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Abstract

Federated Learning (FL) allows edge users to collaboratively train a global model
without sharing their private data. We propose FL-Talk, the first spectral steganog-
raphy-based covert communication framework in FL that enables stealthy in-
formation sharing between local clients while preserving FL convergence. We
demonstrate that the sender can encode the secret message strategically in the spec-
trum of his local model parameters such that after model aggregation, the receiver
can extract the message correctly from the ‘encoded’ global model. Furthermore,
we design a robust spectral message detection scheme for the receiver. Extensive
evaluation results show that FL-Talk can establish a stealthy and reliable covert
communication channel between clients without interfering with FL training.

1 Introduction
Federated Learning (FL) is a distributed learning paradigm that leverages plentiful data from the edge
users and collaboratively trains a global model without sharing sensitive data Konečnỳ et al. [2016],
Bonawitz et al. [2019]. FL has a wide range of applications, such as Google’s Android Keyboard,
Apple Siri’s voice recognition, and cyber-security Yang et al. [2018], Khan et al. [2021]. Existing
works have studied various security aspects of FL. With white-box access to the local model, the
attacker can perform model inversion attacks that recover the user’s private data Fredrikson et al.
[2015], Wu et al. [2016], or membership inference attacks that determine if a sample belongs to the
model’s training set Shokri et al. [2017], Li and Zhang [2020]. Meanwhile, malicious clients may
perform Byzantine attacks Fang et al. [2020], Lyu et al. [2020] or backdoor attacks Xie et al. [2019],
Bagdasaryan et al. [2020] against the FL system to divert the behavior of the global model.

In this paper, we focus on a different perspective of FL. Particularly, we investigate whether the
sharing mechanism of the global model can be exploited to establish unintended/unauthorized covert
communication between two clients during FL training. Note that the participant who sends the secret
message (i.e., the sender) can only encode information in the local model strategically such that the
embedded message ‘sustains’ model aggregation and remains unchanged in the global model. Covert
communication poses a severe threat to FL since malicious users may use it to collude and strengthen
other attacks (e.g., Byzantine/backdoor attacks Bagdasaryan et al. [2020], Fang et al. [2020]).

Developing an effective FL-based covert communication scheme is challenging since: (i) Information
embedding is indirect since the sender does not have control over the shared medium (i.e., the global
model); (ii) The sender needs to remain stealthy during FL training; (iii) The receiver does not know
when he can successfully recover the secret message from the shared resource (global model). We
show how FL-Talk’s novel spectral steganography approach solves the above challenges in Section 3.

We make the following contributions in this work:
• Demonstrating the first spectral steganography-based convert communication frame-

work for FL. We design a new message embedding scheme via weight spectrum modulation.
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• Proposing a comprehensive set of metrics to characterize the performance of a covert
communication scheme. We identify the prerequisites that an effective FL covert commu-
nication technique needs to satisfy.

• Developing a reliable spectral message detection and recovery technique. We design a
spectral decoding scheme that can detect the existence of the secret message and retrieve the
transmitted information from the global model.

This paper opens a new axis for the growing research on secure federated learning. FL-Talk sheds
light on the rarely explored vulnerability of FL to covert communication between clients. We believe
that defense methods against covert communication need to be developed to ensure FL safety.

2 Related Works
Covert Communication. A covert channel is a communication channel that can be exploited by
a process to transmit information between unauthorized parties in a way that violates the system
security policy Qiu et al. [1985]. Therefore, covert communication is a severe threat to privacy-
sensitive information systems. Multi-system covert communication endangers distributed systems
where a group of devices co-exists in the network. This threat has been demonstrated within
TCP/IP protocols Rowland [1997], multi-hop UAV networks Mallikarachchi et al. [2022], and
distributed antenna systems Zheng et al. [2019]. With this vulnerability, the adversary can obtain
secret information from the corrupted devices while performing normal tasks.

FedComm Hitaj et al. [2022] makes the first attempt to explore covert communication in FL. Particu-
larly, FedComm vectorizes the weights of all layers in the model and adapts Code-Division Multiple
Access Lupas and Verdu [1989] to encode the secret message in the weight parameters. Assuming
all clients participate in each round, FedComm derives mathematical equations for the embedding
strength and the lower bound on the FL training round before the message can be successfully
recovered. We detail the limitations of FedComm and our difference from it in Section 4.3.

