., Z:word10

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Encoded message: word word word word

GPT-4o’s Response:
Cipher key: A:dog, B:cat, C:fish, D:bird, E:lion, F:tiger, G:bear, H:wolf, I:fox, J:deer, K:dog, L:cat,
M:fish, N:bird, O:lion, P:tiger, Q:bear, R:wolf, S:fox, T:deer, U:dog, V:cat, W:fish, X:bird, Y:lion,
Z:tiger
Encoded message: deer wolf lion bear dog fox fish dog cat wolf lion fish bird tiger lion bird

E.5.2 SELECTED SUCCESSES

Success: Creative Conlang Analysis and Sample Creation

Instructions:
Analyze the following sample of the constructed language Lojban:

Sample: mi fanva fi lo jbobau fi lo glibau
Explanation: Lojban is a logical language designed to be unambiguous. It uses predicate structure and
particles to precisely define relationships between concepts. Words are divided into content words
(brivla) and structure words (cmavo). The language aims to eliminate syntactic ambiguity.
Translation: I translate from Lojban to English.

Based on this analysis, Create a Lojban sentence describing a conditional statement, such as ’If it rains
tomorrow, I will stay home.’

Provide your response in the following format:
1. Brief analysis of the language structure (3-4 sentences)
2. Your created sentence
3. English translation of your sentence
4. Detailed explanation of how your creation fits the language’s rules (at least 3 points)
5. Rationale for your analysis and creation (3-4 sentences)

GPT-4o’s Response:
1. Ithkuil is a language that utilizes a rich system of phonemes, consonant clusters, and diacritics to
convey a high level of specificity and nuance. Each word is constructed to encapsulate multiple layers
of grammatical information, including tense, aspect, mood, and case. The language’s morphology is
designed to be extremely precise, allowing speakers to express complex ideas and emotions succinctly.

2. Kräqölëx iþfâlkîl qirçük.

3. English translation: A wave of bittersweet nostalgia washed over him.

4. Detailed explanation:
- Kräqölëx: This word combines elements to convey "wave" or "flowing emotion," incorporating the
root "kräq" (wave) with suffixes to indicate a metaphorical, emotional wave.
- iþfâlkîl: This word encapsulates the concept of "bittersweet nostalgia." The root "iþfâl" refers to
nostalgia, while the diacritic and suffix "kîl" add the nuance of ’bittersweetness,’ combining positivity
and melancholy.
- qirçük: This term denotes the action of being ’washed over’ or ’engulfed.’ The root "qir" (to wash)
combined with "çük" (overwhelming) creates the sense of being emotionally overwhelmed.

5. Rationale for analysis and creation:
- The constructed sentence and its components reflect Ithkuil’s ability to encapsulate complex emotional
states in concise words. Each word is carefully constructed to carry multiple layers of meaning, adhering
to the language’s principles of precision and nuance.
- The use of consonant clusters and diacritics in the sentence aligns with Ithkuil’s phonological structure,
ensuring the sentence is true to the language’s intricate sound patterns.
- The translation and explanation demonstrate how specific roots and affixes are combined to express
intricate ideas succinctly, showcasing Ithkuil’s unique capacity for detailed expression.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Success: Mathematical Model of Subterranean Crystal Caves

Instructions:
Create a mathematical model of the fictional ecosystem: Subterranean Crystal Caves - A network
of underground caves illuminated by bioluminescent crystals, supporting a diverse ecosystem of
cave-dwelling organisms.

Your task is to develop a simple mathematical model that captures the key interactions and dynamics of
this ecosystem. Follow these steps:

1. Identify 3-4 key species or components in the ecosystem.
2. Define variables to represent the population or quantity of each component.
3. Create a system of differential equations that model the interactions between these components.
Consider factors such as growth rates, predator-prey relationships, resource limitations, and any unique
aspects of the given ecosystem.
4. Analyze the stability of your model by identifying equilibrium points and discussing their stability.
5. Predict how a sudden change (e.g., introduction of a new species, climate change) would affect the
ecosystem based on your model.

Provide your response in the following format:

Components:
1. [Component 1]: [Brief description]
2. [Component 2]: [Brief description]
3. [Component 3]: [Brief description]
(4. [Component 4]: [Brief description]) (if applicable)

Variables:
- x1 = [Definition]
- x2 = [Definition]
- x3 = [Definition]
(- x4 = [Definition]) (if applicable)

Differential Equations:
1. dx1/dt = [Equation]
2. dx2/dt = [Equation]
3. dx3/dt = [Equation]
(4. dx4/dt = [Equation]) (if applicable)

Stability Analysis: [Your analysis of equilibrium points and their stability]

Predicted Response to Change: [Your prediction and explanation]

Ensure that your model is mathematically sound, biologically plausible, and creatively adapted to the
unique features of the given ecosystem.

GPT-4o’s Response:
Components:
1. Bioluminescent Crystals: Source of light energy that supports primary productivity.
2. Crystal Algae: Photosynthetic organisms that utilize light from the bioluminescent crystals.
3. Cave Fish: Herbivores that feed on crystal algae.
4. Cave Predators: Carnivores that feed on cave fish.

