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Abstract
Large Language Models (LLMs) have gained sig-
nificant popularity due to their remarkable ca-
pabilities in text understanding and generation.
However, despite their widespread deployment
in inference services such as ChatGPT, concerns
about the potential leakage of sensitive user data
have arisen. Existing solutions primarily rely on
privacy-enhancing technologies to mitigate such
risks, facing the trade-off among efficiency, pri-
vacy, and utility. To narrow this gap, we pro-
pose Cape, a context-aware prompt perturbation
mechanism based on differential privacy, to en-
able efficient inference with an improved privacy-
utility trade-off. Concretely, we introduce a hy-
brid utility function that better captures the to-
ken similarity. Additionally, we propose a buck-
etized sampling mechanism to handle large sam-
pling space, which might lead to long-tail phe-
nomenons. Extensive experiments across multiple
datasets, along with ablation studies, demonstrate
that Cape achieves a better privacy-utility trade-
off compared to prior state-of-the-art works.

1. Introduction
Recent advancements in large language models (Vaswani
et al., 2017) have revolutionized fields such as natural lan-
guage processing (Devlin et al., 2019; Radford et al., 2019),
driving their widespread adoption in machine learning (ML)
inference services. However, despite their growing popular-
ity, data privacy remains a critical concern. In ML services
like ChatGPT (Brown et al., 2020), the server provides
an API that processes client queries and returns generated
responses. This paradigm (Figure 1) requires clients to
transmit their queries—commonly referred to as prompts in
the context of language models—to the server in plaintext,

1TikTok. Correspondence to: Haoqi Wu
<haoqi.1997@tiktok.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

posing significant risks to user privacy, as the prompts can
contain sensitive user information or confidential business
guidelines (Yu et al., 2024). For example, a user might
request ChatGPT to summarize or analyze a confidential
business report (Forbes, 2023), potentially resulting in se-
vere privacy breaches. This issue is further exacerbated by
the growing stringency of modern data privacy regulations.
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Figure 1: Illustration of existing LLM inference services.

Existing solutions (Ma et al., 2023; Dong et al., 2023;
Wu et al., 2024; Hou et al., 2023; Li et al., 2024) utilize
cryptographic techniques like secure multi-party compu-
tation (MPC) (Yao, 1986) and homomorphic encryption
(HE) (Gentry, 2009) to offer provable security. However,
the huge computation and communication overhead hinders
their application in real world scenarios 1. Another line of
works utilize the client-server hybrid execution paradigm,
where client performs some lightweight computations and
sends shallow layer embeddings to the server. However,
prior work (Song & Raghunathan, 2020) has shown that
such information can be leveraged to reconstruct the origi-
nal text effectively. Subsequent works (Zhou et al., 2023; Du
et al., 2023) bridge this gap by adding noise to intermediate
embeddings to break the linkage between the noisy embed-
dings and original tokens. However, a major limitation is
their reliance on a white-box inference setup, requiring shal-
low layers to be deployed on the client side, which demands
extensive model modifications, making it seldom practical.

A promising approach is to utilize differential privacy
(DP) (Dwork, 2006), widely adopted as the de facto stan-
dard for protecting user privacy, to verbatim perturb tokens
in the prompts. It is highly efficient and requires no mod-
ifications to the back-end model. SANTEXT (Yue et al.,
2021) and CUSTEXT (Chen et al., 2022) focus on text clas-
sification tasks. InferDPT (Tong et al., 2023) takes the first

1Take the SOTA 3-party computing work Ditto (Wu et al., 2024)
as an example, the average runtime for generating one token with
a sequence length of 128 on Bert-base model requires about 30s.
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step towards the open-ended text generation tasks that man-
ages to extract more accurate generation from the perturbed
response from the server with the aid of a local LLM. To
enhance utility, these works replace the original token with
a random token from ‘truncated’ adjacency lists, to reduce
the large sampling space in NLP (e.g., BERT models have a
vocabulary of size 30,522). However, this practice achieves
higher utility at the sacrifice of privacy, making it vulnerable
to k-nearest neighbor attacks (Song & Raghunathan, 2020).
Besides, these works typically measure semantic similar-
ity via token-level embedding distances. Such approach
overlooks contextual information, often leading to reduced
contextual semantic coherence.

A Motivating Example: As shown in Figure 2, ‘enjoyable’
and ‘unenjoyable’ appear close in embedding space despite
conveying opposite meanings. Incorporating contextual
information as a constraint can mitigate such ambiguities.

This film is enjoyable, leaving a lasting impression.

Embedding

enjoyable

Logits

enjoyable

enjoyable

memorable

pleasant
unenjoyable

This film is pleasant, leaving a lasting impression.

Perturbation

enjoyable

impressive

pleasant
delightful

Figure 2: Intuition: Drawback of embedding distance alone.

Therefore, Can we perform efficient, context-aware prompt
perturbation with better privacy-utility trade-off?

As an answer to the above question, we develop Cape, a
context-aware and bucketized DP mechanism tailored to
enhance semantic similarity measurement and optimize the
sampling process in large sampling spaces for NLP tasks.

• Context-Aware Prompt Perturbation. We introduce
a hybrid utility function that integrates both contextual
information and token embedding distance (e.g., Eu-
clidean distance) that achieves improved utility. Such
utility function is essential to the subsequent DP-based
perturbation (formulated as private selection prob-
lems), to ensure rigorous privacy guarantees.

• Bucketized Sampling Mechanism. We propose a cus-
tomized exponential mechanism to tackle the challenge
of large sampling spaces in NLP domain. Specifically,
we utilize equal-width bucketing to restrict the sam-
pling probability of low-utility items, achieving an
improved privacy-utility trade-off.

• Empirical Evaluations. We conduct extensive exper-
iments on both text classification and text generation
tasks across three datasets. The experiments confirm

that Cape achieves a better privacy-utility trade-off
and provides stronger defense against existing privacy
attacks. Additionally, ablation studies on the hyper-
parameters in utility function and bucketized sampling
further validate their effectiveness in our approach.

2. Related Work
Existing works typically employ privacy enhancing tech-
nologies to enable private inference, where exist a trade-off
among efficiency, utility, and privacy. Cryptographic-based
solutions provide provable security and nearly lossless in-
ference yet at the sacrifice of efficiency. The state-of-the-art
works Ditto (Wu et al., 2024) and CipherGPT (Hou et al.,
2023) offers comparable accuracy to plaintext computation.
However, they require at least 30s to infer a token on Bert-
base model, which is not ready for practical scenarios.

Table 1: Comparison of different methods. ✓ indicates the
framework supports a feature, , and refer to high-,
medium- and low-performance, respectively.