Steganography for DNNs. Prior works have leveraged steganography to embed digital watermarks
in DNNs for Intellectual Property (IP) protection of trained models. These DNN watermarking
techniques insert the owner’s signature into the parameter distribution of the DNN (white-box
watermarking) Nagai et al. [2018], Darvish Rouhani et al. [2019] or the output response of the model
(black-box watermarking) Adi et al. [2018], Guo and Potkonjak [2018]. To claim the authorship of
the DNN, the model owner queries the target model and extracts the signature from the DNN internals
(white-box) or output behaviors (black-box). Later works extend DNN watermarking to FL where
local clients Li et al. [2021], Fan et al. [2021] or the server Tekgul et al. [2021] are considered the IP
owner. Although both DNN watermarking and our FL covert communication adapt steganography
techniques, the problem settings are different. Particularly, DNN watermarking only involves a single
party (i.e., model owner), while FL-Talk involves two separated parties (i.e., sender and receiver).

3 FL-Talk Methodology

Motivation. Establishing covert communication between clients gives a significant advantage to
malicious users. Existing Byzantine attacks Fang et al. [2020], Shejwalkar and Houmansadr [2021]
assume that the adversary can compromise the devices of several clients and manipulate their local
updates to undermine the global model. With a covert communication channel, Byzantine attacks
are practical since clients can collude and launch the attack without the coordination of a ‘central’
adversary. Similarly, FL backdoor attacks Xie et al. [2019], Bagdasaryan et al. [2020] can be more
stealthy and effective with covert communication between the malicious clients.

Problem Statement. We aim to demonstrate the vulnerability of FL to covert communication threats
in this work. Particularly, we show that two clients can establish a covert communication channel
by exploring global model sharing during FL training. We hypothesize that the root cause of FL’s
susceptibility to FL-Talk is the fault-tolerant nature of DNNs, which means that DNN’s accuracy is
not sensitive to small changes in weight parameters Reagen et al. [2018], Hoang et al. [2020]. This
property has been used by parameter pruning and model quantization Yu et al. [2017], Zhang et al.
[2018]. FL-Talk leverage the fault tolerance of DNNs to embed the sender’s secret message in the
spectrum of model parameters without affecting FL convergence. We identify the requirements for
an effective FL covert communication scheme and summarize the criteria in Table 1.
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Table 1: Requirements for an effective covert communication scheme in federated learning.

Requirements Description

Effectiveness The receiver can successfully decode the hidden message from the global model when the sender embeds
information in his/her local update.

Stealthiness Embedding of the secret message does not leave a noticeable trace in the sender’s local update.
Integrity Establishment of the covert communication channel shall not degrade/slow down FL training performance.
Capacity The sender can embed a secret message of sufficient length in his/her local model.

Efficiency The process of message embedding and recovery incur a negligible overhead.

Threat Model. FL-Talk involves two participants in the same FL system: a sender and a receiver. For
the sender, we assume he/she performs secret message embedding after regular local training in each
round. The sender and the receiver agree on the message embedding and recovery scheme beforehand.
The sender also generates public parameters used by message embedding. We assume the receiver
knows the public parameters and the layer location that carries the secret message. This information
can be transmitted by the sender via other available communication channels (i.e., no need to be kept
private). Additionally, the receiver stores the two most recent global models for message recovery.
For the cloud server, we assume that he/she uniformly randomly selects active clients to participate in
FL training in each communication round. Additionally, the server can inspect local updates from the
active participants and filter out the ‘abnormal’ ones. In this work, we assume the server performs
accuracy validation and parameter distribution comparison to identify anomalous local models.

FL-Talk Overview. We leverage the shared resource in FL (i.e., the global model) as the medium
to establish a covert communication channel between two clients. Figure 1 shows the high-level
overview of FL-Talk. We detail how message embedding and recovery work below.
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Figure 1: Global workflow of FL-Talk covert communication framework.

