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Abstract

Bayesian optimization is a popular framework for efficiently tackling black-box
search problems. As a rule, these algorithms operate by iteratively choosing what
to evaluate next until some predefined budget has been exhausted. We investigate
replacing this de facto stopping rule with criteria based on the probability that a
point satisfies a given set of conditions. We focus on the prototypical example
of an (ϵ, δ)-criterion: stop when a solution has been found whose value is within
ϵ > 0 of the optimum with probability at least 1− δ under the model. For Gaussian
process priors, we show that Bayesian optimization satisfies this criterion under
mild technical assumptions. Further, we give a practical algorithm for evaluating
Monte Carlo stopping rules in a manner that is both sample efficient and robust
to estimation error. These findings are accompanied by empirical results which
demonstrate the strengths and weaknesses of the proposed approach.

1 Introduction

In the real world, we are often interested in finding high-quality solutions to black-box problems.
Many of these problems are not only expensive to solve but difficult to reason about without extensive
background knowledge—such as discovering new chemicals [17], designing better experiments [48],
or configuring machine learning algorithms [42].

A common approach is therefore to construct models for these problems and use them to predict
real-world outcomes. In recent years, Bayesian optimization (BO) has emerged as a leading approach
for accomplishing these tasks. Precise definitions vary, but BO methods are frequently characterized
by their use of probabilistic models to guide the search for good solutions. The idea is for these
models to provide distributions over the performance of competing alternatives, which can then be
used to simulate the usefulness of evaluating different things. For a recent review, see Garnett [16].

Despite the success of these algorithms, an ongoing issue for practitioners has been the continued
lack of interpretable stopping rules. The vast majority of BO runs proceed until a predetermined
budget (e.g., a number of evaluations or amount of resources) is exhausted. We highlight two likely
reasons for this trend and then give a brief prospective for model-based alternatives. The first reason
is that stopping rules often revolve around quantities like optimums that are difficult to work with,
even when defined under a model. The second is that even the best models sometimes go astray; and,
if the model is bad, then model-based stopping is liable to stop much too soon or far too late. To
avoid potential disappointment, let us say upfront that this work addresses the former challenge and
only provides mild commentary on the latter. We will revisit this topic in the closing sections.

At the same time, we argue there is much to be gained by using models to help us decide whether a
given solution is “good-enough” for its intended purpose [40]. One benefit of model-based stopping
is its ability to adapt to the data. Sometimes, we will get lucky and stumble upon good solutions early
on. Other times, our progress will be slow. If the model captures these events, then stopping can
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be tailored to each run. Another benefit of model-based stopping is its ability to simplify the user
experience by asking us to specify what we wish to find instead of how much we wish to spend.

The basic idea we pursue is that, if we can simulate whether a solution is good-enough, then we can
stop once we find one that probably is. We focus on a prominent example of this framework, but
stress that much of what follows holds for different choices of models and conditions. In particular,
we investigate the setting where the user deems a solution sufficient if its performance is within ϵ > 0
of the optimum with probability at least 1− δ under the model.

Our primary contributions are to: i) combine recent work on scalable sampling techniques with
algorithms for cost-efficient statistical testing; ii) show how the resulting estimators can be used as
the basis for robust stopping rules; and, iii) introduce the first model-based stopping rule for BO with
convergence and performance guarantees (up to model error).

The remaining text is organized as follows. Section 2 presents notation background material. Section 3
introduces the proposed stopping rule and evaluation strategy. Section 4 analyzes this algorithm’s
convergence and correctness. Finally, Section 5 investigates its empirical performance under idealized
and realistic circumstances.

2 Background

We use boldface symbols to indicate vectors (lowercase) and matrices (uppercase). Given a sequence
(ai), we denote an = [a1, . . . , an]

⊤. Likewise, for a function f : X → R, we use the shorthand
f(Xn) = [f(x1), . . . f(xn)]

⊤. By minor abuse of notation, we sometimes treat, e.g., Xn as a set.

We focus on the task of sequentially querying a function f : X → R in order to find a point x ∈ X
whose value f(x) is within ϵ > 0 of the supremum. Such a point is said to be ϵ-optimal if this
condition holds and (ϵ, δ)-optimal if it holds with probability at least 1− δ. Throughout, we write
(xt) for the sequence of query locations.

At any given time t ∈ N0, our understanding of the target function’s behavior is driven by domain
knowledge and any data that we have already collected. We combine this information with the help
of a Bayesian model by placing a prior on f and defining an observation model. Different types
of models are eligible and techniques introduced in the sequel simply require that we are able to
simulate the chosen stopping conditions (e.g., ϵ-optimality). We focus on the most popular family of
models in this setting: Gaussian processes.

A Gaussian process (GP) is a random function f :X → R such that, for any finite set X ⊆ X , the
random variable f(X) ∈ R|X| is Gaussian in distribution. We write f ∼ GP(0, k) for a centered GP
with covariance k : X ×X → R and model observations as function values corrupted by independent
Gaussian noise, i.e. y(Xt) | f(Xt) ∼ N

(
f(Xt), γ

2I
)
. Conditional on y(Xt), we therefore believe

that f is distributed as ft ∼ GP(µt, kt), where Λ = k(Xt,Xt) + γ2I is used to define

µt(x) = k(x,Xt)Λ
−1y(Xt) kt(x,x

′) = k(x,x′)− k(x,Xt)Λ
−1k(Xt,x

′). (1)

Finally, we assume that X is compact and that µt and kt are both continuous so their limits are
attained on X . Among other things, this assumption allows us to write st ∈ argmaxx∈St

µt(x) for
a preferred solution at time t, where St is either the set of evaluated points Xt or the search space X .

3 Method

Suppose Bayesian optimization terminates at time t ∈ N0 and returns a point x ∈ X as the solution.
Our regret for having returned this point is defined as the distance between f(x) and the optimum.
Under the model ft, this (simple) regret manifests as a random variable

rt(x) = f∗
t − ft(x) f∗

t = sup
x∈X

ft(x). (2)

Given a regret bound ϵ > 0 and a risk tolerance δ > 0, we would like to stop searching once
we have found a point so that rt(x) ≤ ϵ with probability at least 1 − δ and refer to this stopping
rule as a probabilistic regret bound (PRB). Probabilities of this sort are usually intractable and we
will therefore estimate them via sampling. To this end, we denote the probability that a point x is
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Figure 1: Overview of PRB stopping behavior when f : [0, 1]2 → R is drawn from a model with
noise variance γ2 = 10−4. Regret bounds ϵ > 0 dictate how close f(x) must be to the optimum f∗

for x ∈ X to be satisfactory. Tolerances δ > 0 upper bound the chance of returning an unsatisfactory
point. Left: Percent of runs that stopped before time T = 128. Middle: Percent of stopped runs that
returned ϵ-optimal points. Right: Median number of trials performed by stopped runs.

ϵ-optimal and an associated Monte Carlo estimator by

Ψt(x) = P(rt(x) ≤ ϵ) Ψn
t (x; ϵ) =

1

n

n∑
i=1

1
(
rit(x) ≤ ϵ

)
, (3)

where rit(x) is the i-th independent draw of the model-based regret (2). We will shortly explore how
to construct estimators Ψn

t (x) and use them to decide whether Ψt(x) is above or below a level λ ∈ R
in a manner that is both cost efficient and robust to estimation errors. First, however, let us introduce
some basic terminology that will help us reason about potential failure modes.

We will say the estimator produces a false positive if Ψn
t (x) ≥ λ > Ψt(x) and a true positive if

Ψn
t (x) ≥ λ ∧Ψt(x) ≥ λ. Since either scenario may lead to an unsatisfactory solution, the level λ

that we compare against must exceed 1− δ. Accordingly, let δmod and δest be nonzero probabilities
such that δmod + δest ≤ δ. By defining λ = 1− δmod, we will use δmod to limit the chance that a
point x is not ϵ-optimal even though Ψn

t (x) produced a true positive. Conversely, we will use δest to
control the probability of encountering a false positive (see Section 3.2). This pattern guarantees that
if Ψn

t (x) ≥ λ, then x is ϵ-optimal with probability at least 1− δ under the model.

Algorithm 1 BO with Monte Carlo PRB

1: input data D ∈ (X ×R)T0 , limit T ∈ N,
and parameters ϵ, δmod, δest > 0

2: (δtest)← getScheduleδ(δest, T − T0)
3: for t = T0, . . . , T do
4: f ← getModel(D)
5: C← getCandidates(f,D)
6: Z← MC-PRB(C; f, ϵ, δmod, δ

t
est)

7: if maxZ ≥ 1− δmod then
8: break
9: x← getNextQuery(f,D)

10: D ← D ∪ {(x, y(x))}
11: return

{
xi ∈ C : Zi = maxZ

}

Algorithm 1 sketches a typical BO loop with the
proposed stopping rule. At each iteration, we obtain a
model for the data. We then select candidate solutions
C ⊆ X and estimate their probabilities of being ϵ-
optimal under the model. If an estimate is greater
than 1− δmod, then the corresponding point satisfies
the stopping conditions with probability at least 1− δ
and we terminate; otherwise, we press on.

The rest of this section examines two key questions:
how to simulate model-based regrets rt(x) when |X |
is large (or infinite) and how to avoid false positives
due to estimation error. Appendix A explores related
topics such as how to choose C and schedule δtest.

Figure 1 shows how the proposed algorithm behaves
for different choices of ϵ and δ. Data was generated
by running BO a hundred times and sampling rt(st) a thousand times per step using the strategy from
Section 3.1. Stopping decisions were then made by comparing estimators Ψn

t (st) with λ = 1− δmod,
where δmod = δ/2. These results do not take advantage of the testing paradigm introduced in
Section 3.2, but accurately reflects the algorithm’s behavior. In particular, we see that the number of
function evaluations performed by each run automatically adapts to the definition of (ϵ, δ)-optimality.
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Figure 2: Left: Posterior mean and two standard deviations of f (blue) given eight noisy observations
(black dots). The goal is to find a point x ∈ X whose true function (black) value is within ϵ > 0
of the optimum f∗ (orange star). Middle: Draws of ft ∼ GP(µt, kt) and f∗

t (orange stars). Right:
Estimators for Ψt. Ground truth (dashed black) was established using location-scale sampling on
a dense grid. The joint-sampling strategy from Section 3.1 is shown in blue. Competing methods
analytically integrated out ft(x) | f∗

t by approximating it with: ft(x), ft(x) | ft(x) ≤ f∗
t , or

ft(x) | ft(x) ≤ f∗
t ∧ ft(x

∗
t ) = f∗

t where f∗
t and x∗

t ∈ argmaxx∈X ft(x) were jointly sampled.