Method Black-box Inference Privacy Efficiency Utility

CipherGPT (Hou et al., 2023) ✓ ✓
Ditto (Wu et al., 2024) ✓ ✓

TextObfuscator (Zhou et al., 2023) ✗ ✓
DP-Forward (Du et al., 2023) ✗ ✓

SANTEXT (Yue et al., 2021) ✓ ✗
CUSTEXT (Chen et al., 2022) ✓ ✗
InferDPT (Tong et al., 2023) ✓ ✓

Cape ✓ ✓

For DP-based solutions, although they yield better efficiency
but faces the trade-off between privacy and utility. Some
works add DP noise based on token embedding distance over
the discrete vocabulary set. SANTEXT (Yue et al., 2021) uti-
lizes metric-LDP (Alvim et al., 2018) and provides privacy
protection over the entire vocabulary. Subsequently, CUS-
TEXT (Chen et al., 2022) and InferDPT (Tong et al., 2023)
prunes the sampling space to a ‘truncated’ adjacency list
(either static or dynamic), to achieve better utility at the sac-
rifice of privacy. Furthermore, SANTEXT and CUSTEXT
mainly focus on training data privacy and text classification
tasks. Our work introduces a context-aware utility function
and optimized sampling mechanism tailored for large sam-
pling space that strikes better trade-off. Other works like
TextObfuscator (Zhou et al., 2023) and DP-Forward (Du
et al., 2023) adopt a client-server hybrid paradigm to offload
some part of the model to the client. Consequently, they
can add noise to the continuous intermediate embeddings,
which shall incur smaller errors compared to sampling over
a discrete domain. However, they require white-box access
to the model and fine-tuning to align the embedding space,
which could be hard to put into practice. In comparison,
our work can be applied to black-box scenario, requiring
minimal modifications to existing paradigm. Recently, there
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are also some works that offer less privacy protection but po-
tentially better utility for minimizing disclosure risks (Dou
et al., 2024; Staab et al., 2024). These works use LLMs to
detect and anonymize sensitive attributes in an innovative
way, which we perceive as complementary to our approach
for improving utility.

3. Preliminaries
3.1. Transformer-based Inference

Transformer models generally consist of three parts: 1) the
Embedding module that maps discrete tokens to continu-
ous word embeddings; 2) a stack of Transformer Block; 3)
the last Head module that maps the hidden embeddings to
task-specific logit. The logits yt =M(xt|Ctx) are used to
deduce the sampling probabilities for next token xt, where
Ctx denotes the preceding text (and following text).

3.2. Differential Privacy

Differential privacy (DP) defines the worst-case privacy
guarantee. The maximum output probability difference
between any two neighbor inputs is bounded by eϵ, where
ϵ denotes the privacy budget. In this paper, we focus on
local DP (Kasiviswanathan et al., 2008), which operates
on individual data points x and allows clients to locally
perturb their data before sending it to the server using the DP
mechanismR. Therefore, an adversary cannot effectively
infer the original input x based on the outputs.

Definition 3.1 (ϵ-Local Differential Privacy (Ka-
siviswanathan et al., 2008)). Given a privacy budget
ϵ > 0, a randomized algorithm R : X → Y satisfies
ϵ-LDP if, for each possible output y ∈ Y , and all adjacent
x1, x2 ∈ X , the following holds:

P[R(x1) = y]

P[R(x2) = y]
≤ eϵ (1)

In the NLP domain, we tokenize the prompt into tokens,
and the sampling spaces X and Y are defined as the token
vocabulary V . Conceptually, under ϵ-LDP, any adjacent
tokens x1 and x2 can be randomized to the same output
token y with indistinguishable probability.

3.3. Private Selection

The task of private selection is to design a randomized algo-
rithmR that returns some yi that approximately maximizes
the utility u(x, yi) while satisfying differential privacy.

Definition 3.2 (ϵ-Exponential Mechanism (EM) (McSherry
& Talwar, 2007)). Given a privacy budget ϵ > 0, a ran-
domized Exponential mechanismREM : X → Y satisfies
ϵ-LDP if, for each possible output yi ∈ Y , and input x ∈ X :

P[yi|x] ∝
ϵ

2△
· u(x, yi) (2)

where u(x, yi) denotes the utility function that measures the
utility score for selecting yi, and△ denotes the sensitivity,
which is computed as△u = max

x,x′,y
|u(x, y)− u(x′, y)|.

3.4. Threat Model

In our scenario, the client C sends the prompt x to cloud
server S and receives generation results in return: r ←
M(x). Here, x = {t1, t2, ..., tn}, where ti ∈ V denotes
the tokens in the vocabulary. The prompt x may contain
sensitive tokens such as emails and genders, and directly
uploading such information to S compromises the privacy
of clients. Table 2 lists the main used notations in this work.

Table 2: Notations used in this paper.
Symbol Description

S the server that provides inference service
C the client that inputs prompt
M the language model
V the vocabulary
t word token t ∈ V

x, x̂ the original prompt x = {t1, t2, ..., tn} and perturbed prompt

ϵ,△ privacy budget and sensitivity, respectively
u(·, ·) utility function
R the private selection mechanism

deuc(t, t
′) Euclidean distance between tokens t and t′

Lr the logits for candidate token tr given context Lr

D(ti, tr) the distance between i-th token ti and candidate token tr
Nb the number of buckets

λL, λD importance factors of contextual logits and token distance

Goal. Our goal is to perturb the original prompt using DP
as x̂ = R(x), ensuring that not only the perturbed x̂ pro-
vides rigorous privacy guarantee (i.e., an adversary can not
effectively infer original prompt) but also maintains an ac-
ceptable utility (i.e., task-specific performance is retained).

Adversary. We consider the LLM inference service
provider S as the potential adversary. We do not consider
man-in-the-middle attacks and assume the communication
channel is secure. S is assumed to be semi-honest, meaning
the adversary follows the execution flow for inference but
may attempt to extract sensitive information by collecting
and analyzing the messages received from the client. S has
access to the perturbed prompt x̂, and the DP mechanismR
is publicly known. Moreover, S possesses unlimited com-
putational power, allowing it to launch attacks, such as the
mask token inference attack (Yue et al., 2021).

4. Design
4.1. Context-aware Prompt Perturbation

Cape acts as a safeguard layer, allowing the client to locally
perturb the prompts and hide sensitive data from the server.

As illustrated in Figure 3 (in green background), the overall
procedure is as follows: Given an input prompt containing
a sequence of sensitive tokens x = {t1, t2, ..., tn}, and a
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Figure 3: High-level workflow of Cape.

differential private mechanismR (i.e., Cape), we verbatim
replace the original token ti to a randomized output token
t̂i = tr ∈ V . All these randomized tokens t̂i constitute
the perturbed prompt x̂ = {t̂i = R(ti)}, where i ∈ [1, n].
Then, the perturbed prompt x̂ is sent to S for subsequent
text generation. Cape consists of two major components:

• Hybrid Utility Function: By hybrid, we consider
both token distance D and contextual logits L when
computing the utility scores for candidate sampling
tokens. Prior works (Yue et al., 2021; Chen et al.,
2022) merely focus on the token distance alone. We
resort to a client-side small device model to capture
the contextual information and use Euclidean distance
as the default measurement for token distance.

