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Abstract

We study online learning in episodic finite-horizon Markov decision processes
(MDPs) with convex objective functions, known as the concave utility reinforce-
ment learning (CURL) problem. This setting generalizes RL from linear to convex
losses on the state-action distribution induced by the agent’s policy. The non-
linearity of CURL invalidates classical Bellman equations and requires new algo-
rithmic approaches. We introduce the first algorithm achieving near-optimal regret
bounds for online CURL without any prior knowledge on the transition function.
To achieve this, we use an online mirror descent algorithm with varying constraint
sets and a carefully designed exploration bonus. We then address for the first time
a bandit version of CURL, where the only feedback is the value of the objective
function on the state-action distribution induced by the agent’s policy. We achieve
a sub-linear regret bound for this more challenging problem by adapting techniques
from bandit convex optimization to the MDP setting.

1 Introduction

Reinforcement learning (RL) studies the problem where an agent interacts with an environment
over time, adhering to a probabilistic policy that maps states to actions and aiming to minimize the
cumulative expected losses. The environment’s dynamics are represented by a Markov decision
process (MDP), assumed here to be episodic, with episodes of length N, a finite state space X, a
finite action space A, and a sequence of probability transition kernels p := (pn)ne[ N1» such that for
each (z,a) € X x A, p,(-|z,a) € Ay, the simplex over the state space. Formally, the RL problem
involves finding a policy 7 that, under a transition kernel p, induces a state-action distribution
sequence u™P € (Axx.4)" minimizing the inner product with a loss vector £ := (£,,),e[n], With
l, e R¥*A je. mingea 4 )xxn {6, w™P). A large body of literature is devoted to solving the RL
problem efficiently and with theoretical guarantees in many challenging environments [[7}, 49].

However, numerous practical problems entail more intricate objectives, such as those encountered
within the Concave Utility Reinforcement Learning (CURL) framework [22, [54] (also known as
convex RL). The CURL problem consists in minimizing a convex function (or maximizing a concave
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function) on the state-action distributions induced by an agent’s policy:
Min (a4 )xxn F(u™P). @)

In addition to RL, other examples of machine learning problems that can be written as CURL are
pure exploration [22] [38] 37]], where F(1™?) = {(u™P, log(x™P)); imitation learning [19} 30] and
apprenticeship learning [53| (1], where F'(¢™?) = Dg(u™?, u*), with D, representing a Bregman
divergence induced by a function g and p* being a behavior to be imitated; certain instances of mean-
field control [6]], where F(u™P) = {{(u™P), u™P); mean-field games with potential rewards [29];
risk-averse RL [[17, 44} 20]], among others. The non-linearity of CURL alters the additive structure
inherent in standard RL, invalidating the classical Bellman equations. Consequently, dynamic
programming approaches become infeasible, necessitating the development of novel methodologies.

A natural extension of CURL is the online scenario, wherein a sequence of policies (Wt)tE[T] is

computed over 1" episodes, aimed at minimizing a cumulative loss Ly := 2:{:1 F'(u™ P, where the
objective F'* can change arbitrarily (known as the adversarial scenario [14])), and the MDP probability
kernel p is unknown. Most existing approaches to CURL fail to address the challenges of the online
setting (adversarial losses and unknown dynamics). The few methods that attempt to tackle this
problem rely on strong assumptions about the probability transition kernel [34], which can be overly
restrictive in real-world scenarios. To overcome this, we need an approach capable of optimizing
the objective function while simultaneously learning the environment, effectively balancing the
exploration-exploitation dilemma.

Contribution 1. In the full-information feedback setting, where the objective function F* is fully
revealed to the learner at the end of episode ¢, we propose the first method achieving sub-linear regret
for online CURL with adversarial losses and unknown transition kernels, without relying on additional
model assumptions. Our algorithm uses an Online Mirror Descent (OMD) variant incorporating
well-designed exploration bonuses into the sub-gradient of the objective function to handle the
exploration-exploitation trade-off. It achieves a regret of O(\/T ), matching the state-of-the-art
(SoTA) in more restricted settings [34], while obtaining a closed-form solution.

Table 1: Comparisons of SoTA finite-horizon tabular MDPs methods. MD stands for Mirror Descent,
KL for Kullback-Leibler divergence and I is defined in Eq. @). MD + (-) indicates the regularization
added to the MD iteration. MD on 7 indicates a policy optimization approach in which MD iterations
are performed on policies instead of state-action distributions (occupancy-measures).

. Optimal Closed-  Explo- No model Adversarial Bandit
Algorithm regret in 1" CURL form ration  assumption Losses feedback
[27] MD+KL vV X X UCRL vV v v
[34] MD +T v v v None X v X
(ours) MD+T v v v Bonus v v v
[32] MDonw vV X v Bonus v v v

Contribution 2. We extend our approach to incorporate bandit feedback on the objective function.
We first consider the RL case where F*(u) := (¢*, ). Bandit feedback in this setting means that
the agent only observes the loss function in the state-action pairs they visit during each episode, i.e.
(€1, (2}, al,)) nen) Where (2l al,) e[ is the agent’s trajectory. We obtain the optimal regret of

n»-’'n n»’'n

O(+/T) in this setting. We then address for the first time the general CURL problem under more
strict bandit feedback. In this setting, the learner only has access to the value of the objective function

evaluated on the state-action distribution sequence induced by the agent’s policy, i.e., F**( /ﬂt’p). We
propose two algorithms for this setting and show that they achieve sub-linear regret. One algorithm
requires that the MDP is known, while the other, under an additional assumption on the structure of
the MDP, operates in the setting where the MDP is estimated progressively from observed trajectories.
We rely on gradient estimation techniques from the bandit convex optimization literature, even as the
peculiar structure of our constraint set and uncertainty regarding the true transition kernel present
some unique challenges.



1.1 Related Work

Offline CURL. An extensive line of work focus on the offline version of CURL (Problem (1)),
where the objective function is known and fixed. The methodologies proposed by [55, 56} 4] rely
on policy gradient techniques, requiring the estimation of F’s gradient concerning the policy 7,
a task often complex. Taking a different approach, [54] cast the CURL problem as a min-max
game using Fenchel duality, demonstrating that conventional RL algorithms can be tailored to fit
the CURL framework. Recently, [[18]] established that CURL is a specific instance of mean-field
games. Moreover, [34] undertake a convexification of Problem (I) and propose a mirror descent
algorithm with a non-standard Bregman divergence. [36}39] study the gap between evaluating agent
performance over infinite realizations versus finite trials and question the classic CURL formulation
in Eq. (I). To align with prior work, we adopt the classic CURL formulation.

Online CURL. To the best of our knowledge, Greedy MD-CURL from [34] is the only regret
minimization algorithm designed for online CURL. However, it only achieves sublinear regret when
the system dynamics follow the form x,, 41 = g, (p, an,y), where g, is a known deterministic
function, and ,, is an external noise with an unknown distribution independent of (x,,, a,, ), which
significantly limits its applicability, as we empirically show in Sec.[5] This assumption simplifies the
problem, as the algorithm only needs to learn the noise distribution, which can be done independently
of the policy, eliminating the need for exploration. In contrast, our approach does not assume any
specific form for the dynamics, which introduces the challenge of developing a policy that minimizes
total loss while simultaneously enabling sufficient exploration to improve estimates of the transition
kernels. The technical novelty we introduce to overcome this challenge are well-designed exploration
bonuses detailed in Sec.

RL approaches. Model-optimistic methods construct a set of plausible MDPs by forming confidence
bounds around the empirical transition kernels, then select the policy that maximizes the expected
reward in the best feasible MDP. A key example of this approach is UCRL (Upper Confidence
RL) methods [26} 157} 145, 27]. While these methods offer strong theoretical guarantees, they are
often difficult to implement due to the complexity of optimizing over all plausible MDPs. While
we believe these approaches could be generalized to CURL, their computational complexity has
led us to propose an alternative method. Value-optimistic methods are value-based approaches that
compute optimistic value functions, rather than optimistic models, using dynamic programming. An
example is UCB-VI [3]]. However, these methods are limited to stochastic losses. Policy-optimization
(PO) methods directly optimize the policy and are widely used in RL due to their faster performance
and closed-form solutions. Recently, [32] achieved SoTA regret for PO methods with adversarial
losses and bandit feedback by introducing dilated bonuses, which satisty a dilated Bellman equation
and are added to the Q-function. However, their approach cannot be applied here due to CURL’s
non-linearity (the expectation of the trajectory appears inside the objective function) which invalidates
the Bellman’s equations.

We achieve our results by computing local bonuses and adding them to the (sub-)gradient of the
objective function in each OMD instance as exploration bonuses. This is more computationally
efficient than model-optimistic approaches and addresses the exploration issues in previous online
CURL methods. We believe our analysis is of independent interest, as it also offers a new way to
study RL approaches over occupancy measures, while providing closed-form solutions. See Table|T]
for comparisons.

2 Problem Formulation

2.1 Setting

For a finite set S, |S| represents its cardinality, while As denotes the |S|-dimensional simplex. For
all d € N we denote [d] := {1,...,d}. Welet | - |; be the L; norm, and for all v := (v )ne[n]s
such that v,, € RY*4 we define ||v]o,1 1= sup;<,<n |vnl1. We denote by | - |1, its dual. Let
I := (A 4)**N denote the set of policies. We consider an episodic MDP as introduced in Sec.
We assume that the initial state-action pair of an agent is sampled from a fixed distribution pg €
Axx 4 at the beginning of each episode. At time step n € [IN], the agent moves to a state x,, ~
Pn(-|Zn-1,an—_1), and chooses an action a,, ~ m,(-|x,) by means of a policy 7, : X — A4.
When the agent follows a policy m := (7, )ne[n] for an episode in an environment described



by the MDP with a transition kernel p, this induces a state-action distribution, which we denote
by p™P 1= (5P )nern]» that can be calculated recursively for all (n,7,a) € [N] x & x A, by
Mg’p(‘% a) = po(r,a),

P (2, a) = X qry o D1 (@ 0 )pn (2], 0 ) (al ). )
We define the set of all state-action distribution sequences satisfying the dynamics of the MDP as

ME = {u| Yweatn(®'a") =3 cv aeaPn (@@, a)pn—1(z,a) ,V(2',n) € X x [N]} 3)

Forany ;1 € M?, , there is a strategy 7 such that u™? = p. It suffices to take 7, (a|z)oc s, (2, a) when
the normal1zat1on factor is non-zero, and arbitrarily defined otherwise. Let Mﬁo* be the subset of
ME, where the corresponding policies 7 satisfy 7, (a|z) # 0 for all (z,a). For any two probability
trans1t10n kernels p, g, we define I : MF, " x M * — R such that, for all u, ' € M x M * with
policies 7, 7/,

IN(TRTORE S E, a)~un(~)[log (:Zlgzlzg)] ¥

In the online extension of CURL, the objective function for episode ¢ is denoted as F* := ZN fl,

where f! : Ayx4 — R is convex and L-Lipschitz with respect to the || - [; norm (hence Ft is
L p-Lipschitz with respect to the norm | - |1 with Lp := LN). The objective function F* is
unknown to the learner in the start of episode ¢. In this paper, we examine three types of objective
function feedback: Full-information: In this case, I is fully disclosed to the learner at the end of
episode ¢, and is treated in Sec.[3.2} Bandit in RL: Here, F*(y) := <€t, 1y, and the learner observes
the loss function only for the state-action palrs visited, i.e., (¢% (2}, a ))ne[ ~1» Which is covered in
Sec.[d.1] Bandit in CURL: In this scenario, the learner only has access to the objective functlon

evaluated on the state-action distribution sequence induced by the agent’s policy, i.e., F'(u™ ), and
is treated in Sec. 4.2l

The learner’s goal is to compute a sequence of strategiesT( ) e ([ 1, Where 7" represents the total

number of episodes, that minimizes their total loss L := L F? 'P). The learner’s performance
is evaluated by comparing it to any policy 7 € (A 4)** usmg the static regret:
T
Rp(m) = Sy FH(u™?) — F!(u™7), 5)

We assume the probability transition kernel p is unknown to the learner. Hence, to minimize its total
loss, the learner must optimize the objective function while simultaneously learn the environment
dynamics, facing an exploration-exploitation dilemma. The interaction between the learner and the
environment proceeds in episodes. At each episode t, the learner selects a policy 7, sends it to the
agent, and observes its trajectory o := (zf,al, ..., xY, al;). The learner uses this observation to
compute an estimation of the probability transition kernel p*+1. At the end of episode ¢, the learner
receives one of the three feedbacks described above for the objective function F, and then calculates
the policy for the next episode, 7'*!, based on ¢, p'*!, and the feedback on F*.

2.2 Preliminary Results

The results in this section are either known or extensions of existing results needed for the analysis.

Since the probability transition kernel is unknown, we propose an online mirror descent (OMD)
instance that optimizes over the state-action distributions induced by the estimated MDP as if it was
the true model. This approach differs from the model-optimistic methods for RL discussed in Sec.[I.1]
where each iteration is performed over the union of all state-action distribution sets induced by MDPs
within a confidence set around the estimated model, which results in a computationally expensive
optimization problem per iteration. Lemma [2.1] presents an auxiliary result concerning the quality of
the state-action distribution sequence (,ut)tE[T] when p! is the solution of Eq. (6), an OMD instance
on the set of state-action distributions induced by a transition kernel ¢¢. It extends the upper bound
result from [34]] for OMD with smoothly varying constraint sets to any sequence of bounded vectors
(2")¢e[) and any sequence of smootlhy varying transitions (¢*),c(7-

Lemma 2.1. Let (qt)te[T] be a sequence of probability transition kernels and (zt)tE[T] a sequence
of vectors in RN *XIXIXIAl such that maxyerr) 21,00 < ¢ Initialize 7 (a|x) := 1/|A|. Fort € [T],
let 7t = t%ﬂt + t% |A|~! be a smoothed version of the policy and compute iteratively

pttteargming g TG ) 4 D ). (6)



. . t .
Then, there is a T > 0 such that, for any sequence (Vt)te[T], with vt := v™9 for a common policy T,

STt b — vty < O(CNA/ V[ X[ log (JA) T log(T)),

T-1
where Vp > 1+ max Y |} (-|z,a) = ¢i™ (|2, )1
(n7m7a) t:1

This lemma is proved in App.[D] It is known [34] that for the divergence I defined in Eq. (@), Eq. (6)
has a closed-form solution for the policy (see App.[B.2).

Learning the model. Since the learner does not know the probability transition kernel, it must
estimate p from the agents’ trajectories. Below we present the empirical way for estimating the

transition and a well-known result (Lem. [2.2) on its quality using Hoeffding’s inequality. Let

t—1 t—1 \ .
Ni(xz,a) = 27 Tgs —gas —ay, M (2 |2,0) = 374 Las =o' 25 =a,a5=a)- The learner’s esti-
mate for the transition kernel at the end of episode ¢ — 1, to be used in episode ¢, is as follows

~ Mt (z'|z,a
P (|, 0) 1= i) )

Lemma 2.2 (Lem. 17 of26). For any 0 < § < 1, with a probability of at least 1 — 6,

~ 2| x| log (LXIAINT
Ipa (. a) = B (L. o)y < o) 2bieel 220

holds simultaneously for all (t,n,x,a) € [T] x [N] x X x A.