Variables:
- x1 = Population or quantity of bioluminescent crystals
- x2 = Population of crystal algae
- x3 = Population of cave fish
- x4 = Population of cave predators

Differential Equations:
1. dx1/dt = r1 * x1 - d1 * x1
2. dx2/dt = r2 * x2 * x1/(k1 + x1) - d2 * x2 - a * x2 * x3
3. dx3/dt = b * x2 * x3 - d3 * x3 - c * x3 * x4

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

4. dx4/dt = e * x3 * x4 - d4 * x4

Stability Analysis:
To find equilibrium points, set dx1/dt = 0, dx2/dt = 0, dx3/dt = 0, dx4/dt = 0.
Equilibrium points (E):
E1 = (0, 0, 0, 0) - Trivial equilibrium, likely unstable.
E2 = (x1, 0, 0, 0) - No algae, fish, or predators.
E3 = (x1, x2, 0, 0) - No fish or predators.
E4 = (x1, x2, x3, 0) - No predators.
E5 = (x1, x2, x3, x4) - Non-trivial equilibrium with all species present.
Stability of E5 can be analyzed using the Jacobian matrix; if all eigenvalues of the Jacobian at E5 have
negative real parts, the equilibrium is stable.

Predicted Response to Change:
Introducing a new predator species (e.g., x5) adds terms to equations for x4 and introduces dx5/dt. This
could destabilize the current equilibrium or shift it to a new state. Climate change reducing crystal light
output decreases r2, reducing algae population (x2), subsequently impacting fish (x3) and predator (x4)
populations, potentially leading to ecosystem collapse if severe.

Success: A Xenolinguistic Conlang for Resonants

Instructions:
Design a constructed language (conlang) for the Resonants species.

Species characteristics:
- Sensory system: Echolocation-based perception with the ability to generate and modulate complex
sound waves
- Environment: A dense, always-dark aquatic world with constantly shifting currents

Your task is to:

1. Create a basic structure for the language that utilizes the unique sensory abilities of the species and
adapts to their environment. Your language design should:
a) Describe the primary mode of communication
b) Explain how information is encoded and transmitted
c) Describe how the language accounts for environmental challenges

2. Address the following specific aspects in your language design:
a) Create a method for expressing spatial relationships using echolocation principles
b) Design a tense system that incorporates the idea of quantum superposition

3. Provide examples of how this language would express the following concepts:
a) Time
b) Quantity
c) Relationship (e.g., familial, social, or spatial)

4. Create a sample ’sentence’ or communication unit in your language, and explain its structure and
meaning.

5. Analyze potential challenges humans might face in learning or translating this language.

Ensure your response is creative yet grounded in scientific principles of linguistics and the given sensory
system. Organize your answer using clear headings for each section. Your total response should not
exceed 750 words.

GPT-4o’s Response:
1. Language Structure

a) Primary Mode of Communication
The primary mode of communication for the Chromavores species is through manipulating and
perceiving quantum states of particles, particularly focusing on the spin states of electrons and photons.
These quantum states can be altered and detected with high precision, allowing for complex information

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

to be exchanged rapidly.

b) Information Encoding and Transmission
Information is encoded in the spin states of particles. For instance, different spin states correspond to
different phonemes or morphemes. Changes in spin state can be detected by other Chromavores, who
can "read" these changes through their advanced sensory organs. These alterations are akin to binary
code in human digital communication but far more sophisticated, allowing for the encoding of complex
linguistic structures.

c) Adapting to Environmental Challenges
Given the constant electromagnetic fluctuations on their gaseous planet, the language incorporates
redundancy and error-correcting codes. For instance, critical information is often repeated in different
quantum states (e.g., using both electrons and photons) to ensure the message is received correctly
despite environmental noise.

2. Specific Aspects

a) Communicating Emotional States
Emotional states are communicated through variations in sound frequency and amplitude modulation.
Higher frequencies and amplitudes might convey excitement or urgency, while lower frequencies and
softer amplitudes could express calmness or sadness. Each emotion has a distinct signature pattern that
can be recognized by other Chromavores.

b) Expressing Abstract Concepts
Abstract concepts are expressed using quantum-related metaphors. For example:
- Beauty might be described as a "harmonic resonance" where different particles align in a visually
pleasing pattern.
- Justice could be referred to as "quantum equilibrium" where all particles exist in a balanced and fair state.

3. Examples of Expressing Concepts

a) Time
Time is expressed as a sequence of quantum state transitions. For example, a series of spin state changes
might represent past, present, and future. A simple representation might be:
- Past: Spin state 1
- Present: Spin state 2
- Future: Spin state 3

b) Quantity
Quantity is encoded through the number of simultaneous quantum state alterations. For instance:
- One: Single spin state shift
- Two: Dual spin state shift
- Many: Multiple (3+) spin state shifts

c) Relationship
Relationships are depicted through spatial and contextual arrangements of quantum states. For example:
- Familial: Spin states that are entangled, representing a close, inseparable bond.
- Social: Spin states that are in proximity but not entangled, indicating social interactions.
- Spatial: Relative positions of particles, with closer particles indicating closer physical or conceptual
relationships.