• Bucketized Sampling Function: We adopt Exponen-
tial mechanism, the de facto standard in private selec-
tion problems, to sample replacement tokens. Notably,
the large sampling space in NLP (e.g., the vocabulary
in Bert-base models is 30,522) could lead to long-tail
phenomenon. To tackle this problem, we propose a
bucketized variant to refine the sampling probability
distribution, especially when the budget ϵ is small.

4.1.1. UTILITY FUNCTION

In private selection, the utility function is essential to the
sampling performance, which should satisfy two features:
1) Monotonicity: Candidates with higher utility scores are
more likely to be sampled, which guarantees the utility of
the mechanism; 2) Boundedness: The output space of the
utility function should be bounded to keep the sensitivity△
controllable, ensuring rigorous privacy protection.

We hereby design a hybrid utility function for the i-th token
ti in a prompt as:

u(ti, tr) = LλL
r ·D(ti, tr)

λD (3)
where ti, tr denote the original and candidate tokens, Lr =
Mc(tr|Ctx) denotes the logits for tr given context Ctx and
a client-side modelMc. Ctx can be both preceding and fol-
lowing information (e.g., {t1, ..., ti−1, ti+1, ..., tn} in Bert)
or preceding information alone (e.g., {t1, t2, ..., ti−1} in
GPT). D(ti, tr) denotes the token embedding distance be-

tween ti and tr. Additionally, we introduce importance
factors λL and λD for logit and distance, respectively. The-
oretically, increasing λL enhances contextual coherence,
while emphasizing λD improves semantic similarity.

To satisfy the monotonicity, since a larger logit indicates
higher contextual relevance (i.e., positive correlation) while
a larger distance indicates lower semantic similarity (i.e.,
negative correlation), we use the form u ∝ L · exp(−D)
to obtain the utility. By default, we use Euclidean distance
over the embedding space to measure the token distance D.
The contribution of token distance can be formulated as:

D⃗raw = {deuc(ti, tr), 1 ≤ r ≤ |V|} (4)

D⃗norm =
D⃗ −Dmin

Dmax −Dmin
(5)

D⃗ = exp(−D⃗norm) (6)

Regarding the boundedness, since D⃗norm ∈ [0, 1], we have
D⃗ ≤ 1. However, the logit L, which distributes over real
value space R, is dependent on the model and input. To
limit the contribution of logit to the utility score, we can
clip the logit to a given bound B as follows:

L⃗ = clip(L⃗raw, B) (7)
To determine a suitable bound B, we analyze the logit dis-
tribution using a few calibration samples. The bound is
then selected based on the maximum value. We provide a
histogram of both logits and distance in Appendix B.7.

4.1.2. SAMPLING ALGORITHM

With the utility function defined, we proceed to the sampling
algorithm, with Exponential mechanism (EM) as the basis.

Long-Tail Phenomenon. We first note that there exists
long-tail phenomenon when the sampling space is extremely
large (i.e., a large vocabulary V in NLP). In standard EM,
the sampling probability for tr can be simply formulated as:

P[R(ti) = tr] =
exp( ϵ

2△u(ti, tr))∑|V|
j=1 exp(

ϵ
2△u(ti, tj))

(8)

When V is relatively large, many low-utility candidate to-
kens have individually negligible probabilities, but collec-
tively their sum is significant. According to the cumulative
sampling probability distribution in Figure 4a and 4b, the
majority of probabilities are significantly lower than 0.0001,
yet they account for a substantial portion of the CDF.

Theoretically, let ps and pl denote the smallest and largest
probabilities, respectively, with their maximum difference
bounded by eϵ (i.e., pl ≤ ps · eϵ). N denotes the vocabulary
size. The probability sum of the top-k tokens (K) relative to
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Figure 4: Cumulative distribution function of sampling probabilities for ‘book’ in ‘This is a good book.’ upon GPT2.

the remaining ones can be expressed as:

P1 =
∑
i∈K

pi ≤ k · pl, P2 =
∑
i/∈K

pi ≥ (N − k) · ps (9)

P1

P2
≤ k · pl

(N − k) · ps
≤ k · eϵ

(N − k)
≈ k · eϵ

N
(10)

If we set ϵ = 6, k = 10 and N = 50000, we have
P1

P2
≤ 403·10

50000 ≈ 0.08. That is, a great portion of low-utility
candidates takes over 90% percent of probability mass. In
practice, the empirical cumulative probability for k = 10 is
less than 1%, i.e., P2 ≥ 99%. This observation contradicts
the intuitive expectation that candidate tokens closely re-
sembling the original token would have higher probabilities.

Algorithm 1 Equal width Bucketing: Bucket

Input: Utility score vector u⃗, the number of buckets Nb

Output: A set of buckets B with different tokens.
1 Initialize B ← ∅
2 u⃗s = Sort(u⃗)

3 u⃗2b = Bucketize(u⃗s, Nb)
4 for i← 1 to Nb do
5 bi ← {tj |u⃗2bj == i}
6 u⃗b,i ← u⃗{bi}
7 if len(v) > 0 then
8 B ← B|(mean(u⃗b,i), bi)

9 return B

Bucketing Strategy. A straightforward solution is to use
a larger ϵ, which, however, results in a low level of formal
privacy. To address this, we propose to bucketize the sam-
pling space to refine the sampling probability distribution.
Specifically, we adopt equal-width bucketing, which parti-
tions the sampling space into uniformly sized Nb buckets
based on the numerical utility ranges. The key idea is to
bound the probability sum of all candidates in the same
bucket (i.e., within a certain utility interval), proportional
to exp( ϵ

2△mean(bi)), where bi denotes the token set that
maps to the i-th bucket, u⃗b,i denotes the score vectors for
these tokens and mean(bi) =

∑|bi|
k=1 bi,k/|bi|. As shown

in Algorithm 1, we sort the utility scores and assign each

candidate to a unique bucket of width (umax − umin)/Nb.
Notably, if a bucket contains no candidates, it is skipped-a
scenario that may occur when Nb is large. For each bucket,
we use the average utility score of its candidates as its repre-
sentative score. Then, as shown in Algorithm 2, we use EM
to sample a bucket, followed by a uniform sampling from
the chosen bucket to obtain the replacement token. The
bucketized probability is given by:

P[R(t) = tr] ∝
exp( ϵ

2△mean(bi))

|bi|
, if tr ∈ bi (11)

where△ = maxtrmax
b∼b′
|b− b′|, b, b′ denote utilities of dif-

ferent buckets. As shown in Figure 4c, Cape effectively
mitigates the long-tail phenomenon, where low-utility can-
didates now constitute a smaller cumulative probability. The
proof to Theorem 4.1 is provided in Appendix C.

Theorem 4.1. The bucketized Exponential Mechanism sat-
isfies (ϵ+ ϵ′)-differential privacy, where ϵ′ = ln(max

i,j

|bi|
|bj | ).