These results suffice for analyzing CURL with full-information feedback (Sec. [3). For bandit
feedback, more refined tools are needed. In bandit RL, we need Bernstein’s inequality to bound
the L, distance (Lem.[E:2). In bandit CURL, we also need a bound on the Kullback-Leibler (KL)
divergence (Lem. [F.3), which requires the Laplace (add-one) estimator (Eq. (31)), as the KL of the
empirical one can be unbounded.

3 Exploration Bonus in CURL
We now present our novel approach for online CURL with adversarial losses and unknown dynamics.

3.1 Limitations of previous approaches

The performance measure of a learner playing a sequence of strategies (Wt)te[T] is given by the static

regret defined in Eq. (3). Using the estimate of the probability transition kernel p* computed by the
learner, the static regret can be further decomposed as follows

T T
Rr(m) < Z<VFt(,u” P P — P 4 Z<VFt(,u” WL L
t=1 t=1

(®)
R?VITrDP Rglcy
where the inequality comes from the convexity of F*. Let & (z,a) := |pn(-|z,a) — % (-|z,a)|;.

The term RYPP, accounts for the error in estimating the MDP, and satisfies RY°? = O(v/T') with
high probability. This is a classic result (see 42). We first show that

RYPP < LZ?=1 Z'r]:;l 2:01 Daa ki (@ a)6 (2, a). ®)
Then, using Lem. and that N/ (z,a) increases with the empirical version of the state-action
distribution 1™ 7 (, a) we achieve the final bound (see App. . The second term, P, depends
on the algorithm used to derive the policies. As mentioned in Sec. model-optimistic approaches
could be adapted to CURL, but they are computationally expensive. To achieve low complexity, we
explore potential problems that might arise from the absence of explicit exploration. We decompose
this regret term as follows:

t

T T
RIS = S UVE (P, 5P — P 3 T i), P )
t=1 t=1

policy/MD policy/MDP
Ry Ry



Assume the learner computes its policy sequence (m*)c[r] by solving Eq. (@) with ¢**! := p'*!

and 2! := VF!(y™ ). Hence, from Lem. RYYMP — O(\/T) (Lemmas and
in the Appendix demonstrate that Y/, |51 (-|z,a) — p(-|x,a)|1 < elog(T). By hypothesis,
IVF!(u™ ?)|1.0 < Lp. Hence, we meet all the assumptions from Lem. . But the term
RPNYMPP o565 a challenge. Tt can be decomposed as RYPP in Eq. (). However, the state-action
distribution multiplying ! ; (, a) would either be )" (2, a) or ] *  (x,a), and neither is related
to N}(z, a). Consequently, we do not have the same convergence effect as RYPP. In fact, this term
can become prohibitively large. Without exploration, previous work using similar analysis [34]]
only achieved optimal regret under strong model assumptions, limiting its applicability in realistic
scenarios.

3.2 CURL with full-information feedback

We outline our idea to overcome previous limitations presented in Subsec. Let bt := (bfb)ne[ N]
be a sequence of vectors, to be properly defined later, such that bf, € R* %A We assume that 7t is the
policy inducing 4! computed as in Eq. (6) with ¢* := p', but instead of considering z* = VF*(u™"#")
as the (sub-)gradient of MD to be used in episode ¢ + 1, we let 2! := VF!(u™ ?") — bl ie.,

pttli=argmin s {T(VFt(/ﬂt’ﬁt) — by + I‘(u,ﬁt)}.
HEMy,

t

If we assume that b’ is such that, for all ¢ € [T] and for some ¢ > 0, |[VE!(u™ ?") = bt|1 0 <,

then by Lem. and by adding and subtracting the bonus vector, we would have that Rgf’“cy is
bounded by

@(\/T) + Z;f=1<bt“uﬂt,ﬁt _ M”;t> n RE]):)]iCy/MDP. (10)

Let Cs := /2| X|log(JX[|A|NT/$), and for all n € {0,[N]}, (z,a) € X x A, let

Note that [|b}, | o < LNCs, ensuring that the hypothesis of Lem. 2.1{remains valid for this sequence.
Decomposing RF"YMPF a5 we do for RMPP in Eq. (), and then applying Lem. we get that for

any § € (0,1), with probability at least 1 — 8, R*"*P* is bounded by
T N—1 ™5 (1.a) T ot
LCs X1 Zinmo (N = 1) Yoo Tometime oy = 217709 (12)

By replacing Eq. (T2) in Eq. (I0)), the additive property in the decomposition allows us to cancel out the
problematic regret term R2"™PP " As a result, we obtain that R < O(v/T) + S.1_, (bt u™ 2.
All that remains is to analyze the new term due to the added bonus, ZtT:l<bt, ,u’Tt ’ﬁt>, which we do in

Prop.
Proposition 3.1. Ler (b'),cry be the bonus vector in Eq. (T1). With high probability,

S O, Py = O(LN3| X2\ /[AT).

With all the ingredients in place, we introduce our new method, Bonus O-MD-CURL, in Alg.[1]at
App.|Al The main result is in Thm. and its proof is in App. In terms of 7" and |.A|, our result

matches the optimal one in RL from [27]], but we have additional factors of N and /|| that are due
to using bonuses and dealing with convex RL.

Theorem 3.2. Running Alg. [I| for online CURL with unknown transition kernel, full-information

feedback, where F* := 22;1 fL is convex and each f is L-Lipschitz under | - |1, ensures that, with
probability at least 1 — 60 for any 6 € (0, 1), the optimal choice of T achieves, for any € 11,

Rr(m) = O(LN®|X[>2\/JA|T).




4 Bandit Feedback

4.1 Bandit feedback with bonus in RL

We generalize Alg. |1|to handle the RL case with bandit feedback. Our aim is not to improve the
existing algorithms for bandit RL; rather, we show that our new methodology and analysis for CURL
achieves comparable results to the SoTA in bandit RL. In this case, an adversary selects a sequence of
loss functions (£*),eppy, with £° := (€1,),,e[n], Where £f, : X x A — [0, 1], and the objective function

is given by F'(u) := (£*, iy = S\ (% 11,,). Note that now the gradient of F* with respect to
is always equal to £' due to the linearity of the objective function. Bandit feedback in this setting
implies that the learner observes the loss function only for the state-action pairs visited by the agent
during each episode, i.e., (¢, (2}, al,))nen] Where (2, al,) e[ is the agent’s trajectory.

n’ 'n n»-'n

We define Alg.[2]in App.[E] a version of Bonus O-MD-CURL where for each OMD update we take
2! :=¢" —b*, with ¢* an importance-weighted estimator of /* defined in Eq. (40) and b the bonus
vector defined in Eq. (TT). Thm. 4.1|states that Alg. [2|achieves the regret bound of O(+/T") known to

be the optimal for RL with bandit feedback [27]]. For the proof and for an overview of approaches for
bandit RL see App. [E]

Theorem 4.1. Playing Alg. |2|for RL with adversarial losses (ft)te[T], unknown transition kernel,
and bandit feedback, obtains with high probability for any policy 7 € 11,

Rr(m) = O(N*|X[*P/JAIT + N*2|X P ANVT).

4.2 CURL with bandit feedback

Returning back to the CURL framework, we now assume that F*: Ay, 4 — [0, N] can be any
convex, L-Lipschitz function with respect to | - ||;. In contrast to Sec.[3} we assume here that after

executing a policy 7 we observe F*(y™ *7) instead of VF'(u™ ). We will consider both the case
when the MDP is known in advance and when it needs (as in previous sections) to be estimated
progressively from observed trajectories.

Main challenges. This problem can be broadly categorized as a bandit convex optimization (BCO)
problem. This places us in a more challenging domain compared to the bandit feedback setting in the
standard RL problem, where the gradient of the loss function is identical for any point in (A yy 4)Y
and is easier to estimate. Moreover, as a BCO problem, the present setting still exhibits distinctive
challenges. One being the peculiar nature of our decision set M, ~and how it impedes the efficacy of
some standard gradient estimation techniques as we explain below. Another issue arises when the
MDP is not known as that induces uncertainty over the true set of permissible occupancy measures.
This incomplete knowledge of the decision set is atypical in the BCO literature and introduces
multiple sources of bias for any adopted method.

4.2.1 Entropic Regularization Method

Our first approach is to extend our MD-based algorithm from Sec. [3] supposing still that the MDP
is not known. Since the algorithm required knowledge of the gradient VFt(;ﬂtvp ), we propose to
estimate it by querying F* at a random perturbation of u”t*p, a standard approach in the convex
bandit literature popularized by [15]. This method yields 7%* regret under convex and Lipschitz
conditions, and is incapable of doing better [25]. Although more advanced algorithms and analyses
achieve /T regret [24, 9] [16], they are arguably less practical, more complicated, and have worse
dimension dependence. For d € Z, , we denote by B? and S¢ the unit ball and sphere respectively in
R, and by 1, € R the vector with all entries equal to one. Let k: S — R be a convex function,
where S < R is a convex set satisfying BY € S. Fix some 6 € (0, 1). The approach of [15] relies on
the observation that (1}5)dEueSd [£((1 = )z + du)u] ~ Vk(zx). Hence, @k((l — )z +du)u
(for some u uniformly sampled from S%) can be used as a one-point stochastic surrogate for the
gradient. Applying this idea to our problem presents several challenges. Mainly, M% = has an empty
interior in R4l This can be addressed, assuming for the moment that the kernel p is known, by
defining a bijection A,,: (M2, )~ — M?E  where (MF, )~ < RNIXIAI=1) §5 a representation of
the constraint set in a lower-dimensional space where it is possible for its interior to be non-empty,




see App.|F.1|/for more details. Next, we need to specify a (hyper)sphere that is contained in (MZU) ,
which would allow us to use the aforementioned spherical estimation technique while remaining
inside the feasible set of occupancy measures. To guarantee the existence of such an object, we rely
on the following assumption (discussed further below).

Assumption 4.2. There exists ¢ > 0 such that p,,(2|z,a) > e forall 7,2’ € X2, a € A, n e [N].

Under this assumption, we show in App. that for s = ¢/(JA] — 1 + 4/|A| — 1), it holds
that K1y x|(aj—1) + BYIFIGAIZD < (MZ )=, For any v € BNIXIUAI=D) " define ¢vP =
Ay (K1 y|x|(a]-1) + V). Motivated by the preceding discussion, we use (a simple transforma-
tion o

L8 NI\ (JA] ~ DFF((1 - 8)pt + 6C47)ut

as a surrogate for V' (u?), where u! is sampled uniformly from S [¥I0AI-1) | What remains is to
address the issue that the true kernel p is unknown. Similarly to the full information case, we compute
an estimate ' at each round to be used in place of the true kernel, and we employ bonuses to explore.
One difference is that we rely on a slightly altered transition kernel estimator (see App. to
ensure that p' too satisfies the condition of Asm. Another discrepancy to be accounted for in
the analysis is that although we compute 7 relying on p¢ (in particular, 7t is the policy induced by
(1 —6)ut + 6C“t’ﬁt € Mﬁ;), we observe Ft(/ﬂt*p), the evaluation of 7! in the true environment.
This induces an extra source of bias in the gradient estimator. We summarize our approach in Alg. [3]

in App.[F2.3] and prove the following result in App.

Theorem 4.3. Under Asm. Alg. E]with a suitable tuning of T, 0, and (v )¢e[T) Satisfies for any
policy m e 1, }
E[Rr(n)] = O(V/L(L + 1)/e|X|7*[A*N3T) .

The main shortcoming of this method is its reliance on the restrictive Asm. which also affects
the regret guarantee through its dependence on ¢. This assumption is not necessary to guarantee that
(Mﬁo)* has a non-empty interior; it suffices instead to assume that every state is reachable at every
step, as we do later. Enforcing Asm. [4.2]only serves as a simple way to enable the construction of a
sampling sphere with a certain radius. One can construct a different sampling sphere (or ellipsoid)
without this assumption; nevertheless, the magnitude of the gradient estimator (which is featured
in the current regret bound) would still scale with the reciprocal of the radius of that sphere, the
permissible values for which depend on the structure of the MDP and can be arbitrarily small. It
seems then that the current approach leads to an inevitable degradation of the bound subject to the
structure of the MDP.

4.2.2 Self-concordant regularization Method

We can adopt a more principled approach via the use of self-concordant regularization, which
is a common technique in bandit convex (and linear) optimization [see, e.g., |2, 47} 23], and has
been used for online learning in MDPs in different (linear) settings (315 [12; 150). We show in
App. [F.3|that (M, )~ is a convex polytope specified as the intersection of N|X[|.A| half-spaces.
We define ¢y, : (M2, )~ — R as the standard logarithmic barrier for (M, )~ [see40, Cor. 3.1.1]
which is a ¥-self-concordant barrier [see 40, Def. 3.1.1] for (M%)~ with ¥ = N|X||A|. The
second approach we adopt here is to run OMD directly on (/\/lfm)_ as the decision set and take
U, as the regularizer in place of the entropic regularizer that induces I'. Let ¢ belong to the
interior of (Mﬁo)_, which we assume is not empty. Property I in [40, Sec. 2.2] implies that
E+ (V24 (€)) " PBNS(A1 < (MP, )~ . Hence, we can construct an ellipsoid—entirely contained
in (M?, )~ —around any point in int(M®, )~. Let & be the output of mirror descent at round ¢ and

U == (V2 (&)) ™. We then use the following as a surrogate for the gradient of F'* o A, at £*:
2D N|X|(JA] - DF (A (€ + 6Urut) ) Uy

with w! again sampled uniformly from SV I¥I(AI=1) The eigenvalues of U, correspond to the lengths
of the semi-axes of the ellipsoid used at round ¢, which could be arbitrarily small and lead again to
the gradient surrogate having large magnitude. However, thanks to the relationship between ¢! and
U, alocal norm analysis of mirror descent (see, e.g., Lem. 6.16 in/43) absolves the regret of any
dependence on the properties of U;. Unfortunately, due to technical barriers, this log-barrier-based
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Figure 2: Multi-objectives (in order): dist. at n = 40 for Bonus O-MD-CURL and for Greedy
MD-CURL for 50 iters.; log-loss and regret for 107 iters.

approach is not readily extendable to the setting where the decision set can change over time (in
particular, it is not clear whether an analogue for Lem. @ can hold in this case). Hence, we restrict
its application only to the case when the MDP is known, see Alg.[din App.[F3] We state next a
regret bound for this algorithm (proved in App.[F:3:2), which requires the following less restrictive
assumption in place of Asm.[4.2]

Assumption 4.4. For all 2 € X and n € [N], there is a policy 7 such that 3} _ , 7P (z,a) > 0.