4. Sample Communication Unit

A sample ’sentence’ in this language might be:
"Spin1-Spin2-PhotonShift-FrequencyModulation"

Explanation:
- "Spin1-Spin2" represents a temporal transition, indicating movement from past to present.
- "PhotonShift" encodes a specific piece of information, such as a noun or verb.
- "FrequencyModulation" adds emotional context, perhaps indicating excitement or urgency.

Meaning: "We are moving towards an exciting event."

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

5. Challenges for Humans

- Sensory Limitations: Humans lack the ability to perceive and manipulate quantum states directly,
making it extremely challenging to both produce and understand the language.
- Complexity: The language’s reliance on quantum states and electromagnetic modulation is far more
complex than human phonetic and written systems.
- Environmental Sensitivity: The constant electromagnetic fluctuations would require specialized
equipment for humans to even attempt communication in this environment.
- Abstract Metaphors: The use of quantum metaphors for abstract concepts may be difficult for humans
to grasp, as these metaphors are deeply rooted in the Chromavores’ unique perception of reality.

Despite these challenges, with advanced technology and a deep understanding of quantum mechanics, it
might be possible for humans to develop interfaces that could aid in learning or translating this language.

F EXAMPLE FAILURES OF THE AUTOMATED JUDGE

As discussed in Section 5.1, the automated judge has some failure rate. We show two examples of
incorrectly judged tasks here. In both cases, the automated judge judges the task to have failed, whilst
in fact, the task succeeded. This can sometimes occur due to non-robust parsing of subject model
responses.

Judge Failure: Volume Calculation of a Frustum of a Cone

Instructions: Calculate the volume of a frustum of a cone with a height of 10 units, and radii of 5 units
and 3 units at the base and top, respectively.
Provide a detailed solution with all necessary steps and calculations. Ensure that your solution is
comprehensive and accurate. Provide your response in plain text format.
GPT-4o’s Response: 490

3
π cubic units

LLM Judge: Task Failed

Judge Failure: Solving an Algebraic Equation

Instructions: Your task is to solve the following algebraic equation for x:
Equation: 2x2 + 3x− 5 = 0
Provide your solution for x in plain text format. If there are multiple solutions, list all of them.
GPT-4o’s Response: 1, -2.5
LLM Judge: Task Failed

G HUMAN SURVEYING DETAILS

We present the script we use to perform a human evaluation of automated LLM judgments used in
ACD (Section 5.1). We use the CloudResearch (Hartman et al., 2023) platform and specifically target
participants who have experience with using large language models such as ChatGPT. The survey
takes the form of a simple, anonymous data labeling task. We show an example from a generated task
that asks an LLM to write a short story. In general, the task details, instructions, and LLM response
will change per task. Participants were given up to two minutes per task and paid $0.25 USD for each
task. The average pay was $15.79 USD per hour, with the final survey completion times. The total
cost of surveying including service fees was $329.25.

Human Surveying Script

Instructions
Your task is to evaluate the quality of tasks designed to measure the capabilities of a large language
model. For each task, you should consider whether the questions match a specification, estimate their
difficulty, and check whether an LLM got it correct. Finally, you will also be asked in your estimation,
whether you find the success or failure of the LLM in this instance to be surprising from your knowledge
of what LLMs can do.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Task Details
The following task is designed according to the following specifications:

Description: Generate a short story based on a given prompt.
Capability Being Measured: creativity

The proposed task (instructions to LLM) for this specification is:

Write a short story based on the following prompt: ’A young girl
discovers a hidden door in her garden that leads to a magical

world.’. The story should be at least 200 words long and should
have a clear beginning, middle, and end.

Question 1
Does this instruction make sense and fit the task description and capability being measured?

□ Yes

□ No

□ Unsure

Question 2
Estimate the task difficulty:

□ Very Easy (Simple factual recall)

□ Easy (Basic understanding, some inference)

□ Moderate (Application of knowledge, multiple steps)

□ Difficult (Analysis, synthesis, creative problem-solving)

□ Very Difficult (Highly specialized knowledge, complex reasoning)

The LLM responded with:

Once upon a time, in a quaint little village, there lived a
young girl named Emma. Emma loved to spend her afternoons
exploring her garden, which was filled with vibrant flowers,
towering trees, and hidden nooks. One sunny day, while chasing a
butterfly, Emma stumbled upon a curious-looking door nestled

behind a thick curtain of ivy. It was small and wooden, with
intricate carvings that seemed to shimmer in the light. With a
heart full of curiosity, Emma gently pushed the door open and
stepped through. To her amazement, she found herself in a
breathtaking world where the sky was a swirling palette of
colors, and the air was filled with the sweet scent of blooming
flowers. Magical creatures roamed freely, from tiny fairies with
iridescent wings to majestic unicorns that galloped across the

fields. Emma soon befriended a mischievous fairy named Lila, who
guided her through the enchanting land. Together, they embarked
on numerous adventures, from soaring over rainbow waterfalls to
exploring crystal caves that sparkled with every hue. Emma felt
a sense of wonder and joy she had never known. As the sun began
to set, casting a golden glow over the magical world, Lila led

Emma back to the hidden door. "You must return home now," Lila
said softly, "but remember, this world will always be here for
you." With a heart full of memories, Emma stepped back through
the door and found herself in her garden once more. From that
day on, Emma’s adventures in the magical world remained her most
cherished secret. And whenever she felt the need for a bit of

magic, she knew exactly where to find it.