4.2. Define Non-sensitive Tokens

To further enhance the utility, we utilize a pre-defined set of
context-independent non-sensitive tokens. This set primar-
ily consists of 179 NLTK stopwords (e.g., ‘the’, ‘a’) and 32
punctuations (e.g., ‘,’, ‘.’), which, while lacking significant
context-sensitive information, are essential for text coher-
ence and readability. We retain these non-sensitive tokens
while perturbing those sensitive ones in the prompt.

5. Experiments
Datasets & Metrics. We consider two types of text tasks:
1) text classification; and 2) open-ended text generation.
For the former, we follow prior works (Yue et al., 2021;
Chen et al., 2022) to use two GLUE datasets with privacy
implications. 1) SST-2: This contains sentiment annota-
tions for movie reviews, which is used to perform sentiment
classification (positive or negative); 2) QNLI: This is a
dataset containing sentence pairs for binary classification
(entailment/not entailment). We use accuracy as the metric.
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Algorithm 2 Cape Mechanism: R
Input: Prompt x = {t1, t2, ..., tn}, device modelM, em-

bedding table e⃗, importance factors λL, λD, bucket
number Nb, and budget ϵ > 0

Output: Perturbed prompt x̂← R(x)
1 Initialize x̂← ∅
2 for i← 1 to n do
3 u⃗(ti) = Utility(M, Ctx, e⃗, λL, λD)

4 u⃗b(ti), b⃗(ti)← Bucket(u⃗(ti), Nb)
/* Sample a bucket using EM */

5 br ← EM(u⃗b(ti), b⃗(ti), ϵ)
/* Randomly choose a token from br */

6 tr ∼ Uniform(br)
7 x̂← x̂|tr
8 return x̂

For the latter, we follow (Tong et al., 2023) to use Wikitext-
103-v1, a large-scale dataset derived from Wikipedia articles
for language modeling tasks. We use coherence, and align-
ment as the evaluation metrics (detailed in Section 5.1.2).

For privacy evaluation, we consider the following two at-
tacks. We calculate the attack success rate asr on sensitive
tokens and the privacy score as 1− asr.

KNN Attack (Song & Raghunathan, 2020). The adversary
computes the embedding distance between the perturbed
token and all other tokens in the vocabulary, and then selects
the Top-k tokens with the smallest distances, where we set
k = 10. The Top-10 accuracy is defined as the proportion
of cases where the original token appears within Top-10.

Masked Token Inference (MTI) Attack (Yue et al., 2021).
The adversary employs a BERT model, which captures both
preceding and following contextual information, to predict
the masked token. We replicate this attack by sequentially re-
placing the perturbed token t̂ with the special token [MASK].
The Rouge-L F1 score is used to evaluate the similarity be-
tween predicted and original prompt.

Baselines. We compare Cape with SANTEXT (Yue et al.,
2021) and CUSTEXT (Chen et al., 2022) on their default
setting (based on GloVe embedding). We also adopt Infer-
DPT (Tong et al., 2023) as the baseline (based on text-
embedding-ada-002 (OpenAI, 2023)), which is the first
work that supports open-ended text generation. For Cape,
we utilize either the BERT (Devlin et al., 2019) model or
the GPT-2 (Radford et al., 2019) model to capture contex-
tual information, along with their respective embeddings
to compute token distances. By default, we set λL = 0.5,
λD = 1.0 and Nb = 50. We run inference on the origi-
nal data as non-private baseline. The detailed vocabulary
configuration is provided in Appendix A. To ensure a fair
comparison, we faithfully implement all these mechanisms

in Python and re-run all the experiments.

Experimental setup. All the experiments are carried out
on one Debian 11 machine equipped with one Intel Xeon
Platinum 8260 CPU (6 cores and 2.40GHz), 16GB of RAM
and 4 Nvidia Tesla-V100-SXM2-32GB GPUs.

5.1. Privacy-Utility Trade-off

To begin, we focus on the empirical privacy-utility trade-off
of different perturbation mechanisms in both text classifi-
cation and open-ended text generation tasks. We will study
the effects of formal privacy ϵ in the following Section 5.2.

In terms of efficiency, after a setup phase that computes
the token embedding distance, the perturbation of Cape
only consumes about 0.1 ∼ 0.15 second for each input in
average considering a small batch size of 2. The detailed
efficiency evaluation is provided in Appendix B.5.

5.1.1. TEXT CLASSIFICATION

For text classification tasks, we leverage a pre-trained
Qwen2-1.5B-Instruct model (Li et al., 2023) for zero-shot
learning on the validation set of SST-2 and QNLI datasets.
The instructions (i.e., system prompts) used to obtain classi-
fication results are provided in Appendix D. Notably, this
inference-only paradigm presents a greater challenge in ef-
fectively preserving semantics, as the absence of re-training
limits its ability to capture and refine noisy semantics.

Figure 5 illustrates the privacy-utility trade-off under KNN
and MTI attacks with ϵ ∈ [1, 20], respectively. The closer
the line is to the upper right corner, the better the trade-off.
The detailed utility and privacy numbers are deferred to
Appendix B.1 and B.4. The results across different settings
confirm that Cape achieves better trade-off than baselines.
Cape achieves comparable task utility to CUSTEXT and
superior to that of SANTEXT and InferDPT owing to the
hybrid utility function and bucketing optimization. Specif-
ically, CUSTEXT achieves higher utility even when ϵ is
small (a stringent formal privacy) owing to its usage of fixed
and small adjacency lists. However, such practice leads
to worse defense against attacks. Besides, Cape (BERT)
yields better utility than Cape (GPT2) since Bert models
captures both preceding and following contextual informa-
tion, thus ensuring better coherence and semantic similarity.

There is one special case in Figure 5d that Cape (BERT)
performs slightly worse than Cape (GPT2) and the base-
lines when ϵ is small under MTI attacks. This is mainly due
to the fact that BERT used in MTI attack fail to recognize
the sub-word tokens in GPT-based Cape (GPT2) and Infer-
DPT, and word-level tokens in GloVe-based SANTEXT and
CUSTEXT. This also explains the high privacy scores (over
70%) even when ϵ = 20. Such vocabulary mismatch actu-
ally hinders the attack performance. Therefore, we mainly
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Figure 5: Privacy-utility trade-offs in terms of privacy at-
tacks vs. accuracy rates by varying ϵ ∈ [1, 20]. Privacy is
measured by privacy scores under empirical attacks.

evaluate KNN attacks in the following experiments.