Note that this can be imposed without loss of generality since the MDP is known; defining &,, € X
as the subset of states reachable at step n, one can represent occupancy measures as sequences of
distributions in (Ax,, x.A)ne[N]-

Theorem 4.5. Under Asm. Alg.Hwith a suitable tuning of T and § satisfies for any policy m € II,

E[Ry(m)] = O(VIN""* (|x||A|T)"") .

Though holding only for the known MDP case, this bound maintains the 7%* rate of Thm. H while
eliminating its reliance on Asm.[4.2]and its undesirable dependence on the MDP’s structure. We leave
extending this result to unknown MDPs and designing practical approaches enjoying the optimal v/T
rate for future work.

S Experiments

We evaluate Bonus O-MD-CURL on the multi-objective and constrained MDP tasks from [18]], which
use fixed objective functions and fixed probability kernels across time steps. We focus on evaluating
how well the additive bonus helps the algorithm to learn the environment, and compare it to Greedy
MD-CURL from [34]. The state space is an 11 x 11 four-room grid, with a single door connecting
adjacent rooms. The agent moves in cardinal directions or stay in place: x,4+1 = T, + ay, + €p,
where ¢,, adds random displacement to a neighboring state. The initial distribution is a Dirac at the
upper left corner of the grid, as in Fig. [T][left]. We set N = 40 and 7 = 0.01.

Multi-objectives: The goal is to concentrate the distribution on three targets by the final step IV,
as in Fig. [T] [middle]. The objective function is defined as f,, (u7?) := — 22=1(1 —{urP eFy)2,
where e € RI*! is a vector with a 1 at the target state and 0 elsewhere. Constrained MDPs: The
goal is to concentrate the state distribution on the yellow target in Fig. [T] [right] while avoiding the
constraint states in blue. The objective function is defined as f,, (u™?) := —(r, u™P> + ((uTP, c))?,
where 7, c € ]R‘fl XAl Here, r and c are zero everywhere except at the target and constraint states
respectively. For Multi-objective, Fig. 2] displays the state distribution at the final time step after
50 iterations for Bonus O-MD-CURL [first], and Greedy MD-CURL [second], and plot the log-loss
[third] and regret [fourth] after 1000 iterations. We see that Bonus O-MD-CURL reaches the targets
much faster than Greedy MD-CURL. As for Constrained MDP, Fig. [3|displays, after 1000 iterations,
the log-sum of all state distributions for n € [40] for Bonus O-MD-CURL [first]; the state distribution
atn = 40 for Bonus O-MD-CURL [second], and Greedy MD-CURL [third]; the log-loss [fourth]
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Figure 3: Constrained MDP after 102 iters. (in order): sum dist. over all time steps n € [40] and dist.
at n = 40 for Bonus O-MD-CURL; dist. at n = 40 for Greedy MD-CURL; log-loss; regret.

and regret [fifth]. In this case, Greedy MD-CURL fails to reach the target, while Bonus O-MD-CURL
succeeds by avoiding constraints and minimizing cost. Both experiments show the value of additive
bonuses for exploration.
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A Full-information algorithm

Algorithm 1 Bonus O-MD-CURL (Full-information)
1: Input: number of episodes T, initial policy 7! € II, initial state-action distribution s and
state-action distribution sequence pu! = ' = p™ P with pL(-|x,a) = 1/|X|, learning rate
7> 0.

2: Imit.: V(n,x,a,2"), N} (z,a) = M}(z'|x,a) =0
3. fort=1,...,7 do
4:  agent starts at (xf),al) ~ po(*)
5 forn=1,...,Ndo
6: Env. draws new state !, ~ p,,(-|z%,_;,al,_;)
7: Update counts
Nt+1 (xn lvan 1) = N’rifl(m'tnfha:zfl) +1
Mt+l ($n|mn 17an 1) = Mi,1($;‘$;,1,a;,1) +1
8: Agent chooses an action al, ~ 7t (-|z¢)

9:  end for
10:  Compute bonus sequence as in Eq. (T1))
11:  Observe objective function F'
12: Compute ™ 7" as in Eq. @
13:  Update transition estimate as in Eq. (7)

14:  Compute the 7'+ associated to the solution of Eq. |§I with 2! := —VF!(u™" ") + b and
g+l = pttl

15:  Compute 7t+! (Lem., and ptt! = ’uﬁ—t+l.ﬁt+1

16: end for

B Auxiliary results

B.1 Auxiliary lemmas

LemmaB.1. For0 <6 < 1,

T N n-—1

SN SN U (@, a)pira (lz, @) = B (e, a)a

1n=11:=0 z,a

< 3|XN2\/2|ATlog (Wm) +2|X|N?y /2T log (%)

0

with probability at least 1 — 2.

Proof. Let & (x,a) := |pn(-|z,a) — P, (-|z,a)|l1. We denote by o := (zf, al,),e[nq the trajectory

of the agent at episode ¢ when playing policy 7. Let ﬁf’p(x,a) = Ly(st at)=(c,a)) be the

empirical state-action distribution computed from the agent’s trajectory. We consider the following
decomposition:

;ZZZ a,a)€l (@, a) =

n

Mﬂ
M=

Zuz P2, a)é 41 (2, a)
0 z,a

1n=11:=0 z,a t=1n=1 1=
M
T N n—1 . .
EIDIDIPH RSO RCOE
t=1n=1i=0 z,a

(2)
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Term (1) analysis. We start by analysing the first term. Using Lem. we have that for ¢ € (0, 1),
with probability 1 — 6,

—TNnil 0P (z,a z,a M Shybs i .a)
(1) - Z ZZ/“% ( ’ )§z+1( ) \/2|/Y|1 < 5 );; gz\/max{l Nt(fﬂ a)}

Using Lem. 19 from [26], we have that for all i € [N] and (z,a) € X x A,
T At

Z \/m:;({l (;’:(Ll a)} <(V2+1) N (z,a).

Therefore, using Jensen’s inequality and that 3, ) NI (z,a) = T forall i € [N], we have that

T N n—1 At (.T CL) N n-—1

i <3 NT(z,a
Z Z Z \/max{l Ni(z,a)} < Z Z i (@)

n-1 (13)

Substituting this inequality into the upper bound for term (1) yields

(1) < \/2|X| log (WH?'NT>3N2«/|X||AT

(14)
X||A|NT
= 3|X|N2\/2|A|Tlog ("’g')
Term (2) analysis. We now analyse the second term. Let F* := o (o!,...,0'"!) be the filtration

generated by the trajectories of the agent from the first episode, up to the end of episode ¢ — 1. Note
that £, ,; (z, a) is F* measurable, as it only depends on observations up to episode ¢ — 1. Therefore,

E[¢) 1 (w, )i, P(x,0)|Fh] = € (@, B[] P (@, a)| FL] = & (@, a)pf; (7, a).
For alln € [N], let M2 = 0 and for all t € [T],

= 303w P (w,0) — iy P (x,0)) €044 (2, a).

s=1zx,a
From the observation above, (Mfl)te[T] is a martingale sequence with respect to the filtration F*.
Furthermore, as by definition |£f, (2, a)| < 2,

ML= M < YD (un P (,a) — B P(x,0)) €L (2, a)
zeX ' ac A

<2/x].

Therefore, by Azuma-Hoeffding, we have that for any € > 0,
2

—€
IP’(M,:LF = 5) < exp <8|X|2T)

Applying the union bound on all n € [ V], we then have that for any ¢ € (0, 1), with probability at
least 1 — 9,

N
MT < 2|X|y/2T log (?)
holds simultaneously for all n € [N].

Substituting this inequality into term (2) and summing over n € [N] and ¢ € [n — 1], we obtain, with

probability at least 1 — 4, that
- N
2 < 2|X|N2y /2T log (F) (15)
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Final step. Combining the upper bounds for term (1) from Eq. (14) and term (2) from Eq. (T3),
we obtain, with probability at least 1 — 24, that

T N n-—1
IPIDIEECNERENE 3|X|N2\/2A|Tlog (PR ) oy oo ().
t=1n

concluding the proof.

Lemma B.2. Forany0 <0 < 1,

a) 2 2 N
ZZ *“ZW}\SN |X|A|T+X|Nm’

1n=0

holds with probability at least 1 — 0.

Proof. Recall that we denote by (z¢

playing policy 7%, and that we define by /ﬂ P(x,a) = L(2t at)=(z,a)} as the empirical state-action
distribution computed from the trajectory of the agent. We consider the following decomposition:

xy, n)nE{O [n]; the trajectory of the agent during episode ¢, when

X )

-n ,9) = 3 N-—-n
Z 2 Z \/max{l Nt(x a)} Z 0 Z \/max{l Nt(x a)}

t=1n=0 t=1n

(€]

S (v =y 3 (7 = 8 0)
t=1n=0 T,a \/maX{l?NfL<x7a)}

(2

(16)
+

=

r o
I

Term (1) analysis. Using the same decomposition of term (1) of Lem. [B.1]in Eq. (T3) we have that

T N
,a)
t;;o( - Ex/max{l N (z,a)} <3N*VIXAIT. (17)

Term (2) analysis. The analysis of term (2) follows a similar approach to the analysis of term
(2) in Lem. with the key difference being that, instead of carrying the term related to the
difference between the true probability transition and the estimated one, we now have the term

1/4/max {1, N} (z,a)}.
Let F! := o(o!,...,0'™!) be the filtration generated by the trajectories of the agent from the first

episode, up to the end of episode ¢ — 1. Note that 1/4/max {1, N/ (z,a)} is 7' measurable, as it
only depends from observations of time step n up to episode ¢ — 1. Therefore,

E[1/+/max {1, N}, (z, a)} iy, *(w, a)| FL] = 1/y/max {1, Ni(x, )}y *(,a).

For all n € [N], let MY = 0 and for all t € [T7],

t

ML= Y (V=) Y (i P 0) — (2, 0)) 1/ max {1, N (2, a)}-

s=1 x,a

From the observation above, (M}, )[r] is a martingale sequence with respect to the filtration F*.
Furthermore, as by definition |1/4/max {1, Ni(z,a)}| < 1

My, = MV < (N =n) )]

reX

N (uz (@, a) - (@, a)) €L (x,a)| < (N —n)|X].

acA
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Therefore, by Azuma-Hoeffding, we have that for any ¢ > 0,

P(MT >¢) < . —
( n E) eXP (2|X|2(N —n)?1T )

Applying the union bound on all n € [N], we then have that for any ¢ € (0, 1), with probability at
least 1 — 9,

MT < |X|Ny/2T log (%)

Summing over n € [N], we have that with probability at least 1 — J,
= N
2) = Y MT <|X|N?\[2T log (7) (18)
n=0 Y

Joining terms (1) and (2). To conclude, we replace the final upper bounds of the terms (1) and
(2) of Eq. (T7) and (I8) respectively in the decomposition of Eq. (T6), and we obtain that, for any
d € (0, 1), with probability at least 1 — 4,

T N
L) 2 2 N
tglnzzlo( - Z\/maux{l Ni(z,a)} < SN“WIX|AIT + [X|N M’

concluding the proof. O

Lemma B.3. Foralln e [N], (z,a,2') e X x Ax X, and t € [T, let P}, ., (2'|z, a) be defined as
in Eq. (7). Hence,

Lot 2,0t =a)

max{1, N (z,a)}

1355 (@) = By (@) 1 <

Proof. From the definition of the estimator p?, we have that
1
max{1, N;(z,a)}

Pt (@'|z,a) =

(Nvtz(x’ a)ﬁ;-&-l(‘xllx? a) + ]l{achJrl::v’,sz:ac,a:’l:a})'

Therefore,
1
1 o ' _ ot / t+1 gt
|pn+1( |$,CL) _pn+1(x |$7a‘)| = max{l Nt+1($ a }’]l{w;’_*_l:a:’,:cﬁl:z,a;:a} pn-‘rl(x |x7a')(Nn (a:,a) Nn(xva')))
1

~t /
max{l NtJrl(aj a ‘ {af =2’ 2t =z,at, =a} pn+1(x |xva)]l{zﬁlzw,asza} .

Summing over 2’ € X’ we then have that

Uat,=z,at,=a)
max{1, N (z,a)}’

15,51 Clary @) = B Gl ) <

concluding the proof.
O

Lemma B.4. For (n,z,a) € [N] x X x A, let (¢")ie[r) be a sequence of probability transition
kernels with q* := (g}, )ne[n Such that

{z},_,==,a},_,=a}

max {1, N'T! (z,a)}

n—1

t+1(

lan"" (2, @) = g (-l a)|x <

for some constant ¢ > 0. Then,

Z\lqt“ |z, a) — ¢4 (-], a)|1 < eclog(T).

17



Proof. We have that

NT+1(z,a) T

T 1
{z],_,=w,a}_,=a} 1 1 T=2
gt (-, a) — ¢ (z,a)|y < ¢ =c —<c) - <clog(eT) < eclog(T).
Z ; max {1, N'™1 (z,a)} ; t i’
O
Lemma B.5. Let (q")c[) be a sequence of probability transition kernels, i.e., ¢ := (q},)ne[n]

such that for any state-action pair (x,a) and any step n € [N], Si_, |¢tt (|2, a) — ¢!, (-]z, a) |1 <
clog(T) for some constant ¢ > 0. Then, for any sequence of policies (7*) (1),

T
Z |y < ol X AN log(T) .

While for a fixed policy T,

T

oattl gt
D™ = ™ onn < €| X|N log(T) .
t=1

Proof. Using Lem.[C.I|we obtain that

!

n—1

T
xt it t t ot
Z T q < Y sup 30 Yl (@, a) gl (lxsa) = gl Clasa)

t=1"€[N] ;=0 z,a

=z
L

71't t L
pr® (20) gt (s @) = gy (s, a) o

I
o
s 50

N-1
< lan 53 Clar,a) = grpa (e, a) |1 < e X]JAIN log(T) .
n=0 z,at=1
While for a fixed policy ,
T o . T N-1 .
2™ = oy < Y g (@) gn s (o, @) — g (s @)y
t=1 t=1 n=0 z,a
T N-1
<), mn(al2) g,y (12, a) = gy iq (2, a) s
t=1 n=0 z,a
N-1
<c 7n(alz) log(T) = | X|N log(T) .
n=0 z,a

O

Lemma B.6. Consider a sequence of policies (ﬂt)te[T], and define a smoothed version of each policy
7t forallt € [T]as 7t == (1 — ag)mt + I‘j‘T"l, where oy € (0,1). Let p and q be two probability
transition kernels, denoted as p := (pp)ne[n] and q := (qn)ne[n], respectively. Therefore, for all
te [T,

N-1

t
P — (,a)|pi+1(|z, @) — giv1([x, a)[1 + 2N .

=0 z,a

Proof. See Lem. D.4 from [34]. O

18



B.2 Building a closed-form solution for each OMD iteration

In this subsection we argue that the MD optimization problem solved at each iteration in Lem. 2.]
has a closed-form solution. Define the convex function Gt (p) := 7(zt, u) + ['(u, iit), for 7 > 0.