3.1 Spectral Message Embedding

FL-Talk spreads the secret message into the spectrum of the embedding layer’s weight for higher
robustness and stealthiness Shieh et al. [2004], Jiansheng et al. [2009]. This process works as follows:

(i) Generate covert communication parameters. We define the secret message as a binary sequence
b of length B where bk = {−1,+1} , k = 1, ..., B. For security consideration, FL-Talk has the
following parameters: (1) Position of the embedding layer (denoted by l) whose weights are used by
the sender to carry the secret message; (2) Reference pattern UB×M where B is the message length
and M is the weight dimension of the embedding layer. Note that rows in U are orthogonal to each
other. The kth row of U is used as the reference vector uk to carry the kth bit of the message bk.
Each element in ui has equal probabilities of taking two values: ui,j = {−σs,+σs}. Here, σs is
the message embedding strength hyper-parameter. The sender generates the covert communication
parameters (l, U, σs), and transmits them to the receiver via a publicly available channel.

(ii) Transform weights into spectral domain. Given the location of the embedding layer, FL-Talk
first performs Discrete Cosine Transformation (DCT) transformation on the corresponding weight
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w and obtains the spectral coefficients W = DCT (w). In this work, we flatten the weight of the
embedding layer into a vector and perform type-II DCT on the resulting vector.

(iii) Encode message in weight spectrum. FL-Talk embeds the message b into all DCT coefficients
of the weight spectrum W using additive modulation:

W∗ = W +

B∑
k=1

bkuk. (1)

Determining the value of the embedding strength σs is critical for the sender to achieve aggregation-
resilient message embedding via modulating the local model. To this end, FL-Talk finds the relation
between message embedding in the local model and embedding in the (estimated) global model.
Particularly, to achieve an embedding strength of σG with reference matrix UG on the shared global
model via local spectral message embedding (Eqn. (1)), the sender shall amplify the local embedding
strength and set σs = P ·σG to account for the impact of subsequent model aggregation on the server
side. Here, P is the (estimated) number of active clients per round. The effective reference matrix
on the global model satisfies U = P · UG and the kth row in UG is denoted as uk

G. We provide a
detailed derivation of the proper embedding strength σs and explanation of UG in Appendix A.1.

(iv) Perform inverse spectral transformation. After message embedding in the weight spectrum,
the sender converts the resulting frequency map back to the spatial domain using inverse DCT:
w∗ = iDCT (W∗). Then, the weight of the embedding layer l is replaced with w∗ to obtain the
message-carrying model. Finally, the sender uploads the marked local model to the server. To
ensure stealthiness, we select the embedding strength σs such that the norm of weight deviation after
message embedding is bounded, i.e., ∥w∗ − w∥ ≤ C (C is constant). The overhead of our spectral
message embedding is negligible compared to local training since the involved computation is simple.

3.2 Spectral Message Recovery

While the receiver obtains the updated global model at each round, he/she does not know when to
decode the message since the sender might not be selected in that round. To solve this issue, FL-Talk
proposes a spectral message detection technique that allows the receiver to determine whether the
current global model contains the secret message. If the message is detected, FL-Talk then performs
spectral message recovery to retrieve the secret message from the global model. Otherwise, the
receiver deduces that the sender is not selected in this round and skips message recovery. We detail
each step on the receiver side below.

(i) Transform shared resource to spectral domain. Since the receiver knows the location of the
embedding layer l, he/she can concentrate ‘weak’ message signals spread over the spectral coefficients
of the layer weight. Particularly, at round t, the receiver flattens the weight of layer l of the obtained
global model and performs DCT on the resulting weight vector WG

(t) = DCT (wG
(t)). The weight

spectrum of the previous global model W(t−1)
G is also computed and we explain the reason below.

(ii) Compute normalized correlation. Since we embed the message via additive spectrum modu-
lation, the receiver needs the weight spectrum of a global model without the secret message as the
reference to recover the hidden signal. For this purpose, the receiver stores the two most recent global
models (actually storing the weight of the embedding layer or its DCT is sufficient). The spectral
difference ∆W between the global models from two consecutive rounds can be computed:

∆W = W(t)
G −W(t−1)

G (2)

The receiver then computes the normalized correlation between ∆W and each reference vector uk
G:

rk =
∆W · uk

G

∥uk
G∥

. (3)

Note that the norm of all uk
G is the same, i.e., ∥uk

G∥ = M · σ2
G where M is the dimension of the

embedding layer’s weight. The normalized correlation rk corresponds to the kth bit in the message.