3.1 How to simulate stopping conditions

This section describes how to simulate whether a point x ∈ X satisfies the chosen stopping conditions.
For PRB, this amounts to sampling Bernoulli random variables 1(rt(x) ≤ ϵ). We propose to generate
this term by maximizing draws of ft. When dealing with parametric models, function draws are
obtained by sampling parameter vectors. For GPs, analogous logic may be enacted by using a
parametric approximation to the prior [52], as outlined below. This approximate sampling step is
necessary because the time complexity for exactly simulating ft(X) scales cubically in |X|.

Let ϕ : X → Rm be a finite-dimensional feature map so that, ∀x,x′ ∈ X , ϕ(x)⊤ϕ(x′) ≈ k(x,x′).
Note that feature maps of this sort are readily available for many popular covariance functions [37, 52].
Equipped with such a map, we may approximate a prior f ∼ GP(0, k) with a Bayesian linear model

f̂(·) = ϕ(·)⊤w w ∼ N (0, I). (4)

Letting Λ = k(Xt,Xt) + γ2I and ε ∼ N (0, γ2I), this linear model may be used to generate draws
from an approximate posterior by sampling w from the prior and using Matheron’s rule to write [51]

ft(·)
d
≈ f̂(·) + k(·,Xt)Λ

−1
[
yt − f̂(Xt)− ε

]
. (5)

For each draw of ft, the remaining problem is now to evaluate 1(rt(x) ≤ ϵ). We suggest using
multi-start gradient ascent. In our case, we performed an initial random search to identify promising
starting locations and then used a quasi-Newton method [28] to optimize. A helpful insight is that we
do not need to find f∗

t per se. Rather, it suffices to determine whether there exists a point x′ ∈ X
such that ft(x′)− ft(x) > ϵ. This property can be exploited to accelerate simulating 1(rt(x) ≤ ϵ);
however, its benefits wane as Ψt(x) increases because rt(x) ≤ ϵ implies that no such point x′ exists.

The right panel of Figure 2 compares different estimators for Ψt. For simplicity, assume that ft is
sample continuous so that it almost surely attains its supremum on X . The goal of this plot is to
highlight challenges inherent to conditioning on the maximum. We not only need to upper bound
ft, but also account for the point(s) at which the maximum is achieved. This explains why the
red estimator Ex∗

t ,f
∗
t
[P(f∗

t − ft(x) ≤ ϵ | ft(x∗
t ) = f∗

t , ft(x) ≤ f∗
t )] outperforms the orange one

Ef∗
t
[P(f∗

t − ft(x) ≤ ϵ)], while the green one Ef∗
t
[P(f∗

t − ft(x) ≤ ϵ | ft(x) ≤ f∗
t )] fails to do so.

We opted to avoid these issues by sampling ft(x) jointly with f∗
t rather than marginalizing it out.

The resulting blue estimator is seen to more accurately follow the gold standard shown in black.

Lastly, it should be said that the suggested sampling procedure introduces a yet-to-be-determined
amount of error in practice, since draws of ft are not only approximate but non-convex. Initial results
suggest these errors are small (see Figure 2), however we leave this as a topic for future investigation.
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Figure 3: Left: Median number of draws used by Algorithm 2 to decide if the expectation of a
Bernoulli random variable Z ∼ Bern(p) exceeds λ = 10−5 (chosen arbitrarily). Middle: Empirical
CDFs of Ψn

t when optimizing draws from known priors GP(0, k) in two, four, and six dimensions
with noise variance γ2 = 10−6 (solid, ◦) or γ2 = 10−2 (dashed, ×). PRB parameters were set to
ϵ = 0.1 and δmod = δest = 2.5%. Right: Runtimes for Algorithm 2 using the generative strategy
from Section 3.1 and a (wall) time limit of roughly one thousand seconds.

3.2 How to efficiently make robust decisions with Monte Carlo estimates

This section discusses the general problem of using samples to decide whether the expectation
of a random variable Z ∈ {0, 1} exceeds a level λ ∈ [0, 1]. For PRB, λ = 1 − δmod and each
evaluation of the stopping rule corresponds to a unique Z = 1(rt(x) ≤ ϵ). We will show how to
make probably-correct decisions using a minimal number of samples n ∈ N. In doing so, we first
discuss confidence intervals for E[Z] based on a collection of i.i.d. draws Zn = {zi : i = 1 . . . , n}.
There are many techniques for generating intervals that contain E[Z] with (coverage) probability at
least 1− δest. Clopper & Pearson [13] gave an exact recipe for constructing confidence intervals for
Bernoulli random variables Z as

CI(Zn; δ) =
[
B
(
δ
2 ; k, n− k + 1

)
, B
(
1− δ

2 ; k + 1, n− k
)]
, (6)

where B denotes the beta quantile function and k =
∑n

i=1 zi is the number of successes in n draws.
It is also possible to take a Bayesian by placing a prior on E[Z]. Differences between this Bayesian
approach and (6) were observed to be minimal however, so we opted to avoid modeling E[Z]. For
further discussion, see Appendix A.1.

Given an estimate Zn = 1
n

∑n
i=1 zi and a confidence interval In = CI(Zn; δest), it follows that

E[Z] ∈ In and λ ̸∈ In =⇒ 1
(
E[Z] ≥ λ

)
ground truth

= 1
(
Zn ≥ λ

)
decision

. (7)

If In collapses to a point as n→∞, then there exist sample sizes such that λ ̸∈ In, whereupon the
conclusion from (7) holds with probability at least 1− δest.1 Said differently, we can lower bound
the probability that we correctly decide whether E[Z] ≥ λ by generating enough draws of Z. With
these details in mind, we now review an algorithm for adaptively choosing n ∈ N in order to make
probably-correct decisions using as few samples as possible—which is crucial when simulating Z is
computationally intensive as in Section 3.1.

The general idea of Algorithm 2 is to perform a series of tests (each using more samples than the last),
until a confidence interval for E[Z] is narrow enough for a decision to be made. To better understand
this, start by defining two sequences: sample sizes (nj) and risk tolerances (dj). The sizes should be
increasing, while the tolerances should be positive and satisfy

∑∞
j=1 dj ≤ δest.

Next, imagine that we generate draws of Z in batches of size nj − nj−1, where n0 = 0. At each
round of sampling j, we construct an interval Inj that contains E[Z] with probability at least 1− dj .
If λ ̸∈ Inj

, we use Znj
to decide whether E[Z] ≥ λ. Otherwise, we proceed to the next iteration.

1We may that assume P(λ = E[Z]) = 0. Here, E[Z] = Ψt(x) is only random prior to observing y(Xt).
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Algorithm 2 Monte Carlo PRB

1: input point x ∈ X , model f : Ω×X →R
and parameters ϵ, δmod, δest > 0

2: (dj)← getScheduled(δest)
3: (nj)← getSchedulen()
4: Z← ∅
5: for j = 1, 2, . . . do
6: while |Z| < nj do
7: f i ← getSample(f)
8: f i

∗ ← supx∈X f i(x)
9: Z← Z ∪

{
1(f i

∗ − f i(x) ≤ ϵ)
}

10: if 1− δmod ̸∈ CI(Z, dj) then
11: break
12: return Average(Z)

Per (7), this algorithm only makes an incorrect de-
cision if the final interval fails to contain E[Z]. By
definition of (dj) and the union bound however, the
chance of any interval not containing E[Z] is at most
δest. Hence, the algorithm makes the correct decision
with probability at least 1− δest.

Algorithm 2 was inspired by bandit methods, such
as Mnih et al. [33] and references contained
therein, who previously studied how concentration
inequalities can be used to iteratively test whether
P
(∣∣Zn − E[Z]

∣∣ ≤ ϵE[Z]
)
≥ 1−δest. Algorithm 2 is

closer to Bardenet et al. [6] however, who used a sim-
ilar strategy to decide whether to accept Metropolis-
Hastings proposals based on subsampled estimates
of the data log-likelihood.

Extending our earlier argument, let (δtest) be a sequence of risk tolerances such that
∑∞

t=1 δ
t
est ≤ δest.

If Algorithm 2 is run at each BO step t with schedule (dtj) such that
∑∞

j=1 d
t
j ≤ δtest, then the chance

of encountering a false positive at any step is bounded from above by δest. Consequently, the decision
to stop will be correct with probability at least 1− δest.

We followed Mnih et al. [33] by defining dtj = j−α (α−1)
α δtest and nj = ⌈βj−1N⌉. We set α = 1.1

so that (dtj) decayed slowly, β = 1.5 such that (nj) grew reasonably quickly, and N = 64 because
smaller starting values took longer to run. These choices impact the algorithm’s runtime, not its
validity. Using a geometric schedule for (nj) prevents (dtj) from rapidly shrinking due to a large
number of tests being performed with very few samples. In exchange, this schedule can lead to nearly
β times too many samples being requested.

The left panel of Figure 3 shows how many samples Algorithm 2 used to decide whether E[Z] ≥ λ
for Z ∼ Bern(p). As p→ 1, the distance between Zn and λ tends to increase and decisions can be
made with wider confidence intervals constructed using fewer draws. As δest → 1, these intervals
shrink and decisions can similarly be made using fewer samples. The middle panel visualizes the
empirical CDF of estimates Ψn

t from BO experiments described in Section 5. For most of a typical
BO run’s life cycle, these estimates are far from λ = 1− δmod so decisions can be made efficiently.
This pattern is reflected in the rightmost panel, which illustrates the savings provided by Algorithm 2.

4 Analysis

We show that Bayesian optimization with the PRB stopping rule terminates under mild assumptions.
Further, we prove that the given algorithm is correct in the sense that it returns an (ϵ, δ)-optimal point
under the model. We begin by discussing the assumptions made throughout this section, which are:

A1. The search space X = [0, 1]D is a unit hypercube.

A2. There exists a constant Lk > 0 so that, ∀x,x′ ∈ X , |k(x,x)− k(x,x′)| ≤ Lk∥x− x′∥∞.

A3. The sequence of query locations (xt) is almost surely dense in X .

A1 and A2 guarantee it is possible for the maximum posterior variance to become arbitrarily small
given a finite number of observations. Note that if hyperparameters change over time, we only require
that the (best) Lipschitz constant Lk and noise variance γ2 do not grow without bounds as t→∞.
Combined with these assumptions, A3 implies that, for any C > 0, there exists a time T ∈ N0 such
that, ∀t ≥ T , maxx∈X kt(x,x) ≤ C with probability one. More generally, A3 is necessary to ensure
convergence when all we known is that X is compact and f is continuous [45].