5.1.2. OPEN-ENDED TEXT GENERATION TASKS

Compared to text classification tasks, text generation is more
sensitive to the perturbation. When some key information
in the text is disturbed, the generated text may have poor
coherence and alignment to the original prompt. We thereby
follow InferDPT (Tong et al., 2023) to use a lightweight
local model (Qwen2-1.5B-Instruct), denoted as extraction
modelMe, to refine the perturbed response generated by
the server. When receiving the noisy generation ŷ from
S, C uses the extraction model to de-noise the response as
y′ ←Me(x, ŷ). Additionally, we denote the expected re-
sponse (i.e., non-private) as y. In the following experiments,
we vary the perturbation mechanisms, while utilizing the
same extraction model (default temperature of 0.5). The
instructions used to generate noisy response and extract
response are provided in Appendix D. We use coherence
and alignment to measure the text generation utility. Both
metrics are computed using cosine similarity that goes as:

CS(s1, s2) =
Emb(s1) · Emb(s2)

|Emb(s1)| · |Emb(s2)|
(12)

where the sentence embedding Emb(s) is computed using
the method in SimCSE (Gao et al., 2021). Coherence mea-
sures the cosine similarity between original prompt x and
the extracted response y′ as CS(x, y′), and Alignment mea-
sures the similarity between the extracted response y′ and
expected response y as CS(y, y′).

Notably, we fail to evaluate SANTEXT because it requires
a vocabulary size of approximately 221,642 over Wikitext,
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Figure 6: Privacy-utility trade-offs in terms of KNN attack
by varying ϵ ∈ [1, 20] on Wikitext-103-v1 dataset. Privacy
is measured by privacy scores under empirical attacks.

which causes OOM error when calculating sampling proba-
bilities. As shown in Figure 6, Cape significantly outper-
forms InferDPT and achieves similar utility to CUSTEXT
when ϵ is large. Whereas, CUSTEXT fails to provide rea-
sonable empirical privacy. Even with ϵ = 1, it achieves a
privacy score of only around 40%. The results exhibit the
superior performance of Cape. The detailed utility numbers
are deferred to Appendix B.2.

5.2. Influence of Privacy Budget

In this section, we evaluate each method in terms of formal
privacy, with ϵ ∈ [1, 20]. Notably, we examine the effect
of varying ϵ on each method. We do not attempt to align
the privacy levels across these methods, as they provide dis-
tinct forms of actual formal privacy, which could introduce
ambiguities. For instance, the ϵ-metric-LDP-based SAN-
TEXT effectively adheres to ϵ′-DP, where ϵ′ = ϵ · dmax,
with dmax ∼ 14.86 (as derived from GloVe embeddings,
shown in Table 4). In InferDPT, the random adjacency
list is generated using Laplace noise with a default bud-
get of approximately 9, resulting in an actual privacy bud-
get of ϵ′ ∼ ϵ + 9. Similarly, our method operates under
ϵ′ = ϵ+ ln(max

i,j

|bi|
|bj | ) ∼ ϵ+ 8. An exception is CUSTEXT,

which employs a static adjacency list of default size 20,
making it hard to quantify the actual privacy budget.

5.2.1. UTILITY EVALUATION

We compute the Rouge-L F1 score between the original
and perturbed prompts on SST-2 dataset, which serves as
an indicator of sentence-level semantic similarity. We also
provide some perturbation examples in Appendix E.

The results are presented in Table 3. In general, the scores
of all methods increase with the privacy budget ϵ. Among
them, SANTEXT+ and CUSTEXT+ achieve high scores
even when ϵ is small. This is because in SANTEXT+, a
proportion of tokens (top w% most frequent tokens, even
not stopwords) are treated as non-sensitive. While in CUS-
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Table 3: Sentence-level similarity of various methods.

Mechanism Rouge-L (F1) ↑
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20

SANTEXT 0.87 13.43 71.31 99.36 99.45 99.45 99.45
SANTEXT+ 52.56 57.77 72.98 76.37 77.46 77.66 77.56

CUSTEXT 14.50 17.87 22.74 47.27 81.44 95.54 99.48
CUSTEXT+ 50.66 52.90 55.47 69.41 88.46 97.18 99.71

InferDPT 13.00 14.09 14.92 16.48 23.20 38.68 68.11

Cape
Bert 38.38 39.20 40.86 46.85 60.22 76.49 92.03

GPT2 37.60 38.19 40.08 44.55 56.46 73.46 90.65

TEXT, each word has a pre-defined token adjacency list,
which results in a high probability that a word will either
remain unchanged or be perturbed to a synonym2, yielding
higher similarity. This also accounts for their weak privacy
defense against attacks. Regarding SANTEXT, InferDPT
and Cape, Cape achieves the best performance. Specifi-
cally, when we align the actual ϵ ∼ 14, corresponding to
SANTEXT (ϵ ∼ 1), InferDPT and Cape (ϵ ∼ 6), the score
of Cape is significantly larger than the other two methods.

5.2.2. PRIVACY EVALUATION

We evaluate the empirical privacy using effective map-
ping set size St. This is calculated by counting the num-
ber of distinct tokens mapped from t after perturbation
as St = {t′|t′ = R(t)}. Intuitively, the mapping set
should encompass the entire vocabulary. A larger St implies
greater entropy in the mapping distribution, thereby indi-
cating higher empirical privacy. We also provide two other
metrics: retention ratio Nt and defense against attacks in
Appendix B.3∼B.4 due to page limitation.

To evaluate St, we run perturbation methods 1,000 times
to each token in the vocabulary on SST-2 dataset with ϵ ∈
[1, 20]. The results are illustrated in Figure 7. For the metric-
LDP-based SANTEXT, St decreases rapidly as ϵ increases,
dropping to approximately 100 when ϵ = 3. In contrast,
CUSTEXT maintains St at around 20 in most cases, even
when ϵ = 1. This consistency stems from CUSTEXT’s
design, which restricts the sampling space for each token
to a fixed size (20 by default). However, this approach
also implies that under a KNN attack with Top-20 accuracy,
CUSTEXT’s privacy score would be nearly zero.

For InferDPT and Cape, both methods exhibit a propor-
tional decrease in St as ϵ increases due to their use of EM
over the entire vocabulary. Owing to our bucketing strategy,
Cape exhibits lower entropy than InferDPT. Notably, in
Cape, the BERT variant outperforms the GPT-2 variant by
producing a smaller and smoother St distribution. This can
be attributed to BERT’s use of a denser embedding space.
Moreover, BERT is better at capturing both preceding and

2The proportion of synonyms exceeds 40% even when ϵ = 2,
as shown in Table III of the paper (Tong et al., 2023).
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Figure 7: Mapping set size St with ϵ ∈ [1, 20] on SST-2.

following context. This distinction also explains why Cape
(BERT) surpasses Cape (GPT-2) in the above experiments.

5.3. Ablation Studies

We additionally evaluate Cape under various parameter
configurations on SST-2 dataset. From now on, we adopt
the Bert-based Cape for its superiority. We here vary utility
importance factor and bucket number to perform an exten-
sive comparison. Additionally, we evaluate the feasibility
of using model distillation on client-side device model in
Appendix B.6. We choose KNN attack as the privacy metric
and evaluate the classification accuracy on SST-2 dataset.

