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ABSTRACT

Determining the noise parameters of a Kalman Filter (KF) has been studied for
decades. A huge body of research focuses on the task of noise estimation under
various conditions, since precise noise estimation is considered equivalent to
minimization of the filtering errors. However, we show that even a small violation
of the KF assumptions can significantly modify the effective noise, breaking the
equivalence between the tasks and making noise estimation an inferior strategy.
We show that such violations are common, and are often not trivial to handle or
even notice. Consequentially, we argue that a robust solution is needed – rather
than choosing a dedicated model per problem. To that end, we apply gradient-
based optimization to the filtering errors directly, with relation to an efficient
parameterization of the symmetric and positive-definite parameters of the KF. In a
variety of state-estimation and tracking problems, we show that the optimization
improves both the accuracy of the KF and its robustness to design decisions. In
addition, we demonstrate how an optimized neural network model can seem to
reduce the errors significantly compared to a KF – and how this reduction vanishes
once the KF is optimized similarly. This indicates how complicated models can
be wrongly identified as superior to the KF, while in fact they were merely more
optimized.

1 INTRODUCTION

The Kalman Filter (KF) (Kalman, 1960) is a celebrated method for linear filtering and prediction,
with applications in many fields including tracking, guidance, navigation and control (Zarchan and
Musoff, 2000; Kirubarajan, 2002). Due to its simplicity and robustness, it remains highly popular
– with over 10,000 citations in the last 5 years alone (Google Scholar, 2021) – despite the rise of
many non-linear sequential prediction models (e.g., recurrent neural networks). The KF relies on the
following model for a dynamic system:

Xt+1 = FtXt + ωt (ωt ∼ N(0, Q))

Zt = HtXt + νt (νt ∼ N(0, R))
(1)

where Xt is the state of the system at time t (whose estimation is usually the goal), and its dynamics
are modeled by the linear operator Ft up to the random noise ωt with covariance Q; and Zt is the
observation, which is modeled by the linear operator Ht up to the noise νt with covariance R. When
the operators Ft, Ht are not assumed to depend on time, the notation may be simplified to F,H .

To use the KF, one must determine the noise parameters Q,R. The filtering errors (i.e., estimation
errors of the states {Xt}) are minimized when Q and R correspond to the true covariance matrices
of the noise (Humpherys et al., 2012). Thus, these parameters are usually determined by noise
estimation. In absence of system state data {xt} (the ”ground truth”), many methods have been
suggested to determine Q and R from observations data {zt} alone (Abbeel et al., 2005; Odelson
et al., 2006; Zanni et al., 2017; Park et al., 2019). When ground-truth data is available, however, noise
estimation trivially reduces to calculation of the sample covariance matrices (Lacey, 1998):

R̂ := Cov({zt −Htxt}t), Q̂ := Cov({xt+1 − Ftxt}t). (2)
Indeed, as stated by Odelson et al. (2006), “the more systematic and preferable approach to determine
the filter gain is to estimate the covariances from data”. Our work focuses on such problems with
ground-truth available for learning (but not for inference after the learning, of course), which was
motivated by a real-world Doppler radar estimation problem.
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Noise estimation is often not optimal: The equivalence between noise estimation and errors
minimization can be proved under the standard KF assumptions – that is, known and linear dynamics
and observation models (Ft, Ht), with i.i.d and normally-distributed noises ({ωt}, {νt}) (Humpherys
et al., 2012). However, as put by Thomson (1994), “experience with real-world data soon convinces
one that stationarity and Gaussianity are fairy tales invented for the amusement of undergraduates” –
and linearity and independence can be safely added to this list. Therefore, under realistic assumptions,
the covariance of the noise does not necessarily correspond to optimal filtering.

We introduce a case study in the context of radar tracking, where we demonstrate that even using the
true covariance of the noise (”oracle” noise-estimation) is sub-optimal in a variety of scenarios – in-
cluding very simple scenarios with relatively minor violation of the KF assumptions. In Appendices E
and F, we also analyze this phenomenon analytically for two private cases (non-linearity in Doppler
radar and non-i.i.d noise in lidar), where the violation of a single KF assumption is shown to modify
the effective noise. By providing this extensive evidence that noise-estimation is a sub-optimal way
to tune a KF even in presence of system-states ground-truth data, we re-open a problem that was
considered solved for decades (Kalman, 1960).

We also show that seemingly small changes in the properties of the scenario may lead to major changes
in the desired design of the KF, e.g., whether to use a KF or an Extended KF (Sorenson, 1985). In
certain cases, the design choices are easy to overlook (e.g., Cartesian vs. spherical coordinates), and
are not trivial to make even if noticed. As a result, it is impractical to manually choose or develop a
variant of the KF for every problem. Rather, we should assume that our model is sub-optimal, and
leverage data to deal with the sub-optimality as robustly as possible.

Optimization is optimal: We consider Q and R as model parameters that should be optimized
with respect to the filtering errors (i.e., system-state estimation errors) – rather than estimating the
noise. While both noise estimation and errors optimization rely on exploitation of data, only the latter
explicitly addresses the actual goal of solving the filtering problem.

Gradient-based optimization methods are usually effective in the field of machine learning, but
applying them naively to the entries of Q and R may violate the symmetry and positive-definiteness
(SPD) constraints of the covariance matrices. Indeed, even works that come as far as optimizing
Q and R (instead of estimating the noise) usually apply limited optimization methods, e.g., grid-
search (Coskun et al., 2017) or diagonal restriction of the covariance matrices (Formentin and
Bittanti, 2014; Li et al., 2019). To address this issue, we use a parameterization based on Cholesky
decomposition (Horn and Johnson, 1985), which allows us to apply gradient-based optimization to
SPD matrices. This method is computationally efficient compared to other general gradient-based
methods for SPD optimization (Tsuda et al., 2005; Tibshirani, 2015).

We demonstrate that the optimization reduces the errors of the KF consistently: over different variants
of the KF, over different violations of KF assumptions, over different domains (tracking from radar,
video or lidar), over small and large training datasets, and even under distributional shifts between
train and test datasets. Furthermore, we show that optimization improves the robustness to design
decisions, by shrinking the performance gaps between different variants of the KF.

As explained above, we extensively justify the need to optimize the KF in many practical problems,
and suggest a simple solution which is effective, robust, computationally efficient, and relies on
standard tools in supervised machine learning. As a result, we believe that in the scope of filtering
problems with available ground-truth, whenever the KF assumptions are not strictly-guaranteed, the
suggested optimization method should become the new standard procedure for the KF tuning.

Unfair comparison: Many learning algorithms have been suggested to address non-linearity in
filtering problems, e.g., based on Recurrent Neural Networks (RNN). Such works often use a linear
tool such as the KF as a baseline for comparison – with tuning parameters being sometimes ignored
(Gao et al., 2019), sometimes based on noise estimation (fa Dai et al., 2020), and sometimes optimized
in a limited manner using trial-and-error (Jamil et al., 2020) or grid-search (Coskun et al., 2017). Our
findings imply that such a methodology yields over-optimistic conclusions, since the baseline is not
optimized to the same level as the learning model. This may result in adoption of over-complicated
algorithms with no actual added value. Instead, any learning algorithm should be compared to a
baseline that is optimized using a similar method (e.g., gradient-descent with respect to the errors).
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Indeed, we consider an extension of the KF based on LSTM, which is the key component in many
SOTA algorithms for non-linear sequential prediction in recent years (Neu et al., 2021). For radar
tracking with non-linear motion, we demonstrate how the LSTM seems to provide a significant
improvement over the KF. Then, we show that the whole improvement comes from optimization of
parameters, and not from the expressive non-linear architecture. In particular, this result demonstrates
the competitiveness of our suggested method versus SOTA sequential prediction models.

Recent works in the area of machine learning have already shown that advanced algorithms often
obtain most of their improvement from implementation nuances (Engstrom et al., 2019; Andrychowicz
et al., 2020; Henderson et al., 2017). Our work continues this line of thinking and raises awareness to
this issue in the domain of filtering problems.

Contribution: We show (empirically and analytically) that the gold-standard noise estimation
method to tune the KF given ground-truth data is often sub-optimal; demonstrate how this leads to
underevaluation of the KF compared to optimized filtering models such as neural networks; suggest a
simple method to optimize the KF, using gradient-based optimization with Cholesky parameterization;
and extensively demonstrate its improved accuracy and its robustness to model misspecification.

Limitations: This work relies on the availability of ground-truth system-states in the training data
to allow supervised learning. Ground-truth data is often available from simulations, controlled
experiments or manual labeling. Within this scope, we show that although noise estimation is straight-
forward (Equation 2), it is often not the right task to address. Another limitation is in the theoretical
guarantees of gradient-based optimization (see Appendix L), despite its wide success in many fields.

The paper is organized as follows: Section 2 reviews the KF. Section 3 introduces our method for
efficient KF optimization. Section 4 justifies the necessity of KF optimization through a detailed case
study. Section 5 presents a neural version of the KF which reduces the errors compared to a standard
KF – but not when compared to an optimized KF. Section 6 discusses related works.

2 PRELIMINARIES: THE KALMAN FILTER ALGORITHM

Figure 1: The KF algorithm. The prediction step is based on
the motion model Ft with noise Q, whereas the update step is
based on the observation model Ht with noise R.

The KF algorithm (Kalman, 1960;
Humpherys et al., 2012) relies on Equa-
tion 1 for a dynamic system model.
It keeps an estimate of the state Xt,
represented as the mean xt and covariance
Pt of a normal distribution. As shown in
Figure 1, it alternately predicts the next
state using the dynamics model (prediction
step), and processes new information from
incoming observations (update or filtering
step).

The KF yields optimal state estimations –
but only under a restrictive set of assump-
tions (Kalman, 1960), as specified in Def-
inition 2.1. Note that normality of the noise is excluded since it is not necessary for optimal-
ity (Humpherys et al., 2012), although it is also often assumed.
Definition 2.1 (KF assumptions). Ft, Ht of Equation 1 are known matrices that do not depend on
the state (i.e., correspond to linear models); ωt, νt are i.i.d random variables with zero-mean and
constant, known covariance matrices Q,R, respectively; and the initial state distribution is known.

Certain assumptions violating in Definition 2.1 can be partially handled by variations of the KF, such
as the Extended KF (EKF) (Sorenson, 1985) which replaces the linear models Ft, Ht with local linear
approximations, and the Unscented KF (UKF) (Wan and Van Der Merwe, 2000) which applies the
filtering through sigma-points sampled from the estimated distribution. The use of multiple tracking
models alternately is also possible using switching mechanisms (Mazor et al., 1998).

While Ft and Ht are usually determined based on domain knowledge, Q and R are often estimated
from data as the covariance of the noise. As mentioned in Section 1, this can be done using Equation 2
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if ground-truth data is available, or using more sophisticated methods otherwise (Odelson et al., 2006;
Feng et al., 2014; Park et al., 2019).

See Appendix A for a detailed introduction of the KF and recurrent neural networks (RNN, LSTM).