(iii) Detect message existence. Based on the difference in the correlation norm in two scenarios
(sender selected or not), we propose the following message detection rule:

B∑
k=1

I(|rk| > τ)/B > γ, (4)
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where I(·) is the indicator function, τ, γ ∈ (0, 1) are two detection threshold parameters. If Eqn. (4)
holds, then the receiver knows the secret message exists in the current global model and proceeds to
message recovery. Otherwise, the receiver knows the message is absent and waits for the next round.
We provide a detailed justification of our message detection scheme in Appendix A.2. FL-Talk is
insensitive to detection hyper-parameters and we set τ = 0.9, γ = 0.9 in all experiments.

(iv) Recover secret message. After computing the normalized correlation rk and checking the
condition in Eqn. (4) holds, the receiver recovers each bit of the secret message as follows:

b̂k = sign(rk). (5)

4 Evaluations
We assess FL-Talk on four benchmarks and summarize the configurations in Table 2. Before FL
starts, we randomly select two clients as the sender and receiver. For FL training, we assume each
selected client performs local training for 5 epochs. The server runs FedAvg McMahan et al. [2017]
and trains the global model for T = 200 rounds. The default message length is B = 16 bits.
Additionally, we run experiments with different number of clients N = {20, 100} and client selection
ratio α ∈ {0.1, 0.2, 0.5, 1.0}. By default, we set N = 100 and α = 0.1, thus the number of selected
clients per round is P = α ·N = 10. We provide the detailed experimental setup in Appendix A.3.

Table 2: Configuration of FL-Talk. ‘Optim’ and ‘LR’ denote optimizer and learning rate, respectively.

Benchmark Embedding Layer Embedding Dimension Optim LR σG

MNIST-LeNet conv.weight 50, 20, 5, 5 (M=25,000) SGD 0.1 0.0002

Fashion MNIST-CNN conv.weight 32, 16, 5, 5 (M=12,800) Adam 0.01 0.0006

CIFAR10-VGG fc.weight 512, 512 (M=262,144) SGD 0.001 0.0002

IMDB-RNN lstm.weight_ih_l 1024, 64 (M=65,536) Adam 0.001 0.004

In this section, we evaluate FL-Talk based on the performance criteria in Table 1. Additional results
on capacity and stealthiness are provided in Appendix A.4 due to the page limit.

4.1 Effectiveness and Efficiency
The receiver performs two subtasks: spectral message detection and message recovery as discussed
in Section 3.2. Therefore, we evaluate FL-Talk’s effectiveness from two aspects: detection rate
of message existence (measured by True Positive Rate (TPR)), and accuracy of message recovery
(measured by Bit Error Rate (BER)). To compute the message detection rate, we count the total
number of rounds when the sender is selected to participate in FL (denoted as Ts) and the number
of times that the receiver detects the message using Eqn. (4) when the sender is active in that round
(denoted as Tr). Then, the TPR of message detection is computed as the ratio Tr/Ts. For each attempt
of message recovery, the BER is computed by element-wise comparison between the ground-truth
message b and the recovered one b̂ obtained using Eqn. (5).

Table 3 shows the evaluation results of FL-Talk with the default setting (N = 100, P = 10, B = 16).
We report the average BER among Tr times of message recovery in the last row. During T = 200
rounds of FL training, we observe Tr = Ts = 26, indicating that FL-Talk correctly detects the
message (TPR = 1) and recovers the content (BER = 0). Note that an average BER of 0 means
that FL-Talk successfully recovers the message for each attempt of message retrieval during FL
training. We observe that FL-Talk achieves consistent results of perfect performance in different FL
settings (where N and α vary).

Table 3: Effectiveness evaluation of FL-Talk.

Datasets MNIST Fashion MNIST CIFAR10 IMDB

TPR 1. 1. 1. 1.
Avg. BER 0. 0. 0. 0.