Optimizing a convex objective function over policies is equivalent to optimizing it over state-action
distributions in M7, . Therefore, the optimization problem solved in Lem. @ over the state-action

distributions induced by ¢'** is equivalent to minimizing the same function over the space of policies:

G'(p) = in_GH(umT). 19
B 1
%/_J

(2): state-action problem (i) policy problem

In Thm. 4.1 of [34], it is shown that for each episode ¢ € [T'], an optimal policy for the problem

t4+1

min  G'(p™? ) =7 py + T, i), (20)

‘ITE(AA)XXN

defined in Eq. (T9), denoted by 71, can be computed using an auxiliary sequence of functions
Q, )ne[N]> Where QX xA— R The sequence starts with QY% (z,a) = —z4(z,a), and for
n € {N,...,1}, the following recursion is used:

i1 (alz) exp (TQZH(I a))
Z 7Tn+1( /‘.’E) exXp (TCng-l(aj a ))

WZT1 (alz) =

At t+1 / t+1 / 1 Wflfl(aﬂx’)
n(m CL) $ a +an+1 ‘Jf a Zﬂ-n-&-l |1‘ ;log (ﬁ_tJrl(a/'x/)) + Qn+1( ) .
n

The core idea of the proof is to show that, due to the specific divergence used (defined in Eq. (@),
Eq. (20) can be solved using dynamic programming. For further details, the reader is referred
to Appendix B of [34]. A similar result was also obtained by [10], though they approached the
optimization problem using Lagrangian multipliers instead of dynamic programming.

Problem (¢) of Eq. (I9) is convex, and the theoretical analysis are given in Lem.[2.1] . Thanks to the
equivalence between problems (¢) and (i¢) in Eq. (I9), we can use the analysis of problem (i) to
provide theoretical guarantees for the closed-form solution policy of problem (i).

C Missing results and proofs

Lemma C.1. For any strategy 7 € (A )Y *N, for any two probability kernels p = (Pn)ne[n) and
q = (qn)ne[n] Such that pp, qn = X x A x X — [0,1], and n € [N],

n—1

lr? = plh < D5 Y ni P (@, @) [pisa (e, @) = g (|2, @)1

=0 x,a

Proof. From the definition of a state-action distribution sequence induced by a policy 7 in a probabil-
ity kernel p in Eq. (2), we have that for all (z,a) € X x Aandn € [N],

(@ a) = Y5 pnti (! dYpa(ale’, ' )ma (ale).

z’.a’
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Thus,

Iz = )

1= 2 |k (@, a) = up(z, )

T,a
=22 i@ dpa(ala’,a) = pp (2, d)gu (22!, d!) | al)

z,a x!,a’
= ST uE @ d paale’ s a) — 1 (@ Van ()|
T .,L./,a/
=3 Ui (0 a paala, @) — (gl o)
T x/,a’

+ pn 1 (2, 0 )gn (]2’ a”) — i (27, ) g (]2, o)

< Xt @ d)pa(la' a') = anClasd) + Y ety (2, d)) — pp (2! d)|
x’,a’ x’,a’

= > @) pn(la’ @) = gn (2’ a) |1 + [y = g
x/,a’

Since forn = 0, |ui™” — po'?1 = 0, by induction we get that

n—1
< S W@l ) i (s a) = g Cla @)

=0 z/,a’

Iz = p
n n

C.1 Proof of Prop.[3.1]

Proof. In the analysis, we explicitly write the term n = 0 separately from the other n € [N]. We
begin with the following decomposition:

T o T T .
Z<bt7lf P >+ Z<b6nu/0> = Z<bta:u’7r P
t=1 t=1 t=1

(1) (2)

t

T T
— TPy 3 TPy + Y (b, o) -
t=1 t=1

Term (1) analysis. Using Holder’s inequality, we have that

T N
(1) < D3 D0 Ik loolany P — 7|
t=1n=1
From the definition of the bonus sequence, we have that for all n € [N], |t} ||c < L(N — n)Cs.
Hence,

1-

T N n—1
(1) SLCs ) DN —n) Y > p7 (@, a)|pisa(lw, a) = bl (2,0
t=1n=1 =0 z,a

< 1Oy N [3¢2|,4|T10g (IANT) L orie ()]

where the first inequality comes from Lem. [C.1] and the second inequality is achieved for any
0 € (0, 1), with probability at least 1 — 2, using Lem. [B.1

Term (2) analysis. Using the definition of the bonus sequence in equation (TT), and recalling that
the initial state-action distribution pq is always the same, we have that, for any 6 € (0, 1), with
probability at least 1 — 6,

) =10y S (v - iz 7 (2.0
(2) 6;1 Z:]O( " V/max{1, Nf(z,a)}

< s [T + o () |

where the inequality comes from Lem. [B.2]
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Joining the upper bounds in term (1) and (2). Putting both upper bounds together we get that
for any ¢ € (0, 1), with probability at least 1 — 34, and from the definition of Cs,

T T
St ™y + B, oy < LCs|X|N [3\/2|ATlog (W) +24/2T log (]g)]
t=1 t=1

+ LCsN? [3\/|X|A|T + X\ /2T log (];)]

= O(LN3|X|3/2 |A|T log (W))

C.2 Proof of Thm.3.2|(Main result)

For proving the main result we join together all the pieces we presented in the main paper and the
appendix.

Proof. We start by decomposing the regret and using the convexity of the objective function obtaining
that

T
FHum Py — F' (™ ) 4 ) P (™ P) — F* (™)
t=1

=
=
2

I
D=

o~
Il
it

t

T
t t t ~t t ~t ~t
(VEN ™ P), 1™ P = g™ P 4 Y (T (™ ),y P — P
t=1

D=

<

o~
Il

1

R],\I/leP R];:)Iicy
We analyse each term separately:

Analysis of RYPP.  We begin by analyzing the term R}PP, which represents the cost incurred due
to not knowing the true probability kernel. First, we apply Hoeffding’s inequality, and the fact that f},
is L-Lipschitz with respect to the norm | - ||;. Following, we apply Lem. obtaining that

T N
t t t ~t
RYPP < N S IV P ol P = u P
t=1n=1
T N n-—1 .
<L) ) pi (@, a)|piva |z, a) — Py (|2, a) 1

We can now apply Lem. to obtain that for any ¢ € (0, 1), with probability at least 1 — 24,

IXI«;lINT) + L2|X|N2y /2T log (ﬂ) 1)

RYPP < L3|X|N2\/2A|Tlog < 5

Analysis of R?",  To analyse R%"” we further decompose it as

t

T T
P Y T = g YUV (), q - ),
t=1 t=1

T
REM = 3 (VF ) = b ™
t=1

policy/MD policy/bonus
R Ry

where recall that b* := (bf,),,e[n] is the bonus vector defined in Eq. (TT).
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Analysis of RP**"Y™P_ We begin by addressing the term that accounts for the regret incurred by

using online Mirror Descent with changing constraint sets.

From Lemmas and|B.4] we know that the probability sequence (p*)c[r) satisfies the condition
that 317, [P — 5t |1 < clog(T) for ¢ = e. Additionally, at each time step ¢, since F* is L -
Lipschitz with respect to the norm | - | 1, we have |VEF*(u)|1.00 < Lp = LN for any state-action
distribution p. From the definition of the bonus vector, we also have that [b'|1 o, < LN?Cs.
Consequently, | VE? (1) — bt||1,00 < 2LN?Cj. Therefore, as we compute u'*! by solving

pttt = argmin {T<VFt(u”t’ﬁt) —b' )+ F(uvﬂt)},

St1
p
MEMMO

by applying Lem. with vt := u“f’t, ¢ = 2LN2Cj, and the sequence of probability transition

kernels (p*);c[r]. we obtain that for the optimal parameter 7 = CQLT’ where

b:= N(log(T) (e|X|\A| + 4) + log(|A]) + 2Ne|X|log(T)? 10g(.A|)>,

and recalling that Cs := 1/2|.X|log (||| AINT/6),

Rg?licy/MD < QC\/ﬁ + <N€|X| 1Og<T)

< 2LN2\/2|X log (W) (2VbT + N log(T)e| X|)

- ozl 1o (L) (VAT T) + 8 fou A 0s(1)) ).

(22)

Analysis of RE"YPO™S e start by analysing the second term of the sum in R%""™*_ For any

d € (0,1), with probability at least 1 — §, we have that

T T N

t ot ~t At
DUVF (P, 5P — Py < 30 VIV o i = p® [
t=1 t=1n=

3
|
_

7. pt
it (2, a)|[pisa (e, a) = Piy (fa, a)s

VA

h
D=
= -

-+
Il
—_
3
Il
—
~
Il
=}
8
S)

3
|
_

x,a) Cs
© 7 /max{1, N} (z,a)}

N
h
D=
iD=
=
=3
=

o+
I
-
S
Il
o
8
2

2
L

Il

h
D=
=

|
=
!
5

' (z,a) Cs
T /max{1, N (z,a)}

T

S

[
A
3
I
o
B
IS)

I
D~ .

T
GNTED T WA
t=1

~+
Il

1

where the first inequality follows from Holder’s inequality, the second from the fact that f is L-
Lipschitz with respect to the norm | - ||; and Lem. [C.1} the third from the concentration bound in

Lem. Where we define C; := \/2\X| log (|X||A|NT/§), and the last equality comes from the
definition of the bonus vector in Eq. (TT).
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Replacing it at the RP*"Y**™ term we have that

T T
Rg:)hcy/bonus _ Z<bt, Mﬂ_tjj\t _ Mmﬁt> + Z<th(,U/ﬂ-t’ﬁt)7 Mn,ﬁt - ,uﬂ,p>
t=1

~+
Il
—

t

T T
O, g™ = Py 3 Py 4 Y (b o)
t=1 t=1

N
D=

o~
Il
—

N
D=

T
O, 1™ ) 4 Y b, o).
t=1

o~
Il

1

Lastly, we apply Prop. to achieve that, for any ¢ € (0, 1), with probability at least 1 — 49,

policy/bonus - t ot pt - t _ 3 3/2 |X‘ |‘A|NT
Ry < 2T+ Y W oy = O LN X2V /J AT log (=5 ) ). (23)
t=1 t=1

Final upper bound on R%"™. Joining the upper bounds on RY"™P and RE"Y™™ from
Eq.s and respectively, we achieve that for any ¢ € (0, 1), with probability at least 1 — 40,
ignoring logarithmic terms,

R < O(LN?|XPP12\/|AIT). (24)

Joining the upper bounds on RYP? and on R*"Y. Note that the terms in the upper bound on

R from Eq. dominate those in the upper bound on RYP from Eq. (Z1). Therefore, when
combining both terms to complete the upper bound on the regret, we obtain that, with probability

1— 64,
Ry(m) < O(LN3|XPPI2\/|AT),

concluding the proof.

D Proof of Lem. 2.1; Online Mirror Descent with varying constraint sets

Before stating the proof we recall a few results from Bregman divergences and in particular the
divergence I' defined in Eq. (@) that are used throughout the proof.

To simplify notation, for any probability measure 17 € A g, where F is any finite space, we define the
neg-entropy function, using the convention that 0log(0) = 0, as ¢(n) := >}, n(x)logn(x). For
any /1 := (fin)ne[n] € (Axx.a)™, we define py, () := >, 4 in(2,a) foralln € [N] and z € X,
representing the marginal distribution over the state space. The function inducing the divergence I,
defined in Eq. (@), is given by

N N
(i) = D Dn) = D Slpn)- (25)

By definition of a Bregman divergence, for any two probability transition kernels p, g, for all
p € M and p' € MI*, where M is the subset of M~ where the corresponding policies 7
satisfy m, (a|z) # 0, we then have that

D, ') = () = (') = V(') = ). (26)

Additionally, for any probability transition kernel p, the function ¢ is 1-strongly convex with respect
to | - [lop,1 Within Mﬁo (see Thm. 4.1 from [34]]). Consequently, a consequence from a known

property of Bregman divergences [48] is that, for any ;z € M?, and p' € ME*,

1
D, ') = 5= 151 27
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Lemma. Let (qt)te[T] be a sequence of probability transition kernels, and ( t)tE[T] a sequence of
vectors in RV *IXIXIA] such that ||2¢|; < ¢ for all t € [T]. Initialize 7}, (a|z) := 1/|.A| as the
uniform policy. For every t € [T], let @ := (1 — ay)7’ + ay|A| 7! be a smoothed version of the
policy with oy := 1/(¢ + 1) and ji* := p™"7". For each ¢ € [T7], compute iteratively

1% e argmm T<Z i)+ D, i ) (28)
uEM,LO

. . t .
Hence, there is a 7 > 0 such that, for any sequence (I/t)te[T], with vt := ™% for a common policy
ﬂ.,

S (at ut = vt < O(CN+/Vr | X[ log(JA) T log(T)),
where Vi > 1 + max,, 4.q) Z an(\ z,a) — gy (|, a)]s

Proof Throughout this proof for all ¢ € [T] we denote by 7! the policy inducing !, meaning that
pt o= 4" and fit := 4", We assume here that mMax(p, . q) Z an( |z, a) — g5 |z, a) |1 <

c log(T) for c a constant, as this is the case for all the transition estlmators we use to obtain the main
results of the article.

As ./\/lqt+1 is a convex set (only linear constraints), the optimality conditions and the definition of a
t4+1

Bregman divergence in Eq. (26) imply that for all v'*' € M4
728+ V(™) — Vo (ah), v — pt 1y > 0.
€ I fi 0

Re-arranging the terms and using the three points inequality for Bregman divergences [8] we get that,
’7'<Zt,,u,t+l _ l/t+1> < <V1/)(/th+1) _ V¢(ﬂt),l/t+1 _ Iut+1> — 1—\( t+17ﬂt) F( t+l’ut+l) _ F(ut+1,ﬂt)
Therefore, by adding and subtracting 7(z%, u* — v/ on the left-hand side,
T<Zt,ut+1 _ Vt+1> + T<Zt,ut _ Vt> _ T<Zt,ut _ Ut> < ( f+1,l1t) F(Vt+1,ut+1) _ F(Mt+17ﬂt)
- T<Zt,ut _ Vt> < 7’<Zt,l/t+1 _ Vt> + T<Zt,/1,t _ Mt+1> + F(Vt+1,ﬂt) _ F(Vt+17ut+1) _ F(ut+1,ﬁt).
Then, by summing over ¢ € [T], we obtain that
d 1

T T
Z<Zt,,ut _ Vt> < l Z [7’<Zt,/.tt t+1> 1—1( t+1 ~t + - Z t+1 ~t F(I/t+1,,ut+l)]
=1 4 =1

t=1

9

A B

T
+ Z(zt, piT oty
-
c
(29)

The term A arises due to our lack of knowledge of z! at the beginning of episode ¢ for all episodes
(adversarial losses hypothesis). To address this, we employ Young’s inequality and the strong
convexity of I'. For the term B, in the classic Online Mirror Descent proof [48], where the set of
constraints is fixed, the sum of the differences between the Bregman divergences telescopes (as would
be the case with a fixed ). However, because we are dealing with time-varying constraint sets, this
telescoping effect does not occur in our situation. We will now proceed to derive an upper bound for
each term, starting with term C that is straightforward.