3 KF OPTIMIZATION USING CHOLESKY PARAMETERIZATION

The performance of a KF strongly depends on its parameters Q and R (Formentin and Bittanti, 2014).
These parameters are usually regarded as estimators of the noise covariance in motion and observation,
respectively (Lacey, 1998), and are estimated accordingly. Although optimization has been suggested
for the KF in the past (Abbeel et al., 2005), it was often viewed as a fallback solution (Odelson et al.,
2006), for cases where direct estimation is not possible (e.g., the true states are unavailable in the
data (Feng et al., 2014)). Accordingly, we define our baseline method for this work:

Method 1 (Estimated KF). KF whose parameters Q,R were determined from data using Equation 2.

The preference of noise estimation relies on the fact that the KF – with parameters corresponding to the
noise covariances – minimizes the square filtering errors (MSE) of the estimates of the system-states
{Xt}. This holds under Assumptions 2.1 (Humpherys et al., 2012). Hence, equivalently, we could
explicitly look for the parameters that minimize the MSE, e.g., using the Adam algorithm (Diederik
P. Kingma, 2014). Adam is a popular variant of the well-known gradient-descent algorithm, and has
achieved remarkable results in many optimization problems in the field of machine learning in recent
years, including in non-convex problems where local-minima exist (Zhong et al., 2020).

Numeric optimization is more complicated than computing two covariance matrices, but is shown
to be beneficial in Sections 4 and 5. Stable optimization algorithms are available in several open-
source packages, e.g., PyTorch (Paszke et al., 2019), which supports gradient-propagation through
matrix-inversion (as needed for the KF computations). As demonstrated in Sections 4,5, the PyTorch
implementation of Adam provides stable results on MSE-optimization of a KF. This is conceivable, as
the KF is arguably a simple model in terms of mathematical sophistication and number of parameters.

One major challenge in the KF parameters optimization is that bothQ andR correspond to covariance
matrices, which are symmetric and positive definite (SPD): a naive numeric optimization of their
entries may ruin the SPD structure. This difficulty often motivates optimization methods that avoid
gradients (Abbeel et al., 2005), or even the restriction of Q and R to be diagonal (Li et al., 2019).
Indeed, Formentin and Bittanti (2014) pointed out that “since both the covariance matrices must be
constrained to be positive semi-definite, Q and R are often parameterized as diagonal matrices”.

To allow Adam to optimize the non-diagonalQ andR we use the Cholesky parameterization (Pinheiro
and Bates, 1996). It relies on Cholesky decomposition (Horn and Johnson, 1985), which states
that any SPD matrix A ∈ Rn×n can be written as A = LL>, where L is lower-triangular with
positive entries along its diagonal. The reversed claim is also true: for any lower-triangular L
with positive diagonal, LL> is SPD. Now consider the parameterization of A using the following(
n
2

)
+ n = n(n+1)

2 parameters:
(
n
2

)
parameters correspond to {Lij}1≤j<i≤n, and n parameters to

{logLii}1≤i≤n. Clearly, the transformation from the parameters to the SPD matrix A = LL> is
differentiable and outputs a SPD matrix for any realization of the parameters in Rn(n+1)/2. Thus,
we can apply Adam (or any other gradient-based method) to optimize these parameters without
worrying about the SPD constraints. This approach, which is presented in a more general framework
in Appendix C and is implemented in our code, is used in our KF optimization method as follows:

Method 2 (Optimized KF). A KF whose parameters Q,R were determined from data by optimizing
the MSE of the state-estimates, using Adam algorithm with relation to a Cholesky parameterization
of Q and R, as described in detail in Appendix B.1.

Note that other methods exist for SPD optimization, but require SVD-decomposition every iteration
and thus are computationally heavier, e.g., matrix-exponent (Tsuda et al., 2005) and projected
gradient-descent with respect to the SPD cone (Tibshirani, 2015). The Cholesky parameterization
only requires a single matrix multiplication, and thus is both efficient and easy to implement. To the
best of our knowledge, this parameterization is not used at all for supervised optimization of KF.
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4 KALMAN FILTER CONFIGURATION AND OPTIMIZATION: A CASE STUDY

In this section, we introduce a detailed case study to compare noise estimation and errors optimization
in the KF. As mentioned in Section 2, the two are equivalent only under Assumptions 2.1 (Humpherys
et al., 2012). Some of these assumptions are clearly violated in realistic scenarios, while other
violations may be less obvious. For example, even if a radar’s noise is i.i.d in spherical coordinates, it
is not so in Cartesian coordinates (see Appendix A.5).

The need to rely on many assumptions might explain why there are several extensions and design
decisions in a KF configuration. This includes the choice between KF and EKF; the choice between
educated state initialization and a simple uniform prior (Linderoth et al., 2011); and certain choices
that may be made without even noticing, such as the coordinates of the state representation.

The case study below justifies the following claims:

1. Design decisions in a KF are often nontrivial to make and are potentially significant.

2. Tuning a KF by noise estimation is often highly sub-optimal – even in very simple scenarios.

3. Tuning a KF by optimization improves both accuracy and robustness to design decisions.

4. KF optimization using Method 2 is robust to distributional shifts (Appendix G) and to small
training datasets (Appendix H).

These claims imply that the popular KF algorithm may not be exploited to its full potential. Further-
more, many works that compare learning algorithms to a KF baseline conduct an ”unfair” comparison,
as the learning algorithms are optimized and the KF is not. This may lead to adoption of unnecessarily
complicated algorithms, as demonstrated in Section 5. Indeed, in many works the tuning of the
baseline KF is either ignored in the report (Gao et al., 2019) or relies on estimation (or knowledge) of
the noise (fa Dai et al., 2020; Jamil et al., 2020), as demonstrated extensively in Section 6.

4.1 SETUP AND METHODOLOGY

In the case study of radar tracking, each target is represented by a sequence of (unknown)
states in consecutive time-steps, and a corresponding sequence of radar measurements. A state
xfull = (xx, xy, xz, xvx, xvy, xvz)

> ∈ R6 consists of 3D location and velocity. We also denote
x = (xx, xy, xz)

> ∈ R3 for the location alone (or xtarget,t ∈ R3 for the location of a certain target
at time t). An observation z ∈ R4 consists of noisy measurements of range, azimuth, elevation and
Doppler signal. Note that the former three correspond to a noisy measurement of x in spherical
coordinates, and the latter one measures the projection of velocity onto the radial direction x. The goal
is to minimize the error of the point-estimate of the state: MSE =

∑
target

∑
t(x̃target,t − xtarget,t)

2.

The case study considers 5 types of tracking scenarios (benchmarks) and 4 variants of the KF
(baselines). For each benchmark and each baseline, we use the benchmark training data to produce
one estimated KF (Method 1) and one optimized KF (OKF, Method 2). We then evaluate the errors
of both models on the test data of the benchmark (generated using different seeds than the training
data). All experiments were run on eight i9-10900X CPU cores on a single Ubuntu machine.

Figures 2b,2c display a sample of trajectories in the simplest benchmark (Toy), which satisfies all
KF assumptions except for a linear observation model H; and in the complex Free Motion bench-
mark, which violates several assumptions. The other benchmarks are demonstrated in Appendix M.
Figure 2a defines each of the 5 benchmarks more formally as a certain subset of the following
properties:

• anisotropic: horizontal motion is more likely than vertical motion (otherwise motion direc-
tion is distributed uniformly).

• polar: radar noise is generated i.i.d in spherical coordinates (otherwise noise is Cartesian
i.i.d, which violates the physics of the system).

• uncentered: targets are not forced to concentrate close to the radar.
• acceleration: speed change is allowed (through intervals of constant acceleration).
• turns: non-straight motion is allowed.
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(a) (b) (c)

Figure 2: (a) Benchmarks names (rows) and the properties that define them (columns). Green means that the
benchmark satisfies the property. (b,c) Targets in Toy and Free Motion benchmarks (projected onto XY plane).

The 4 baselines differ from each other by using either KF or EKF, with either Cartesian or spher-
ical coordinates for representation of R (the rest of the system is always represented in Cartesian
coordinates). As mentioned above, each baseline is tuned once by Method 1 and once by Method 2.
Note that the non-linear observation model requires minor adjustments of the KF baselines and the
tuning methods, as explained in Appendix A.3. For the Toy benchmark, the optimal parameters
are also derived analytically in Appendix E. Appendix G demonstrates the robustness of OKF to
distributional shifts by training on one benchmark and testing on another. Appendix H repeats the
tests for different sizes of training datasets.

We also repeat the experiment for the problem of tracking from video, using MOT20 dataset (Den-
dorfer et al., 2020) of real-world pedestrians, with train and test datasets taken from separated videos.
For this problem we only consider a KF with Cartesian coordinates, since there is no polar component
in the problem. See Appendix I for the detailed setup of the video tracking experiments. In addition,
we test the OKF in the problem of self-driving state-estimation from lidar measurements (Ap-
pendix J). These two domains extend the scope of the experimented KF assumptions violations, since
they correspond to linear observation models (unlike the radar benchmarks), with both noisy (lidar)
and noiseless (MOT20) observations. For a simplified lidar problem, we also derive the optimal
parameters analytically in Appendix F.

4.2 RESULTS

Design decisions are not trivial: Table 1 summarizes the tracking errors. The left column in each
cell corresponds to Method 1 (standard KF), and shows that in each benchmark, the errors strongly
depend on the design decisions (R’s coordinates and whether to use EKF). In the Toy benchmark, for
example, EKF is the best design, since the observation model H is non-linear.

In other benchmarks, however, the winning designs of the non-optimized KF are arguably surprising:

1. Under non-isotropic motion direction (all benchmarks except Toy), EKF is worse than
KF despite the non-linear motion. It is possible that since the horizontal prior reduces the
stochasticity of H , the advantage of EKF no longer justifies the instability of the derivative-
based approximation.

Table 1: Summary of the errors of the various models over the various benchmarks (on out-of-sample test
data). Corresponding confidence intervals are available in Figure 14a in the appendix. In the model names, ”O”
denotes optimized, ”E” denotes extended, and ”p” denotes polar, For example, OEKFp is an extended KF with
polar (spherical) representation of R and optimized parameters. For KFp, we also consider an oracle-realization
of R according to the true noise of the simulated radar in spherical coordinates (available only in spherical
benchmarks). Note that (1) for any benchmark and any baseline, optimization yields lower errors than estimation;
and (2) this remains true even in the oracle variant, where the noise ”estimation” is perfect.

Benchmark KF OKF KFp KFp (oracle) OKFp EKF OEKF EKFp OEKFp
Toy 151.7 84.2 269.6 – 116.4 92.8 79.4 123.0 109.1

Close 25.0 24.8 22.6 22.5 22.5 26.4 26.1 24.5 24.1
Const v 90.2 90.0 102.3 102.3 89.2 102.5 99.7 112.7 102.1
Const a 107.5 101.6 118.4 118.3 100.3 110.0 107.0 126.0 108.7

Free 125.9 118.8 145.6 139.3 117.9 135.8 121.9 149.3 120.0
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2. Even when the observation noise is spherical i.i.d, spherical representation of R is not
beneficial unless the targets are forced to concentrate close to the radar (last 3 benchmarks
in Table 1). It is possible that when the targets are distant, Cartesian coordinates have a
more important role in expressing the horizontal prior of the motion.