When A1 and A2 hold, popular strategies often produce almost surely dense sequences (xt). For
instance, Vazquez & Bect [47] proved Probability of Improvement [25] and Expected Improvement
[38] exhibit this behavior for many covariance functions k when f is directly observed. In Appendix B,
we show that this result holds for continuous acquisition functions that value informative queries
over unambiguous ones. This family includes well-known acquisition functions such as Knowledge
Gradient [15], Entropy Search [20], and variants thereof [21, 49]. Finally, dense sequences can be
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guaranteed by introducing a small chance for queries to be selected at random from an appropriately
chosen distribution [44].

We first prove that points which maximize the posterior mean eventually satisfy the PRB criterion
and then use this result to demonstrate convergence and correctness.
Proposition 1. Under assumptions A1–A3 and for all regret bounds ϵ > 0 and risk tolerances δ > 0,
there almost surely exists T ∈ N0 so that, at each time t ≥ T , every st ∈ argmaxx∈X µt(x) satisfies

Ψt(x; ϵ) = P(rt(st) ≤ ϵ) ≥ 1− δ. (8)

Sketch. We sketch the proof below and provide full details in Appendix B for details. Consider the
centered process gt(·) = [ft(·)− ft(st)] + [µt(st)− µt(·)]. Since the second term is nonnegative,
g∗t = supx∈X gt(x) ≥ rt(st) = f∗

t −f(st) and it suffices to upper bound the probability that g∗t ≥ ϵ.
For ϵ > E(g∗t ), such a bound may be constructed by using the Borell-TIS inequality [8, 46] to write

P(g∗t ≥ ϵ) ≤ exp

(
−1

2

[
ϵ− E(g∗t )

σt

]2)
σ2
t = max

x∈X
Var[gt(x)]. (9)

Since E(g∗t ) and (9) both vanish as σt decreases, the claim holds so long as limt→∞ σt = 0. □

Similar ideas can be found in Grünewälder et al. [18], who proved that the expected supremums of
centered process like gt go to zero as (xt) becomes increasingly dense in X . In Appendix B, we
extend this result to the setting where observations are corrupted by i.i.d. Gaussian noise and combine
it with the Borell-TIS inequality to show the probability that rt(st) ≥ ϵ vanishes. We also give a
simple corollary for the case where solutions st belong to Xt. Next, we show that BO not only stops
when Algorithm 2 is used to evaluate the proposed rule but does so correctly.
Proposition 2. Suppose assumptions A1–A3 hold. Given a risk tolerance δ > 0, define nonzero
probabilities δmod and δest such that δmod + δest ≤ δ and let (δtest) be a positive sequence so that∑∞

t=0 δ
t
est ≤ δest. For any regret bound ϵ > 0, if Algorithm 2 is run at each step t ∈ N0 with

tolerance δtest to decide whether a point st ∈ argmaxx∈X µt(x) satisfies the stopping criterion

Ψt(x; ϵ) = P(rt(st) ≤ ϵ) ≥ 1− δmod, (10)

then BO almost surely terminates and returns an (ϵ, δ)-optimal solution under the model.

Proof. By Proposition 1, there almost surely exists an S ∈ N0 so that t ≥ S =⇒ Ψt(st) ≥ 1−δmod.
Further, because Ψn

t (st) is unbiased, there exist times t ≥ T at which Algorithm 2 produces true
positives Ψn

t (st) ≥ 1− δmod ∧Ψt(st) ≥ 1− δmod. Hence, BO stops with probability one. If BO
terminates at time T ∈ N0, then the probability that sT is not ϵ-optimal is less than or equal to δmod

in the event of a true positive and one otherwise. Since false positives Ψn
t (st) ≥ 1− δmod > Ψt(st)

occur with probability at most δest, it follows that sT is ϵ-optimal with probability at least 1− δ.

In summary, we can design statistical tests to mitigate the risk of premature stopping due to random
fluctuations in Monte Carlo estimators like Ψn

t . Moreover, we can schedule these tests to ensure that
points which pass them are sufficiently likely (under the model) to satisfy our stopping conditions.
If the model is correct, we can therefore guarantee that a satisfactory solution is returned with high
probability. Provided that one or more points almost surely satisfy the rule as t→∞, this result holds
if we can simulate whether solutions are satisfactory and bound the error in the resulting estimator.

5 Experiments

To shed light on how our algorithm behaves in practice, we conducted a series of experiments. Focal
questions here included: i) how does PRB perform in comparison to existing stopping rules, ii) how
do these rules respond to different types of problems, and iii) what is the impact of model mismatch.

Experiments were performed by first running BO with conservatively chosen budgets T ∈ N. We
then stepped through each saved run with different stopping rules to establish stopping times and
terminal performance. This paradigm ensured fair comparisons and reduced compute overheads.
We performed a hundred independent BO runs for all problems other than hyperparameter tuning
for convolutional neural networks (CNNs) on MNIST [14], where only fifty runs were carried out.
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Problem D T Oracle† Budget† Acq ∆CB ∆ES PRB (ours)

GP† 10−6 2 64 10 (100) 17 (96) 28 (100) 16 (96) 22 (99) 17 (97)

GP† 10−2 2 128 11 (100) 22 (96) 78 (100) 128 (100) 54 (100) 23 (99)

GP† 10−6 4 128 27 (100) 64 (95) 90 (100) 51 (97) 93 (100) 64 (99)

GP† 10−2 4 256 30 (100) 94 (95) 106 (98) 256 (100) 144 (97) 86 (96)

GP† 10−6 6 256 40 (99) 124 (95) 142 (98) 150 (98) 256 (99) 134 (98)

GP† 10−2 6 512 65 (100) 227 (96) 181 (96) 512 (100) 278 (99) 235 (100)

GP 10−6 4 128 35 (100) 79 (95) 92 (100) 41 (66) 77 (94) 61 (88)

GP 10−2 4 256 51 (100) 157 (95) 128 (97) 256 (100) 160 (96) 100 (92)

Branin 2 128 19 (100) 25 (95) 64 (100) 36 (100) 38 (100) 33 (99)

Hartmann 3 64 14 (100) 22 (96) 26 (100) 18 (90) 21 (97) 19 (100)

Hartmann 6 64 36 (67) 256 (67) 40 (67) 38 (67) 62 (67) 40 (64)

Rosenbrock 4 96 34 (100) 46 (95) 95 (100) 88 (100) 98 (100) 84 (100)

CNN 4 256 5 (100) 11 (96) 64 (100) 64 (100) 64 (100) 17 (100)

XGBoost 3 128 4 (100) 8 (97) 128 (100) 90 (100) 51 (100) 28 (99)

Table 1: Median stopping times and success rates when seeking (ϵ, δ)-optimal points on X = [0, 1]D

given an upper limit of T ∈ N function evaluations. For GP objectives, number beside each name
specify noise levels γ2. Superscripts † indicate that model or stopping rule parameters were given by
an oracle. For each problem, non-oracle methods that returned ϵ-optimal points at least 1− δ percent
of the time using the fewest function evaluations are shown in blue.

Despite the general notation of the paper, all problems were defined as minimization tasks. Additional
details and results can be found in Appendices C and D, respectively; and, code is available online at
https://github.com/j-wilson/trieste_stopping.

Each BO run was tasked with finding an ϵ-optimal point with probability at least 1− δ = 95%. On
the Rosenbrock-4 fine-tuning problem, we used a regret bound ϵ = 10−4. For CNNs, we aimed to be
within ϵ = 0.5% of the best test error (i.e., misclassification rate) seen across all runs, namely 0.62%.
Likewise, when fitting XGBoost classifiers [12] for income prediction [7], we sought to be within 1%
of the best found test error of 12.89%. For all other problems, we set ϵ = 0.1.

For PRB, we divided δ evenly between δest and δmod. Since experiments were carried out using
preexisting BO runs that each began with five random trials and ended at times T , we employed
a constant schedule δtest = 1

T−5δest for risk tolerances at steps t ∈ N0. Parameter schedules for
Algorithm 2 are discussed in Section 3.2.

As a practical concession, we limited each run of Algorithm 2 to a thousand draws of ft and used
the resulting estimate to decide whether to stop—even if the corresponding confidence interval was
not narrow enough to afford guarantees. Results under this setup were consistent with preliminary
experiments in which Algorithm 2 was run using a fifteen minute time limit. Finally, when optimizing
draws from GP priors in six dimensions with noise γ2 = 10−2, we evaluated PRB once every five
steps to expedite these experiments.

5.1 Baselines

We tested several baselines, some of which were granted access to information that would usually be
unavailable (indicated by a dagger †). We summarize these as follows2:

B1. Oracle†: stops once an ϵ-optimal point has been evaluated.

B2. Budget†: stops after a fixed number of trials chosen by an oracle for each problem.

B3. Acq [23, 35]: stops when the acquisition value of the next query is negligible.

2Note that these descriptions do not account for the presence of a link function (see Appendix C.2).
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B4. ∆CB [29]: stops once the gap between confidence bounds is less-equal to C > 0, i.e.

max
x∈X

UCBt(x)− max
x′∈Xt

LCBt(x
′) ≤ C [U/L]CBt(x) = µt(x)±

√
βtkt(x,x)

B5. ∆ES [22]: stops when an upper bound on
∣∣E(f∗

t )− E(f∗
t−1)

∣∣ drops below a level.

B1 is the optimal stopping rule, but requires perfect information for f . Likewise, B2 is the optimal
fixed budget for each problem. These budgets were defined post-hoc as the minimum number of
trials such that at least 95% percent of runs returned ϵ-optimal points (where possible).

The remaining methods are all model-based and stop when target quantities are sufficiently small.
For the chosen acquisition function (see Appendix C.3), B3 can be interpreted as the expected im-
provement in solution quality given an additional trial, i.e. Eyt+1

[
maxx∈Xt+1

µt+1(x)− µt+1(st)
]
.

Unfortunately, neither this quantity nor the change in the expected supremum used by B5 lend
themselves to interpretation in terms of (ϵ, δ)-optimality. B4 does admit such an interpretation for
appropriate choice of constant βt [43]; however, these constants are often difficult to obtain in practice
however, so we followed [29] by defining βt =

2
5 log

(
Dt2π2/6δ

)
.

To combat these issues, we gave baseline methods a competitive advantage by retroactively assigning
cutoff values to ensure they achieved the desired success rate when optimizing draws from the model
(denoted GP†). Specifically, cutoff values for B3–B5 were obtained by dividing regret bounds ϵ by
the smallest powers of two for which this condition held—explicitly: 215, 23, and 24 (respectively).
Note that, in the absence of this fine tuning, these methods either proved unreliable or failed to stop
within the allotted time depending on whether thresholds were too large or too small. For completion,
additional results using ϵ as the cutoff value for B4 and B5 are presented in Appendix D.