5.3.1. VARYING IMPORTANCE FACTOR

To evaluate the effect of incorporating contextual logits,
we run experiments on varying logit importance factor
λL ∈ [0.2, 0.5, 1.0, 1.2, 1.5], with fixed distance importance
factor λD as 1.0 in the hybrid utility function.
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Figure 8: Ablation results under various parameter configu-
rations with ϵ ∈ [1, 20].

As shown in Figure 8a, a utility function that relies solely
on token embedding distance (i.e., λL = 0.0) demonstrates
the poorest performance, highlighting the importance of
incorporating contextual logits for designing effective utility
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functions. However, assigning excessive weight to logits
(e.g., λL = 1.5) results in diminished performance. This
occurs because a token that better fits the context may not
always be semantically similar to the original token.

5.3.2. VARYING BUCKET NUMBER

We use bucketing to handle the dilemma of large sampling
space. To test the effect of bucket number Nb, we conduct
experiments on varying Nb ∈ {20, 50, 100, 150, 200}.

The experiment results are illustrated in Figure 8b. Notably,
Nb = 50 achieves the best performance, while the two ex-
tremes, Nb ∈ {20, 200}, yield the worst results. As Nb

increases, resulting in a larger sampling space, the empirical
privacy level improves. For instance, when ϵ = 1.0, the pri-
vacy score for Nb = 200 is approximately 10% higher than
that for Nb = 50. However, this comes at the cost of utility,
which declines rapidly. This is because larger Nb makes
it more likely to select a bucket with low utility, causing
significant utility degradation. Balancing the privacy-utility
trade-off, Nb = 50 emerges as an optimal choice.

6. Conclusion
In this paper, we propose a context-aware prompt perturba-
tion mechanism to strike a better balance in privacy-utility
trade-off in LLM inference services. By perturbing user
prompts using differential privacy, we provide quantifiable
privacy protection, with moderate utility degradation. In
the future, we plan to explore more fine-grained privacy
mechanisms tailored to different groups of tokens, such
as application-specific semantic categories or user-specific
personalization scenarios.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Our work aims to address critical pri-
vacy concerns surrounding user prompts in widely adopted
LLM-based inference services. To safeguard sensitive user
information during inference, we leverage differential pri-
vacy, which provides quantifiable privacy protection con-
trolled by a privacy budget. However, we also acknowledge
the inevitable utility degradation caused by the introduction
of random noise to perturb the original prompts. A key
contribution of this work lies in the development of a novel
hybrid utility function that integrates contextual information
with token embedding distances, alongside a bucketized
sampling algorithm designed specifically for the NLP do-
main’s large sampling space. These advancements have the
potential to make private LLM inference more practical and
scalable for real-world applications.
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A. Vocabulary Configuration
The vocabulary configuration for the baselines and Cape are provided in Table 4. Notably, SANTEXT leverages a subset

of GloVe, specifically tailored to the dataset’s vocabulary, excluding tokens that do not appear in the dataset. CUSTEXT
similarly trims the GloVe vocabulary to align with a predefined vocabulary subset 3. InferDPT also prunes the cl100k base
to initial 11,000 English tokens as the vocabulary. Specifically, the embeddings in CUSTEXT are normalized, resulting in
smaller Euclidean distances.

Table 4: Vocabulary configurations. Vsample denotes the actual sampling space. K and K̂ denote the size of (random)
adjacency list in CUSTEXT and InferDPT, respectively.

Methods
GloVe

(d = 300)
Bert

(d = 768)
GPT

(d ∈ {768, 1536})
|V| dmax |Vsample| |V| dmax |Vsample| |V| dmax |Vsample|

SANTEXT 2,196,017 14.86
14,283 (SST-2)
87,751 (QNLI)

221,642 (Wikitext-103-v1)
- - - - - -

CUSTEXT 76,855 1.66 K - - - - - -

InferDPT - - - - - - 100,256 (11,000) 1.44 K̂

Cape - - - 30,522 2.89 30,522 50,257 7.58 50,257

B. Detailed Experiment Results
B.1. Utility for text classification tasks

Table 5 presents the utility of different methods, measured by inference accuracy of text classification on SST-2 and QNLI
datasets. Notably, as mentioned in Section 5.2, we directly use the definition of privacy budget ϵ in their papers without
alignment to our work in case of ambiguities. We here focus on the influence of ϵ.

Table 5: Utility comparison of various perturbation mechanisms at similar privacy levels on SST-2 and QNLI datasets.

Methods SST-2 QNLI

ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20

Random 51.72 50.78

SANTEXT 52.29 52.52 76.15 91.06 92.09 91.17 90.14 50.98 50.91 66.68 76.90 76.55 76.55 76.66
SANTEXT+ 64.22 67.20 77.52 79.47 81.63 82.17 83.27 58.72 60.44 66.26 68.74 69.52 71.13 71.59

CUSTEXT 62.50 63.53 65.60 72.01 82.21 91.51 92.20 61.71 61.61 63.23 67.07 73.81 76.11 76.57
CUSTEXT+ 71.56 72.13 73.05 82.56 86.19 91.74 92.43 65.22 66.48 67.38 69.69 76.00 76.66 77.01

InferDPT 54.19 55.52 56.54 58.38 56.42 60.44 79.70 52.27 53.33 54.19 56.13 57.67 62.80 72.18

Cape
Bert 58.14 60.01 62.33 64.93 76.56 83.24 91.33 52.10 51.77 52.17 53.74 59.76 67.93 75.84

GPT2 59.63 60.89 61.27 63.99 77.81 80.67 90.25 51.66 51.86 52.59 52.66 59.45 67.09 73.62

Non-private 92.54 76.88

B.2. Utility for open-ended text generation tasks

The detailed utility numbers for open-ended text generation tasks are illustrated in Table 6. We measure the utility of the
noisy generation from two aspects: coherence to the original prompt, and alignment to the expected generation.

B.3. Privacy: Retention Ratio

Retention ratio Nt is calculated by counting the frequency of retention of token t after the perturbation. This is a
straightforward metric for evaluating privacy protection. A higher Nt indicates that more tokens remain unperturbed,
reflecting a lower level of privacy protection. As the privacy budget ϵ increases, all methods exhibit higher Nt. Among

3Limited vocabulary: https://github.com/nmrksic/counter-fitting/blob/master/linguistic_
constraints/vocabulary.txt

12

https://github.com/nmrksic/counter-fitting/blob/master/linguistic_constraints/vocabulary.txt
https://github.com/nmrksic/counter-fitting/blob/master/linguistic_constraints/vocabulary.txt


CAPE: Context-Aware Prompt Perturbation Mechanism with Differential Privacy

Table 6: Coherence & Similarity on Open-ended Text Generation.