Step 0: upper bound on C. Applying Holder’s inequality, Lem. with a fixed policy 7, and the
hypothesis that ||2%||1 o < ¢,

T

T
C =)W=ty < L — o0 < Ce| XN log(T). (30)
t=1

t=1
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Step 1: upper bound on B. We now analyse the second term of the sum in Eq. (Z9). To make the
Bregman divergence terms telescope we add and subtract I'(v?, ut) — T'(v/%, it), obtaining

T
Z F t+1 ~t F(ut'H t+1 Z t+1 ~t F(Vt,ﬂt) + Z F(l/t,ﬂt) _ F(Vt,ut)
t=1

t=1

(@) (#1)

., (31)
+ Y T ) =T ).

(#)

We analyze each term. Using the definition of a Bregman divergence induced by ¢ in Eq. (26) we get
that

T
Z VL) () — V(i) v — ity — () + () + (Ve (), v — ity
o
29

t+1 + Z<Vw l/t _ Vt+1>

~+

=1
T
Z IV (i Hl olv! _VtHHoo,l»

where in the last inequality we use the telescoping nature of the first term and applied Holder’s
inequality to the second term. Recall that for v := (vy)ne[n] such that v, € R¥*A we de-

fined [v[oo,1 1= sup,epny [vnlli. We now also define | = sup, {|{w, v, |v]e1 < 1} =

Zﬁle sup,, , |wn(, a)| as the respective dual norm.

With our choice of Bregman divergence, and given that

7= (1 —a)m + ap—,
Al

foreachn € [N], (z,a) € X x A, [V (i')(n,z,a)| = |log(7t (alz))| < log(|A|/a).

From the Lemma hypothesis, there is a common policy 7 such that for all ¢ € [T], vt := v™4
Hence, from the result above,

T

) A - t T t+1

() < 00+ ) Wiog () med =
t=1

4

minge[r)

< M 4 Nlog( )c|X|Nlog(T),

where the last inequality comes from Lem. [B.5]with a fixed .

As for the second term, using our definition of I, we obtain that

) 2t (20)

o ™ (alz)

T

—
<
S
=
Il
Y
3y
)
—
8
IS
=
—
o
7 N\
t

S
I
~
3
8
S)

I
Nl
§=|

)
£}
&

—
)
0F]
7 N\
3
SH|3 =
5
S~—
N———

H
Il
—

=
8
e

l/ﬂ'vqt xr,a)lo ﬂ-:l(am‘)
' (2, a)log ((1 — oy)7t (alz) + at/|A|)

o~
Il
—

Il
1=
M

,a

T
SN ) (~log(l— o)) <2N ) ay,
t=1
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where the last inequality is valid if 0 < oy < 0.5.

T+1 T+1)

The third term telescopes, hence, since —I'(v
always non-negative,
(i3i) < T(v*, pt).

Before adding back the three terms, note that, for v} (a|z) = 1/|A|, we have I'(vt, ut) — (v?!) =
—p(ut). Furthermore, —(u') < N log(].A|). Therefore,

D' 1) — o) < Nlog(JA)). (32)

Summing over our bounds and using the Inequality (32)), we get that B is upper bounded as

et 2 t+1 ~t F(I/Hl,utﬂ)] < 1

;[(z’) + (id) + (i)
< N tog(lap) + 224X, ALY, (T)+ﬂi

S g T g minge[r) o i) T t:104t~
(33)

y < 0 because a Bregman divergence is

Step 2: Upper bound on A. It remains to upper bound term A from Eq. 29),

T
1 -
A= T[Eﬂzt,ut —/f“>—F(ut+1,ut)} (34)
t=1
representing what we pay for not knowing the loss function in advance. For that we use Young’s
inequality [5]: for any o > 0 to be optimized later, and for each episode ¢ € [T'],

It o

~ T ~
Tt =t =T ) < —, Tl Y = T A, (35)

From the definition of I in Eq (@), we have that

1
L ) 2 Z W (2, log( A (a|fﬂ)) — Tt M‘frt,qt-#l)'
n= 1(Z a) ( |x)

. t+1 qt+1 ﬁ_t’qt+1 qt+1’*
From the strong convexity of ¢, as u*™* € M{ "~ and p e M{ ¥, we then have from

Eq. that

D) = DG ) 5 St = (36)
Using the fact that for any vectors a, b,c € R? and for any norm | - |, the inequality |a — b]|? <
2(|la — ¢||* + |[b — ¢|?) holds, we then have by Eq. (36)
1 - 1 t t4+1
I IO gl - s 7y
~t _t+4 t+ ~t t+1
< 5(”#’5 o R TR T s PR *H#” S (i
1 7t gttt
A
(37

For any n € [N], we have ||uf, — ﬂﬁt’qtﬂ |1 < 2. Using this result along with Lem. for p = pt and
q = p'*!, we derive the first inequality below. To obtain the second inequality, we apply Lem.
with the sequence of policies (wt)te[T].

T T
t t+1

3 = <23 Skl o)~ 4

t=1

t=1m€[N] ;=0 z,a t=1
< 2¢|X||A|N log(T) + 4N Z .

t=1

(38)
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Therefore, summing Eq. (33) over ¢ € [T] with o = 1/2, and plugging the inequality above, yields

T T T
St pt = Y T i) < 72 3 |1, + XN AN log(T) + 2N Y a.

t=1 t=1 t=1

Using that [[2'[1 o < ¢ and dividing by 7 entails:
N T
A< TCT + — <cx||,4| log(T) +2 )] at). (39)
t=1
Conclusion. Finally, by replacing the final bounds of Egs. (33)), (39), and (30), we obtain

T
D =y <A+ B+C
t=1

N N N
<TTC? + — <C|X|A| log(T) + 2 Z at) +— log(].Al)
t=1

N2c|lx 2N &
+ i‘ |log( A )log(T)+TZozt+CNc|X|log(T).

mlnte[T] (673 -1

In particular, for oy = 1/(¢t + 1),

T
Z<zt,ut—l/t> < TTC2+% N[log(T) <C|X||A| + 4) + log(|A]) + 2N¢|X|log(T)* log(|A]) | +¢Ne|X|log(T).
t=1

=:b

Optimising over 7 = 4 /CQLT,

T
DG pt—vty < 20VBT+(Ne| X|log(T) = O(C\/eN|X||A|T log(T)+¢N+/c| X [log([A|)T log(T)+(Ne| X | log(T)),
t=1

concluding the proof.
O

E Bandit feedback with bonus in RL

Notations. Throughout App. [El we define the trajectory observed by the learner in episode ¢ as
o' := (al,,al, 0} (xl,, al,))ne[n- Let F denote the o-algebra generated by the observations up to

episode ¢, i.e., F! := o(o',...,0'"1). We use E; to represent the conditional expectation with
respect to the observations up to episode ¢, i.e., E;[-] := E[-|F].

Overview of existing approaches. To adapt Alg.[I]to the bandit case, we need to estimate the loss
function for each MD update. A classic choice using importance sampling is:

~ 0z, a
lo(w,a) = % (ot ~a,at, =}
pn (7, @)

This update is unbiased, as E[1(,1 —y ot —q}] = E[E[1 (51 —g 0t —a} | F']] = u™ P (z, a). However,
since we do not know the true transition probability p, we cannot use this estimate directly. In [46],
they use ™ P with UC-O-REPS and achieve a regret of O(T?*).

Consider the following confidence set, that is further detailed in Eq. (1),
Q' = {q | |gn (2|2, a) — P, (2'|z,a)| < €,(2'|x,a),V(z,a,2") € X x A x X,ne[N]}.
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In [27], the authors incorporate a parameter y for implicit exploration, an idea from multi-armed
bandits [41], and use the following estimate:

0, (z, a)

7 (w0 —
A0 = e vy

]l{xﬁl:x,a;:a}v (40)

where !, (2, a) := maxgeqr p™ 4. Although this is a biased estimate (,uf;’p(a:, a) < fin(x,a)), Q
is constructed to ensure that the bias introduced is reasonably small. They also argue that ;i can be
computed efficiently through dynamic programming. They demonstrate that running UC-O-REPS

from [435] with this estimate achieves O(\/T) regret, improving upon previous results.

In Alg. 2] we detail our method for solving the RL problem with adversarial losses, unknown
probability transitions and bandit feedback. We proceed to the regret analysis.

Algorithm 2 MD-CURL with Additive Bonus for Bandit feedback RL

1: Input: number of episodes T, initial policy ' € II, initial state-action distribution s, initial
state-action distribution sequence p! = ! = ™ P with pL(-|z,a) = 1/|X| for all (n, z,a),
learning rate 7 > 0, exploration parameter v = 7 (tuned in the proof of Thm. {.)), sequence of
parameters (at)teJ)T] with oy = 1/(¢ + 1).

2: Imit.: V(n,x,a,2"), N} (z,a) = M}(z'|x,a) =0
3. fort=1,...,7do
4:  Agent starts at (zf, al) ~ po(+)
5 forn=1,...,Ndo
6: Env. draws new state x!, ~ p,,(-|z%,_;,al,_;)
7: Update counts
1
N (@ gy aq_y) < Noq (g _p,a5_q) +1
tH1 ot t t t
My (e, gy aqy) < My (2|21, a5 ) + 1
8: Agent chooses an actlon at, ~ 7t (+|zt)
9: Observe local loss ¢f (2, at,)
10:  end for e
11:  Update transition estimate for all (n, z,a,z'): p,™ (2'|x, a) = %
12:  Compute bonus sequence for all (n, z,a): bt (z,a) := (N—n)Cs
p q ( s by ) n( 3a) \/max{l,Nf,,+l(w,a)}
13:  Compute optimistic state-action distribution for all (n,z,a): i (z,a) := maxgeq: JTRa
where Q' is defined as in Eq. @)
~ t
14:  Compute loss estimate for all (n, z,a): £} (z,a) = %I{{I%ZL%:G}

15:  Compute policy 7! (z, a) by solving

pttt e argmin {r(0" — b, 1y + D(p, i) },
[LEMﬁi;’

which has a closed-form solution for ¢+ (see Sec.[B.2)
16:  Compute 7!, the smooth version of 7t+!:

7 = (1 — a7t + ay /| A

. . . . . ~ = 1 ~t+1
and the associated state-action distribution fi**! := /ﬂt+ T

17: end for

E.1 Auxiliary lemmas

Lemma E.1 (Lem. A.2 of [32], adapted from Lem. 1 of [41]]). Let (2! (z,a)). e[t be a sequence
€

(
of functions F-measurable, such that 2! (z,a) € [0, R] for each (z,a) € X x A, andn € [N]. Let
Z! (z,a) € [0, R] be a random variable such that E [ ZL (z,a)] = 2% (x,a). Then with probability
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1-46,

i i ]l{zt =x,at, —a}Z ( ) - M;t’p(xva)ZZ('raa) @10 N
P (@.a) +7 jit, (@, ) S 2y 8\

We define the confidence interval used in Alg. [2]as
= {allgn(@'|z, a) = 5, (2" |z, 0)| < &), (2|2, ), forall (z,a,2") € X x Ax X,n e [N]}, (41)
with

pt(2!|z,a)log (LV‘;(”A‘) 141og (7TN|XHA|>

ta! =2 .
en(@'l2, ) max{1l, N} _,(z,a)} + 3max{1l,N!_,(z,a)}

We present two results regarding this confidence set. The first result, based on the empirical Bernstein
inequality, shows that the true probability kernel p belongs to this confidence set with high probability.
The second is a key lemma from [27]], which explains how the confidence set shrinks over time. For
the proofs, the reader is referred to the original references.

Lemma E.2 (Empirical Bernstein inequality, Thm. 4 [33]/Lem. 2 [27]]). With probability at least
1 — 46, we have that p € Q' for all t € [T7].

Lemma E.3 (Lem. 4 [27]). With probability at least 1 — 60, for any collection of transition functions
(pc”’t)wex such that p** € QY for all x, we have

ZZZIM P (2,a) — i P (z,a)] = O (N2X|\/AT1 (TNEV”A'))

t=1n=1z,a

E.2 Proof of Thm.d.1]

Proof. We start by decomposing the static regret with respect to any policy 7 € (A_4)* > as follows
T T
T) = YT = T Y= P — )
t=1 t=1
1, RMDP 2, Rp:;cy/MD
’ i (42)

T T T
+ Z<€t7umﬁt _ Mﬂ7p> _ Z<bt’uw,ﬁt> + Z<bt’ Iuwt,ﬁt>.
t=1 t=1 t=1

policy/MD 4, Bonus term
3,Rop ’

E.2.1 Term 1: R}PP

The analysis of this term is already provided in App. @] Here, we can further leverage the fact that
the objective function is linear and that, by definition, £;, € [0, 1]. Therefore, with probability at least
1 — 26, we have:

RYPP < 3|X|N2\/2A|T10g <|X|A|NT> + 2| X|N?) 2T log (%) “3)

1)
E.2.2 Term 2: REMP
In practice, the learner plays using the estimated loss function minus the bonus. Hence, RPU<™MP
P play g T

accounts for both the bias introduced by the loss estimation and the standard mirror descent regret
bound. We start with the following decomposition:

T
Rg?lle/MD _ Z<£t _ bt, Mﬂ—‘ﬁt _ M‘n’,ﬁt>

T T
= Z<gt _ @)’uwtﬁt _ Iumz?t>_|_ Z<@ _ bt”uﬂt,ﬁt _ Iuﬂ,ﬁt>
t=1 t=1

~
Bias terms MD term
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policy/MD

Mirror Descent term in 12/, We begin by analyzing the error term from applying Mirror

Descent with varying constraint sets, which is similar to that of Lem. With 2zt = ¢t — b, and
(ﬁ)tem as the probability kernel sequence defining the varying constraint sets. However, special
attention is needed for the sup norm of the subgradient term since it now involves an estimate of the
loss function. Additionally, the optimal learning rate 7 now also depends on both the exploration
parameter ~ and the analysis of the bias terms, we provide a detailed explanation of how the entire
analysis is affected below.

In proving Lem. 2.T]in App.[D} the regret term for Mirror Descent is split into three terms: term A
in Eq. (34), term B in Eq. (31), and term C in Eq. (30). The analysis of term B remains unchanged
since this term is independent of the chosen loss function. We focus on what changes for terms A
and C.