Since the best variant of the KF for each benchmark seems difficult to predict in advance, a practical
system cannot rely on choosing the KF variant optimally, and rather has to be robust to this choice.

Figure 3: Prediction errors of KF and OKF on
1208 targets of the test data of MOT20 videos
dataset. The MSE of OKF is smaller by 18%,
with statistical significance of p-value < 10−6

over the test samples.

Optimization is more accurate and robust: Table 1
shows that for every benchmark and every baseline in
the radar tracking problem (20 experiments in total),
optimization yielded smaller errors than noise estimation
(over an out-of-sample test dataset). Note that OKF wins
even in the Toy scenario, under the slightest violation
of KF assumptions. In addition, the variance between
the baselines reduces under optimization, i.e., the opti-
mization makes the KF more robust to design decisions
(which is also evident in Figure 14a in Appendix M).

We also studied the performance of a KF with a perfect
knowledge of the noise covariance matrix R. Note that
in the constant-speed benchmarks, the estimation ofQ =
0 is already very accurate, hence in these benchmarks
the oracle-KF has a practically perfect knowledge of
both noise covariances. Nonetheless, Table 1 shows that
the oracle yields very similar results to a KF with estimated parameters. This indicates that the
limitation of noise estimation in the KF indeed comes from choosing the wrong goal, and not from
estimation inaccuracy.

(a) Estimated R (b) Optimized R

Figure 4: The covariance matrix R of the observation
noise obtained in a (Cartesian) KF by noise estimation
and by optimization, based on the dataset of the Toy
benchmark. The axes correspond to the observation vari-
ables associated with the matrix entries. Note that the
noise estimation is quite accurate, as the true variance
of the noise is 1002 for the positional dimensions and
52 for Doppler. The optimization increases the vari-
ance associated with the Doppler signal, as predicted by
Lemma E.1. The decrease in the other diagonal compo-
nents is discussed in Appendix E.

Figure 3 shows that OKF provides significantly
better predictions also in video tracking, where
the MSE is reduced by 18% (see Appendix I for
more details). In addition, in lidar-based state
estimation, Appendix J shows a similar error
reduction of 15%, and Lemma F.3 explains the
MSE-advantage of OKF analytically.

OKF is further demonstrated to be robust to
major distributional shifts in Appendix G, and
to small training datasets in Appendix H.

Diagnosis of the KF sub-optimality in Toy
scenario: The source of the gap between es-
timated and optimized noise parameters can be
studied through the simplest Toy benchmark,
where the only violation of KF assumptions is
the non-linear observation model H . Since the
non-constant entries of H correspond to the Doppler observation, the non-linearity inserts uncertainty
to the Doppler observation (in addition to the inherent observation noise). This increases Doppler’s
effective noise in comparison to the location observation, as shown analytically by Lemma E.1 in the
appendix. This explanation is consistent with Figure 4: the noise associated with Doppler is indeed
increased by the optimization. Note that the non-linearity modifies the effective noise in a delicate
way, which would not be compensated by a naive trial and error of noise inflation or deflation.

5 NEURAL KALMAN FILTER: IS NON-LINEAR PREDICTION HELPFUL?

A standard Kalman Filter for a tracking task assumes linear motion, as discussed in Section 2. In this
section we introduce the Neural Kalman Filter tracking model (NKF), which uses LSTM networks
to model non-linear motion, while keeping the framework of the KF – namely, the probabilistic
representation of the target’s state, and the separation between prediction and update steps.

7



Under review as a conference paper at ICLR 2022

(a)

(b)

Figure 5: (a) Relative tracking errors (lower
is better) with relation to a standard KF, over
targets with different ranges of acceleration.
The error-bars represent confidence intervals
of 95%. The label of each bar represents the
corresponding absolute MSE (×103). In the
training data, the acceleration was limited to
24-48, hence the other ranges measure gen-
eralization. While the Neural KF (NKF) is
significantly better than the standard KF, its
advantage is entirely eliminated once we op-
timize the KF (OKF). (b) A sample target
and the corresponding models outputs (pro-
jected onto XY plane). The standard KF has
a difficulty to handle some of the turns.

Every prediction step, NKF uses a neural network model
to predict the target’s acceleration at and the motion uncer-
tainty Qt. Every update step, another network predicts the
observation uncertainty Rt. The predicted quantities are
incorporated into the standard update equations of the KF,
as shown in detail in Figure 7 in Appendix B. For example,
the prediction step of NKF is:

xPt+1 = Fxt + 0.5at(∆t)
2, PPt+1 = FPtF

> +Qt

where F = F (∆t) is the constant-velocity motion opera-
tor, and at, Qt are predicted by the LSTM (whose input in-
cludes the recent observation and the current estimated tar-
get’s state). Other predictive features were also attempted
but failed to provide significant value, as described in
Appendix B. Note that the neural network predicts the
acceleration rather than directly predicting the location.
This is intended to regularize the predictive model and to
exploit the domain knowledge of kinematics.

After training NKF over a dataset of simulated targets
with random turns and accelerations (see Appendix B.1 for
more details), we tested it on a test dataset. The test dataset
is similar to the training dataset, with different seeds and
an extended range of permitted accelerations. As shown
in Figure 5, NKF significantly reduces the tracking errors
compared to a standard KF.

At this point, it seems that the non-linear architecture of
NKF provides better accuracy in the non-linear problem of
radar tracking. However, Figure 5 shows that by shifting
the baseline from a naive KF to an optimized one, we com-
pletely eliminate the advantage of NKF, and in fact reduce
the errors even further. In other words, in this experiment
the benefits of NKF come only from optimization and not
at all from the expressive architecture. By overlooking the
sub-optimality of noise estimation in the KF, we would
wrongly adopt the over-complicated NKF.

Note that the optimized KF (OKF) also generalizes well
to targets with different accelerations than observed in the
training, which indicates a certain robustness to distribu-
tional shifts. Appendix K extends the experiment to additional variants of NKF, to another tracking
benchmark, and to the evaluation metric of likelihood (NLL) in addition to estimation error (MSE).
Note that high likelihood score is important for the matching task in a multi-target tracking problem.

Of course, our results do not imply that neural-networks in general cannot be superior to a KF:
only that when comparing the two, if the KF is not optimized similarly to the neural model, the
experimental results may be very misleading. As discussed in Section 6, this wrong methodology is
not uncommon in the literature.

6 RELATED WORK

Noise estimation: When tuning a KF, the system-states are often unavailable in the data (Formentin
and Bittanti, 2014). Thus, estimation of the KF noise parameters from observations alone has been
studied for decades, addressed using various methods based on autocorrelation (Mehra, 1970; Carew
and Belanger, 1973), EM (Shumway and Stoffer, 2005) and others (Odelson et al., 2006; Feng et al.,
2014; Park et al., 2019). However, if the states are available, noise estimation reduces to Equation 2
and is considered a solved problem (Odelson et al., 2006). In this case, we show that although noise
estimation is easy, it is often not the right task to address.
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Many works addressed the problem of non-stationary noise estimation (Zanni et al., 2017; Akhlaghi
et al., 2017). However, as demonstrated in Sections 4,5, in certain cases stationary methods are highly
competitive if tuned correctly – even in problems with complicated dynamics.

Optimization: In this work we apply gradient-based optimization to the KF with respect to its
errors. Optimization without gradients was already suggested in Abbeel et al. (2005). In practice,
”optimization” of the KF is often handled manually using trial-and-error (Jamil et al., 2020) or a
grid-search over possible values of Q and R (Formentin and Bittanti, 2014; Coskun et al., 2017). In
other cases, Q and R are restricted to be diagonal (Li et al., 2019; Formentin and Bittanti, 2014).

Gradient-based optimization of SPD matrices in general was suggested in Tsuda et al. (2005)
using matrix-exponents, and is also possible using projected gradient-descent (Tibshirani, 2015) –
both rely on SVD-decomposition. In this work, we apply gradient-based optimization using the
parameterization that was suggested in Pinheiro and Bates (1996), which requires a mere matrix
multiplication, and thus is both efficient and easy to implement.

In absence of a trajectories dataset, a recent line of works (Tsiamis and Pappas, 2020; Goel and
Hassibi, 2021) applies online optimization within the current trajectory to minimize a regret metric.

Neural Networks (NNs) in filtering problems: Section 5 presents a RNN-based extension of the
KF, and demonstrates how its advantage over the linear KF vanishes once the KF is optimized. The
use of NNs for non-linear filtering problems is very common in the literature, e.g., in online tracking
prediction (Gao et al., 2019; Dan Iter, 2016; Coskun et al., 2017; fa Dai et al., 2020; Ullah et al.,
2019), near-online prediction (Kim et al., 2018), and offline prediction (Liu et al., 2019b). In addition,
while Bewley et al. (2016) apply a KF for video tracking from mere object detections, Wojke et al.
(2017) add to the same system a NN that generates visual features as well. NNs were also considered
for related problems such as data association (Liu et al., 2019a), model-switching (Deng et al., 2020),
and sensors fusion (Sengupta et al., 2019).

In many works that consider NNs for filtering problems, a KF is used as a baseline for comparison.
However, while the NN parameters are typically optimized with respect to the filtering errors, the
KF parameters tuning is sometimes ignored (Gao et al., 2019; Bai et al., 2020; Zheng et al., 2019),
sometimes based on estimation (or knowledge) of the noise (fa Dai et al., 2020; Aydogmus and
Aydogmus, 2015; Revach et al., 2021), and sometimes optimized in a limited manner as mentioned
above (Jamil et al., 2020; Coskun et al., 2017; Ullah et al., 2019). Our findings imply that this
methodology is wrong, since the baseline is not optimized to the same level as the learning model.
Hussein (2014) explicitly discusses the sensitivity of EKF performance to the noise model accuracy,
and suggests the solution of a NN with supervised learning – without considering the same supervised
learning for the EKF.

7 SUMMARY

Through a detailed case study, we demonstrated both analytically and empirically the fragility of
the KF assumptions, and how the slightest violation of them may change the effective noise in
the problem – leading to significant and non-trivial changes in the optimal noise parameters. We
addressed this problem using optimization tools from supervised machine learning, and suggested
how to apply them efficiently to the SPD parameters of the KF.

We demonstrated the accuracy of our method over different violations of KF assumptions, in different
domains (radar tracking, video tracking and lidar-based state estimation), with relation to different
variants of the KF, over small and large training datasets, and even under distributional shifts between
train and test datasets. Indeed, once we acknowledged the need for optimization and applied the
Cholesky parameterization, the optimization itself performed robustly over all these scenarios. In
light of this evidence, we recommend to use our method as the default procedure for the KF tuning in
presence of ground-truth data, whenever the KF assumptions are not strictly-guaranteed.