The main results of this section are shown in Table 1 and key findings are discussed below.

5.2 Results with true models

When optimizing functions drawn from known GP priors, denoted GP†, the proposed stopping rule
performed exactly as advertised and consistently returned (ϵ, δ)-optimal solutions. Moreover, PRB
often requiring the fewest function evaluations. This result is not surprising when comparing with
methods like B4 because an unbiased estimate to P(rt(x) ≤ ϵ) should exceed a level faster than a
corresponding lower bound. In many cases, PRB achieved a higher success rate than the fixed budget
oracle using a comparable or smaller number of trials. These gains occur because model-based
stopping is able to exploit patterns in the data collected by individual runs.

Elsewhere, we observe that B4 struggled to terminate when faced with moderate noise levels γ2 =
10−2. This pathology likely emerges because, similar to alternative estimators discussed in Section 3.1,
the method does not fully account for dependencies between f∗

t and ft(x). As an extreme example,
B4 may fail to terminate when a point x ∈ Xt simultaneously maximizes upper and lower confidence
bounds, despite the fact that rt(x | x∗

t = x) = 0.

Not surprisingly, BO runs that took longer to query an ϵ-optimal point took longer to stop. However,
the correlation between these terms paled in comparison to that of stopping times and α-quantiles of
regrets incurred by uniform random points (approximately, 0.35 vs. −0.75). Said differently, PRB
stopped faster when f∗ was an outlier. This pattern suggests that the one-step optimal strategy from
Appendix C.3 is better at finding optimal solutions than verifying them. Future works may therefore
wish to pursue stopping-aware approaches along the lines of McLeod et al. [32] or Cai et al. [11].

5.3 Results with maximum a posteriori models

In the real world, the high-level assumptions that govern how the model behaves (i.e., its hyperpa-
rameters) are tuned online as additional data is collected using Type-II maximum likelihood. We are
therefore interested in seeing how discrepancies between the model and reality influence stopping
behavior.

Results here were similar to the synthetic setting, albeit with some blemishes. Interestingly, the most
glaring example of the risks posed by model mismatch occurred on the popular Hartmann-6 test
function. Here, 33% of BO runs overestimated the objective function’s smoothness and converged to
a local minimum of −3.20 rather than the global minimum of −3.32. It is worth noting, however,
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that if ϵ = 0.1 had been slightly larger, all stopping rules would have succeeded in at least 95% of
cases (see Appendix D). Along similar lines, models occasionally underestimated the kernel variance
when optimizing draws from GP priors and stopped prematurely.

These results also indicate that both hyperparameter tuning problems (CNN and XGBoost) were
fairly easy and this may have masked potential failure modes. The fixed budget oracle’s performance
demonstrates that there was still room for model-based stopping rules to fail, but we nevertheless
recommend that these results be taken with a grain of salt.

In additional experiments, we indeed found that it was easy to construct cases where poor model
fits led to poor stopping behavior. This vulnerability was large due to our choice of hyperpriors (see
Appendix C.1), which were purposefully broad and uninformative. Overall, we argue that these
results are both highly encouraging and also highlight the importance of uncertainty calibration.
Potential remedies for this issue are discussed below.

Based on these findings, we suggest that model-based stopping be used with more conservative priors
that, e.g., favor smaller lengthscales and larger variances. Alternatively, calibration issues may be
alleviated by marginalizing over hyperparameters [41] or utilizing more expressive models. These
options help reduce the risk of overly confident models leading to premature stopping. Along the
same lines, we recommend using a large fixed budget as an auxiliary stopping rule to avoid cases
where poor model fits cause the algorithm to converge very slowly (see Appendix A.3 for discussion).

6 Conclusion

To the best of our knowledge, results presented here are among the first of their kind for Bayesian
optimization. We have given a practical algorithm for verifying whether a set of stopping conditions
holds with high probability under the model. For the proposed stopping rule, we have further shown
that the algorithm correctly terminates under mild technical conditions. If data is generated according
to the model, we can therefore guarantee that BO is likely to return a satisfactory solution.

The methods we have shared are largely generic. Echoing the introduction, if you can simulate it then
you can use it for stopping. While this approach is not without limitations, we believe that it will
ultimately allow others to design stopping rules as they see fit. To the extent that it does, model-based
stopping may one day become as common place as model-based optimization.
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[48] von Kügelgen, J., Rubenstein, P. K., Schölkopf, B., and Weller, A. Optimal experimental design
via Bayesian optimization: active causal structure learning for Gaussian process networks. arXiv
preprint arXiv:1910.03962, 2019.

[49] Wang, Z. and Jegelka, S. Max-value entropy search for efficient Bayesian optimization. In
International Conference on Machine Learning, pp. 3627–3635. PMLR, 2017.

[50] Wilson, J., Hutter, F., and Deisenroth, M. Maximizing acquisition functions for Bayesian
optimization. Advances in neural information processing systems, 31, 2018.

[51] Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. Efficiently sampling
functions from Gaussian process posteriors. In International Conference on Machine Learning,
pp. 10292–10302. PMLR, 2020.

[52] Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Pathwise
conditioning of Gaussian processes. The Journal of Machine Learning Research, 22(1):4741–
4787, 2021.

12

https://arxiv.org/abs/2302.08436


1 4
1 1
6

1 6
4

1
2
5
6

1
1
0
2
4

R
is

k
T

ol
er

an
ce
δ e

st

3.6 4.0 2.5 1.8 0.8

3.6 4.1 2.5 1.8 1.0

3.6 4.1 2.6 1.8 1.1

3.8 4.1 2.7 2.0 1.3

3.8 4.1 2.8 2.2 1.4

Bayesian (Jeffreys)

3.6 3.9 1.2 0.8 0.6

3.6 4.1 2.5 1.8 0.8

3.6 4.1 2.6 1.8 1.0

3.8 4.1 2.7 1.8 1.1

3.8 4.1 2.8 2.0 1.4

Bayesian (Uniform)

1
64

1
32

1
16

1
8

1
4

Rate Parameter p

1 4
1 1
6

1 6
4

1
2
5
6

1
1
0
2
4

R
is

k
T

ol
er

an
ce
δ e

st

3.6 4.0 2.5 1.8 1.0

3.6 4.1 2.6 1.9 1.2

3.6 4.1 2.7 1.9 1.3

3.8 4.1 2.7 2.0 1.4

3.8 4.1 2.9 2.2 1.6

Clopper-Pearson

1
64

1
32

1
16

1
8

1
4

Rate Parameter p

3.6 3.8 2.9 2.5 2.2

3.6 3.9 3.1 2.5 2.2

3.6 3.9 3.1 2.7 2.3

3.8 3.9 3.1 2.7 2.4

3.8 3.9 3.2 2.7 2.4

Empirical Bernstein

Figure 4: Median number of samples (show in log10) used by Algorithm 2 to decide if the expectation
of Z ∼ Bernoulli(p) exceeds λ = 2.5% using different types of intervals with nominal coverage
probability 1− δest. The number of samples drawn is seen decrease in both δest and |p− λ|.

A Practical recommendations

This section aims to fill in some of the gaps left by Section 3 by providing further details for various
subproblems and design choices encountered in practice.

A.1 How to construct confidence intervals

As discussed in the text, given a random variable Z ∈ R, there are different ways of generating
intervals In ⊆ R that contain the true parameter E[Z] with (nominal) coverage probability 1− δest.

For Bernoulli random variables, Clopper-Pearson intervals (6) are a classic approach to this problem.
This method is said to be “exact” because (instead of relying on the central limit theorem) it uses the
fact that X =

∑n
i=1 Zi follows a Binomial distribution, where Zi is the i-th independent copy of Z.

This method is also conservative: its (true) coverage probability is greater than or equal to 1− δest.

Alternatively, one can take a Bayesian approach by placing a prior on success rate p ∈ [0, 1] of
the Binomial random variable X ∼ Bin(n, p). If this prior is chosen to be a Beta distribution
p ∼ Beta(α, β), then the posterior is conjugate and we have p | X ∼ Beta(α +X,β + n −X).
Sensible choices include Jeffreys prior Beta(1/2, 1/2) and the uniform prior Beta(1, 1).

The equal-tailed, Bayesian credible interval is obtained by taking the δest/2 and 1− δest/2 quantiles
of p | X . Unlike those of Clopper-Pearson, these intervals are not inherently conservative. Indeed,
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Clopper-Pearson intervals contain Jeffreys intervals [9]. This property is sometimes desirable, since
it may mean that fewer samples are required to make a decision. In Bayesian optimization, however,
one typically assumes that evaluating f is far more expensive than simulating it. We therefore opted
to use the more conservative choice.

Lastly, it should be said that bounds on estimation errors can also be obtained when Z is not Bernoulli.
For example, previous works [4, 33, 6] proposed to use an empirical Bernstein bound to generate
confidence intervals for random variables Z ∈ [a, b], defined here as

∣∣E[Z]− Zn

∣∣ ≤ ∆n = Sn

√
2 log(3/δest)

n
+

3(b− a) log(3/δest)

n
, (11)

where Zn = 1
n

∑n
i=1 zi and S2

n = 1
n

∑n
i=1

(
Zn − zi

)2
denote the empirical mean and variance.

While conservative, the resulting intervals Zn ±∆n decay much faster than, e.g., their Hoeffding-
inequality-based counterparts when Sn is much smaller than b− a.

Figure 4 illustrates how each of the methods discussed above perform in the context of Algorithm 2.

A.2 How to choose where to evaluate the stopping rule

Per Algorithm 1, Algorithm 2 may be evaluated in parallel on a set of candidates C ⊆ X . This
confers certain advantages, such as the ability to share draws of ft and, hence, f∗

t between points
x ∈ C. However, we must divide risk tolerance δtest by cardinality |C| to retain the union bound.
Hence, Algorithm 2 may be slow when C is large. We should therefore chose C with care.

If solutions must belong to the set of previously evaluate points, Xt, then we suggest to define

C = {x ∈ Xt : P(ft(st)− ft(x) ≤ ϵ) ≥ 1− δmod}, (12)

since the excluded points can safely be ignored. Empirically, we found that this heuristic usually
eliminates all but a few points.

If solutions may be chosen freely on X , we instead recommend that C be constructed using one of the
alternative estimators from Section 3.1 (all of which are differentiable). In particular, we recommend
using gradient-based methods to maximize the average of

P(rt(x) ≤ ϵ | ft(x) ≤ f∗
t , ft(x

∗
t ) = f∗

t ) = Φ

(
f∗
t − µt+1(x)

kt+1(x,x)
1/2

)−1

Φ

(
µt+1(x)− f∗

t − ϵ

kt+1(x,x)
1/2

)
, (13)

over multiple draws of f∗
t and x∗

t ∈ argmaxx∈X ft(x), where µt+1 and kt+1 are the posterior mean
and variance of ft given an additional observation f(x∗

t ) = f∗
t and Φ denotes the standard normal

cumulative distribution function. The resulting set of points can then be tested using Algorithm 2.