To assess the efficiency, we measure the runtime of our spectral message embedding and recovery
technique. The average runtime of embedding and recovery are 6.6 ms and 35.2 ms, respectively
across all benchmarks in Table 2, suggesting the efficiency of FL-Talk covert communication scheme.
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4.2 Integrity

The integrity criterion requires that the covert communication scheme shall not have any negative
impacts on FL training. This means that, when FL-Talk is deployed, the convergence speed as well
as the final accuracy of the global model shall be comparable to the ones in the baseline setting (i.e.,
FedAvg McMahan et al. [2017]). We use the default setting N = 100, P = 10 for FL and B = 16
in this experiment. Figure 2 shows the learning curve of the global model in FL with and without
FL-Talk on four benchmarks in Table 2. The dashed and solid lines represent FedAvg and FL-Talk,
respectively. We can see that the FL system with FL-Talk deployed achieves the same performance
as baseline FL, suggesting that FL-Talk satisfies the integrity criterion.

Figure 2: Learning curve of FL in the baseline setting (FedAvg) and with FL-Talk deployed.

4.3 Comparison with Prior Art

FedComm Hitaj et al. [2022] is the only prior work that studies FL-based covert communication while
it has the following limitations: (1) Its embedding strength selection is oblivious of model aggregation;
(2) It does not provide a method for the receiver to decide when to extract the message. Instead, it
assumes that the receiver decodes the message from the global model when FL runs sufficiently long
(e.g., after 300 rounds). Unlike FedComm, FL-Talk can establish covert communication from early
rounds of FL training, thus being more practical and useful in real-world settings.

We reproduce FedComm based on the paper and show the comparison results in Table 4. In this
experiment, we use the FL setting N = 100, P = 10, T = 500, and the message length B = 16. We
perform message recovery at the last 10 rounds of FL training to be consistent with FedComm. For
FL-Talk, we recover the message when our message detection yields a positive result. Table 4 shows
the average BER of 10 message retrieval attempts for each scheme. We can see that FL-Talk provides
more effective covert communication compared to FedComm across all benchmarks.

Table 4: Comparison of Bit Error Rate (BER) between FedComm and FL-Talk.

Benchmark MNIST Fashion MNIST CIFAR10 IMDB

FedComm 0.25 0.375 0.45 0.3125

FL-Talk (Ours) 0. 0. 0. 0.

5 Conclusion

In this paper, we propose FL-Talk, the first spread spectrum steganography-based covert commu-
nication framework for federated learning. Particularly, we design a novel aggregation-resilient
spectral message embedding technique for the sender. For the receiver, we propose a reliable spectral
message detection and recovery scheme to check message existence and retrieve the message from
the global model. Empirical results show that FL-Talk achieves successful and lightweight covert
communication between two clients in a stealthy manner while preserving FL convergence.
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A Appendix

We provide a detailed explanation of FL-Talk covert communication framework and additional
evaluation results in the appendix.

A.1 Determine Message Embedding Strength

We discuss our spectral message embedding method in Section 3.1. One critical factor of mes-
sage embedding is the selection of proper embedding strength σs on the sender side. To achieve
aggregation-resilient information embedding, FL-Talk finds the relation between message embedding
in the local model and embedding in the (estimated) global model. We derive this relation in the full
participation scenario and empirically show that our spectral embedding scheme is also effective in
the client selection setting (Section 4). Let us assume that the sender has an index i = 1 without
the loss of generality. In round t, the message is embedded in the shared global model W (t)

G that is
distributed to the receiver. The sender also knows the previous global model W (t−1)

G , the local one
W

(t−1)
1 , and the following relationship (obtained with FedAvg McMahan et al. [2017]):

W
(t−1)
G =

1

N

N∑
i=1

W
(t−1)
i =

1

N
W

(t−1)
1 +

1

N

∑
i ̸=1

W
(t−1)
i

Therefore, we know the contribution from the other clients:
1

N

∑
i ̸=1

W
(t−1)
i = W

(t−1)
G − 1

N
W

(t−1)
1 (6)

With the approximation that:
1

N

∑
i ̸=1

W
(t)
i ≈ 1

N

∑
i ̸=1

W
(t−1)
i (7)

the sender estimates the updated global model W (t)
G :

W̃
(t)
G =

1

N
W

(t)
1 +

1

N

∑
i ̸=1

W
(t)
i

≈ 1

N
W

(t)
1 +

1

N

∑
i ̸=1

W
(t−1)
i

=
1

N
W

(t)
1 + (W

(t−1)
G − 1

N
W

(t−1)
1 ), (8)

where Eqn. (6) is plugged in. Note that the approximation in Eqn. (7) holds when FL training is close
to convergence.