We also demonstrated one of the consequences of using a sub-optimal KF: the common methodology
of comparing learning filtering algorithms to classic variants of the KF is misleading, as it essentially
compares an optimized model to a non-optimized one. We argued that the baseline method should be
optimized similarly to the researched one, e.g., using optimization rather than noise estimation.
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REPRODUCIBILITY

All the experiments in this work are reproducible using our code, including data generation, mod-
els training and results analysis. The complete proofs for the theoretical results are available in
Appendices E and F.
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A PRELIMINARIES: EXTENDED

A.1 MULTI-TARGET RADAR TRACKING

In the problem of multi-target radar tracking, noisy observations (or detections) of aerial objects (or
targets) are received by the radar and are used to keep track of the objects. In standard radar sensors,
the signal of an observation includes the target range and direction (which can be converted into
location coordinates x, y, z), as well as the Doppler shift (which can be converted into the projection
of velocity vx, vy, vz onto the location vector).

The problem consists of observations-trackers assignment, where each detection of a target should be
assigned to the tracker representing the same target; and of location estimation, where the location
of each target is estimated at any point of time according to the observations (Chang and Dunn,
2019). In the fully online setup of this problem, the assignment of observations is done once they
are received, before knowing the future observations on the targets (though observations of different
targets may be received simultaneously); and the location estimation at any time must depend only
on previously received observations.

Assignment problem: The assignment problem can be seen as a one-to-one matching problem in
the bipartite graph of existing trackers and newly-received observations, where the edge between
a tracker and an observation represents ”how likely the observation zj is for the tracker trki”. In
particular, if the negative-log-likelihood is used for edges weights, then the total cost of the match
represents the total likelihood (under the assumption of observations independence):

C(match) =
∑

(i,j)∈match

−logP (zj |trki) = −log
∏

(i,j)∈match

P (zj |trki) (3)

The assignment problem can be solved using standard polynomial-time algorithms such as the
Hungarian algorithm (Kuhn, 1955). However, the assignment can only be as good as the likelihood
information fed to the algorithm. This is a major motivation for trackers that maintain probabilistic
representation of the target, rather than a merely point estimate of the location. A common example
for such a tracking mechanism is the Kalman filter discussed below.

A.2 KALMAN FILTER

Kalman Filter (KF) is a widely-used method for linear filtering and prediction originated in the
1960s (Kalman, 1960), with applications in many fields (Zarchan and Musoff, 2000) including object
tracking (Kirubarajan, 2002). The classic model keeps an estimate of the monitored system state
(e.g., location and velocity), represented as the mean x and covariance P of a normal distribution
(which uniquely determine the PDF of the distribution). The mechanism (see Figure 1) alternately
applies a prediction step, where a linear model x := Fx predicts the next state; and an update step
(also termed filtering step), where the information of a new observation z is incorporated into the
estimation (after a transformation H from the observation space to the state space). In general, both
models Ft, Ht can be time-dependent, but in practice they are often time-invariant, thus the notation
is often simplified to F and H .

Note that KF compactly keeps our knowledge about the monitored target at any point of time, which
allows us to estimate both whether a new observation corresponds to the currently monitored target,
and what the state of the system currently is. However, KF strongly relies on several assumptions:

1. Linearity: both the state-transition of the target ft and the state-observation transformation
ht are assumed to be linear, namely, ft(x) = Ft · x and ht(x) = Ht · x. Note that the
Extended KF described below, while not assuming linearity, still assumes known models for
transition and observation.

2. Normality: both state-transition and state-observation are assumed to have a Gaussian noise
with covariance matrices Q and R respectively. As a result, the estimates of the state x and
its uncertainty P also correspond to the mean and covariance matrix of a Normal distribution
representing the information regarding the target location.

3. Known model: Ft, Q,Ht, R are assumed to be known.
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While Ft and Ht are usually determined manually according to domain knowledge, the noise
model parameters R,Q are often estimated from data (as long as the the true states are available
in the data). Specifically, they are often estimated from the sample covariance matrix of the noise:
R := Cov(Z −HtX), Q := Cov(∆X) = Cov({xt+1 − Ftxt}t) (Lacey, 1998).

Two non-linear extensions of KF – Extended Kalman Filter (EKF) (Sorenson, 1985) and Unscented
Kalman Filter (UKF) (Wan and Van Der Merwe, 2000) – are also very popular in problems of
non-linear state estimation and navigation (Wan, 2006). EKF replaces the linear prediction (Ft) and
observation (Ht) models with non-linear known models ft and ht, and essentially runs a standard KF
with the local linear approximations Ft = ∂ft

∂x |xt , Ht = ∂ht

∂x |xt , updating in every step t. UKF does
not pass the state distribution x, P through the motion equations as a whole distribution, since such
distribution transformation is unknown for general nonlinear state-transition. Instead, it samples sigma
points from the original Gaussian distribution, passes each point through the nonlinear transition,
and uses the resulting points to estimate the new Gaussian distribution. Particle filters go farther
and do not bother to carry a Gaussian PDF: instead, the points themselves (particles) can be seen as
representatives of the distribution.

Whether linear or not, a single simple model is hardly enough to represent the motion of any aerial
target. A common approach is to maintain a switching model that repeatedly chooses between several
mode, each controlled by a different motion model. Common simple models the Constant Velocity
(CV), Constant Acceleration (CA), and Coordinated Turn Left or Right (CTL and CLR). Note that in
all these models the prediction operator F is linear. A popular switching mechanism is the Interactive
Multiple Model (IMM) (Mazor et al., 1998), which relies on knowing the transition-probabilities
between the various modes.

In addition to the challenge of predicting mode-transitions, the standard models in use are often too
simple to represent the motions of modern and highly-maneuvering targets, such as certain unmanned
aerial vehicles, drones and missiles. Many approaches have been recently attempted to improve
tracking of such objects, as discussed in Section D.

A.3 FORMULATION OF THE KALMAN FILTER MODEL FOR THE DOPPLER RADAR PROBLEM

Tracking targets from measurements of a Doppler radar is one of the main applications studied in this
work. The basic setup of the problem is defined in Section 4.1. The KF model corresponding to this
setup, in terms of Equation 1, is as follows:

F =


1 1

1 1
1 1

1
1

1

 H = H(X) =

1
1

1
xx/r xy/r xz/r

 (4)

where X = xfull (in the notation of Section 4.1) and r =
√
x2x + x2y + x2z . That is, the motion

model is the standard constant-velocity model, and the observation model corresponds to direct
observation of the location coordinates and a measurement of the radial component of velocity.

Both models (F,H) do not directly depend on the time. However, in contrast to the formulation
of Equation 1, H = H(X) does depend on the unknown state X , and thus H(X) is unknown in
inference time. That is, the observation model h(X) = H(X) ·X is not linear anymore. The variants
of the KF in Section 4 handle this non-linearity as follows:

1. EKF is inherently designed to handle such a non-linear model using the approximation
h(X) ≈ H̃ ·X , where H̃ = ∇Xh(X̂) and X̂ is the recent estimate of X .

2. KF: for the standard KF, we use the common trick of approximatingH(X) with H̃ = H(z),
where z is the recent observation. That is, we replace the unknown location (xx, xy, xz) in
Equation 4 with the location coordinates of the observation (zx, zy, zz), resulting in:

H̃(z) =

1
1

1
zx/r̃ zy/r̃ zz/r̃


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where r̃ =
√
z2x + z2y + z2z . We also implemented other approximations (e.g., X̂ instead of

z), but they did not show added value for the KF baseline in our experiments.

The KF parameters Q and R were tuned by either Method 1 (noise-estimation) or Method 2 (filtering-
errors optimization). Note that both methods are easily applicable to the non-linear setting:

1. Method 1: in Equation 2, we simply replace Ht with the actual observation model H(X)
(note that X is available in the training data in our settings).

2. Method 2: as before, we repeatedly run the KF and calculate the gradients of its loss. We
simply use the KF (or EKF) implementation explained above.

A.4 RECURRENT NEURAL NETWORKS

Neural networks (NN) are parametric functions, usually constructed as a sequence of matrix-
multiplications with some non-linear differentiable transformation between them. NNs are known
to be able to approximate complicated functions, given that the right parameters are chosen. Op-
timization of the parameters of NNs is a field of vast research for decades, and usually relies on
gradient-based methods, that is, calculating the errors of the NN with relation to some training-data
of inputs and their desired outputs, deriving the errors with respect to the network’s parameters, and
moving the parameters against the direction of the gradient.

Recurrent neural networks (RNN) (Rumelhart et al., 1986) are NN that are intended to be iteratively
fed with sequential data samples, and that pass information (the hidden state) over iterations. Every
iteration, the hidden state is fed to the next copy of the network as part of its input, along with
the new data sample. Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is
an architecture of RNN that is particularly popular due to the linear flow of the hidden state over
iterations, which allows to capture memory for relatively long term. The parameters of a RNN are
usually optimized in a supervised manner with respect to a training dataset of input-output pairs.

A.5 NOISE DEPENDENCE BY CHANGE OF COORDINATES

One of the violations of the KF assumptions in Section 4 is the non-i.i.d nature of the noise. The
interest in this violation is increased by the fact that the noise is simulated in an i.i.d manner, which
makes the violation non-trivial to notice.

The violation is caused by the difference of coordinates: while the state of the target is represented
in Cartesian coordinates, the noise is generated in spherical ones. As a result, spherical dimensions
with higher noise are assigned to the same Cartesian dimensions in consecutive time-steps, creating
dependence between the noise in these time-steps in Cartesian coordinates.

For example, consider a radar with a noiseless angular estimation (i.e., all the noise is radial), and
consider a low target (in the same height of the radar). Clearly, most of the noise will be in the XY
plane – both in the current time-steps and in the following ones (until the target gets far from the
plane). In other words, the noise in the following time-steps statistically-depends on the current
time-step, and is not i.i.d.

B PROBLEM SETUP AND IMPLEMENTATION DETAILS

Code: The code for this work is available here, and naturally contains implementation details that
may be missing in the descriptions below.

Targets simulation: Our simulated dataset consists of episodes of tens to hundreds of seconds.
Each episode contains around 20 targets. Each target appears at a certain point of time, has certain
acceleration and speed ranges, and alternately performs straight motions (in constant speed or with
acceleration) and turns (horizontally or vertically) until it disappears. The time progresses in discrete
time-steps of size dt. The space is assumed to be 3D and homogeneous (no ground).

The randomization in an episode is expressed through the number of targets, each target’s acceleration
and speed ranges, target appearing time, initial target state, number of turns, directions of turns
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Figure 6: A sample of targets trajectories.

(left/right/up/down), length of turns, length of straight intervals, whether accelerating in straight
intervals and what the acceleration is.

Radar simulation: Every time-step, the radar generates detections of the available targets. Each
detection contains location information (x, y, z) and a Doppler measurement corresponding to the
projection of velocity onto the location vector. Each detection has an additive i.i.d Gaussian noise in
spherical coordinates, i.e., range, azimuth, elevation, and Doppler. The radar itself is assumed to be a
singular point located in the origin (0, 0, 0). Recall that we assume a homogeneous space with no
ground.