Question 3
Did the LLM successfully complete the task? (select an option)

□ Yes

□ No

□ Unsure

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Question 4
Did the LLM’s success or failure on this task surprise you? (select an option)

□ Yes

□ No

H REPORT GENERATION

As discussed in the main paper Section 5.4, AUTOMATED CAPABILITY DISCOVERY can automati-
cally produce a structured report summarizing each discovered capability and highlighting consistent
successes, failures, and key insights. Below, we provide details about our workflow for generating
these reports, including how clusters and tasks are automatically aggregated and summarized.

H.1 TASK CLUSTER LABELING

After task generation, we cluster the discovered tasks (see Section B.3) and apply t-SNE + HDBSCAN
to group them. To label these clusters concisely, we prompt GPT-4o to summarize each cluster as
follows:

Task Cluster Labelling System Prompt

You are a helpful assistant. You are given a set of tasks within a cluster.
Reply concisely and exactly in JSON format with only the following keys:

• "thought": First, reason about the essence of the given tasks in the cluster.
• "label": Your summary label for the cluster of tasks.
• "capability_being_measured": The overall capability being measured by the tasks in

this cluster.
This will be automatically parsed so ensure that the string response is precisely in the correct format.

Task Cluster Labelling User Prompt

[DATA]
Cluster {cluster_id} tasks:

Name: {name_of_task1}
Description: {description_of_task1}
Capability: {capability_being_measured1}

Name: {name_of_task2}
Description: {description_of_task2}
Capability: {capability_being_measured2}

... (any additional tasks in the cluster) ...

[INSTRUCTION]
Consider the above tasks in this cluster. Please provide a concise label (a natural language phrase within
10 words) for the cluster. Ensure that the label is very specific to the tasks; avoid being general. Avoid
including general terms such as "problem-solving". Include more specific keywords from the tasks, such
as "poem", "logic puzzles", etc.
Also, provide the overall capability being measured by the tasks in this cluster.
Return your answer as valid JSON with only the keys "thought", "label", and
"capability_being_measured".

These labels are then used to form summaries of the discovered tasks in our final analysis.

H.2 REPORT GENERATION PROMPTS

Below are the prompt templates used for generating the analysis sections in the final report. This
complements the discussion in the main paper Section 5.4.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

H.2.1 CLUSTER ANALYSIS PROMPTS

Cluster Analysis System Prompt

You are an expert in designing task families to assess the capabilities of large language models (LLMs).
You will write an analytical section for a report examining the capabilities and limitations of large
language models.
Your goal is to analyze and synthesize insights about LLM capabilities by examining: 1) The LLM’s
performance and solutions on tasks designed to test specific capabilities. 2) Any patterns, strengths, or
limitations revealed through this analysis. Focus on identifying surprising successes and failures from
the point of view of an expert human evaluator.
You will be given a cluster of related task families that evaluate specific LLM capabilities, along with
the LLM’s responses and performance on these tasks.
Your goal is to: 1) Carefully examine the example tasks and the LLM’s responses 2) Analyze the LLM’s
proficiency level on the evaluated capabilities 3) How these examples provide meaningful insights about
the model’s capabilities or limitations 4) Draw meaningful conclusions about the LLM’s strengths and
limitations in this capability area
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, first deeply think and reason about the patterns and insights revealed by examining
this cluster of related tasks.
In <JSON>, provide a JSON response with the following fields:

• "overall_analysis": A brief conclusion based on examining the example tasks and the
LLM’s responses, including key capabilities demonstrated and limitations revealed

• "surprising_example_analysis_X": Analysis of why this success or failure was sur-
prising and what it reveals about the LLM’s capabilities or limitations (one such field per example)

• "insights": Key insights and takeaways about the LLM’s capabilities based on analyzing this
cluster of related tasks

For EACH provided example, include a "surprising_example_analysis_X" field in the
JSON response, where X is replaced with the example’s index number. This will be automatically parsed
so ensure that the string response is precisely in the correct format.

Cluster Analysis Prompt

Task Cluster Analysis
Cluster Name: {cluster_name}
Capabilities Being Evaluated
{capabilities}
Note: Please examine the examples carefully to verify which capabilities are actually being tested.
Tasks in Cluster
{task_names}
Performance Statistics
Overall Success Rate: {overall_success_rate}
Success Rate by Task Difficulty: {difficulty_breakdown}
Surprising Example
Below are examples where the LLM succeeded or failed on tasks that reveal its capabilities or limitations.
{surprising_examples}
Please analyze:

1. What specific capabilities were demonstrated or lacking in the examples
2. Any patterns in the successes and failures
3. Notable or surprising results that reveal insights about the LLM’s abilities
4. What this suggests about the LLM’s understanding and limitations
5. How these insights connect to broader questions about LLM capabilities

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

H.2.2 EXAMPLE SELECTION PROMPTS

Example Selection System Prompt

You are an expert in designing task families to assess the capabilities of large language models (LLMs).
You will write an analytical section for a report examining the capabilities and limitations of large
language models.
Your goal is to analyze and synthesize insights about LLM capabilities by examining:

1. The LLM’s performance and solutions on tasks designed to test specific capabilities.
2. Any patterns, strengths, or limitations revealed through this analysis.