As in the proof of Lem. we use again the notation p! := /ﬂtvﬁt’ for all ¢t € [T]. From Eq.
term A is defined as
T

A== Z [T@? _ bt7ut N Mt+1> —T(n t+1"at)]
t=1

For a fixed t, from Young’s inequality we have that

al 2 t ot t+1 al 2 H@L - bfz“%c O, ¢t t+1
Z T<£n - bn?ﬂn > < Z T + 7”#17, Hl
n=1 n=1 20 2

Following the analysis of term A in App.[D] in special Egs. (36), (37), and (38), we obtain that for
o=1/2,

T N
eN|X||A 10 2N
AN Al - b2+ —' [14]1og Zat (44)
t=1n=

From Eq. (30), with the notation v := v™?", term C'is defined as C = L 3| T —bt, Ly,
From Young’s inequality with o = 1/2 we obtain that

1 & 2 -3 =
O<— 27” Z (ZaniEn i
t=1 t=1
I X N|X|log(T @
I e

Bounding the sup norm of the estimated loss function. Recall from the definition of the bonus
function in Eq. (TI), with L = 1, that b}, < NCs =: bforalln € [N]and ¢t € [T]. As
|28 — bt |2 < |24 |2 + |b% |2, we can focus on the term involving the sup norm of the estimated
loss function.

Tyt o at —aylh(2,0)? z,a z,a
We apply Lem. with Zt (z,a) = “"’5;“&’5%1 Y and 2t (z,a) = W Note
that Z! (z,a), 2! (z,a) < %, that 2! (z,a) is F’-measurable, and that E;[Z! (z,a)] = 2! (z,a).

Therefore, with probability 1 — 6,

T N T N N
TY IR <Y DY (2, a)?

t=1n=1 t=1n=1z,a

2

Z Lot —a,at, =y fn (2, @) Lot a1, —ay b (@, @)
f (v, a) +v it (2, a) +y

Il
e

~
I
—
3
|
-
8
)

2 ]l{Tt =z,at, ,a}Z (3? (L)

I
1=
Mz

Aamiea  Falma)ty
iiZu P(z,a) pr P (z, a)lt (x, a)2+ 1N10g(N>
T—— — .
ph(v,a)  ph(z,a) + v 2y J

Lem.m =ln=1lz,a

30



Lem. states that the true probability transition p € Q with probability 1 — 46 for all ¢ € [T].
Hence, with probability 1 — 46, if, (z,a) = u™ *?(z, a). Consequently, by replacing it in the previous
inequality, we obtain that with probability 1 — 50,

Tzzwmwfgzgﬁxa+b4é)

t=1n=1 t=1n=1z,a

Nt N
< 7TN|X||A] + Wlog (5>,

where for the last inequality we use that ¢%, € [0, 1].

Therefore, by replacing it in the upper bound of the terms A and C'in Egs. (@4)) and @3] respectively,
we obtain that

A+C< T4bTN‘X||A|+&1 <N> 3eN|X|[|Allog(T QNZO‘t
o 2T

The upper bound on term B from Eq. in App. [D|remains the same:

N N2|X A 2N &
B < —log(|A]) + eN’] |log( - A )log(T)—&-Zat.
T T ] t T -1

minge ) o

Thus, setting a; = 1/(¢t + 1), the final upper bound on the Mirror Descent term is, with high
probability, given by

T
M@ — vty — ™y < A+ B+ C
1

N N N|X||Allog(T) N N%|x
< TAVTN|X||A| + 72710g <5> 1 o NIXIAo(T) | N0 apy + € ' | og (| AIT) log(T).
T T
(46)
Before tuning the optimal parameter 7, we must first analyze the bias terms.
Bias terms. We now proceed to analyze the bias terms. Our approach is similar to the one used in

[27], with a key difference: they utilize confidence sets in their Mirror Descent iterations, whereas
we perform iterations over the set induced by p‘. We start by dividing the bias term in two:

T T T

t At ~t ~ t ~t ~t
PR AN T R N A AN A D L NGNS
t=1 t=1 t=1

~
Bias 1 Bias 2

Bias 1. Since 4™ P is F'-measurable, we have that E,[(¢! — 0, ™ ") = (B[t — 0], u™" 7",
For any couple (z, a), and for any time step n € [N],

O (@, a) P (z, a) il (2, 0) + 4 — P, a)
E,[¢! — = ¢t —ma et gt e .
elln(e: a) (@ )] = b @) == "“”% it (. a) + )

Hence,

fin (2, a) + 7

. SRS B il (z,0) + 7 — pp P (w, a)
E;[Bias 1] = Z Z Z“Z 4 (a:,a)ﬁn(x,a)< e T )
t=1n=1z,a

From Lem. and from the definition of ji, we have that with high probability, i! (z,a) >
u”t>ﬁt (z, a), therefore,

T N
+[Bias 1] Z Z Z (z, a)+y—pl P(z, a) Z Z ik, P (x, a)|+7| X||AINT.

t=1n=1z,a
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Note that fif,(z,a) = maxpyeqe u7 P(x,a) = 7t (alz) maxyeq: pf P(x), where pf P(x) =
Sea R P(z,a). Therefore, for each = € X, there is a p™' € Q' such that jil,(z,a) =
W (2, a).

From Lem. [E3] we obtain that

i g Z|N (#,0) = i, ()| = O<N2|X|\/|A|Tlog (W))

Therefore,

E,[Bias 1] = O(N2X|\/|ATlog (m“g'JVT)) +~|X||AINT.

As we have that Bias 1 = E;[Bias 1] + ZtT=1<Et[ ‘] '2"), all that remains is to treat the

— 0
second term of the sum. With high probability, ji’,(x,a) > t’Pt (z, a), therefore

ZZE xaun"’ z,a) ZZ xa]l{xt,watfa} N.

n=1x,a

Thus, Azuma’s inequality gives us that

T
SR - 27y < Ny [T hog (5),
t=1

which is of a smaller order than the terms previously appearing in the bias bound. Hence,

Bias 1 — O<N2|X|\/|.A|Tlog (m“g'NT)) + ~|X||AINT.

Bias 2. The result follows directly from Lem. 14 of [27] using p”’ﬁt instead of p™P:

T |X||AIN
Bias 2 = Z<gt YNTE O(Og((;))
=1 v

Optimizing the learning and exploration parameters 7 and 4. By joinning the Mirror Descent
term from Eq. (#6) along with the bounds on Bias 1 and Bias 2 terms, and setting v = 7, we obtain
that

olic N N
RieliorMP _ O<7-bN|X||AT +— | 1og (5 ) + |1 Allog(T) + log(4]) + N|X|log(|A|T) log(T)|

NlOg(IXH;‘IN)
— )

(IXH«;lINT) N

+N2|X|\/|.A|Tlog T|X||AINT +

Let ¢1 := (b+ 1)N|X||.A|, and

J

For 7ot/ 02 /p1T, recalling that b := NCs, and that Cs := /2|X|log(]X[|A|NT/S), we obtain
that, with high probability,

REMYMP = 93/ 0100T = O(N*2| X P4 ANT + N?|XP4/|A[T). (47)

E.2.3 Term 3: Rl;?licy/MDP

P N[log () + 1114 tog(T) + los(|A]) + N|X|1o8(|AIT) log(T) + log ('XM'N)].

The upper bound for this term directly follows from the analysis of adding the bonus term to
compensate for insufficient exploration, as discussed in Subsec. [3.2]of the main paper, and is detailed

in App. Thus, we have that with high probability, RE"Y™MP* <
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E.2.4 Term 4: Bonus term

The analysis of this term follows directly from Prop. from the main paper: for any § € (0, 1), with
probability at least 1 — 36, we have that
T

Dy = O(NP X2\ /JAIT). (48)

t=1

E.3 Final bound

Replacing the upper bound on all four terms from Eq.s (@3), @7), @), and that R%"™P" < 0 into

the regret decomposition in Eq. (42), we obtain that playing Alg. 2] for the RL problem with bandit
feedback on adversarial loss functions has, with high probability, a static regret of order

Ry(m) = O(N®| X2/ |AIT + N3 XY AWVT).

F Curl with bandit feedback

Notation Let S and A be two positive integers. For convenience and brevity, we suppose in what
follows that X = [S] and A = [A]. Accordingly, we will often use S and A in place of |X'| and

| A| respectively. Let A € {A, A —1}. For a vector § € RNSA and (n,z,a) € [N] x [S] x [A],
we use &, (2, a) as a shorthand for £((n — 1)SA + (¢ — 1)A + a). Similarly, let A € {4, A —1}.
Then, for an NSA x NSA matrix M, we use M(n,z,a,n’,2’,a’) to denote the item in row
(n—1)SA + (x — 1)A + a and column (n/ — 1)SA + (2/ — 1)A + o’ of M. For any d € Z., let
14 € R? be the vector with all entries equal to one and I; the d x d identity matrix.

F.1 An alternative representation for the decision sets

In the following, we will fix an arbitrary transition kernel p := (pn)ne[ ~]- We recall the no-
tation that for ¢ € M?& . pf(z) == Y, 4Cnlx,a) for (n,z) € [N] x X, which satisfies
P5(2) = X0 wersa Cn—1(@,a)pyp (x|’ a’) for n = 2. At the first step, we define pf(z) =
D arexxa o(2',a)pi(x]a’, a’), which satisfies py(z) = S (z) for every ¢ € M and z € X
since the initial state distribution is the same for all occupancy measures in M, .

We describe here the mapping alluded to in Sec. 4.2.1] -of MY, to a lower-dimensional space where it
could have a non-empty interior. This is analogous to how one can define a bijective map between
the simplex A, and the set {x € R4 : 17 2 < landz; > 0Vi € [d — 1]}, which is the
intersection of the positive orthant of Rd’1 with the L unit ball, see [28, Section 2]. This can be
done since any coordinate x;« of a vector x € A, can be recovered from the rest of the coordinates:
T = 1 — 3, ;% 2. In our case, denoting by a* the last action in A (i.e., a* = A, recalling
that A = [A]), we will represent the occupancy measures as vectors in RV (A=1) by omitting all
coordinates that correspond to this action. We can afford to do so, since for any y € M?P Ho> W€ have
that f1,, (2, a*) = ph(x) — X, 20 tn (T, a) Where pl is recoverable from 11,1 and given in the first
step by the initial state distribution p{ (z), which does not depend on . In the following, we use this
idea to define the sought mapping.

Define the A x (A — 1) matrix
Iy
G =
i
and let 4 be the NSA x NS(A — 1) matrix obtained via taking the direct sum of N.S copies of G:

H=@) GHDeﬁne wP! e RNV94 such that
wh ) = @ = Lo = ).

SFor an n x m matrix M and an n’ x m’ matrix M’, M @ M’ is the (n + n’) x (m + m’) block matrix
M 0
0 M/ .
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Next, for every 2 < m < N, we define WP as the NSA x NSA matrix where
WP™(n,z,a,n',2',a') :=T{n=m,n" =m—1,a = a*}pn(z|2,d).
Then, we define the NSA x NS(A — 1) matrix
BP i= (Iysa + WPN) .. (Insa + WP3)(Iysa + WP H
and the vector
BP = (Insa +WPN) . (Insa + WP3)(Insa + WP2)wP! .

RNS(A-1) _, RNSA where

Ep(8) == B¢+ 8"

Finally, define the function =, :

for £ e RNS(A-1),

To explain the semantics of =, let p € M, "and fi € RNS(A=1) be such that fi,, (z,a) == . (x,a)
forall (n,z,a) € [N] x X x A\a*. It then holds that =,(%) = p. To see this, note that H i expands
fisetting (Hi)n (2, a*) = =3 % Hn(x,a). To fully recover ju,(x,a*), what remains is to add
p"(z). This is achieved at n = 1 by adding w?! to H i since w?'!(z,a*) = p}(x) = p}(x) and
wPt(z,a) = 0fora # a*. Next, at n = 2, the matrix W2 extracts the values p4 () when operated
on H fi+w? ! such that yi5(x, a*) is recovered at coordinate (2, z, a*) of (Iysa+WP??)(H i+wP:1).
Iterating this procedure until step N allows us to fully recover p from . While for a generic
¢ e RNSMA=D = (€) is the unique vector in RVS4 satisfying (Z,(€))n (2, a) = &, (x, a) forall n, ,
and a # a*; (E()1(x,a*) = P(x) = Sy (Z(E))1 (. ) for all 23 and (5, (€))a (. a*) =
Zm/ a/(Ep(f))nfl(xlv a’)pn(zlz’,a’) — Za#a* (Ep(&))n(z,a) forall z and n > 2.

)
Note that B? has full column rank since for any & € RN S(A-1) " Br¢ is only an expansion of
&; hence, we can define its left pseudo-inverse (BP)* ((BP )TB”) (Bp)T which satisfies
(BP)*BP = Iyg(a_1). On the other hand, the matrix BP(BP)Jr projects vectors in RS54 onto the
column space of B?, which is given by

{u e RVS4. Zun(a:,a) = Z pn—1(z',a")pp(z|2’,a' Ve e X,2 <n < N and Z,ul(x,a) = 0Vz € X} .
(49)

It is easy to verify that for any pu, u’ € ME L — i lies in the column space of BP (recall that

2o ba(r,a) =X, ph(2,a) = pi(x)). Moreover, 3” € M?, as it corresponds to a policy m where

mp(a*|z) = 1 for all n and z. Therefore, for any € M?, , 1 — B belongs to the column space of

BP, and we consequently have that

Zp((BP) (n— ") = BP(B")" (n—p") + 8" = .
Hence, by the definition of =, (B?)" (1 — 3”) coincides with y on all coordinates (n, z, a) € [N] x
X x A\{a*} (since the map =, only expands the input vector adding the coordinates corresponding
to action a*), and is then the only point in RN S(A=1) that =, maps to p. In light of this, we define

(ME )™ = {£eRVNSATD |2 () e ME},

the pre-image of M, under Z,,. Accordingly, we define A, : (Mﬁo)
Ep to (MF,)7; that is,

— Mﬁo as the restriction of

Ap = Ep|(/v1f;0)*
This then is a bijective function, with A;l () = (BP)*(u— BP).

Still, (Mﬁo)_ is not guaranteed to have a non-empty interior. Suppose that some state x* is not
reachable at a certain step n*; that is, for every state = and action a, p,x (*|x,a) = 0 if n* > 2,
or just that p}'(z*) = 0 if n* = 1. Then, for any y € MP, , p,«(2*,a) = 0 for every action a.
This implies that for every £ € (MF, )7, §,x(z*,a) = 0 for all a # a* (since these coordinates
are preserved under A), and hence, (M?F, )~ has an empty interior. To remedy this, we rely on
Asm. which is equivalent to imposing that for every state x, p} (z) > 0 and there exists for every
step n a state-action pair (z’, a’) such that p,, 41 (z|2’, a’) > 0. We show next that this condition is
sufficient for (Mﬁo)_ to have a non-empty interior. We first present an alternative characterization

of (M}, ).
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Lemma F.1. It holds that
(M7)

Ho

~ = {¢eRNSAD. pre > P}

Hence, (M?, )~ is a polyhedral set formed by N'SA constraints; namely that for n, z,a € [N] x
X x A, Bp(n7x7a7 Ty )Té‘ + Bg(xaa) = 0.