A.3 How to schedule risk tolerances δtest

Where possible, we recommend using a (conservatively chosen) budget T ∈ N for BO. This mean
we suggest using PRB together with a fixed budget. Doing so not only ensures that the algorithm
stops in a reasonable amount of time, but allows one to use a constant schedule δtest =

δest
T−T0

, where
T0 ∈ N denotes the starting time. Note that this is how experiments from Section 5 were run.

If no such budget is available, then we recommend adopting a strategy similar to Algorithm 2 by only
evaluating the stopping rule at certain steps t. For example, one may employ a geometric sequence of
potential stopping times (ti), analogous to sample sizes (nj), and define

δtiest = t−α
i

(α− 1)

α
δest α > 1, (14)

like djt from Section 3.2. This practice ensures that δtest does not decay too quickly.
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B Technical proofs

The main results of this section are as follows.

i. Proposition 4 shows that a family of acquisition functions produce dense sequences (xt).
ii. Lemma 6 proves that variances vanish as Xt becomes increasingly dense in X .

iii. Lemma 9 bounds the expected supremum of f ∼ GP(0, k) in terms of its maximum variance.
iv. Proposition 1 and Corollary 10 show that the PRB stopping criterion almost surely converges.
v. Proposition 2 proves that BO with the PRB rule terminates and returns an (ϵ, δ)-optimal solution.

Many of the findings presented here and discussed previously borrow heavily from earlier works.
Where appropriate, we attribute credit at the beginning of each proof.

Definition 3. Kernel k :X ×X →R has the no-empty-ball property [47] if, for any sequence (xt),
the posterior variance Var[f(x) | f(Xt)] at a point x ∈ X goes to zero as t→∞ if and only if x is
an adherent point of {xt : t ≥ 0}.

Proposition 4. Let f ∼ GP(0, k) be a prior over functions on a compact space X ∈ RD and
Vt : X → R be a continuous acquisition function for ft. If k is a continuous kernel that admits the
no-empty-ball property and

kt(x,x) > kt(x
′,x′) = 0 =⇒ Vt(x) > Vt(x

′) ∀t ∈ N and ∀x,x′ ∈ X , (15)

then the sequence (xt) of points xt ∈ argmaxx∈X Vt(x) is dense in X .

Proof. Follows immediately from [47]. Without loss of generality, suppose Vt(x) is non-negative and
equals zero if and only if kt(x,x) = 0. Let (xat

) and (xbt) be subsequence of (xt) that converge to
an accumulation point z ∈ X and write αt = max{ai : ai ≤ t} and βt = max{bi : bi ≤ t}. Then,

Var[f(xαt
) | f(Xt)] ≤ Var[f(xαt

) | f(xβt
)]

≤ k(xαt
,xαt

) + k(xβt
,xβt

)− 2k(xαt
,xβt

).
(16)

Since (xat
) and (xbt) both converge to z and k is assumed continuous, (16) goes to zero as t→∞.

Consequently, Vat
(xat

) and, therefore, Vt(xt) must also vanish as t→∞ [47, Proposition 12]. By
definition of xt, it follows that limt→∞ maxx∈X kt(x,x) = 0. The no-empty-ball property now
gives the result.

Proposition 5. LetX ⊆ RD be convex and suppose that X ⊆ X generates an ε-cover ofX . For every
x ∈ X and ρ ≥ ε, the intersection of the set X and the ball B(x, ρ) = {x′ ∈ X : ∥x− x′∥∞ ≤ ρ}
generates a 2ε-cover of B(x, ρ).

Proof. Consider the ball B(x, r) with radius r = ρ − ε. Since X is convex, for every point
a ∈ B(x, ρ) there exists a b ∈ B(x, r) such that ∥a− b∥∞ ≤ ε. Moreover, because X generates an
ε-cover of X , for every point b ∈ B(x, r) there exists a c ∈ X so that ∥b− c∥∞ ≤ ε, which implies
that c ∈ B(x, ρ). It follows by the triangle inequality that for every point a ∈ B(x, ρ) there exists a
pair of points b, c ∈ B(x, r)× [B(x, ρ) ∩X] such that

∥a− c∥∞ ≤ ∥a− b∥∞ + ∥b− c∥∞ ≤ ε+ ε = 2ε, (17)

which completes the proof.

Lemma 6. Under assumptions A1 and A2, if y(·) ∼ N
(
f(·), γ2

)
is observed on a set of points

X ⊆ X that generates an ε-cover of X , 0 ≤ ε ≤ min{1, k(x,x)/Lk}, then

Var[f(x) | y(X)] ≤ κε(x), (18)

where

κε(x) =

[
4Lkρ(ε)k(x,x)− L2

kρ(ε)
2
]
η(ε) + γ2k(x,x)

[k(x,x) + 2Lkρ(ε)]η(ε) + γ2

is given in terms of η(ε) = max{1, ρ(ε)/4ε}D and ρ(ε) = εε for any 0 < ε < 1.
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Proof. This result extends Lederer et al. [26, Theorem 3.1], who showed that, for all 0 ≤ ρ ≤
k(x,x)/Lk,

Var[f(x) | y(Bρ(x))] ≤
(
4Lkρk(x,x)− L2

kρ
2
)
|Bρ(x)|+ γ2k(x,x)

(k(x,x) + 2Lkρ)|Bρ(x)|+ γ2
, (19)

where |Bρ(x)| is the cardinality of the set Bρ(x) = B(x, ρ) ∩X. We would like to convert this
upper bound into a function of 0 ≤ ε ≤ 1. To this end, begin by noticing that the bound (19)
increases monotonically on 0 ≤ ρ ≤ k(x,x)/Lk and decreases monotonically on n = |Bρ(x)| ∈ N0.
Substituting ρ(ε) for ρ and η(ε) for n therefore yields a valid bound so long as ρ ≤ ρ(ε) ≤ k(x,x)/Lk

and 0 ≤ η(ε) ≤ n. For clarity, note that ρ(ε) defines the radius of a ball around x and η(ε) denotes
the minimum possible number of elements from X that lie within this ball.

Starting with the latter, lower bounds on the cardinality of Bρ(x) may be obtained from the fact
that X is assumed to generate an ε-cover of X . By Proposition 5, it follows that Bρ(x) generates a
2ε-cover of B(x, ρ). Accordingly, |Bρ(x)| must be greater-equal to the minimum number of points
required to construct such a cover. Under the ∥·∥∞ norm, the ε-covering number of a ball

B(x, ρ) =

D∏
d=1

[max(xd − ρ, 0),min(xd + ρ, 1)] (20)

is given by

M
(
B(x, ρ), ∥·∥∞, ε

)
=

D∏
d=1

⌈
min(xd + ρ, 1)−max(0, xd − ρ)

2ε

⌉
. (21)

This number is minimized when B(·, ρ) is placed in a corner, such as B(0, ρ) = [0, ρ]D. Choosing

η(ε) = max

{
1,

(
ρ(ε)

4ε

)D
}
≤
⌈
ρ(ε)

4ε

⌉D
(22)

therefore ensures that η(ε) lower bounds the cardinality of every Bρ(·). Note that there are two
factors of two at play here: one accounts for the fact that Bρ(·) is only guaranteed to provide a
2ε-cover of B(·, ρ), and the other accounts for the fact that the corner balls are up to 2D times smaller
than other balls with the same radius.

Turning our attention to the choice of function ρ(ε), some desiderata come into focus. First, we
require ρ(ε) ≥ ε so that every Bρ(·) is nonempty. Second, we desire limε→0+ ρ(ε) = 0 because the
resulting posterior variance bound will increase monotonically in ρ(ε). Lastly, we want the ratio of
ρ(ε) to ε to diverge to infinity as ε approaches zero from above so that limε→0+ η(ε) =∞. Based
on these criteria, a convenient choice when X = [0, 1]D is

ρ(ε) = εα 0 < α < 1. (23)

In summary, the claim follows by expressing ρ as a function of ε and using it to lower bound |Bρ(·)|
with η(ε):

Var[f(x) | y(X)] ≤
(
4Lkρ(ε)k(x,x)− L2

kρ(ε)
2
)
η(ε) + γ2k(x,x)

(k(x,x) + 2Lkρ(ε))η(ε) + γ2
. (24)

Proposition 7. For any choice of constants a > 0, b ≥ 0, c ≥ 0,∫ c

0

√
log(1 + bε−1/a)dε ≤ c

√
a−1 + log

(
1 + bc−1/a

)
. (25)

Proof. This proof ammends Grünewälder et al. [18, Appendix A]. Let ξ = (1 + a
√
cb−1)a so that∫ c

0

√
log
(
1 + bε−1/a

)
dε ≤

∫ c

0

√
log
(
ξ1/abε−1/a

)
dε. (26)
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Next, define auxiliary functions

f(u) =
√

log
(
u−1/a

)
g(ε) =

ε

ξba
(27)

such that f(g(ε)) =
√

log
(
ξ1/abε−1/a

)
and use them to integrate by substitution as∫ c

0

√
log
(
ξ1/abε−1/a

)
dε = ξba

∫ g(c)

0

√
log
(
u−1/a

)
du =

ξba√
a

∫ g(c)

0

√
− log(u)du. (28)

The Cauchy-Schwarz inequality now gives∫ g(c)

0

√
− log(u)du ≤

(∫ g(c)

0

du

)1/2(
−
∫ g(c)

0

log(u)du

)1/2

=
c

ξba

√
1− log

(
c

ξba

)
. (29)

Hence, the claim follows∫ c

0

√
log
(
1 + bε−1/a

)
dε ≤ c

√
1 + log(ξbac−1)

a
= c
√

a−1 + log
(
1 + bc−1/a

)
. (30)

Remark 8. For comparison with Grünewälder et al. [18], if ba = 2c then Proposition 7 gives

ξ =
(
1 + 2−

1/a
)a
≤ 2a =⇒ c

√
1 + log(ξbac−1)

a
= c

√
1 + log(2ξ)

a
≤ c

√
log(e2a+1)

a
, (31)

which matches their reported result.
Lemma 9. Let f ∼ GP(0, k) be a Gaussian process with an Lk-Lipschitz continuous covariance
function k : X 2 → R on X = [0, r]D having maximum variance σ2 = maxx∈X k(x,x). Then,

E
[
sup
x∈X

f(x)

]
≤ 12σ

√
2D +D log(1 + 4Lkrσ−2). (32)

Proof. This proof paraphrases parts of Grünewälder et al. [18, Section 4.3].