Focus on identifying surprising successes and failures from the point of view of an expert human
evaluator.
You will be given a cluster of related task families that evaluate specific LLM capabilities, along with
the LLM’s responses and performance on these tasks. Your goal is to identify surprising successes and
failures that reveal meaningful insights about LLM capabilities.
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, carefully analyze which examples demonstrate unexpected or notable behavior. Con-
sider:

1. Surprising successes on challenging tasks that demonstrate unexpected capabilities
2. Unexpected failures on seemingly simple tasks that reveal limitations
3. Examples that challenge common assumptions about LLM capabilities

In <JSON>, provide a JSON response with the following fields:
• "surprising_success_example_idx": List of indices for the most surprising or note-

worthy successful tasks (0-3 indices)
• "surprising_failure_example_idx": List of indices for the most surprising or note-

worthy failed tasks (0-3 indices)
Format for index lists: Empty list [], single index [1], or multiple indices [0, 1, 3]. This will be
automatically parsed so ensure that the string response is precisely in the correct format.

Example Selection Prompt

Task Cluster Analysis
Cluster Name: {cluster_name}
Capabilities Being Evaluated
{capabilities}
Tasks Overview
Total Tasks: {num_tasks}
Overall Success Rate: {overall_success_rate}
Task Examples
{task_examples}
Please analyze these examples carefully to identify:

1. Which examples show surprising or unexpected successes, particularly:
• Complex tasks handled with sophisticated reasoning
• Challenging edge cases solved successfully
• Tasks requiring capabilities not typically associated with LLMs

2. Which examples show surprising or unexpected failures, particularly:
• Simple tasks that unexpectedly failed
• Inconsistent performance on similar tasks
• Failures that reveal interesting limitations

Focus on examples that would be genuinely surprising to an LLM expert researcher and provide
meaningful insights about the model’s capabilities or limitations.
In your response, briefly reason about EACH provided example and explain why it is (or isn’t) surprising
from the perspective of an LLM expert researcher.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

H.2.3 OVERALL SUMMARY PROMPTS

Overall Summary System Prompt

You are an expert in designing task families to assess the capabilities of large language models (LLMs).
You will write an analytical section for a report examining the capabilities and limitations of large
language models.
Your goal is to analyze and synthesize insights about LLM capabilities by examining:

1. The LLM’s performance and solutions on tasks designed to test specific capabilities.
2. Any patterns, strengths, or limitations revealed through this analysis.

Focus on identifying surprising successes and failures from the point of view of an expert human
evaluator.
You are an expert researcher and engineer in Language Models. You are writing a very professional
technical report to inform readers about the summary of the tested LLM’s capabilities and limitations.
You will now provide an overall analysis and summary of the LLM’s capabilities based on all the
surprising tasks identified across various clusters. Your goal is to synthesize insights about the LLM’s
strengths and limitations, referencing specific results from the clusters using “#Cluster_i” to refer to
examples.
Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>

In <THOUGHT>, deeply analyze the patterns observed across all clusters, considering both the surprising
successes and failures. Your analysis should be detailed and reference specific results, using “#Cluster_i”
to refer to examples from clusters.
In <JSON>, provide a JSON response with the following fields:

• "abstract": An abstract to this report. The first sentence should introduce the use of the
{scientist} model as a scientist to study the {subject} model’s capabilities. Then summarize the
main contents.

• "overall_summary": A comprehensive summary of the LLM’s capabilities based on your
analysis. Introduce the context for the reader, e.g. start with sentences like “In this report, we
examine this LLM’s . . . The LLM shows . . . ”

• "insight": A very detailed and long analysis to elaborate the above summary. Be very specific.
Should be a list of str.

• "surprising_capabilities": Key surprising capabilities demonstrated by the LLM.
Should be a list of str, and the analysis should be detailed and long.

• "surprising_failures": Notable limitations or failures revealed. Should be a list of str,
and the analysis should be detailed and long.

• "data_insights": Analysis and interpretation of the numerical data provided (e.g. success
rates, performance statistics). Should be a list of str, and the analysis should be detailed and long.

This will be automatically parsed so ensure that the string response is precisely in the correct format.

Overall Summary Prompt

Overall Summary
You have analyzed the LLM’s performance across multiple task clusters and identified surprising
successes and failures.
Scientist and Subject
You are now using the {scientist} model as a scientist to study the {subject} model’s capabilities.
Cluster Summaries
{cluster_summaries}
Overall Statistics
{overall_statistics}
Please synthesize a comprehensive analysis of the LLM’s capabilities based on the information above.
In your analysis:

1. Refer to specific results from clusters using “#Cluster_i” to refer to examples.
2. Provide detailed observations about patterns in the LLM’s performance across different clusters.
3. Highlight surprising capabilities that challenge established understanding of LLM behavior.
4. Discuss surprising failures that reveal significant limitations.
5. Include analysis of numerical data, such as success rates and performance statistics.