Proof. Any £ € (M7, )~ clearly satisfies BP¢ > —3P since BP{ + B = A, (§) € M}, , whose
coordinates are non-negative. Conversely, assume that BP¢ > —(3P for some £ € RNS(A=1) "and Jet

= Zp(§) = BP§ + BP. Showing that § € (M, )~ is equivalent, by definition, to showing that
Ep(§) € ML, . Since 87 € M, and BPE belongs to the column space of B? specified in @9), it

holds that
Sin(e.a) = Y (@ d)pa(ale’, )

z’,a’

for every n > 2, and that >, pu1(z,a) = Y, B (z,a) = > (x) = pP(z). Then, to show that
p € M?, . it remains to show that u € (Axx ). By assumption, x only has non-negative
coordinates; therefore, we only have to show that Z%a tn(z,a) = 1 at every n. This easily done via
induction: >} pui(z,a) =, py(x) =1, and forn > 2,

Zﬂn(aﬁa ZZMnlwapnx\xa Zunlxa
x,a

xz x',a’ z’,a’

Lemma F.2. (Mﬁo)_ has a non-empty interior if and only if Asm. holds.

Proof. Necessity is immediate as argued before. We prove sufficiency utilizing an argument from
the proof of Proposition 2.3 in [52]. For every step-state-action triple (n, x, a), it is easy to verify
that Asm. implies the existence of some p € M?, ' such that p,(x,a) > 0. Taking a convex
combination with full support of one such occupancy measure for every (n, z, a) results, via the
convexity of MP . in an occupancy measure p* € ME, - whose entries are all strictly positive. Hence,
¥ =A, 1(;1*.) is an inFerigr point of the polyhedral set (M, )~ as it satisfies with strict inequality
all the constraints defining it. O

F.2 Entropic Regularization Approach

F.2.1 Fitting a Euclidean ball in the constraint set

For the following, fix £ € (0,1/S). From Sec. [4.2.1] recall the definition # := /(A — 1 + /A — 1).
We now show that k1 yg4—1)+ KV € (Mﬁo)* forany v € BVS(A-1) assuming the transition kernel
P := (Pn)ne[n] satisfies the condition of Asm. that is, p,(2'|z,a) = ¢ for all (n,z,2',a) €
[N] x X% x A. Take ("? := Z(kl ng(a—1) + £v). Note that showing that K1 yga—1) + kv €
(M” )~ is equivalent to showing that (¥ € M7, . In the following, we proceed with the latter.

Note that via Lem. [E1] it suffices to show that (”"? is non-negative. We use induction in the

following to show more particularly that (?? € (Axx.4)". By the definition of (¥"?, we have that
for (n,z) € [N] x X,

v, € v v.p v
2(,0) = G (e, @)Va € Ala* and (¥ (0") = ff <x>fa§*<n’p<x,a>,
(50)
where 57 (@) = Y eann C G d)pa(ale ) for n = 2 and p$7(2) =

Y weaxx Ho(a',a)pi(z]a’,a’) = pf(x). Fora # a*, clearly (¥'P(z,a) = 0 as v, (z,a) > —1.
Note that at any step n and state x, the Cauchy-Schwarz inequality and the fact that v € BVS(A-1)
yield that

Z vy (z,0) <K VA-1 Z |vn(z,a)]? < VA -1.

a#a* a#a*
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Hence,

3
2 e = 0y g g e <

a#a* a#a*

On the other hand, Asm. implies that pﬁw (x) = e for every x. Hence, (50) gives that
(""(x,a*) = 0 at every x. Moreover, (50) also implies that 3, ("’ (z,a) = > pf(z) = 1,
yielding that (" € Axx.4. Forn > 2, assuming that (.’?, € Axyy .4, Asm. implies again
that pS, " (x) > ¢ for every z. We then get via (50) that (?"P(x,a*) = 0 and that (*P € Axx4
since 3, , (P (z,a) = X, pS"" (x) = 1, which holds again via (50) and the assumption that
Q:l’fl € Axx.. Induction then establishes that (VP € (Axx A)N as sought. As mentioned above,
this implies via Lem. that ¢P e ML, or equivalently, that K1 yga—1) + KV € (Mﬁo)f and
P = Ap(klysa—r) + Kv)

F.2.2 Estimating the transition kernel

In this section, we define and analyze an alternative transition kernel estimator to the one given in
Eq. (7). What we seek in this new estimator is (/) that it estimates well the true transition kernel,
with a guarantee similar to that of Lem. (2) that it drifts across rounds in a controlled manner,
satisfying the bound of Lem. @] up to a constant; and (3) that, at the same time, it satisfies the
condition of Asm.[4.2]almost surely, supposing, naturally, that it is satisfied by the true kernel.

To recall the notation, for each round ¢ € [T], o' denotes a random trajectory obtained by executing
the policy 7! in the environment; that is, o' = (z!,al,... 2%, al) where a!, ~ 7'(-|2!) and

at, ~ pn(-lat, 1, al,_,)[| We also recall the definitions

t
N; (z,a) Z Lias —2,a5 —a) and x|z, a) Z Lps =t 25 =a,08=a} -

Fix n,z,a € [N] x X x A. As an intermediate step, we compute at the beginning of each round ¢
the Laplace (add-one) estimator for p, (:|z, a); that is, for 2’ € X,

ﬁt ({EI|£C a): M'ItL 1( /|QZ,CL)+1
" ’ N! (z,a)+ S

n—1

D

To obtain a guarantee on the accuracy of this estimator, we firstly describe a slightly different setting.
Let (25)1_; be an i.i.d. sequence of states such that #% ~ p,,(-|x,a). Then, for k € [T'], we define
the Laplace estimator

14-2:S 1]].{‘115‘7‘,17/}
kE+ S

P (|, a) =
t
Notice that in our setting, the distribution ﬁn( |z, @) is equivalent to pﬁ[ "‘1(x’a)( |, a), keeping in
mind that the number of samples N _, (z, a) is random and dependent on the observed samples. Let
Dx1,(p|| g) denote the KL-divergence between distributions (probability mass functions) p and q. We
derive the following result concerning the divergence between ' and p using known properties of the
Laplace estimator and a union bound argument.

Lemma F.3. Forfixedt,n,xz,a € [T] x [N] x X x A, it holds with probability at least 1 — ¢ that

1615 + 6\F10g5/2 5L 4310
max{l n 1(;1:,a)} .

DKL (Pn('|$7 a’) ” ﬁ;('xﬂ a’)) <

Proof. For a fixed k € [T'], Thm. 2 in [11]] and Prop. 1 in [33]] imply that

<6.

1615 + 6v/Slog®? = + 310)
k

P(DKL( n(-\m,a) HPZ(\%G)) >

"Recall that (xf, ab) ~ po(-, ).
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Via a union bound, we obtain thalﬁ

1615 + 64/S1og®? 5 + 310

P(D : pt (- 49
( KL(pn( |a:,a) Hpn( |a:,a)) > maX{l,Nfl,l(w,a)} )

1615 + 6v/Slog®? = + 310

k

The lemma then follows after rescaling §. O

< P(Elk: € [T]: Dxr(pn(|z,a) | pE(|2,a)) > ) <oT.

Note that the distribution ¢, (-|z, a) does not necessarily satisfy the conditions of Asm. 4.2| uniformly.
Next, we define for a given € € [0,1/5] the set

Ay ={reR’:1Tx =landz; > eVie [d]} S Ax,
which is the set of state distribution assigning probability at least € to every state. We then define

Pt (+]x, a) as the information projection of pf, (-|z, a) onto AS,; that is,

Z/)\ﬁl(|x?a) = argminDKL(q HﬁZ('xaa)) ’ (52)
qEAS,

which exists and is unique since A% is compact and Dxr, (- | p% (|2, a)) is continuous and strictly
convex where it is finite (note that p!,(-|x, a) never assigns zero probability to any state; hence,
Dxuv(q| 7% (|2, a)) is finite for any g € A%,). If pt, (|, a) is not already in A%, this projection can
only bring us closer to p,,(+|z, a) in the K L-divergence sense as the following inequality [[13} Thm.
11.6.1] states:

Dxw(pn (|2, a) | 5, (12,a)) < Dxu(pn (|2, a) | 5, (12, a)) — Dxu (B (2, a) | 5, (|a,a)) . (53)
With this fact in mind, we can arrive at the following result, a parallel of Lem. 2.2}

Lemma F.4. With probability at least 1 — 0, it holds for all t,n,z,a € [T] x [N] x X x A
simultaneously that

Ipn (| ) ~t (| W < 3225 + 12\/§log5/2 5’2,2117{;\/’1“2 + 620
Pnl-T,a) — pp ([T, a)|1 <
max{1, N} _,(z,a)}
Proof. The statement is a consequence of (53), Lem. [F3] and Pinsker’s inequality; followed by an
application of a union bound over all rounds, steps, and state-action pairs. O

What remains now is to show that there exists a constant ¢ > 0 such that

Lot =2,a5=a)

max{1, NE Y (a, a)} '

151 (e a) = Py (2, a) |1 <

This can be easily shown to hold for £, i.e., before the projection step, as states the following lemma.
Lemma F.5. Forallne [N —1], (z,a,2') € X x Ax X, and t € [T); pl, ., (2'|z, a) as defined in
(31) satisfies

211{1%:1,(1%:&}

I3 Pz
Nt (z,a) + S

pn+1(-|$, a’) - ﬁ%+1(-|x’ a)Hl <
Proof. The derivation follows along the same lines as the proof of Lem. [B.3] We have that
ﬂ{w;+1:x’,wﬁlzm,aﬁlza} + MTtL(I/|$, (1) +1
NitY (2, a) + S
Ut =o' ot =aay=a) ~ Nj(z,0) +5
Nt (z,a) + S Nz, a) + S

Pra(@']z, a)

(2|z,a).

8Note that if N{_i(z, a) = 0, then #%(-|z,a) is the uniform distribution and
Dxw(pn(-|@,a) | . (-|z, a)) < logS; hence, the bound trivially holds.
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Hence,
Ni(xz,a) — NI*(z,a)
Ni Y (2,a) + S

~ ]l{wt =2/ xt =x,at =a} ~
) = ) = =T )

_ IL{mt—xa‘—a} (
N Yz, a) + S

pi:rll ('

=x'} ]5;+1(£L'/|:L‘7 a)) .

n+1
Finally, we conclude that

157,71 Clar, @) = By (lary @) |1 = 2 > (B (@', a) = By (2|2, @)

st

x :pn+1(m’|x,a)>ﬁi+1(x’\x,a)

Z]I{xt =z,al =a} 2]1{a:t =z,al =a}
_ b=m.al, 1= 5t (2t |z a)) < b=mal, _
Nz, a) + S( Prs1 (T >) N Yz, a) + S

O

To derive a similar bound for the projected estimator p?, we firstly derive a more explicit charac-
terization of the information projection onto AS,.. For a fixed ¢ € (0,1/5), define the function

ge: Rx Ay —> Ras
) = Z max{re,p(z)}.
zeX
Lemma F.6. For any given p € Ay, the map v — g.(r;p) is €S-Lipschitz and has a unique fixed
point. Moreover, denoting this fixed point by r*, it holds that r* € [1,max, p(x)/e), and that
g(r;p) > rforr <r*and g.(r;p) < rforr > r*

Proof. We firstly note that g.(-; p) can be easily verified to be convex. For any € R and any
subgradient h of g.(-;p) at r, it holds that |h| < eS. Hence, the convexity of g.(-; p) implies that
|ge (r;p) — ge (r'; p)| < eS|r—r'|forany r, 7" € R, or that g. (-; p) is £ S-Lipschitz. This implies, since
€S < 1by assumption, that g.(+; p) is a contraction mapping; hence, via Banach’s fixed point theorem,
it admits a unique fixed point 7* € R. For r < 1, it holds that g.(r;p) = >, p(z) = 1 > r. While
for r > max, p(z)/e, g-(r;p) = reS < r. Therefore, r* € [1, max, p(z)/e). Moreover, for any
r <r* (r > r¥*), it must hold that g.(r; p) > r (g-(r; p) < r); as otherwise, the intermediate value
theorem, applied to g. (r; p) —r, would imply the existence of another fixed point, a contradiction. [

Next, we define r.: Ay — R as the function that maps a distribution p € Ay to the fixed point of
g<(+; p). This function is well-defined as implied by Lem. We now show that the solution of the
information projection problem onto A%, can be expressed in terms of the function 7. For p € Ay,
we define p. € A5 as

r'eX maX{TE (p)&p(x’)}
Lemma K.7. Forp € Ay, it holds that p. = arg mingen= Dkr(q | p)-

Proof. We assume without loss of generality that p(x) > 0 for all x € X'; as otherwise, we can
cast the problem into a lower dimensional one considering only the elements € X for which
p(z) > 0. Since the constraint set is compact and the objective is continuous and strictly convex, this
minimization problem admits a unique optimal solution. We start by rewriting the problem as

: q(x)
min q(x)log —=
min KZX (¢)log s

subjectto £ —q(z) <0Vre X
Z qg(z)—1=0
reX
Define the Lagrangian

L(q,u,v):zz q(z log—erZ ) —q(z)) + v(Zq(az)l)

reX xeX reX
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for v € R and u € RS). We have that

oL q(x)
——(q,u,v) =log == +1—u(x) +v.
0q(x) p(x)
We now show that we can satisfy the KKT conditions by choosing a solution pair ¢* and u*, v*
where

* o 2) = max 2)/r wF () = lo max{e, p(r)/r-(p)} andv® — — 0o 1"
()= pe(e) = maxtepo) o)} )= g PP g i tog ).

Firstly, ¢* indeed belongs to A%, by the definition of p,, and ©* is non-negative. Moreover, whenever
g*(x) > €, we get that u* (z) = 0; hence, complementary slackness holds. Finally,

0L vy o, mxlep(@)/r () max(e, p(x)/r. ()}
Ga@) ) =l p(@) /()

Therefore, we conclude that p. is the optimal solution. O

+1—log

—1+1logr.(p)=0.

Computing p,, or the information projection of p onto A%, can be performed efficiently. In particular,
the following characterization implies that . (p) can be computed exactly in a finite number of steps
by iterating over the set of states.

Lemma F8. Ler Xt := {x € X: g.(p(x)/e;p) < p(x)/e} and X, := X\X,|. Then,

re(p) = Dpex+ P(T)

) 1—elX|

Proof. As stated in the proof of Lem. for 7 > max,ex p(x)/e, g (r;p) = reS < r; hence Af
is non-empty as it at least includes arg max_ .  p(z). Moreover, from the same lemma, we have that
re(p) < min, ¢+ p(z)/e and r.(p) = max, . - p(z)/e (if A, is non-empty). Therefore,

re(p) = g=(r-(p);p) = Y max{re(p)e, p(x)} = r-(p)el X, | + > plx).

TeX zeX+

O

The previous lemma also implies that 7. (p) < (1 — S) L. Returning back to our original objective,
we show next that | p. — g1 is no larger than a constant multiple of |p — ¢|; for any two distributions
p and g. Towards that end, we first show that r. is Lipschitz continuous.