Massart [30, Theorem 3.18] proved that the expected supremum of f is upper bounded by

E
[
sup
x∈X

f(x)

]
≤ 12

∫ σ

0

√
logN(X , dk, ε)dε, (33)

where N(X , dk, ε) is defined as the ε-packing number—i.e. the largest number of points that can
be “packed” inside of X without any two points being within ε of one another—under the canonical
pseudo-metric3

dk(x,x
′) = E

[
(f(x)− f(x′))2

]1/2
=
√

k(x,x)− 2k(x,x′) + k(x′,x′). (34)

We may use (33) by upper bounding the right-hand side with a known quantity. We will bound the
ϵ-packing number N(X , dk, ε), translate this bound from the dk pseudo-metric to the infinity norm,
and then integrate the result.

The first step follows immediately from the fact that the ε-packing number is smaller than the ε
2 -

covering number—defined as the minimum number of balls B(·, ε
2 ) required to cover X . The second

is accomplished by using Lipschitz continuity of k to show that the squared pseudo-metric dk(·, ·)2
is 2Lk-Lipschitz: for all x,x′ ∈ X ,

dk(x,x
′)2 =

[
k(x,x)− k(x,x′)

]
+
[
k(x′,x′)− k(x′,x)

]
≤ 2Lk∥x− x′∥∞. (35)

It follows that, for any set X ⊆ X ,

max
x∈X

min
x′∈X

∥x− x′∥∞ ≤ C =⇒ max
x∈X

min
x′∈X

dk(x,x
′) ≤

√
2LkC. (36)

3While dk has most of the properties of a proper metric, dk(x,x′) = 0 need not always imply x = x′ [2].
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An ε2/8Lk-cover under the infinity norm therefore guarantees an ε/2-cover under dk. The former may
be constructed from a grid of uniformly spaced points with elements at intervals of ε2/4Lk. This grid
will consist of

⌈
4Lkrε

−2
⌉D

points assuming X = [0, r]D, meaning that

N(X , dk, ε) <
(
1 + 4Lkrε

−2
)D

. (37)

To complete the proof, use Proposition 7 with a = 1
2 , b = 4Lkr, and c = σ to show that

E
[
sup
x∈X

f(x)

]
≤ 12

√
D

∫ σ

0

√
log(1 + 4Lkrε−2)dε ≤ 12σ

√
2D +D log(1 + 4Lkrσ−2). (38)

Proposition 1. Under assumptions A1–A3 and for all regret bounds ϵ > 0 and risk tolerances δ > 0,
there almost surely exists T ∈ N0 so that, at each time t ≥ T , every st ∈ argmaxx∈X µt(x) satisfies

Ψt(x; ϵ) = P(rt(st) ≤ ϵ) ≥ 1− δ. (8)

Proof. Consider the centered process
gt(·) =

[
ft(·)− µt(·)

]
−
[
ft(st)− µt(st)

]
, (39)

with covariance
ct(x,x

′) = kt(x,x
′)− kt(x, st)− kt(st,x

′) + kt(st, st). (40)
The term µt(st)− µt(·) is nonnegative by construction such that

g∗t = sup
x∈X

gt(x) ≥ f∗
t − ft(st) f∗

t = sup
x∈X

ft(x) (41)

and, therefore,
P(g∗t ≥ ϵ) ≥ P(f∗

t − ft(st) ≥ ϵ). (42)

We would now like to use the Borell-TIS inequality [8, 46] to show that: if ϵ > E(g∗t ), then

P(g∗t ≥ ϵ) ≤ exp

(
−1

2

[
ϵ− E(g∗t )

2σt

]2)
, (43)

where σt = maxx∈X
√
kt(x,x) and 2σt appears in the denominator (rather than σt) because

maxx∈X ct(x,x) ≤ 4σ2
t . Since (43) is an increasing, continuous function of both σt ≥ 0 and

0 ≤ E(g∗t ) < ϵ, the claim will hold if these quantities vanish as the (global) fill distance ht =
maxx∈X min1≤i≤t∥x− xi∥∞ goes to zero.

The former result is an immediate consequence of Lemma 6. Regarding the latter, ft(st)− µt(st) is
a centered random variable. It follows by linearity of expectation that

E(g∗t ) = E
[
sup
x∈X

ft(x)− µt(x)

]
. (44)

Next, denote the canonical pseudo-metric at time t by

dkt(x,x
′) = E

[
(ft(x)− ft(x

′))2
]1/2

=
√

kt(x,x)− 2kt(x,x′) + kt(x′,x′). (45)

This pseudo-metric is non-increasing in t. To see this, let β = k(xt+1,x)− k(xt+1,x
′) and write

dkt+1
(x,x′)2 = kt+1(x,x)− 2kt+1(x,x

′) + kt+1(x
′,x′)

= kt(x,x)− 2kt(x,x
′) + kt(x

′,x′)

dkt (x,x
′)2

−β2
[
kt(xt+1,xt+1) + γ2

]−1

≥0

. (46)

As t increases, points therefore become closer together under the dkt
pseudo-metric. For this reason,

the posterior ε-packing number N(X , dkt
, ε) is less-equal to the prior ε-packing number N(X , dk, ε).

By Lemma 9, we now have

E(g∗t ) ≤
∫ σt

0

√
logN(X , dkt

, ε)dε

≤
∫ σt

0

√
logN(X , dk, ε)dε

≤ 12σt

√
2D +D log

(
1 + 4Lkσ

−2
t

)
.

(47)
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From here, note that (47) is an increasing, continuous function of σt that vanishes as σt →∞. By
Lemma 6, the same is true of σt as a function of ht. As a result, (43) becomes arbitrarily small as
ht → 0 and there exists a constant h∗ > 0 such that this upper bound is less-equal to δ whenever
ht ≤ h∗. Finally, since (xt) is almost surely dense in X , there almost surely exists a time T ∈ N0

such that
t ≥ T =⇒ ht ≤ h∗ =⇒ P(g∗t > ϵ) ≤ δ =⇒ P(f∗

t − ft(st) > ϵ) ≤ δ. (48)

Corollary 10. Suppose assumptions A1–A3 hold and that there exists a constant ϵ′ > 0 so that

lim
t→∞

[
max
x∈X

µt(x)− µt(st)

]
≤ ϵ′ (49)

with probability one, where st ∈ argmaxx∈Xt
µt(x). Then, for every ϵ > ϵ′ and δ ∈ (0, 1], there

almost surely exists a time T ∈ N such that, for all t ≥ T ,

P
[
sup
x∈X

ft(x)− ft(st) ≤ ϵ

]
≥ 1− δ. (50)

Proof. Per (49), there almost surely exists an S ∈ N such that t ≥ S =⇒ maxx∈X µt(x) −
µt(st) ≤ ϵ′. Proposition 1 therefore implies there almost surely exists a T ≥ S so that

t ≥ T =⇒ P
[
f∗
t − ft(st) ≥ ϵ− ϵ′

]
≤ δ, (51)

which completes the proof.

The assumption that the posterior mean approaches its maximum on (xt) protects against adversarial
cases where—no matter how densely we observe f—there is always an x ∈ X \Xt so that µt(x)
exceeds µt(st) by at least ϵ. Note that (49) becomes a necessary condition when δ < 1

2 . Nevertheless,
it is unclear how to ensure this condition without making stronger assumptions for f and (xt).
One can use A2 and the Cauchy-Schwarz inequality to show that the posterior mean is Lipschitz
continuous [27]; but, its Lipschitz constant may continue to grow as t→∞, so (49) may not hold.

C Experiment details

Experiments were run using a combination of GPFlow [31] and Trieste [36]. Runtimes reported in
Figure 3 were measured on an Apple M1 Pro Chip using an off-the-shelf build of TensorFlow [1].

C.1 Model specification

We employed Gaussian process priors f ∼ GP(µ, k) with constant mean functions µ(·) = c and
Matérn-5/2 covariance functions equipped with ARD lengthscales.

True When optimizing functions drawn from GP priors, we set the prior mean to zero and used
unit variance kernels with lengthscales ℓi = 1

4

√
D. Noise variances are reported alongside results.

MAP When optimizing black-box functions, we employed broad and uninformative hyperpriors.
Let [X ]i = [ai, bi] be the range of the i-th design variable, qt : [0, 1] → R be the empirical
quantile function of y at time t, and νt = Var

[
yt−1

]
be the empirical variance of observations

yt−1 = {y(x1), . . . , y(xt−1)}. Our hyperpriors are then as follows:

Name Distribution Parameters

Constant Mean Uniform(a, b) a = qt(0.05) b = qt(0.95)

Log Kernel Variance Uniform(a, b) a = log(10−1νt) b = log(10νt)

Log Noise Variance Uniform(a, b) a = log(10−9νt) b = log(10νt)

i-th Lengthscale LogNormal(µ, σ) µ = 1
2 (bi − ai) σ = 1

Note that we directly parameterize certain hyperparamters in log-space and that, e.g., log(θ) ∼
Uniform(a, b) is not the same as θ ∼ LogUniform(ea, eb).
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C.2 Link function

When modeling classification rates for MNIST and Adult, we used a logit (i.e. inverse sigmoid) link
function,

g(y) = log

(
y

1− y

)
g−1(x) =

1

1 + e−x
, (52)

in order so that g−1 ◦ f : X → [0, 1]. When evaluating stopping rules, we handled this link
functions by pulling draws of, e.g., ft(x) backward through g and using te resulting values to
estimate expectations and probabilities. This approach was used for all but ∆CB [29], where we
instead computed g−1 ◦UCBt and g−1 ◦ LCBt.

C.3 Acquisition function

In our experiments, we defined the set of feasible solutions at time t ∈ N as the set of previously
evaluated points Xt. Under these circumstances, one can show that the optimal one-step policy is
given by an “in-sample” version of the Knowledge Gradient strategy [34, 15]. Let

µt+1(·;x, z) = µt(·) +
kt(·,x)z√

kt(x,x) + γ2
σt+1(·;x) = σt(·)−

kt(·,x)2

kt(x,x) + γ2
(53)

be the posterior mean and variance of f at time t+1 if we observe yt+1 = µt(x)+z
√

kt(x,x) + γ2,
where z ∼ N (0, 1). Further, at times t and t+ 1 define

νt(x) = E[(g−1 ◦ ft)(x)] = E[g−1(ξ)] ξ ∼ N (µt(x), σ
2
t (x)) (54)

as the corresponding expected value when accounting for a link function. If no link function is given,
then νt(·) = µt(·). Then, the aforementioned acquisition function is given by

ISKGt(x) = Ez

[
max νt+1(Xt ∪ {x};x, z)

]
−max νt(Xt) z ∼ N (0, 1). (55)

ISKG is identical to the Expected Improvement function when γ2 = 0 [39], but avoids pathologies
(such as re-evaluating previously observed points) when γ2 > 0.