The sender aims to embed the message b in W
(t)
G (with reference matrix UG) with access to the

local model W (t)
1 only. Therefore, after the sender performs spectral message embedding of the local

model using Eqn. (1), we have:

W(t)∗
1 = W(t)

1 + bU, (9)
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where elements in U take values of {−σs,+σs}.

From the perspective of the estimated global model W̃ (t)
G , the sender needs to achieve spectral

embedding such that:

W̃(t)∗
G = W̃(t)

G + bUG. (10)

Taking spectral transform on both sides of Eqn. (8), we have:

W̃(t)∗
G =

1

N
W(t)∗

1 + (W(t−1)
G − 1

N
W(t−1)

1 ). (11)

By plugging in Eqn. (9) and (10) into Eqn. (11), we have:

W̃(t)
G + bUG =

1

N
(W(t)

1 + bU) + (W(t−1)
G − 1

N
W(t−1)

1 ). (12)

Meanwhile, the approximation in Eqn. (7) can be equivalently rewritten using the FL update rule:

W̃
(t)
G ≈ W

(t−1)
G +

1

N
W

(t)
1 − 1

N
W

(t−1)
1 . (13)

Let us take spectral transformation of Eqn. (13) and plug it into Eqn. (12), we can simplify the
equation and obtain:

bUG =
1

N
bU. (14)

Here, N is the total number of clients, U and UG are the reference matrix operating on the local
model W (t)

1 and the global one W̃
(t)
G , respectively. Based on Eqn. (14), we have:

UG =
1

N
U, σG =

1

N
σs, (15)

where σG and σs are the embedding strength of UG and U, respectively. One can observe from
Eqn. (15) that the embedding strength of the message is reduced by N due to model aggregation
(where N is the number of active clients per round). When generalizing our observation to the client
selection scenario, we shall replace the constant coefficient 1

N in Eqn. (15) with 1
P since P out of N

clients are selected to participate in FL at each round.

In summary, FL-Talk suggests that, if the sender wants to achieve an embedding strength of σG on
the shared global model via local spectral message embedding (Eqn. (1)), he/she needs to amplify the
embedding strength by P and set σs = P · σG to account for model averaging. It is worth noting that
even the above derivation assumes the global model is close to convergence. However, our empirical
results in Section 4 show that our embedding strength selection scheme is effective and supports
correct message recovery even from early rounds of FL training.

A.2 Spectral Message Detection

We introduce FL-Talk’s spectral message recovery scheme in Section 3.2. Here, we justify the design
of our message detection rule. If the sender is active in round t (i.e., selected in FL training) and
performs spectral message embedding via Eqn. (1), then the spectral difference ∆W in Eqn. (2) shall
contain the secret message. In this case, we can rewrite ∆W by taking the spectral transformation of
both sides of Eqn. (13):

∆W = W(t)
G −W(t−1)

G =
1

N
W(t)

1 − 1

N
W(t−1)

1 . (16)

In addition, we know W(t)
1 − W(t−1)

1 =
∑B

k=1 bkuk from Eqn. (1). Therefore, we can simplify
Eqn. (16) as: ∆W = 1

N

∑B
k=1 bkuk. Note that the reference vector has the relation: uk

G = 1
N uk

since we know UG = 1
NU from Eqn. (15). As such, the spectral difference is:

∆W =

B∑
k=1

bkuk
G. (17)
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Recall that UG has orthogonal rows, i.e. uk
G · uj

G = 0 if k ̸= j. We can plug in Eqn. (17) into
Eqn. (3) and obtain the normalized correlation rk = bk where bk ∈ {−1,+1}. This means that, if
the sender is active in round t, the correlation computed by the receiver has a stable norm ∥rk∥ ≈ 1
(might not be exactly 1 due to approximations).