Tracking test framework: The predictive models (trackers) can be tested in a mere prediction
framework (where each target is tested by itself), or in a full tracking framework (where multiple
targets are tracked simultaneously). In the latter, we use a tracking system (solver) consisting of a
matcher and multiple trackers. Every time-step during a test episode, the solver runs the following
procedures:

1. Observe: receive observations from the radar.

2. Assign: use the matcher (based on the standard Hungarian Algorithm (Kuhn, 1955), with re-
lation to the corresponding trackers’ likelihood functions) to assign observations to trackers;
create a new tracker for any unassigned observation; and delete any tracker whose target
was not observed for several time-steps.

3. Update: update the location estimation of the trackers using the newly-assigned observa-
tions.

4. Predict: predict the target location in the next time-step (to allow more accurate assignment
of the next batch of observations).

In the scope of this work we are mainly interested in the tracker module. Note that the tracker affects
the matching accuracy through the likelihoods it feeds to the matcher; and affects the estimation
accuracy directly in the prediction and update operations. To solve both matching and estimation
tasks, the tracker is required to provide a good probabilistic model of the target location (namely, a
PDF of the location) in addition to a point estimate.

We measure the estimation accuracy using the standard Mean Square Error (MSE) of the target
location after the update step. For matching accuracy, for each target we consider the tracker that
covers most of the target’s observations, and count the percent of observations assigned to that tracker.
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Trackers: To support the procedures described above, a tracker must implement prediction and
update steps, as well as exporting the current point estimate of the target location and the likelihood
of any observation whenever queried.

All the trackers in this work are conceptually based on Kalman Filter (described in Section A.2). The
following elements characterize the exact nature of the tracker:

1. KF/EKF: the difference is in the observation model H , as explained in Section A.2.

2. Coordinates for representation of the observation noise R: while we represent the state
in Cartesian coordinates ((x, y, z, vx, vy, vz)>) and measure the errors accordingly, the
natural coordinates for the noise of the radar are spherical, as the observation errors are
simulated independently for range, azimuth, elevation and Doppler. In particular, in Carte-
sian coordinates the errors are not independent, hence R is not inherently constant. When
implementing R in spherical coordinates, we have to transform it to Cartesian coordinates
every time-step according to the recent observation.

3. Determining the noise parameters Q,R by estimation/optimization: by estimation of
the noise we mean Q = Cov(Xt+1 − FXt), R = Cov(Zt −HXt) over the training data
{Xt, Zt}. By optimization we mean that R ∈ R4×4, Q ∈ R6×6 are intended to minimize
the loss of the predictions over the training data. Note that in the optimization, we represent
R,Q using lower-triangular decomposition so that both matrices remain SPD.

4. Acceleration prediction: replace the linear motion model Fx with Fx+ 0.5a · dt2, where
a is predicted using a LSTM that receives the observations and estimated states as recurrent
inputs.

5. Q prediction: dynamically predict the motion model noise Q using an LSTM. We use the
same LSTM as for a, except for the head layer that outputs Q itself. For simplicity, we
assume that Q is diagonal when dynamically predicted.

6. R prediction: dynamically predict the observation noise R using a neural network that
receives the recent observations and estimated states as inputs. For simplicity, we assume
that R is diagonal when dynamically predicted.

7. H prediction: the observation model z = h(x) of a radar is a non-linear function of x.
Extended KF handles this through a linear approximation of h around the currently-estimated
state x. By H-prediction, we aim to learn to choose H dynamically in an optimal way to
improve the tracking errors.

8. Mixture-of-Gaussians representation: KF assumes Gaussian errors (in prediction and
observation), hence the distribution of the state is always normal, which is somewhat limiting.
We try to represent the distribution as a mixture of Gaussians (i.e., a linear combination of
a few Gaussians). The Gaussians are intended to correspond to possible modes of motion
(e.g., constant speed vs. a turn), and thus can predict the dynamic acceleration (see above)
differently from each other. In addition, the amplitude of each Gaussian (i.e., the probability
assigned to it) is predicted every step along with the accelerations.

Optimization of the noise parameters (R,Q) was implemented as part of the Optimized Kalman
Filter (OKF) described in Section 4. This feature was found to make the tracker both more accurate
and more robust to design choices such as KF vs. EKF or coordinates of R as described above. A
neural-network-based Dynamic prediction of acceleration and noise was implemented as part of the
Neural Kalman Filter (NKF) described in Section 5. The NKF architecture is also described in detail
in Figure 7.

The last two features in the list failed to provide successful results: dynamic prediction of H often
yielded unstable predictions, and a mixture representation had insignificant effects on the prediction.
Furthermore, beyond 2 Gaussians in the mixture, it seemed that any additional Gaussian became
practically inactive, with amplitude being constantly near zero.

B.1 TRAINING

Training data: A training dataset consists of targets, each consisting of a sequence of states
(e.g., locations and velocities) along with a sequence of observations. In particular, the target state
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Figure 7: The Neural Kalman Filter (NKF) algorithm of Section 5. The differences from Figure 1 are marked.
G,Q,R are neural networks of the type LSTM, and ha, hr are their hidden states (more accurately, G and Q are
different heads of the same network, and thus share the same hidden states ha). In addition to the raw xt, zt, the
networks are also fed with certain manually-crafted features (e.g., the projection of zt − xt on the perpendicular
direction x⊥t ).

ground-truth is assumed to be known and available to learn from. This can be achieved either by
a simulated environment or by internal targets sensors (e.g., GPS) in a controlled experiment in a
physical environment. Note that the training dataset considers the targets independently of each other,
and does not refer to the notion of episodes with possibly-simultaneous targets. Targets assignment
in such episodes can be handled by the Hungarian algorithm as mentioned above. The test dataset
differs from the training dataset in the seeds used to generate the trajectories and the observations,
and in certain experiments also in some configuration parameters such as the permitted range of
acceleration.

Noise estimation: For models whose parameters are determined by noise estimation (e.g., the
standard KF), the training reduces to calculation of R and Q from the data as the sample covariance
matrices (Equation 2). Note that {xt} and {zt} from Equation 2 correspond to the states and
observations mentioned above.

Optimization (error minimization): For models whose parameters are determined by optimiza-
tion (e.g., OKF and NKF), we use the Adam algorithm (Diederik P. Kingma, 2014), as implemented
by the PyTorch package, with initial learning rate of 0.01 (reduced by 50% every 150 training steps)
and no weight-decay. Every training epoch goes once over each training target. In the beginning of
each epoch, batches of 10 targets are randomly drawn.

Every training step corresponds to a single batch, where the training loss is aggregated additively
over the targets in the batch and over the time-steps of each target. That is, for each target in the
batch, we run the tracker on the target observations; after each observation receive the corresponding
state estimate from the tracker; and add the corresponding error to the loss.

The explicit training loss is the Mean Square Error (MSE) of the estimated location (which is part of
the estimated state) after the update step.

In the case study experiments on the Doppler radar domain (Section 4), each benchmark included
1500 simulated targets for training and 1000 targets for testing. A single training epoch was sufficient
for convergence of the optimized models. The optimization lasted a few minutes per benchmark
(scenario) – for all the 4 baselines in parallel (OKF, OKFp, OEKF, OEKFp).
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C CHOLESKY GRADIENT OPTIMIZATION

Section 3 discusses an efficient method to apply gradient-based optimization to SPD matrices, based
on parameterization of the SPD matrix using Cholesky decomposition (Pinheiro and Bates, 1996).
This section presents this method more formally.

We consider an objective function f(x;A) to be minimized, where x is the input and A ∈ Rn×n are
parameters formed as a SPD matrix. We define A(L) := LL> and

(L(θ))ij :=


0 if i < j

eθn(n−1)/2+i if i = j

θ(i−2)(i−1)/2+j if i > j

where θ ∈ Rn(n+1)/2. We also denote the optimization update rule by u(θ, g), where θ are the
current parameters and g is the current gradient. For example, for the classic gradient descent,
u(θ, g) = θ−αg. Using these notations, the optimization method becomes as simple as Algorithm 1.
This algorithm (with Adam’s update rule) was used for all the KF optimizations in this work.

Algorithm 1: Cholesky Gradient Optimization

Input: objective f ; update rule u; data X; initial parameters θ0 ∈ Rn(n+1)/2;
Output: SPD matrix A ∈ Rn×n;
θ ← θ0;
for training epoch do

for data sample x in X do
g ← ∇θf(x;A(L(θ)));
θ ← u(θ, g);

Return A(L(θ));

Note that the diagonal of L(θ) could be replaced by any increasing positive transformation. In fact,
we could even drop the positive transformation and allow non-positive diagonal entries in L: this
would only eliminate the uniqueness of the parameterization, and would allow A to be positive
semi-definite.

D RELATED WORK: EXTENDED

Kalman Filter parameters tuning: Estimation of the noise parameters in KF has been researched
for decades. A popular framework for this problem is estimation from data of observations {z}
alone (Odelson et al., 2006; Feng et al., 2014; Park et al., 2019), since the ground-truth of the states
{x} is often unavailable in the data (Formentin and Bittanti, 2014). In this work we assume that the
ground-truth is available.

Many works addressed the problem of non-stationary noise estimation (Zanni et al., 2017; Akhlaghi
et al., 2017). However, as demonstrated in Sections 4,5, in certain cases stationary methods are highly
competitive if tuned correctly – even in problems with complicated dynamics.

Optimization of KF parameters with respect to tracking errors was already suggested in Abbeel
et al. (2005), using a method that avoids gradients computation. In practice, ”optimization” of KF
parameters with respect to the errors is often handled manually using trial-and-error (Jamil et al.,
2020), or using a grid-search over possible values of Q and R (Formentin and Bittanti, 2014; Coskun
et al., 2017). Alternatively, the optimization is often simplified by restricting Q and R to be diagonal
(e.g., see the experiments in Barratt and Boyd (2020) and Li et al. (2019)). Formentin and Bittanti
(2014) pointed out explicitly that ”since both the covariance matrices must be constrained to be
positive semi-definite, Q and R are often parameterized as diagonal matrices”.

Gradient-based optimization of SPD matrices in general was suggested in Tsuda et al. (2005)
using matrix-exponents, and is also possible using projected gradient-descent (Tibshirani, 2015) –
both rely on SVD-decomposition. In this work, we apply gradient-based optimization using the
parameterization that was suggested in Pinheiro and Bates (1996), which requires a mere matrix
multiplication, and thus is both efficient and easy to implement.
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Neural networks for tracking: While comparison between RNN and KF goes back to DeCruye-
naere and Hafez (1992); Chenna et al. (2004), the contribution of neural networks to non-linear
motion tracking has been widely researched mostly in recent years, in the context of both radar and
other sensors. Liu et al. (2019b) focus on an offline framework, where a bidirectional LSTM receives
a full, normalized trajectory as an input, and improves the target locations estimations of a UKF in
a 2-dimensional space. The LSTM is trained to predict the residual errors of the UKF. Kim et al.
(2018) focus on a ”near-online” framework, where assignment of an observation is decided after
looking ahead a certain number of observations. They operate in the visual domain, incorporate both
visual and motion information together to make decisions, and suggest a new variant of LSTM, where
the hidden state h interacts with the new input x through the multiplication hx rather than linear
combination of the two, and thus can be interpreted as a dynamic model rather than hidden memory.