Methods Coherence ↑ Alignment ↑
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20

CUSTEXT 53.78 54.23 55.11 56.83 59.36 58.85 58.93 57.73 58.04 58.69 61.21 63.83 64.38 64.03
CUSTEXT+ 54.34 55.59 56.28 57.39 58.97 59.27 59.34 58.26 60.02 60.61 62.26 63.67 64.27 63.83

InferDPT 41.00 43.53 44.73 44.07 46.07 49.93 56.04 46.72 48.55 49.46 49.04 51.53 54.35 60.33

Cape
Bert 42.82 44.07 44.74 47.00 51.22 55.40 58.02 47.86 49.07 49.79 51.27 55.95 59.50 62.31

GPT 43.20 42.01 42.91 45.61 51.07 54.81 57.80 47.69 47.12 47.67 50.85 55.37 59.32 62.62

Non-private 59.78 65.05

these methods, Cape consistently achieves the lowest Nt. SANTEXT demonstrates a much faster increase in Nt due to its
usage of metric-LDP. Additionally, since SANTEXT+ classifies a portion of the most frequent tokens as non-sensitive, and
InferDPT operates with a truncated vocabulary of size 11,000, both methods exhibit high Nt even when ϵ = 1. CUSTEXT
also produces higher Nt due to its limited sampling space for each token. Under a fixed ϵ, the Nt of CUSTEXT is nearly
double that of Cape.
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Figure 9: Retention ratio Nt by varying the privacy parameter ϵ ∈ [1, 20] on the SST-2 dataset.

B.4. Privacy: Defense scores against privacy attacks

We conduct some existing attacks to empirically demonstrate the privacy protection comparison with varying privacy
budgets. As introduced in Section 5, we calculate the attack success rate asr on sensitive tokens and the privacy score as
1− asr.
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(b) MTI attacks on SST-2.
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(c) KNN attacks on QNLI.
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(d) MTI attacks on QNLI.
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Figure 10: Privacy evaluation by varying the privacy parameter ϵ ∈ [1, 20].

B.5. Efficiency Evaluation

We evaluate the efficiency of various methods by measuring their runtime cost and memory consumption. A batch size
of 2 is used, representing two simultaneous client-side queries. This is reasonable given the lack of high concurrency
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requirements on the client. Each experiment is repeated five times to calculate the average runtime. The total runtime is
divided into two phases: 1) Setup phase, which pre-computes token embedding distances, constructs adjacency lists and
calculates sampling probabilities; 2) Perturbation phase, which performs the perturbation on a input user prompt.

As shown in Table 7, Cape ensures prompt privacy with minimal time overhead. While Cape consumes more resources
due to the use of a local model, its average runtime per input prompt remains under 0.2 seconds. SANTEXT and CUSTEXT
exhibit the lowest runtime costs, as they precompute adjacency lists and sampling probabilities for each token. However,
this comes at the expense of higher setup phase runtimes, particularly for CUSTEXT, where adjacency list construction
significantly increases overhead. The GPU memory consumption of Cape is approximately 1 ∼ 1.5 GB. In Appendix B.6,
we further explore the potential of model distillation to reduce this memory requirement.

Table 7: Efficiency evaluation by measuring the average runtime cost in each stage.

Methods Runtime Memory

Setup Perturbation Perturbation

SANTEXT 325.14s 0.003s 0.81G

CUSTEXT 2929.75s 0.002s 0.16G

InferDPT 28.66s 0.05s 1.03G

Cape
Bert 37.91s 0.15s 1.37G

GPT2 98.25s 0.10s 1.12G

B.6. Ablation: Distilled Local Model

In Cape, a client-side device model is used to obtain the contextual information to enhance the utility. The parameter size
for the Bert-base and GPT2-base models evaluated above is about 400 MB. We note that for those resource-limited devices,
we need to further decrease the resource consumption. Model distillation (Sanh et al., 2019) provides a promising direction
to lower the model size. To verify its feasibility in Cape, we evaluated the performance on the widely-used distilbert
model 4, of which the size is reduced by about 40%.
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(a) KNN attack with Top-1 accuracy.
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(b) KNN attack with Top-10 accuracy

Figure 11: Privacy-utility trade-offs in terms of success rates of KNN attacks vs. accuracy rates by varying the privacy
parameter ϵ ∈ [1, 20] on the SST-2 dataset.

We evaluate the classification accuracy and KNN attack accuracy on the SST-2 dataset using both the bert-base and distilbert
models. As illustrated in Figure 11, distilbert generally achieves performance comparable to the original bert model.
Specifically, its classification accuracy is at most ∼ 1% lower than that of bert under the same empirical privacy level.
Detailed results in Table 8 indicate that the distilled model exhibits slightly lower accuracy and stronger privacy defense on

4https://huggingface.co/distilbert/distilbert-base-uncased.
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a fixed formal priavcy level (i.e., ϵ). This can be attributed to the reduced expressiveness of distilbert embeddings compared
to the original model.

Table 8: Privacy-utility trade-offs in terms of success rates of KNN attacks vs. accuracy rates w/wo model distillation.

Methods Accuracy ↑ Privacy (Top-10) ↑
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 6 ϵ = 10 ϵ = 14 ϵ = 20

Cape
Bert 58.14 60.01 62.33 64.93 76.56 83.24 91.33 94.40 92.56 90.34 80.54 67.74 40.80 9.07

DistilBert 55.28 59.63 61.86 63.50 76.17 82.13 90.24 93.69 92.50 89.96 80.72 68.57 42.21 10.27

Non-private 92.54 100.0

B.7. Histogram of logits and token embedding distance

We here run some statistics on the example prompt: ‘This is a good book.’ using GPT-2 model. We compute the logits for
book with ‘This is a good [MASK].’ as the context. We compute the Euclidean distance between book and other tokens in
the vocabulary V . The histogram of the logits and distance are illustrated in Figure 12.
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Figure 12: Histogram of different distance metrics for ‘This is a good book.’. λL = 0.5, λD = 1.0.

C. Proofs of Theorems
Proof of Theorem 4.1. Consider the original token t ∈ V , another token t′ ∈ V \ {t} and a possible output token y ∈ V .
We use B(t) = bi(i ∈ [Nb]) to denote the i-th bucket that token t belongs to, Nb is the bucket number. Additionally, we use
ub(t, ·) to denote the bucket utility for B(t) and |B(t)| to denote the cardinality of bucket B(t).