In practice, we estimated (55) with Gauss-Hermite quadrature and maximized it using multi-start
gradient ascent [50, 5]. Likewise, we either evaluated (54) analytically or via quadrature. Starting
positions we obtained by running CMA-ES [19] several times to partial convergence. The best point
from each run was then combined with a large number of random points and the top 16 points were
fine-tuned using L-BFGS-B [10].

C.4 Convolutional neural networks Name Low High

Num. filters 1 64
Num. epochs 1 25

Log learning rate log
(
10−5

)
0

Dropout rate 0 1

When training convolutional neural networks
(CNNs) on MNIST [14], we used a simple ar-
chitecture consisting of two convolutional layers
with 3× 3 filters and ReLU activation functions
[3] followed by max pooling layers with a pool-
size of 2. The output of the final pooling layer was flattened and subjected to dropout before being
passed to a dense classification layer consisting of ten neurons. Each model was trained using Adam
[24], with batches of size 64. The search space for this problem is depicted on the right. Integer
valued parameters were handled by rounding to the nearest value. To obtain a reliable estimate of the
minimum achievable misclassification rate, the same random seed was used for each training run.

C.5 XGBoost classifiers Name Low High

Max. tree depth 1 10
Log num. estimators 0 log(103)

Log learning rate log
(
10−3

)
0

We used an off-the-shelf implementation of XG-
Boost [12] for the the adult income classifica-
tion problem [7]. The search space was three-
dimensional and is shown on the right. Integer
valued parameters were handled by rounding to the nearest value. To obtain a reliable estimate of
the minimum achievable misclassification rate, the same random seed was used to when generating
train-test splits and for each training run.
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D Extended results

D.1 Results without adjusted cutoff values

Problem D T Oracle† Budget† Acq ∆CB ∆ES PRB

GP† 10−6 2 64 10 (100) 17 (96) 28 (100) 12 (89) 14 (94) 17 (97)

GP† 10−2 2 128 11 (100) 22 (96) 78 (100) 82 (100) 18 (91) 23 (99)

GP† 10−6 4 128 27 (100) 64 (95) 90 (100) 23 (66) 28 (74) 64 (99)

GP† 10−2 4 256 30 (100) 94 (95) 106 (98) 256 (100) 36 (65) 86 (96)

GP† 10−6 6 256 40 (99) 124 (95) 142 (98) 31 (50) 46 (65) 134 (98)

GP† 10−2 6 512 65 (100) 227 (96) 181 (96) 512 (100) 45 (34) 235 (100)

GP 10−6 4 128 35 (100) 79 (95) 92 (100) 18 (30) 22 (41) 61 (88)

GP 10−2 4 256 51 (100) 157 (95) 128 (97) 224 (80) 27 (22) 100 (92)

Branin 2 128 19 (100) 25 (95) 64 (100) 31 (99) 32 (100) 33 (99)

Hartmann 3 64 14 (100) 22 (96) 26 (100) 15 (83) 17 (84) 19 (100)

Hartmann 6 64 36 (67) 256 (67) 40 (67) 26 (46) 30 (56) 40 (64)

Rosenbrock 4 96 34 (100) 46 (95) 95 (100) 68 (99) 71 (100) 84 (100)

CNN 4 256 5 (100) 11 (96) 64 (100) 8 (92) 14 (94) 17 (100)

XGBoost 3 128 4 (100) 8 (97) 128 (100) 16 (97) 19 (99) 28 (99)

Table 2: Same as Table 1, but where ϵ is used as the cutoff value for ∆CB and ∆ES.

D.2 Detailed results

This section provides an in-depth breakdown of experiments presented in the body. Results for each
problem are presented in the order they appeared in Table 1.

In each of the following table, we report statistics for each of the following metrics:

1. Succeeded: whether or not an ϵ-optimal point was returned.
2. Terminated: whether or not the stopping rule kicked in prior to reaching upper limit T .
3. Stopping Time: the number of function evaluations requested.
4. Regret: latent values supx∈X f(x)− f(st) where st ∈ argmaxx∈Xt

µt(x) is a maximizer
of the posterior mean at the time of stopping; reported in log10 scale.

5. Excess Regret: latent values supx∈X f(x)− f(st) + ϵ for runs where regrets exceeded ϵ;
reported in log10 scale.

For the final three metrics, medians and interquartile ranges are shown alongside the mean. Similar
to the preceding section, results for ∆CB and ∆ES are reported using ϵ as the cutoff values to give a
better picture of how these methods perform in the absence of post-hoc calibration.
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Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.96 1.00 0.89 0.94 0.97

Terminated mean 1.00 1.00 1.00 1.00 1.00 1.00

Stopping Time

mean 10.52 17.00 30.14 13.02 15.01 17.81
25% 8.00 17.00 24.00 10.00 12.00 14.00
50% 9.00 17.00 28.50 12.00 14.00 17.00
75% 12.00 17.00 36.00 15.00 17.00 21.00

Regret

mean -5.71 -3.59 -4.78 -2.49 -3.07 -3.47
25% -6.07 -4.33 -4.99 -2.69 -3.47 -3.92
50% -5.36 -3.20 -4.36 -2.04 -2.57 -2.99
75% -4.82 -2.30 -4.00 -1.44 -2.00 -2.36

Excess Regret

mean – -1.26 – -0.69 -0.93 -1.15
25% – -1.32 – -1.00 -1.10 -1.30
50% – -0.98 – -0.86 -0.98 -1.03
75% – -0.92 – -0.21 -0.87 -0.94

Table 4: Results on GP† in D = 2 dimensions with noise variance γ2 = 10−6.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.96 1.00 1.00 0.91 0.99

Terminated mean 1.00 1.00 0.76 0.94 1.00 1.00

Stopping Time

mean 10.35 22.00 77.62 84.80 18.36 27.06
25% 8.00 22.00 43.75 70.00 14.75 17.00
50% 10.00 22.00 78.50 82.00 18.00 23.00
75% 12.00 22.00 126.25 99.00 21.00 32.00

Regret

mean -4.48 -2.73 -3.48 -3.34 -2.51 -2.66
25% -4.55 -2.63 -3.56 -3.61 -2.40 -2.65
50% -3.97 -1.88 -2.88 -2.87 -1.77 -1.91
75% -3.28 -1.46 -2.31 -2.30 -1.32 -1.59

Excess Regret

mean – -1.59 – – -1.54 -0.11
25% – -1.84 – – -1.60 -0.11
50% – -1.66 – – -1.21 -0.11
75% – -1.41 – – -1.02 -0.11

Table 6: Results on GP† in D = 2 dimensions with noise variance γ2 = 10−2.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 1.00 0.66 0.74 0.99

Terminated mean 1.00 1.00 0.96 1.00 1.00 0.99

Stopping Time

mean 28.48 64.00 86.36 25.61 30.36 63.68
25% 17.75 64.00 69.75 18.00 22.75 46.00
50% 26.00 64.00 90.00 23.00 28.00 64.00
75% 34.00 64.00 104.00 30.25 37.00 78.00

Regret

mean -3.86 -3.06 -3.47 -1.53 -1.89 -3.15
25% -4.24 -3.56 -3.77 -1.98 -2.50 -3.49
50% -3.73 -3.11 -3.41 -1.49 -1.84 -3.10
75% -3.33 -2.67 -3.00 -0.81 -0.90 -2.70

Excess Regret

mean – -1.32 – -0.81 -0.87 -2.67
25% – -1.70 – -1.26 -1.25 -2.67
50% – -1.18 – -0.82 -0.85 -2.67
75% – -0.62 – -0.47 -0.53 -2.67

Table 8: Results on GP† in D = 4 dimensions with noise variance γ2 = 10−6.
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Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 0.98 1.00 0.65 0.96

Terminated mean 1.00 1.00 1.00 0.39 1.00 1.00

Stopping Time

mean 35.48 94.00 111.38 235.76 38.16 90.32
25% 19.00 94.00 87.75 223.75 26.00 67.00
50% 28.50 94.00 106.50 256.00 36.00 86.50
75% 42.00 94.00 138.25 256.00 46.00 113.25

Regret

mean -2.62 -2.05 -2.09 -2.23 -1.34 -2.01
25% -2.66 -2.35 -2.35 -2.46 -1.66 -2.21
50% -2.36 -1.82 -1.87 -1.99 -1.25 -1.81
75% -1.92 -1.52 -1.62 -1.73 -0.87 -1.50

Excess Regret

mean – -1.50 -1.72 – -1.08 -1.57
25% – -1.63 -1.91 – -1.50 -1.92
50% – -1.45 -1.72 – -0.95 -1.49
75% – -1.30 -1.54 – -0.73 -1.14

Table 10: Results on GP† in D = 4 dimensions with noise variance γ2 = 10−2.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 0.99 0.95 0.98 0.50 0.65 0.98

Terminated mean 0.99 1.00 0.92 1.00 1.00 0.96

Stopping Time

mean 55.33 124.00 150.91 35.82 48.86 141.24
25% 25.00 124.00 112.25 24.00 29.75 97.00
50% 39.50 124.00 142.50 31.00 45.50 133.50
75% 77.25 124.00 191.00 41.25 63.25 178.00

Regret

mean -3.21 -2.60 -2.85 -1.11 -1.52 -2.79
25% -3.71 -3.04 -3.17 -1.66 -2.13 -3.15
50% -3.15 -2.69 -2.78 -1.03 -1.67 -2.77
75% -2.69 -2.26 -2.50 -0.50 -0.74 -2.47

Excess Regret

mean -2.74 -1.23 -2.21 -0.75 -0.83 -2.21
25% -2.74 -1.54 -2.47 -1.04 -1.11 -2.47
50% -2.74 -1.16 -2.21 -0.65 -0.76 -2.21
75% -2.74 -0.84 -1.94 -0.23 -0.30 -1.94

Table 12: Results on GP† in D = 6 dimensions with noise variance γ2 = 10−6.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.96 0.96 1.00 0.34 1.00

Terminated mean 1.00 1.00 1.00 0.29 1.00 1.00

Stopping Time

mean 77.15 227.00 183.30 482.08 51.67 231.73
25% 33.00 227.00 138.00 499.00 30.50 170.00
50% 64.00 227.00 181.00 512.00 45.00 235.00
75% 96.50 227.00 219.00 512.00 63.50 295.00