Gao et al. (2018) focus on an online framework, similarly to our work, where assignments and
estimations are done immediately with the receipt of the observations. For the private case of a
one-dimensional recurrent input signal, they use two LSTMs for estimation of the target location – one
for the prediction step and one for the update step – to achieve improved estimation. Gao et al. (2019)
expand this work and learn to predict both the location estimate and its (one-dimensional) variance
according to the negative-log-likelihood loss, which yields similar accuracy but provides uncertainty
estimation. Dan Iter (2016) consider online tracking of single vehicles on the 2-dimensional video
screen of a vehicle camera (the KITTI object tracking benchmark). Since they assume zero observation
error, they focus on prediction error optimization. Their LSTM yields a better point-prediction than
KF, but does not improve the end-to-end tracking, which they hypothesize that could be caused by
insufficient uncertainty estimation. Coskun et al. (2017) suggest a combination of LSTM and KF for
the task of human pose estimation, learned on basis of the square estimation-errors. In particular,
three LSTM modules are used to predict the parameters F,Q,R of a KF.

Liu et al. (2019a) train an LSTM for data association, i.e., the assignment task. Sengupta et al. (2019)
address the problem of sensors fusion using a deep neural network. They incorporate information
from a monocular camera and a mmWave radar, and show how to handle failures in either of the
sensors. Deng et al. (2020) consider standard models as building blocks for IMM, and replace the
mode-transition matrix with an LSTM that estimates the transition probabilities dynamically. Peng
and Gu (2011) replace the standard building blocks of IMM with modes that are dedicatedly-designed
to track highly-maneuvering targets.

A combination of KF with attention models (Vaswani et al., 2017) was also suggested (Liu et al.,
2020) in the context of click-through rate prediction in e-commerce, where vital information for
prediction may be concentrated in certain time-steps on which the model should focus.

E THEORETICAL ANALYSIS: ESTIMATION VS. OPTIMIZATION IN THE TOY
BENCHMARK

Section 4 demonstrates that the optimal noise parameters in KF often differ from the covariance
of the noise. Here we analyze this effect for the private case of the Toy benchmark, where all KF
assumptions (Definition 2.1) hold – except for the non-linear observation model H(X).
Definition E.1 (The toy Doppler problem). The toy Doppler problem is the filtering problem modeled
by Equation 1 with the system-state space X = (x, y, z, ux, uy, uz)

> ∈ R6 and the following
parameters:

F =


1 1

1 1
1 1

1
1

1

 H = H(X) =

1
1

1
x/r y/r z/r



Q = 000 ∈ R6×6 R =

σ
2
x

σ2
y

σ2
z

σ2
D


where r =

√
x2 + y2 + z2 and σx, σy, σz, σD > 0.
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As mentioned in Section 4, this toy problem is highly simplified. For example, the targets only move
in exact straight lines, and the noise of the radar is drawn i.i.d in Cartesian coordinates. Yet, despite
the major simplifications, we show below that the remaining violation of observation linearity leads
to sub-optimality of noise estimation when determining the KF parameters.

Since the true X is unknown to the KF in the inference phase, we assume that the KF approximates
H(X) using H̃ , which relies on the current estimates of x, y, z:

H̃ =

1
1

1
x̂/r̂ ŷ/r̂ ẑ/r̂


Lemma E.1 (Effective observation noise in the toy Doppler problem). Consider the toy Doppler
problem with the approximated observation model H̃ . At a certain time-step, assume that the
positional estimation errors (i.e., the estimation errors of x, y, z) are independent of the target velocity
u. Then, the observation noise corresponding to H̃ (the effective observation noise) is described by
the following covariance matrix:

R̃ =

σ
2
x

σ2
y

σ2
z

σ2
D + C

 = R+

0
0

0
C

 (5)

for some C > 0.

Proof. Denoting x̃ := x/r (and similarly for ỹ, z̃), we can rewrite H̃ as

H̃ =

1
1

1
x̃+ dx̃ ỹ + dỹ z̃ + dz̃


where dx̃, dỹ, dz̃ are the corresponding (normalized) estimation errors. Note that in the private case
where x, y, z are estimated by the observations zx, zy, zz , these errors coincide with the corresponding
entries of the observation noise ν (up to the normalization by r).

By shifting the observation model in Equation 1 from H to H̃ , we receive

Z = H ·X + ν = H̃X +

 νx
νy
νz

νD − dx̃ux − dỹuy − dz̃uz

 = H̃X +

 νx
νy
νz

νD − dr̃> · u


that is, the observation noise corresponding to H̃ is ν̃ = (νx, νy, νz, νD − dr̃> · u)>.

dx̃, νx are both independent of the velocity ux (the former by the lemma’s assumption, and the
latter by the model of Equation 1 in Definition E.1). Thus, Corr(dx̃ · ux, νx) = E(dx̃ · ux · νx) =
E(dx̃νx)E(ux) = 0, and similarly for νy, νz . Hence, by denoting C = V ar(dr̃> · u) > 0, the
covariance matrix of ν̃ is indeed R̃.

Lemma E.1 provides the theoretical explanation for Figure 4b in Section 4, where we see that the
optimization of R increases the variance of the Doppler signal compared to the variance of the
positional signal. Figure 4b also shows a decrease in the positional variance (not only an increase
in Doppler’s variance), which is not explained by the analysis above. This is caused by the fact
that when Q ≡ 0, the absolute values of R have quite minor importance compared to the relative
values between the components – hence the optimization increases Doppler’s variance compared
to positional variance, but is quite indifferent to their scale. Indeed, re-scaling of the optimized R
provided indistinguishable empirical results.

Note that in this private case of Toy benchmark, the gap between estimation and optimization
could be easily solved by modifying the estimation from R := Cov({zt − H(xt) · xt}) to R :=
Cov({zt −H(zt) · xt}). However, this correction does not guarantee optimal results beyond the Toy
benchmark, and in particular did not demonstrate significant improvement in the other benchmarks
defined in Section 4. Indeed, while certain private cases can be modeled and solved analytically
through effective noise estimation, optimization of the parameters provides a more robust solution.

24



Under review as a conference paper at ICLR 2022

F THEORETICAL ANALYSIS: ESTIMATION VS. OPTIMIZATION IN THE
PRESENCE OF NON-I.I.D NOISE

The KF model assumes i.i.d noise for both the motion model and the observation model. In cases
where the noise is known to follow another specific model, a dedicated solution can sometimes be
developed. For example, if the noise is auto-regressive with a known order p, an adjusted KF model
may consider the last p values of the noise itself as part of the system state (Geist and Pietquin, 2011).
However, we often do not know the actual model of the noise, or we do not know how to develop the
corresponding analytical solution, or we are not aware at all of the violation of the i.i.d assumption.
In any of these cases, the default practical choice is to keep the original KF model. However, the
covariance matrices of the noise are not guaranteed anymore to be the optimal values of the KF
parameters Q and R.

For example, consider the problem of a moving target in a two-dimensional space, with observation
noise drawn i.i.d in polar coordinates (similarly to the lidar model of Appendix J). For simplicity of
the analysis we represent the state using only the location x = (x1, x2)> ∈ R2, and assume a model
of no-motion up to an isotropic noise. Furthermore, we assume that the observation noise has only a
radial component.

Definition F.1 (The simplified lidar problem). The simplified lidar problem is the filtering problem
modeled by Equation 1 with the following parameters:

F = H =

(
1 0
0 1

)
Q =

(
q 0
0 q

)
Rpolar =

(
r0 0
0 0

)
for some q, r0 > 0, where the observation noise νt is drawn i.i.d from N(0, Rpolar) in polar
coordinates. We also assume that the initial system-state x0 is drawn from an isotropic distribution,
i.e., follows a density function of the form f((x0)21 + (x0)22), which is invariant to the target direction.

At a first glance, this simplistic problem may seem to satisfy the KF assumptions. In particular, both
sources of noise are i.i.d. However, the observation noise is drawn i.i.d in polar coordinates, while
the system state is estimated (and the prediction error is measured) in Cartesian coordinates. As
discussed in Appendix A.5, the i.i.d property is not invariant to the coordinates transformation!

Lemma F.1. The observation noise in the simplified lidar problem is not i.i.d in Cartesian coordinates.

Proof. Denote the system state at time t by xt = ((xt)1, (xt)2)>, and denote tan θ = ((xt)2/(xt)1).
From Definition F.1, by direct coordinates transformation, the observation noise is drawn from the
distribution νt ∼ N(0, R(θ)), where

R(θ) =

(
r0 cos2(θ) r0 cos(θ) sin(θ)

r0 cos(θ) sin(θ) r0 sin2(θ)

)
This noise covariance matrix varies every time-step with θ, hence the noise νt is not identically-
distributed in Cartesian coordinates. Furthermore, consecutive time-steps are likely to have similar
values of θ (according to the motion model), hence the noise is not independent either.

If we are aware of the particular noise model of the problem, we can estimate Rpolar in polar
coordinates and transform it to the Cartesian R(θ) dynamically every time-step (e.g., using our the
current estimate of θ, since the true θ is unknown). This is indeed what we do in the KFp model in
Section 4. If we are not aware, however, we would simply estimate a constant covariance matrix R in
Cartesian coordinates.

Lemma F.2 (Noise estimation in the simplified lidar problem). Let R be the sample covariance
matrix of the observation noise, calculated by Equation 2 with respect to a dataset of i.i.d targets in
the simplified lidar problem. Then, as the number of targets in the data grows, R converges almost
surely to

Rest =

(
r0/2 0

0 r0/2

)
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Proof. From Definition F.1, the distribution of the initial system-states is isotropic, and so is the
motion model Q. Hence, for any target at any time-step, the distribution of its direction θ (where
tan θ = ((xt)2/(xt)1)) follows the uniform distribution: θ ∼ [0, 2π). Now we can calculate:

Eθ [(Rest)11] = Eθ
[
r0 cos2 θ

]
=

∫ 2π

0

r0
2π

cos2 θdθ =
r0
2

Eθ [(Rest)22] = Eθ
[
r0 sin2 θ

]
=

∫ 2π

0

r0
2π

sin2 θdθ =
r0
2

Eθ [(Rest)12] = Eθ [(Rest)21] = Eθ [r0 cos θ sin θ] =

∫ 2π

0

r0
2π

cos θ sin θdθ = 0

and since the targets are i.i.d, by the Law of Large Numbers we have

R
a.s.−−→ Rest =

(
r0/2 0

0 r0/2

)

So far we saw that the actual observation noise is R(θ) (where θ changes every time-step), while
the constant covariance matrix that would be obtained by noise estimation is (asymptotically) Rest.
Assuming that we constraint ourselves to a constant matrix (invariant to θ) in Cartesian coordinates,
can we do better than Rest? More specifically, due to the radial symmetry of the problem, we can
denote w.l.o.g

Ropt(r) =

(
r 0
0 r

)
for some r > 0, and ask what value of r would result in minimal square filtering errors of the KF.