According to the sampling probabilities in Equation 11, we have:

P[R(t) = y]

P[R(t′) = y]

=(
exp( ϵ

2△ub(t, y))∑|V|
j=1 exp(

ϵ
2△ub(t, yj))

· 1

|B(y)|
)/(

exp( ϵ
2△ub(t

′, y))∑|V|
j=1 exp(

ϵ
2△ub(t′, yj))

· 1

|B′(y)|
)

=
exp( ϵ

2△ub(t, y))

exp( ϵ
2△ub(t′, y))

·
∑|V|

j=1 exp(
ϵ

2△ub(t
′, yj))∑|V|

j=1 exp(
ϵ

2△ub(t, yj))
· |B

′(y)|
|B(y)|
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Let max
i,j

|bi|
|bj | = exp(ϵ′), we have |B′(y)|

|B(y)| ≤ exp(ϵ′). Consequently, we have:

P[R(t) = y]

P[R(t′) = y]

≤
exp( ϵ

2△ub(t, y))

exp( ϵ
2△ub(t′, y))

·
∑|V|

j=1 exp(
ϵ

2△ub(t
′, yj))∑|V|

j=1 exp(
ϵ

2△ub(t, yj))
· exp(ϵ′)

=exp[
ϵ

2
· (u(t, y)− u(t′, y))

△
] ·

∑|V|
j=1 exp(

ϵ
2△u(t′, yj))∑|V|

j=1 exp(
ϵ

2△u(t, yj))
· exp(ϵ′)

≤exp( ϵ
2
) ·

∑|V|
j=1 exp(

ϵ
2△u(t′, yj))∑|V|

j=1 exp(
ϵ

2△u(t, yj))
· exp(ϵ′)

≤exp( ϵ
2
) · exp( ϵ

2
) · exp(ϵ′)

=exp(ϵ+ ϵ′)

The proof shown that our sampling mechanism satisfies (ϵ+ ϵ′)-DP.

D. System Prompts
We provide the system prompts used in the text classification and open-ended text generation tasks in Table 9.

Table 9: The detailed prompts for text classification and open-ended text generation tasks.

Text Classification on SST-2:
You are a helpful assistant. Classify if the sentence is positive or negative sentiment. Just gives the answer in positive, negative.
—-“Content”: {input}

Text Classification on QNLI:
You are a helpful assistant trained to determine whether a given context sentence contains the information needed to answer the given
question. If the context answers the question, respond ”Yes”. Otherwise, respond ”No”.
—-“Question”: {question}
—-“Context”: {sentence}

Text Generation on Wikitext-103-v1:
Your task is to extend Prefix Text.
—-“Prefix Text”: {prompt}
Provide only your Continuation.
—-“Continuation”:

Extraction of noisy response on Wikitext-103-v1:
Your task is to extend the “Prefix Text”.
Use the “Perturbed Generation” as your primary writing material for your extension.
Extract coherent and consistent text from the “Perturbed Generation” and integrate them into your continuation.
Ensure a seamless alignment with the context established by the “Prefix Text”.
Provide only your “Extended Text”.
—-“Prefix Text”: {prompt}
—-“Perturbed Generation”: {noisy response}
—-“Extended Text”:

E. Perturbation Example
We provide some perturbation examples in Table 10. Given input prompts ‘it ’s a charming and often affecting journey .’
and ‘it ’s slow – very , very slow .’, we vary the perturbation methods and privacy budgets.

Toy Example. Consider the example prompt: ‘it ’s slow – very , very slow .’. The step-by-step perturbation process is as
follows.
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1. Initialize an empty token set as T ← ϕ.

2. Tokenize the text prompt using tokenizer and obtain a list of tokens denoted as L.

3. For each token t in the list, calculate its utility score. Take ‘slow’ in ‘it ’s slow – very , very slow .’ as an example.

(a) Compute the contextual logits for the MASKED token as L =M(‘it ’s [MASKED] – very , very slow .’).
(b) Compute the embedding distance between ‘slow’ and other tokens in the vocabulary as D = deuc(‘slow’,V).
(c) Obtain the final utility score as u = LλL ·DλD .
(d) Bucketize all the tokens in the vocabulary into Nb buckets according to the utility score
(e) Sample a bucket using standard Exponential mechanism.
(f) Uniformly sample a token t̂ from the bucket sampled in the previous step.
(g) Concatenate the newly sampled token to T as T ← T |t̂.

4. Finally, we get the perturbed prompt T .
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Table 10: Perturbation examples of varying privacy budgets ϵ for different methods.

Mechanism ϵ

Original Prompt:

it ’s a charming and often affecting journey .
it ’s slow – very , very slow .

Rouge-L (F1)

SANTEXT

1
photo describes several brilliant nowhere practically partly sorts nietzsche
clearly do chewing bolstered female reid see addictive emphasized 0.87

2
nevertheless serviceable 2/3 reaction pretend especially daft journey .
sucked addition laziness – increasingly catastrophic defies unwatchable injuries 13.43

3
fan recognized a charming its often affecting journey .
yes ’s slow – very , intensity stacks . 71.31

6
it ’s a charming and often affecting journey .
it ’s slow – very , very slow . 99.36

SANTEXT+

1
it ’s a charming and often committed journey .
bible ’s slow laconic very , very slow solely 52.56

2
discussed ’s combined charming banquet often majority encountered precedent
it ’s slow – very , very slow . 57.77

3
indeed ’s leaving charming bothered often operates journey f.
it ’s slow – very , very slow . 72.98

6
it wanted puzzled enchanting and often affecting journey yes
honestly s unfortunately attract however possibilities very slow . 76.37

CUSTEXT

1
this ’s rather charming all may impair alone .
kind ’s try – something , this went . 14.50

2
as ’s rather charming others tend impair alone .
kind ’s try – something , this went . 17.87

3
as ’s be charming also often impair future .
kind ’s try – sort , this went . 22.74

6
rather ’s a charming also remain impair happiness .
every ’s slow – very , is try . 47.27

CUSTEXT+

1
it ’s a lovely and exist consequence experiences .
it ’s runs – very , very slow . 50.66

2
it ’s a lovely and we consequence experiences .
it ’s runs – very , very slow . 52.90

3
it ’s a lovely and we altering experiences .
it ’s runs – very , very slow . 55.47

6
it ’s a fairytale and often affecting lifestyle .
it ’s pace – very , very slow . 69.41

InferDPT

1
Saw ’ axis amar Translate Sie Incorrect invasion sizes .
security ’ instance exter – precision , Converter versus . 13.00

6
plash ’ sha outed Char TE prior affecting Joy .
ILL ’ ana neglect – extraordinary , intimate tox . 16.48

10
Kit ’ so Adventure charming ing according affecting analysis .
Tit ’ s l – verity , functional wrest . 23.20

14
inferior ’ Bike a rub and alike affecting journey .
learning ’ n slow – very , levant instead . 38.68

Cape

1
it’s a royals andnard popularized progressing. dormitory
it’s libre - - very, very slower. ’ 38.38

6
it’s axon and quietlyately journey. will
it’s - - very, very civilized. of 46.85

10
it’s a charming and greatly intimidation her.
it’s slower - - very, very busy. 60.22

14
it’s a charming and highly painful journey.
it’s slow - - very, very slow. 76.49

Cape

1
it’s aivably and typicallyEStream screened. Christensen
it’sDragonMagazine after very, very 8.Keefe 37.60

6
it’s a really and her angry smart. all
it’s poor downed very, veryadium. roommate 44.55

10
it’s a telling and often affecting ride.
it’s a – very, very PM. where 56.46

14
it’s a w and often affecting journey.
it’s slow office very, very put. This 73.46
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