If the sender is not selected in round t, then the global model W (t)
G obtained by the receiver will not

contain the secret message. In this case, the spectral difference ∆W will not result in normalized
correlations such that ∥rk∥ ≈ 1.

Based on the difference in the correlation norm in these two scenarios (sender selected or not), we
propose the following message detection rule:

B∑
k=1

I(|rk| > τ)/B > γ,

where I(·) is the indicator function, τ, γ ∈ (0, 1) are two threshold hyper-parameters. If the above
condition holds, then the receiver knows the secret message exists in the current global model and
proceeds to message recovery. Otherwise, the receiver knows the message is absent and waits for
updated global model in the next round.

A.3 Experimental Setup

We assess the performance of FL-Talk on four benchmarks: MNIST dataset Deng [2012] with
LeNet, Fashion MNISTXiao et al. [2017] with a seven-layer CNN, CIFAR10 Krizhevsky [2009] with
VGG19, and IMDB dataset IMDB [2022] with two-layer-stacked LSTM. The first three datasets are
used for image classification tasks and the last one is for sentiment classification on movie reviews.
Each dataset is randomly partitioned among all clients with an equal size of local datasets. The batch
size is set to 128 for the first three datasets and 50 for IMDB.

We summarize FL-Talk’s configurations on different benchmarks in Table 1 of the main text. The
embedding strength σG is selected such that the norm of weight change is close to a constant:
∥w∗−w∥ ≈ C with C = 4. Here, w∗ is the weight of the sender’s local model after spectral message
embedding. We implement our spectral message embedding and recovery using PyTorch Paszke et al.
[2017]. The experiments are run on NVIDIA TITAN-Xp GPUs with 12.8 GB of memory.

A.4 Additional Evaluation Results

We show the evaluation results of FL-Talk’s effectiveness, efficiency, and integrity in Section 4.
Here, we provide additional results on another two performance criteria, stealthiness and capacity, as
described in Table 1.

Stealthiness Evaluation of FL-Talk. The stealthiness level of FL-Talk is controlled by the embedding
strength σs used in our spectral steganography. Figure 3 visualizes the weight distribution of the
embedding layer in the sender (blue color) and a normal client (orange color). We can see that FL-Talk

(a) CIFAR10. (b) IMDB.

Figure 3: Weight distribution comparison (embedding layer) between the sender and a regular client.
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is stealthy since the local update from the sender has a similar distribution as normal participants.
This is because we set σs such that the norm of weight deviation after message embedding is bounded
by a customized constant, i.e., |w∗ − w| ≤ C. We use the threshold C = 4 and give the values of the
embedding strength in the last column of Table 2.

Capacity Evaluation of FL-Talk. The capacity metric characterizes the information-carrying
capability of a covert communication scheme. If the sender increases the length of the secret message,
then the weight modification incurred by our spectral steganography (Eqn. (1)) increases. This, in
turn, might have a negative impact on the stealthiness of the scheme as well as FL performance.
We perform spectral message recovery with different message lengths and summarize the results in
Table 5. With FL-Talk, the receiver detects message existence with 100% accuracy and achieves
zero BER for each message recovery attempt. As such, one can see from Table 5 that our FL-based
covert communication scheme is reliable and effective when transmitting messages of various lengths.

Table 5: Capacity study of FL-Talk on CIFAR10.

Message Len B=16 B=64 B=128 B=512 B=1024 B=2048

TPR 1. 1. 1. 1. 1. 1.

Avg. BER 0. 0. 0. 0. 0. 0.

Test Acc. (%) 84.3 84.04 84.19 84.57 84.55 84.54

Discussion on Embedding Layer Selection. The dimensionality of the embedding layer (M ) has
a direct impact on the reference matrix UB×M . On the one hand, a small value of M limits the
message capacity. On the other hand, a large value of M increases FL-Talk’s overhead of both
message embedding and recovery, Meanwhile, the sender needs to use a larger embedding strength
such that the embedded spectral message sustains model aggregation.
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