Lemma F.3 (Optimization in the simplified lidar problem). Assume that at a certain time-step in the
simplified lidar problem, the state of the system is known to be normally-distributed with mean and
covariance

x0 = (x1, x2)> P0 =

(
p 0
0 p

)
and that a new observation z = (x1 + dx1, x2 + dx2)> is received. Denote by x the point-estimate
of the KF following a filtering step with respect to noise parameters of the form Ropt(r). Then,
r = pr0

2p+r0
minimizes the expected square error (MSE) of x. Furthermore, (Ropt)ii = r < (Rest)ii

(for i ∈ {1, 2}), i.e., the optimal value of r is smaller than the value obtained by noise estimation.

Proof. As the true model of the observation noise is R(θ), by applying the KF update step (specified
in Figure 1) we obtain the new true mean of the system-state distribution:

xtrue = x0 + P0H
>(HP0H

> +R)−1(z −Hx0) = x0 + P0(P0 +R)−1(z − x0)

= x0 +

(
r0 sin2 θ+p
p+r0

− r0 cos θ sin θ
p+r0

− r0 cos θ sin θ
p+r0

r0 cos2 θ+p
p+r0

)(
dx1
dx2

)
=

(
x1 + (r0 sin2 θ+p)dx1−(r0 cos θ sin θ)dx2

p+r0

x2 + (r0 cos2 θ+p)dx2−(r0 cos θ sin θ)dx1

p+r0

)

where θ corresponds to the (unknown) true direction of the target. However, due to the restricted
form of Ropt(r) (which is independent of θ), the actual estimate would be

x = (x1 +
p

p+ r
dx1, x2 +

p

p+ r
dx2)>

The expected error of the point-estimate x can be decomposed into two terms: the bias of x, and the
variance of the system-state distribution. More formally, we can write MSE = MSEvar(Ptrue) +
MSEbias(x, xtrue), where we can only control the latter. Specifically, we denote a(r) := p/(p+ r)
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and look for the value of a that minimizes the MSE. We use the identities sin 2θ = 2 cos θ sin θ and
E
[
dx21
]

= E
[
dx22
]

= q (the latter is by the motion model in Definition F.1).

MSEbias(x(a), xtrue) = E||x− xtrue||2

=E

[(
(a− r0 sin2 θ + p

p+ r0
)dx1 +

r0 sin(2θ)/2

p+ r0
dx2

)2

+

(
(a− r0 cos2 θ + p

p+ r0
)dx2 +

r0 sin(2θ)/2

p+ r0
dx1

)2
]

=E

[
dx21

(
a2 − 2a

r0 sin2 θ + p

p+ r0
+ C1

)
+
r20 sin2(2θ)/4

(p+ r0)2
dx22 +A1dx1dx2

+ dx22

(
a2 − 2a

r0 cos2 θ + p

p+ r0
+ C2

)
+
r20 sin2(2θ)/4

(p+ r0)2
dx21 +A2dx1dx2

]
=2qa2 − 2qa

r0 + 2p

p+ r0
+ q(C1 + C2) + q

r20 sin2(2θ)/2

(p+ r0)2

where C1,2 are independent of a, andA1,2 are multiplied byE[dx1dx2] = 0 and vanish. To minimize
we calculate

0 =
∂MSEbias(x(a), xtrue)

∂a
= 4q · a− 2q

2p+ r0
p+ r0

which gives us

a =
p+ r0/2

p+ r0

Note that the expression of MSEbias above clearly diverges as |a| → ∞, hence the only critical
point necessarily corresponds to a minimum of the MSE. Thus, the optimal MSE is given when
substituting the following r in Ropt:

r = p/a− p =
p2 + pr0 − (p2 + pr0/2)

p+ r0/2
=

pr0
2p+ r0

For the last part of the lemma, we recall that (Rest)ii = r0/2 and compare to r directly:

(Rest)ii − (Ropt)ii = r0/2− r =
(pr0 + r20/2)− pr0

2p+ r0
=

r20/2

2p+ r0
> 0

Lemma F.3 shows that independently of the value of x0 (i.e., independently of the current state of the
system or the current direction of the target), the expected filtering error would benefit from reduction
of the noise parameter to (Ropt)ii = r < (Rest)ii. Hence, noise estimation is not an optimal strategy
for parameters tuning in this problem.

The simplified lidar problem can be seen as a simplification of the problem experimented in Ap-
pendix J, with a degenerated motion model. In the experiments, the optimization of the KF reduced
the MSE by 14.9%, and the learned parameters indeed decreased the observation noise, as shown in
Figure 8.

In summary, in this section we introduce a simplified lidar problem. While at first glance the problem
seems to follow the KF assumptions, the i.i.d-noise assumption is in fact violated by the natural polar
coordinates of the sensor. Consequentially, the optimal values of the R parameters do not correspond
anymore to the covariance of the observation noise, but rather should be reduced. In other words, the
non-i.i.d nature of the noise reduces the effective noise. This theoretic result is consistent with the
experiments presented in Appendix J.
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Figure 8: The observation noise (R) and prediction noise (Q) matrices obtained by noise estimation (KF) and
by optimization (OKF), for the problem of state-estimation from lidar measurements (described in Appendix J).

G GENERALIZATION TESTS: TRAINING AND TESTING ON DIFFERENT
BENCHMARKS

In the case-study of Section 4, we demonstrate the robustness of an Optimized KF (OKF) over
a variety of benchmarks representing different tracking scenarios – where in every benchmark,
OKF (Method 2) obtained lower estimation errors than a standard KF (Method 1), over an out-of-
sample test data. This demonstrates that OKF did not overfit the training data, but still relies on
representativeness of the training data, i.e., on the assumption that the training data and the test data
are taken from the same distribution.

A stronger generalization ability is demonstrated in Section 5, where OKF beats both KF and NKF
not only on out-of-sample test data with the same settings, but also on a test data with different
settings. Specifically, we consider changes of factors 0.5 and 2 in the scale of the targets acceleration.
This essentially changes the motion of the targets, including turns sharpness, speed changes and
typical scale of speed. In terms of the linear motion model of KF, the acceleration corresponds to
the motion noise Q, hence we essentially changed the noise after it had been learned, which poses a
significant generalization challenge. Thus, the results of Section 5 provide a significant evidence for
the robustness of OKF to certain distributional shifts.

(a) MSE ratio = MSE(KF )/MSE(OKF ) for every KF-baseline (KF,KFp,EKF,EKFp defiend in Sec-
tion 4), and for every pair of train-scenario and test-scenario. The colormap is logarithmic (∼ log(MSE ratio)),
where red values represent advantage to OKF (MSE ratio > 1).

(b) For every train-scenario, MSE ratio is averaged
over all the test-scenarios and is shown in a logarithmic
scale. Positive values indicate advantage to OKF.

Figure 9: Generalization tests: optimization vs. noise estimation under distributional shifts.

In this section we present a yet stronger evidence for the robustness of OKF – not over a para-
metric distributional shift, but over entirely different benchmarks. Specifically, we consider the
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5 benchmarks (or scenarios) of Section 4. For every pair (train-scenario, test-scenario), we train
both KF and OKF on data of the train-scenario, then test them on data of the test-scenario. For
every such pair of scenarios, we measure the generalization advantage of OKF over KF through
MSE ratio = MSE(KF )/MSE(OKF ) (where MSE ratio > 1 indicates positive advantage).
To measure the total generalization advantage of a model trained on a certain scenario, we calculate
the geometric mean of MSE ratio over all the test-scenarios (or equivalently, the standard mean
over the logs of the ratios). Note that the logarithmic scale is indeed more natural for a symmetric
view of the ratio of the two MSE scores.

This test is quite noisy, since a model optimized for a certain scenario may legitimately be inferior in
other scenarios. Yet, considering all the results together in Figure 9, it is evident that optimization of
KF yields more robust models in most cases, and even when it is inferior to noise-estimation, it does
not lose by a large margin.

H SENSITIVITY OF KF-OPTIMIZATION TO TRAIN DATASET SIZE

Each benchmark in the case-study of Section 4 has 1500 targets in its train data. Training from these
datasets demonstrated significant advantage to optimization of KF over noise-estimation. However,
one may argue that on smaller datasets, optimization may struggle harder than noise-estimation, e.g.,
due to numeric instability with little data. Furthermore, the standard optimization procedure ”wastes”
a portion of the train data as a validation set, which does not contribute directly to the training, and
thus may increase the sensitivity to the amount of data.

To test the sensitivity of KF optimization to the amount of data, we repeated some of the tests of
Section 4 using smaller subsets of the train datasets – beginning from as few as 20 targets per dataset.
Figure 10 demonstrates that the advantage of OKF over KF holds consistently over the various sizes
of the train datasets, although it indeed increases with the amount of data. In fact, in the Free Motion
benchmark, the state-estimation errors of the standard KF monotonously increase with the amount of
data.

Figure 10: The advantage of OKF over KF remains positive – although sometimes smaller – even when the
train data reduces to as few as 20 targets. The shadowed areas correspond to 95% confidence-intervals.

I OPTIMIZED KALMAN FILTER FOR VIDEO TRACKING

Radar tracking is an interesting domain with unique properties such as non-linear observation model
and radial observation noise. In this domain, Section 4 demonstrates the sub-optimality of KF
with estimated noise parameters, compared to a KF with optimized parameters. In this section, we
compare the two in the popular and arguably-simpler domain of video tracking, using the MOT20
dataset (Dendorfer et al., 2020) (available under Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 License).

MOT20 includes several videos with multiple targets (mostly pedestrians) to track. The dataset
also includes the ground-truth location and size of the targets in every frame of the videos. We
consider these ground-truth states as direct observations, i.e., we assume to have a detector with zero
observation error (which in particular makes the observation model linear, in contrast to the radar
tracking problem).
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More specifically, we characterize a target using the state X = (x, y, w, h, vx, vy) ∈ R6 (two-
dimensional location, size and velocity), and an observation as Z = (x, y, w, h). Note that x, y, w, h
are provided in the dataset and we derive vx, vy from x, y. The observation model H is known as
described above, and for the motion model F we assume constant velocity and constant target size,
leading to:

H =

1, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 0

 , F =


1, 0, 0, 0, 1, 0
0, 1, 0, 0, 0, 1
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 1


Q and R are estimated or optimized with relation to the train data, as described in Section 4. For the
train data we use MOT20-01,MOT20-02,MOT20-03, and for the test data MOT20-05. In particular,
our test data comes from an entirely different video than the train data, hence the testing is less prone
to overfit. The goal function for the optimization is the MSE (mean square error) of the location x, y
after the prediction step (note that in absence of observation noise, the error of the update step is
simply zero).