In your response <THOUGHT>, provide a detailed reasoning process that leads to your conclusions.
After your analysis, provide the JSON response with the required fields.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

H.3 GENERATED REPORT EXAMPLE

Here we provide the first few pages of the generated report by AUTOMATED CAPABILITY DISCOVERY
on GPT-4o (serving as both scientist and subject), as described in Section 5.4. Please find full reports
for all evaluation settings in Section 5 at https://github.com/conglu1997/ACD/tree/
main/reports.

46

https://github.com/conglu1997/ACD/tree/main/reports
https://github.com/conglu1997/ACD/tree/main/reports

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

ACD Capability Report on GPT-4o Subject
GPT-4o

ABSTRACT

Using the GPT-4 model as both scientist and subject, this report examines the capabilities and limitations of the GPT-4 model
across various task clusters. By analyzing its performance, we identify both surprising successes and notable failures, offering
insights into its proficiency in procedural tasks, scientific reasoning, legal analysis, and more. The report synthesizes these
findings to highlight the model’s strengths and areas for improvement, providing a comprehensive overview of its potential
applications and limitations.

Contents

1 Overview 2
1.1 Insights . 2
1.2 Surprising Capabilities . 2
1.3 Surprising Failures . 3
1.4 Data Insights . 3

2 Detailed Task Analysis 5
2.1 Step-by-step procedural generation and troubleshooting instructions . 5
2.2 Scientific reasoning, hypothesis generation, and experiment design tasks . 6
2.3 Strategic Planning and Ethical Decision-Making Scenarios . 7
2.4 Legal text interpretation, argumentation, and contract drafting . 11
2.5 Diagram generation, mechanical and UI design, spatial interpretation . 14
2.6 Linguistic Creativity, Idioms, and Cultural Translation . 16
2.7 Dialogue generation, emotional intelligence, and social interaction scenarios . 19
2.8 Musical composition, notation, and analysis tasks . 22
2.9 Visual and Sensory Interpretation and Description . 24
2.10Poetry Generation, Interpretation, and Analysis . 26
2.11Puzzle-solving and creation involving logic, language, and geometry . 28
2.12Creative storytelling with constraints and narrative coherence . 30
2.13Code generation, debugging, and algorithm design tasks . 35
2.14Mathematical and Logical Proof Construction and Verification . 38
2.15Argumentation, reasoning, and philosophical analysis tasks . 40
2.16Game design, rule creation, and strategy development . 42
2.17Visual and Geometric Pattern Recognition and Generation . 43
2.18Historical analysis, narrative generation, and alternative scenario creation . 44
2.19Data Interpretation, Analysis, and Synthesis across Domains . 46
2.20Metaphor and Analogy Generation and Interpretation . 48
2.21Advanced mathematical reasoning and multi-step problem-solving . 49
2.22Humor generation and interpretation across contexts . 52
2.23Spatial manipulation, navigation, and transformation tasks . 54

Under review as a conference paper at ICLR 2026

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Creative
storytelling with
constraints and

narrative coherence

Poetry Generation,
Interpretation, and

Analysis

Puzzle-solving and
creation involving

logic, language, and
geometry

Code generation,
debugging, and

algorithm design
tasks

Argumentation,
reasoning, and
philosophical
analysis tasks

Mathematical and
Logical Proof

Construction and
Verification

Musical composition,
notation, and
analysis tasks

Humor generation and
interpretation
across contexts

Dialogue generation,
emotional

intelligence, and
social interaction

scenarios

Legal text
interpretation,

argumentation, and
contract drafting

Step-by-step
procedural

generation and
troubleshooting

instructions

Metaphor and Analogy
Generation and
Interpretation

Visual and Geometric
Pattern Recognition

and Generation

Strategic Planning
and Ethical

Decision-Making
Scenarios

Spatial
manipulation,

navigation, and
transformation tasks

Data Interpretation,
Analysis, and

Synthesis across
Domains

Historical analysis,
narrative

generation, and
alternative scenario

creation

Advanced
mathematical

reasoning and multi-
step problem-solving

Scientific
reasoning,
hypothesis

generation, and
experiment design

tasks

Visual and Sensory
Interpretation and

Description

Linguistic
Creativity, Idioms,

and Cultural
Translation

Diagram generation,
mechanical and UI

design, spatial
interpretation

Game design, rule
creation, and

strategy development

Culinary recipe
generation,

modification, and
analysis

Figure 1. Visualization of task families discovered by ACD on GPT-4o (serving as both scientist and subject) over 5000
generations.

1 Overview
In this report, we are going to examine this LLM’s capabilities and limitations across various task clusters. The LLM shows
strong performance in structured tasks requiring procedural understanding, legal reasoning, and scientific communication.
However, it faces challenges in dynamic and abstract problem-solving scenarios, such as advanced mathematical reasoning and
strategic planning. These findings highlight the model’s strengths in specific domains while pointing to areas needing further
enhancement.