Regret

mean -2.16 -1.71 -1.66 -1.98 -0.80 -1.77
25% -2.41 -1.97 -1.85 -2.25 -1.19 -2.02
50% -2.00 -1.70 -1.62 -1.91 -0.64 -1.76
75% -1.72 -1.37 -1.35 -1.60 -0.38 -1.53

Excess Regret

mean – -1.51 -1.98 – -0.72 –
25% – -1.73 -2.69 – -0.88 –
50% – -1.60 -2.13 – -0.56 –
75% – -1.39 -1.42 – -0.37 –

Table 14: Results on GP† in D = 6 dimensions with noise variance γ2 = 10−2.
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Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 1.00 0.30 0.41 0.88

Terminated mean 1.00 1.00 0.92 1.00 1.00 0.98

Stopping Time

mean 38.75 79.00 87.94 19.41 24.25 62.57
25% 21.50 79.00 70.75 15.75 18.00 48.25
50% 34.00 79.00 91.50 18.00 22.00 61.00
75% 50.50 79.00 102.00 22.00 29.00 75.25

Regret

mean -3.80 -3.08 -3.41 -0.70 -1.01 -2.70
25% -4.17 -3.59 -3.70 -1.25 -1.79 -3.27
50% -3.66 -3.13 -3.27 -0.34 -0.59 -2.85
75% -3.15 -2.58 -2.95 -0.08 -0.17 -2.24

Excess Regret

mean – -1.34 – -0.37 -0.43 -0.87
25% – -1.70 – -0.53 -0.59 -1.41
50% – -1.47 – -0.25 -0.26 -0.66
75% – -0.88 – -0.04 -0.07 -0.49

Table 16: Results on GP in D = 4 dimensions with noise variance γ2 = 10−6.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 0.97 0.80 0.22 0.92

Terminated mean 1.00 1.00 0.99 0.60 1.00 0.99

Stopping Time

mean 58.53 157.00 130.53 179.00 28.60 100.40
25% 29.75 157.00 99.50 122.25 20.00 73.75
50% 50.00 157.00 128.50 224.00 27.00 100.50
75% 74.75 157.00 154.50 256.00 35.00 129.50

Regret

mean -2.59 -2.03 -2.05 -1.78 -0.52 -1.82
25% -2.67 -2.24 -2.26 -2.29 -0.90 -2.07
50% -2.32 -1.79 -1.79 -1.76 -0.33 -1.69
75% -1.93 -1.51 -1.50 -1.20 -0.09 -1.39

Excess Regret

mean – -1.65 -2.09 -0.48 -0.45 -1.62
25% – -2.83 -2.40 -0.84 -0.74 -1.78
50% – -1.39 -1.76 -0.31 -0.27 -1.55
75% – -0.63 -1.62 -0.01 -0.06 -1.31

Table 18: Results on GP in D = 4 dimensions with noise variance γ2 = 10−2.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 1.00 0.99 1.00 0.99

Terminated mean 1.00 1.00 0.00 1.00 1.00 1.00

Stopping Time

mean 17.40 25.00 64.00 29.39 31.27 32.17
25% 13.00 25.00 64.00 27.00 28.00 31.00
50% 18.00 25.00 64.00 31.00 32.00 33.00
75% 21.25 25.00 64.00 32.00 34.00 35.00

Regret

mean -6.27 -2.14 -5.93 -2.79 -3.00 -3.10
25% -6.41 -2.79 -6.23 -3.08 -3.22 -3.44
50% -6.34 -1.97 -5.99 -2.75 -2.95 -3.07
75% -6.17 -1.45 -5.69 -2.36 -2.61 -2.72

Excess Regret

mean – -1.49 – 0.16 – 0.16
25% – -1.62 – 0.16 – 0.16
50% – -1.54 – 0.16 – 0.16
75% – -1.15 – 0.16 – 0.16

Table 20: Results on Branin in D = 2 dimensions.
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Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.96 1.00 0.83 0.84 1.00

Terminated mean 1.00 1.00 1.00 1.00 1.00 1.00

Stopping Time

mean 13.89 22.00 29.00 15.06 16.93 21.34
25% 11.00 22.00 24.00 14.00 16.00 17.00
50% 13.00 22.00 26.00 15.00 17.00 19.00
75% 15.25 22.00 30.00 16.00 18.00 21.00

Regret

mean -6.59 -3.59 -4.71 -1.78 -2.53 -3.39
25% -6.66 -4.39 -5.06 -2.20 -3.32 -3.81
50% -6.64 -3.81 -4.63 -1.98 -2.77 -3.41
75% -6.58 -3.32 -4.23 -1.61 -2.38 -2.90

Excess Regret

mean – -0.61 – -0.26 -0.08 –
25% – -0.80 – -0.17 -0.17 –
50% – -0.37 – -0.17 -0.17 –
75% – -0.18 – -0.17 -0.17 –

Table 22: Results on Hartmann in D = 3 dimensions.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 0.67 0.67 0.67 0.46 0.56 0.64

Terminated mean 0.67 0.00 1.00 1.00 1.00 1.00

Stopping Time

mean 104.85 256.00 41.30 23.15 29.43 40.52
25% 25.75 256.00 36.75 18.00 27.00 37.00
50% 35.00 256.00 39.50 26.00 30.00 40.00
75% 256.00 256.00 42.00 31.00 35.00 43.00

Regret

mean -4.12 -4.12 -2.44 -0.91 -1.56 -2.30
25% -5.70 -5.70 -3.31 -1.75 -2.48 -3.29
50% -5.69 -5.69 -2.88 -0.85 -1.98 -2.82
75% -0.92 -0.92 -0.92 0.03 -0.84 -0.92

Excess Regret

mean -1.72 -1.72 -1.70 -0.36 -0.76 -1.50
25% -1.72 -1.72 -1.71 -1.09 -1.52 -1.71
50% -1.72 -1.72 -1.71 -0.59 -1.13 -1.70
75% -1.72 -1.72 -1.69 0.47 0.42 -1.67

Table 24: Results on Hartmann in D = 6 dimensions.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.95 1.00 0.99 1.00 1.00

Terminated mean 1.00 1.00 1.00 1.00 1.00 1.00

Stopping Time

mean 32.78 46.00 95.28 67.05 71.66 84.17
25% 26.00 46.00 92.00 66.00 69.00 81.00
50% 33.00 46.00 95.00 68.00 71.00 84.00
75% 41.00 46.00 99.00 71.00 74.00 88.00

Regret

mean -9.00 -4.93 -9.00 -8.38 -8.85 -9.00
25% -9.00 -5.00 -9.00 -9.00 -9.00 -9.00
50% -9.00 -4.60 -9.00 -9.00 -9.00 -9.00
75% -9.00 -4.28 -9.00 -9.00 -9.00 -9.00

Excess Regret

mean – -5.28 – -3.27 – –
25% – -5.35 – -3.27 – –
50% – -5.23 – -3.27 – –
75% – -4.60 – -3.27 – –

Table 26: Results on Rosenbrock in D = 4 dimensions.
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Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.96 1.00 0.92 0.94 1.00

Terminated mean 1.00 1.00 0.00 1.00 0.98 0.96

Stopping Time

mean 4.98 11.00 64.00 11.55 20.37 24.30
25% 2.00 11.00 64.00 6.00 11.00 10.25
50% 4.00 11.00 64.00 8.00 14.00 17.00
75% 7.00 11.00 64.00 16.00 26.00 33.25

Regret

mean -5.05 -2.89 -4.22 -2.75 -3.18 -3.47
25% -9.00 -2.92 -3.52 -2.92 -3.15 -3.28
50% -3.52 -2.80 -3.30 -2.72 -2.96 -3.05
75% -3.40 -2.59 -3.15 -2.55 -2.74 -2.83

Excess Regret

mean – -2.32 – -2.68 -2.87 –
25% – -2.39 – -2.93 -3.34 –
50% – -2.32 – -2.66 -2.68 –
75% – -2.24 – -2.42 -2.31 –

Table 28: Results on CNN in D = 4 dimensions.

Metric Stat. Oracle† Budget† Acq ∆CB ∆ES PRB
Succeeded mean 1.00 0.97 1.00 0.97 0.99 0.99

Terminated mean 1.00 1.00 0.21 1.00 1.00 1.00

Stopping Time

mean 3.74 8.00 121.73 16.90 19.57 28.51
25% 2.00 8.00 128.00 11.00 13.00 22.50
50% 3.00 8.00 128.00 16.00 19.00 28.00
75% 6.00 8.00 128.00 21.00 23.75 34.50

Regret

mean -8.52 -2.83 -3.79 -3.25 -3.34 -3.59
25% -9.00 -2.82 -3.61 -3.21 -3.31 -3.31
50% -9.00 -2.66 -3.31 -2.83 -2.87 -3.07
75% -9.00 -2.48 -3.01 -2.66 -2.62 -2.83

Excess Regret

mean – -2.06 – -2.39 -2.64 -2.64
25% – -2.19 – -2.69 -2.64 -2.64
50% – -1.94 – -2.64 -2.64 -2.64
75% – -1.86 – -2.21 -2.64 -2.64

Table 30: Results on XGBoost in D = 3 dimensions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are either discussed in the body or in Appendix B.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The primary limitation of the proposed is that it relies on an underlying model
being well-calibrated. This issue is clearly discussed at prominent locations in the text, such
as the introduction and experiments section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions are clearly stated throughout the paper (e.g., in Section 4) and
detailed proofs are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details are provided in the text or in supplementary material and code is
available online.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available online at https://github.com/j-wilson/trieste_
stopping.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in the text or in supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Extended results are reported in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No] .
Justification: We ran thousands of experiments on mixed hardware at different points in time
and did not keep track.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This question is not particular relevant to our submission, since our focus is on
making existing optimization algorithms, e.g., more cost-efficient.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This question is not particular relevant to our submission, since our focus is on
making existing optimization algorithms, e.g., more cost-efficient.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed methods do not lend themselves to this type of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The content of this paper was either created by the authors for use herein.
Borrowed material has been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No assets have been released at this time.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33


	Introduction
	Background
	Method
	How to simulate stopping conditions
	How to efficiently make robust decisions with Monte Carlo estimates

	Analysis
	Experiments
	Baselines
	Results with true models
	Results with maximum a posteriori models

	Conclusion
	Practical recommendations
	How to construct confidence intervals
	How to choose where to evaluate the stopping rule
	How to schedule risk tolerances estt

	Technical proofs
	Experiment details
	Model specification
	Link function
	Acquisition function
	Convolutional neural networks
	XGBoost classifiers

	Extended results
	Results without adjusted cutoff values
	Detailed results