As shown in Figure 3, the optimized model (OKF) reduces the prediction errors (MSE) by 18%
in comparison to a KF with standard noise estimation. The significance level of the results is
also indicated by the huge z-value z = 125, corresponding to the errors difference (calculated as
z = mean(∆err)/std(∆err) ·

√
Nsamples). The results indicate that the sub-optimality of noise

estimation – as well as the benefits of parameters optimization – are a cross-domain phenomenon and
are not limited to radar tracking or to non-linear observation models.

Figure 11: A sample of 2 targets in the first frame of the test video in MOT20. The true trajectories of the
targets are shown along with the predictions of KF and OKF (each prediction is done one time-step in advance).

J OPTIMIZED KALMAN FILTER FOR LIDAR-BASED STATE ESTIMATION IN
SELF DRIVING

Another domain in which we test the Optimized Kalman Filter (OKF) of Section 4 is state-estimation
in self-driving based on lidar measurements with respect to known landmarks (Moreira et al., 2020).
For simplicity, we focus on location estimation and on a single landmark (as the matching problem
from multiple landmarks is out of the scope of this work).
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We formulate the problem as follows: the target state is X = (x, y, vx, vy) ∈ R4 (two-dimensional
location and velocity), and an observation is Z = (x, y). The dynamics are simulated as follows:
each target trajectory consists of several intervals, in each one the target has certain (positive or
negative) acceleration and certain lateral acceleration (”turn magnitude”), both drawn randomly at the
beginning of the interval. The observation noise is drawn i.i.d in polar coordinates. We simulated a
corresponding dataset of 2000 targets as demonstrated in Figure 12a, and split them to train set (1400
targets) and test set (600 targets).

From the KF point-of-view, the dynamics and observations are modeled by:

H =

(
1, 0, 0, 0
0, 1, 0, 0

)
, F =

1, 0, 1, 0
0, 1, 0, 1
0, 0, 1, 0
0, 0, 0, 1


Note that the lidar problem is inherently different from the radar problem (Section 4) since the
observation model is linear (due to the absence of the Doppler signal); and is different from video
tracking (as formulated in Appendix I) since the observations are not assumed to be noiseless. On
the other hand, similarly to the case of the radar, the Cartesian representation of the observations
prevents their noise from being i.i.d, since the observation noise is only i.i.d in polar coordinates (see
Appendix A.5).

We trained the OKF of Section 4 with respect to the MSE of the estimated target location, as described
in Appendix B.1; and trained a standard KF by estimating the noise as in Equation 2. Then we tested
both models on the test data. The optimization significantly reduced the errors by 14.9%, as shown in
Figure 12b. This joins the promising results from the two other domains (radar tracking and video
tracking), and demonstrates the generality of our method.

(a)
(b) (c)

Figure 12: (a) A sample of 6 targets trajectories from the simulated self-driving data. (b) Prediction errors of
KF and OKF on 600 targets of the test data. OKF is clearly more accurate, as also indicated by the huge z-value
corresponding to the errors difference (calculated as z = mean(∆err)/std(∆err) ·

√
N ). (c) the tracking of

KF and OKF on a sample target trajectory, focused on the time interval 14 < t < 32 for visual clarity.

K NEURAL KALMAN FILTER: EXTENDED EXPERIMENTS

Section 5 demonstrates that even if a neural-network (NN) based model provides more accurate
predictions than a standard KF – its advantage may be entirely vanished when compared to an
optimized KF instead. It is shown for the specific NKF model in a free-motion benchmark in the
Doppler radar problem. This is sufficient to demonstrate the error in the common methodology that
compares optimized NN-based models to non-optimized variants of KF.

To show that these results are not exclusive to the experiments of Section 5, we present extended
experiments in this section. Specifically, we consider 2 different benchmarks – the free-motion
benchmark of Section 5 and Const a benchmark of Section 4 (in which the targets may have
acceleration but not turns). We also consider 3 different neural models:

• Predicted-acceleration KF (aKF): a variant of NKF without dynamic prediction of the
covariance matrices Q and R in every step (in terms of Appendix B: a tracker with elements
3, 4).
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• Neural KF (NKF): the model used in Section 5 and shown in Figure 7 (in terms of Ap-
pendix B: a tracker with elements 4, 5, 6).

• Neural KF with H-prediction (NKFH): a variant of NKF that also predicts the observation
model H dynamically in every step (in terms of Appendix B: a tracker with elements 4, 5, 6,
7).

For each benchmark and each model, we trained the model on train data with a certain range of
targets acceleration (note that acceleration affects both speed changes and turns sharpness), and tested
it on targets with three different acceleration ranges – the original one, a smaller one and a larger
one. That is, some of the test datasets correspond to distributional shifts. For each model we train
two variants – one with Cartesian representation of the observation noise R, and one with spherical
representation (as in the baselines of Section 4) – and we select the best among the two variants using
the MSE scores on the validation data (which is a portion of the data assigned for training).

We measure the results using (1) the Mean Square Error (MSE) of the estimated location after each
update step; and (2) the Negative-Log-Likelihood (NLL) of the true system-state with relation to
the estimated state-distribution, after the prediction step. Note that NLL is important for matching
observations to targets in the multi-target tracking problem (which is out of the scope of this work).

(a) Free-motion benchmark

(b) Const a benchmark (no turns)

Figure 13: The relative MSE and NLL results of various models in comparison to the standard KF model. The
textual labels specify the absolute MSE and NLL. Note that certain bars of NLL are of entirely different scale
and thus are cropped in the figure (their values can be seen in the labels). In each benchmark, the models were
trained with relation to MSE loss, on train data of the middle acceleration-range: the two other acceleration
ranges in each benchmark correspond to generalization over distributional shifts.

Figure 13a shows that in the free-motion benchmark, all the 3 neural models improve the MSE in
comparison to a standard KF, but lose to an optimized one (OKF). Furthermore, while OKF has
the best NLL scores, the more complicated models NKF and NKFH increase the NLL in orders of
magnitude. This issue may be handled by explicitly optimize the NLL in addition to the MSE, but
such multi-loss optimization is out of the scope of this work. Note that the instability of NKFH is
expressed in poor generalization to lower accelerations in addition to the extremely high NLL score.

Figure 13a shows that in Const a benchmark, all the 3 neural models improve the MSE in comparison
to a standard KF, but only NKFH improves in comparison to OKF as well. Note that while NKFH
does better in this case than in the free-motion benchmark, it still suffers from very high NLL.
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In summary, by comparing the optimized neural models to the standard KF model, all the 3 models
would be found superior to the KF in both benchmarks in terms of MSE. However, when shifting the
baseline to an optimized KF, we find that the neural aKF and NKF are in fact inferior to OKF, and
that the comparison between NKFH and OKF depends on the selected benchmark and metric.

Of course, our results do not imply that neural-networks in general cannot be superior to a KF: only
that when comparing the two, one must optimize the KF similarly to the neural model to avoid
misleading experimental results. As discussed in Section 6, the wrong methodology of using a
non-optimized KF baseline is very common in the literature.

L ON THE GUARANTEES OF GRADIENT-BASED OPTIMIZATION

Method 2 can rely on any gradient-based optimization algorithm, such as SGD or Adam (Diederik
P. Kingma, 2014) (the latter is used in this work). Such optimization algorithms have achieved remark-
able results in a variety of optimization problems in the recent years. This includes impressive results
in non-convex problems where local-minima exist (Zhong et al., 2020), as well as generalization to
unseen data (Neyshabur et al., 2017).

Compared to the problems where algorithms like Adam are often applied (e.g., language models
with more than 100M parameters (Devlin et al., 2019)), typical filtering problems such as the ones
experimented in this work are arguably small and simple to optimize. Thus, the robust results of
Method 2 – namely, the consistent advantage over Method 1 in all the experiments in this work –
should not come as a surprise.

Having said that, the theoretical guarantees of the gradient-based algorithms are limited for non-
convex problems. Note that the dependence of our loss function (filtering errors) on the model
parameters (after the Cholesky parameterization) is indeed not convex. In such settings, convergence
to a local optimum of the loss is in fact guaranteed: Adam, for example, is guaranteed to converge
given a twice-differentiable loss function (Bock and Weiß, 2019). Stronger convergence guarantees
exist for the SGD algorithm under certain conditions (Fehrman et al., 2020), yet in general, gradient-
based optimization algorithms do not necessarily converge to the global optimum of the loss.

Note that in all the problems experimented in this work, the standard Method 1 (noise-estimation)
has no optimality guarantee either, as the KF assumptions do not hold. Indeed, the experiments
demonstrate its sub-optimality, and Appendices E,F prove it theoretically for a sample of problems.

M DETAILED RESULTS

Figures 14-17 below provide additional details about the experiments discussed in Sections 5,4.
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(a)

(b)

Figure 14: (a) Errors of different tracking models over different benchmarks. This is a different visualization
of the results of Table 1. The error-bars correspond to confidence intervals of 95%. Note that the optimized
models (the last four) tend to yield better and more stable results than the estimated models (the first four). (b)
The RMSE ratio between the estimated models and the optimized ones, over all the benchmarks and designs
discussed in Section 4. Note that all the ratios are above 1, i.e., all the models in all the benchmarks had smaller
errors when tuned by optimization. The horizontal line represents the average ratio.
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Figure 15: The observation noise (R) and prediction noise (Q) matrices obtained in a (Cartesian) KF by noise
estimation and by optimization with relation to MSE, based on the dataset of the Free-motion benchmark.

Figure 16: Samples of targets trajectories in the various benchmarks described in Section 4, projected onto the
horizontal plane. This is an extension of Figures 2b,2c for the rest of the benchmarks.
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Figure 17: Descriptive statistics of the various benchmarks of Section 4: duration of targets trajectories;
distance from the radar; targets speed; targets acceleration; motion direction (90 degrees correspond to horizontal
motion); and observation errors vs. distance from radar.

35


	Introduction
	Preliminaries: the Kalman Filter Algorithm
	KF Optimization Using Cholesky Parameterization
	Kalman Filter Configuration and Optimization: a Case Study
	Setup and methodology
	Results

	Neural Kalman Filter: Is Non-linear Prediction Helpful?
	Related Work
	Summary
	Preliminaries: Extended
	Problem Setup and Implementation Details
	Cholesky Gradient Optimization
	Related Work: Extended
	Theoretical Analysis: Estimation vs. Optimization in the Toy Benchmark
	Theoretical Analysis: Estimation vs. Optimization in the Presence of Non-i.i.d Noise
	Generalization Tests: Training and Testing on Different Benchmarks
	Sensitivity of KF-Optimization to Train Dataset Size
	Optimized Kalman Filter for Video Tracking
	Optimized Kalman Filter for Lidar-based State Estimation in Self Driving
	Neural Kalman Filter: Extended Experiments
	On the Guarantees of Gradient-based Optimization
	Detailed Results