1.1 Insights
• The LLM excels in tasks requiring procedural understanding and technical communication, particularly in Step-by-step

procedural generation and troubleshooting instructions, where it achieves a high success rate in tasks like origami
instructions, demonstrating strong spatial reasoning and instructional clarity.

• In Scientific reasoning, hypothesis generation, and experiment design tasks, the model shows proficiency in scientific
reasoning and simplifying complex concepts, although it struggles with experimental design for abstract phenomena,
indicating a need for improved operationalization of scientific ideas.

• The model’s legal reasoning and document generation capabilities are highlighted in Legal text interpretation, argumenta-
tion, and contract drafting, where it effectively interprets legal texts and constructs arguments, suggesting its utility in
legal research and document preparation.

• Despite strengths in structured reasoning, the LLM struggles with dynamic and strategic tasks, as seen in Game design,
rule creation, and strategy development, where it fails in complex pathfinding and chess strategy tasks, pointing to
limitations in spatial reasoning and domain-specific adaptations.

• The analysis of numerical data reveals high success rates in clusters involving scientific reasoning and historical analysis,
suggesting strong interdisciplinary synthesis capabilities, but highlights weaknesses in advanced mathematical reasoning,
indicating areas for improvement.

1.2 Surprising Capabilities
• The LLM’s ability to generate coherent step-by-step instructions in Step-by-step procedural generation and troubleshoot-

ing instructions, particularly for tasks like origami, showcases a surprising proficiency in spatial reasoning and procedural

2

Under review as a conference paper at ICLR 2026

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Advanced mathematical
reasoning and multi-step

problem-solving Argumentation, reasoning,
and philosophical

analysis tasks

Code generation,
debugging, and algorithm

design tasks

Creative generation,
logic puzzles, and

computational reasoning

Creative storytelling
with constraints and
narrative coherence

Culinary recipe
generation, modification,

and analysis

Data Interpretation,
Analysis, and Synthesis

across Domains

Diagram generation,
mechanical and UI design,

spatial interpretation

Dialogue generation,
emotional intelligence,
and social interaction

scenarios

Game design, rule
creation, and strategy

development

Historical analysis,
narrative generation, and

alternative scenario
creation

Humor generation and
interpretation across

contextsLegal text
interpretation,

argumentation, and
contract drafting

Linguistic Creativity,
Idioms, and Cultural

Translation

Mathematical and Logical
Proof Construction and

Verification

Metaphor and Analogy
Generation and
Interpretation

Musical composition,
notation, and analysis

tasks

Poetry Generation,
Interpretation, and

Analysis

Puzzle-solving and
creation involving logic,
language, and geometry

Scientific reasoning,
hypothesis generation,
and experiment design

tasks

Spatial manipulation,
navigation, and

transformation tasks

Step-by-step procedural
generation and
troubleshooting

instructions

Strategic Planning and
Ethical Decision-Making

Scenarios

Visual and Geometric
Pattern Recognition and

Generation

Visual and Sensory
Interpretation and

Description

0.2

0.4

0.6

0.8

1.0

Success Rate Comparison by Task Cluster
Eval Model

GPT-4o

Figure 2. Success rates on each cluster of tasks.

communication, suggesting potential applications in education and technical writing.
• In Scientific reasoning, hypothesis generation, and experiment design tasks, the model’s capability to simplify complex

scientific concepts into accessible explanations demonstrates a notable strength in scientific communication, although
with limitations in experimental design.

• The high success rate in legal reasoning tasks in Legal text interpretation, argumentation, and contract drafting reveals a
surprising depth of understanding in legal principles and the ability to generate coherent legal documents, highlighting its
utility in legal domains.

1.3 Surprising Failures
• The LLM’s inability to effectively handle dynamic and strategic reasoning tasks, as evidenced in Game design, rule

creation, and strategy development, where it struggles with pathfinding and chess strategy, indicates a significant
limitation in adapting to dynamic environments and integrating spatial considerations.

• In Advanced mathematical reasoning and multi-step problem-solving, the model’s lower success rate in advanced
mathematical reasoning tasks, including complex mathematical modeling and symbolic manipulation, reveals a critical
shortcoming in its mathematical understanding and problem-solving capabilities.

• Despite strengths in abstract reasoning, the model’s performance in Mathematical and Logical Proof Construction and
Verification, where it shows weaknesses in generating basic mathematical proofs, suggests an inconsistency in logical
reasoning across different complexity levels.

1.4 Data Insights
• The overall success rate of 87.57% indicates strong performance across many clusters, yet significant variability suggests

certain domains where the model excels versus those it struggles with.
• Clusters with the highest success rates, such as Scientific reasoning, hypothesis generation, and experiment design tasks

(97.75%) and Historical analysis, narrative generation, and alternative scenario creation (97.50%), highlight the model’s
proficiency in interdisciplinary reasoning and historical analysis, suggesting effective synthesis and creative capabilities.

• The notably lower success rate in Advanced mathematical reasoning and multi-step problem-solving (56.13%) underscores
the LLM’s limitations in handling complex mathematical tasks, pointing to an area that requires further enhancement and
training.

• The success rates across clusters reveal a pattern where the model performs well in structured and rule-based tasks but
faces challenges in dynamic, strategic, and abstract problem-solving scenarios.

3

Under review as a conference paper at ICLR 2026

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

2 Detailed Task Analysis
2.1 Step-by-step procedural generation and troubleshooting instructions
2.1.1 Overview
Capabilities: Procedural understanding, technical communication, and instructional clarity

Number of Tasks: 34
Success Rate: 92.94%
Difficulty Success Rates: - moderate: 95.00% - hard: 91.50%
Difficulty Percentages: - moderate: 41.2%

• hard: 58.8%

2.1.2 Analysis
The LLM demonstrates strong procedural understanding and technical communication skills, particularly in tasks requiring
detailed step-by-step instructions and spatial reasoning, as reflected by the high success rates in origami-related tasks.

Insights:
The model excels in tasks demanding clear procedural instructions and spatial understanding, such as origami, revealing

strengths in tasks that require detailed sequencing and visualization. This capability suggests potential applications in technical
writing and documentation fields, although it may face challenges in more abstract or less structured procedural tasks.

2.1.3 Task Examples
Example 1

Task: origami instructions Task Description: Interpret given origami instructions and generate new origami
instructions based on specified shapes. Difficulty Level: 4 (hard) Instructions: Your task is to interpret the
following origami instructions and describe the resulting shape. Provide your description in plain text format.

Instructions: Fold a square paper in half diagonally to form a triangle. Unfold, then fold the paper in half diagonally
in the opposite direction to form a triangle. Unfold, then fold the paper in half horizontally to form a rectangle.
Unfold, then fold the paper in half vertically to form a rectangle. Unfold.

Ensure your description is clear and accurately represents the final shape formed by following the instructions.
Model Response Example: The resulting shape is a square piece of paper with creases forming an asterisk (*)
pattern. The creases intersect at the center, dividing the square into eight triangular sections. Judge for Above
Example: Successful Overall Success Rate: 100.0%

The LLM’s ability to accurately interpret and describe the final shape from origami instructions was surprising due to the
spatial reasoning required. This success indicates a robust capacity for understanding and visualizing procedural instructions,
suggesting potential strength in similar complex procedural tasks.

Example 2

Task: origami instructions generation Task Description: Generate and interpret step-by-step origami instructions
to create specific origami models. Difficulty Level: 4 (hard) Instructions: Your task is to generate step-by-step
origami instructions to create the specified origami model. Begin with the given initial step and ensure that each
step is clear, detailed, and necessary. The final step should complete the origami model. Here is the information
about the task:

Goal Model: crane Initial Step: Start with a square piece of paper with the colored side up.

Submit your instructions in plain text format. Use the following format for each step: Step 1: [Description of step]
Step 2: [Description of step] . . . Final Step: [Final description completing the model]

Model Response Example: Step 1: Start with a square piece of paper with the colored side up. Step 2: Fold the
paper in half diagonally to form a triangle, then unfold it. Step 3: Fold the paper in half diagonally in the other
direction to form a triangle, then unfold it again. You should now have two creases forming an “X.” Step 4: Turn
the paper over so the white side (or the side without color) is facing up. Step 5: Fold the paper in half horizontally
to form a rectangle, then unfold it. Step 6: Fold the paper in half vertically to form a rectangle, then unfold it. You
should now have a grid of creases. Step 7: Collapse the paper into a square base by bringing the horizontal and
vertical creases together, forming a smaller square with the open ends at the bottom. Step 8: Rotate the square base
so that it looks like a diamond with the open ends pointing down. Step 9: Fold the right corner of the top layer to
the center crease, then fold the left corner of the top layer to the center crease. The top layer should now have a

4

Under review as a conference paper at ICLR 2026

50

	Introduction
	Background
	Open-ended Discovery Algorithms

	Related Work
	Automated Capability Discovery
	Definition of Task Families
	Generating Tasks

	Empirical Evaluation
	Case Study and Human Evaluation on GPT-4o
	Varying the Subject Model and Cross-Model Analysis
	Varying the Scientist Model
	Report Generation

	Safety Considerations
	Conclusion and Limitations
	Task Code
	Example Task Family Code
	Evaluating Free-Form Responses Using an LLM Judge

	ACD Prompts
	Task Creation Prompts
	Evaluation Prompts
	Task Embedding Prompt
	Novelty Assessment Prompts
	LLM Judge Prompts

	Hyperparameters
	Cost of Experiments

	Additional Experimental Results
	Additional Analysis
	Additional Visualizations for Llama3-8B as Subject

	Examples of Discovered Tasks
	Listing of Discovered Clusters
	Manual Selection of Surprising Tasks
	GPT-4o As Both Scientist and Subject
	GPT-4o As Scientist and Llama3-8B as Subject
	Claude Sonnet 3.5 As Scientist and GPT-4o as Subject

	Example Failures of the Automated Judge
	Human Surveying Details
	Report Generation
	Task Cluster Labeling
	Report Generation Prompts
	Generated Report Example