1

Lemma F.9. For e < 5g, the function r. is 1-Lipschitz with respect to the | - ||y norm; that is,

re(p) = (@) < |p—qlx
forany p,q € Ax.

Proof. Note that, for any fixed r € R, g-(r; -) is convex; and that for any p € A y and subgradient k
of ge(r;-) at p, it holds that & is non-negative and satisfies |k||c < 1. Hence, for any p,q € Ay,

1
ge(rip) —ge(ripl < D (@) —a@) = >, (a(x) —p@)) = 5lp— gl
z: p(z)>q(z) z: g(z)>p(z)
(54)
Then, we obtain that

I7=(p) — 7(q)| = |ge(r(p); p) — 9=(re(q); q)|
)

1 1 1
< eSlre(p) —re(q)| + gllp —qlli < glrs(p) —r(q)| + §Hp —ql1,

where the second inequality follows from (54) and Lem. [F.6] and the last inequality holds since

e < % The lemma then follows after rearranging the last result. O
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Lemma F.10. Assuming ¢ < 25, it holds for any p,q € Ax that |p. — q-|1 < 3 2lp — g1

Proof. We have that
max{re(q)e, q(x)}

)
_ max{re(q)e, g(x)} — max{re(p)e, p(x)} + max{re(p)e, p(x)}
rs(‘])
_ max{re(g)e,q(2)} —max{re(p)e,p(x)}  r=(p)
- (@) et

Then,

0:(2) = pe(a) = s (max{re(0)e,a(@)} = i (p)e.p(e)} + (1) = () @)

Using Lem. [F9]and the fact that

max{elre(q) — r<(p)l, lq(x) — p(x)|}
elre(q) — re(p)| + [g(z) — p(z)],

| max{rc(q)e, ¢(x)} — max{r.(p)e, p(x)}| <
<

we obtain that
Hps QEH1 = Z |QE ps |

1

< Te(Q)

D (Elre(@) = =) + la(z) = p(@)] + pe()lre(p) —r<(9)])

lp—al ‘IH1 5
\ 2 +ES < o - 9

where the last step uses that ¢S < 1/2 and 7.(q) > 1. O

Finally, we arrive at the sought result, a parallel of Lem.[B.3]
Lemma F.11. Forallne [N —1], (z,a,2') € X x Ax X, and t € [T]; pl, ., (2'|x, ) as defined
in 02) with e < 5 satisfies

5]1 t — t —

~+1 ~ {zt,=z,at =a}
z,a) — P (lz, ) € 7 ———.
P53l ) =P (o) < =l
Proof. This is a direct consequence of the definition in (52)) and Lems. [F3] [F7) and [F10] O

F.2.3 The algorithm
For § € (0, 1), define

2ANT?
Ch = \/3225 +12v/Slog™? ST + 620, (55)

which is the leading factor in the confidence bound of Lem. For the purpose of exploration, much
like the full information case, we will utilize at each round ¢ a bonus reward vector bt € RY54 (o be
subtracted from the estimated gradient, where

c;/T
") {1, N )

b (z,a) == L(N — (56)

for (¢,n,z,a) € [T] x ({0} UINV]) x & x A.

Finally, with all its components detailed, we present Alg.[3] our first approach for CURL with bandit
feedback. As mentioned in Sec.#.2.1] the main changes compared to Alg. [T]are the use of spherical
estimation to obtain a surrogate for the gradient and the use of a suitably altered transition kernel
estimator.
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Algorithm 3 Bonus O-MD-CURL (bandit feedback)

input: learning rate 7 > 0, perturbation rate § € (0, 1], sequence of exploration parameters
(t)ierry € (0,1)7
initialization: p. (2'|7,a) < 1/S ¥(n,xz,2',a), p' € arg min o ()
fort=1,...,Tdo "
draw ut € SVS(A=1 yniformly at random
("= P = Ape(Klnga—y + Kwu')
it (1= 0)u' +0¢!
7TfL(U,|SC) - ﬁ‘t(x’ a)/zaeA ﬁt(l‘, a’)
execute 7' and observe F*(u™ *?) and a sampled trajectory o' := (z%,al,..., 2l d)
g SENS(A — F
RNSA

construct gt € as gt (z,a) « gt (z,a) fora # a* and ¢!, (z,a*) < 0

construct bonus vector b as in (56))

Tnlalz) < (1= an)p'(2,0)/ Lo a b (2,0) + r/A

construct the new estimated kernel p**! via (5T)) and @])

set ! € arg min pe it TGt — bty + T, p™P")
end for

F.2.4 Auxiliary lemmas
Lemma F.12. For 0 < 6 < 1 and p* as defined in (52), it holds that

T N n—1 N
Z Z Z Z (2,a)|pi+1(]|z,a) — Plyi |z, a)|1 < BCZN*VSAT + 2SN?y /2T10g<§>
t=1n=11i=0 z,a
with probability at least 1 — 2.
Proof. This lemma can be proved in the same manner as its full information version Lem. with

only two small changes; we use the bound of Lem. [F4] m mstead of Lem. and we modify the
definition of the filtration to be F; = o u , o O]

Lemma F.13. Forany(0 < § < 1,

T N
uf;pza) N
;; —an}\SM\/&TTJrSN? 2T log (=),

holds with probability at least 1 — 0.

Proof. The proof is the same as for Lem. (the version proved in the full information case), except
that, again, the filtration used in the proof would be defined as F; := o(ul,o!,... u'~! o'~ u?).
O

Proposition F.14. Let b and p' be as defined in (36) and (52)) respectively. Then, for any § € (0, 1),
with probability at least 1 — 35

T T
D)+ 3 o) < LN (CLVAT + 25427 o)
t=1 t=1
, N
+ LCY;pN?( 3V/SAT + 8 2Tlog(g> :

Proof. The proof is the same as that of Prop.[3.1]except that we would rely on Lems. [F.12] and-
in place of Lems.|B.1|and[B.2] and use the definition of b* in (56) instead of (TT).
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Lemma F.15. Let X be a random variable taking values in R, z1, 22 = 0 be two constants, and
0" € (0,1). If X < 2y uniformly and P(X > 2z1) < ¢, then E[X] < 21 + §' 2.

Proof. Simply, E[X] = E[[{X < 21} X]|+E[[{X >z} X]| < z1+22P(x > 21) < z1+82. O

F.2.5 Regret analysis
The following theorem, a restatement of Thm. [4.3] provides a regret bound for Alg. 3] Recall that we
have adopted in this section the shorthand notation S = |X| and A = | A|.

Theorem F.16. Under Asm. Alg. with a suitable tuning of T, 0, and (v )se[7) satisfies for any
policy T € (A L)Y >N that

L(L+1)

- §5/4 45/ NBTB/4 | L : 1 S2 A2 NAT |

E[Rr(m)] <

where < signifies that the inequality holds up to factors logarithmic in T, N, S, and A.

Proof. Fixing e (A4)**¥, we have that
T
E[Rr(m)] =B (F (u™ 7) — F*(u™"))
=1
T T T
SN (P ) — P ) +E S (F — P ) B Y (R () — P
=1

-
Il
fut
-
Il
-

urr))

) @ ®

It holds with probability at least 1 — % that

T
D < LY 7, -
t=1

t

H“ _Mn ||1

h
1=

w
Il
—

W P (@, a)|pis (o, a) — Py (lz,a))

< 3LN?*VSATCYp + 2LSN?4/2T log(NT),

where the first inequality uses the Lipschitz continuity of F', the second inequality follows from
Lem. and the last inequality follows from Lem. Hence, since LY, ||u™ # — p™ 7' I, <
2NLT, it holds via Lem. [F.15|(with &' = 2) that

E[®] < 3LN*VSATCY + 2LSN?1/2T log(NT) + 4LN . (57)

For the third sum, we use again the Lipschitz continuity of ¢, Lem. and Lem. to get that
with probability at least 1 — =,

T
®< LZHumﬁt _/[r,l’”l <L
t=1

N
h
D=
M= iD=
i

w
I
H
"
I
o
B
iS]

D=
=
=
e
'U

p
= iy Hl

-+
Il
—
3
Il
—

i
X

P (2,0) |pis1 (e, a) — Phyy (|2, 0) |,

/AN

h
D=
=
x

t=1n=11i=0 z,a
S5 st
<L wit (x,
t=1n=1i=0 z,a \/max{l,Nl (z,a)}
Ly ; Clyr
- N — ™
& LN L ) e



T . T
D™ by + Y (o, bh )
t=1 t=1

T T T
2P+ Y o by + DS
=1 t=1 t=1

Via Prop. [F.14] it holds with probability 1 — 2 that

T T
20 + 3 o, by < LOY N [3C, 7/ SAT + 251/2T log(NT)]
t=1 t=1
+ LCY ;pN?[3VSAT + S+/2Tlog(NT)).

Hence, chaining these last two results and using a union bound, we get via Lem E (with &’ = T)
that

T
E|®— Y™ — ™ by | < LCY 7N [30] 7V SAT + 25/2T log(NT)]
t=1

+ LCY ,p N?[3VSAT + S+/2T1og(NT)] + 8LN (1 + C{ ;xN), (58)

where we have used that

t

T T
@ ™ = b < LY ”’H#ZHthocHu —u™ |y < 2LNT(14C] 1 N)
t=1 t=1

Define F*: (Axa)V — Ras
(1) = Eyepvsiamn [F((1 = 0)+6¢"7) | .

As P satisfies the condition of Asm. . by design, (vP' € /\/lp c (Axxa)" as argued in
App.|F.2.1 -; 1} thus, F* i is well-defined. Similarly, since ut e SNS(A- 5 c ]B%NS(A D and ¢t = (w7,
it holds that C te ./\/lp Via the convexity of ./\/lp , the fact that u! € M ,» and the definition of it

it holds that ji* € M” This yields that it = u™ P , recalling the deﬁnmon of 7 in Alg. l Using
the Lipschitz smoothness of F'*, we have that

FH () = F(ut) = () = F*(u') = F'((1 = 0)u" + 6¢") = Eyepnscann [ F((1 = 0)ut +6¢°7") |
< OLEyepvscan ¢t — ¢ |y < 20LN
and that
F(um?) = F(u7") = Eyegnsian | F (1= 87 +6¢°7) | = P (u7")
< LEyepvscan ¢V — ™'} < 26LN .

@ — Z (Ft(uwtﬁt) _ ﬁt(,u,t) + ﬁ’t(,ut) - ﬁt(,uﬂ’ﬁt) i ﬁ,t(uﬂ.’ﬁt) _ Ft(,uﬂ’ﬁt))
- At
Z<VF Hu'), ' — p™P ) + 40LNT

T
:Z<VFt )bt — 0y ASLNT + S0t P — ”>+Z<bt,u Ry

-1 t=1
The last term is easily bounded as follows:
T

T T
Mt = = Yt -ty =6 Z<bt7u — () <6 b ol = ¢y < 26C7 7 LNT .
t=1 t=1

t=1
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We then conclude that
T At t ot r ~
E[@+ DI pu™ — ™ 75| <E DY (VE (uf) — b, 5t — ™"y + ASLNT + 26C; 7 LN>T .
1

(59)
Then, combining (57)), (38), and (39) yields that

T
)] <E Y (VE (ut) —b', ut — p™ Py + 20L(2 + Cf jpN)NT

+3LCY p N?[3C) pVSAT + 284/2T log(NT)]| + 4LN (3 + 2C1 ;- N) .
(60)

Define IFt Ft: (Mﬁt ) —> RasF! (&) = F'(Ap(§)) and Ft(¢) == F* (Apt(€)). Then, recalling
that » : =1 1+\/7’

(A7 (1) = P! (") = Egegnscan [ F'((1 = 0)u* + 8¢ )|
— Epesvsca ilFt (A5 (L= a4 6¢7)]
= Eueanstan }Ff<<Bf*>*< (1= Ot +5¢7 — 7)) |
= Epepssiay [F'((1 =) <Bp> (n' = B7) +o(B7) " (¢ — p7))]
— Eyepvstan [F*((1 - )+ 651 (7))
= Eyepvsca-n ]Ft(( ) (1) + OKLns(a—1) + (Sm;)] ,

where the fourth equality follows form the fact that Az;‘ (1) = (B’3 ) (1w — B’ ), and the last

equality follows since C”vﬁt = Apt (Kl ng(a—1) + o). Lem. 1 in [15] and the chain rule imply that
. 1-96
VE' (A7 (1) = ——NS(A ~ DEqyesnsian [1F (1= 8)ASM (1) + 6kLygear) + Oru)u ]
1-6 _ st
= = NS(4 = DEqyegrsia-n [IFt((l — §)ASH () + OASH (¢ ))u]
1-6 -
= = NS(4 = DEqyegrsia-n [Ft((l — 8)ut + 6¢uP )u]
1-6
— WNS(A — DEyiesvscan [FH((1=0)u' +6¢F)ut] ,

where the last equality uses that ¢t = ¢ «".7" and that both u! and pt are independent with respect to
u'. And since VIF* (AZ" (")) = (BP")TVE*(ut), we obtain that

(B? (B?) )TV F (i) = 15—;5]\75(,4 — DEytesvsa-n) [Ft((l — o)t + 5§t)((Bﬁ")*)Tuf]
=E, tegvsa-1) [((Bﬁt)Jr)T:q\t] , (61)
where
~t 1-90 t t t t 1-94 tint t
Gt = ——NS(A - 1)F'((1 - d)p! + ¢Hu' = ——NS(A - 1)F'(i")u

0K 0K
The vector gt differs from g* (which is employed in Alg. [3) in that it is defined using F*(fi) instead

of F*(u™ 7). Forround ¢ € [T], let F; := o(u', 0%, ..., u',0') denote the o-algebra generated by
the random events up to the end of round ¢; and let E;[-] := E[- | F;_1] with F; being the trivial
o-algebra. We then have that

T T
E Y (VF ()t =Py = E Y (BY (BY) )TV ('), = ™)
=1 t=1
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-E i<Et[((Bﬁt)+)T§t],ut — )
i gt ot — Py,

where the first equality holds via the fact that B?* (Bﬁt) (ut — p™P") = pt — P since pt — pmP"
belongs to the column space of BP' (see App. , the second equality uses (61) and the fact

that conditioned on F;_1, the only source of randomness in ((Bﬁt) )Tgt is u!, which is sampled

independently in each round; and the last equality uses the tower rule, linearity of expectation, and
the fact that ! — ™P" is measurable with respect to F;_;. Since u! — u™P" = BP' (AZ;1 (ut) —

Agtl (,u’“ﬁ ) ) ) , we have that

@) (B”)" (' = ™) = @) (BY) "B (A5 (1) — A5t (7)) = @) (A5 (1) = AR (™))

since (Bﬁt)JrB’A’t = Ins(a—1), see App. Therefore,

T
B YR =iy = A5 ) - 05 577 )

!

=E Y (o' A ) — AGH (w7 >+1EZ<9 — 9" AR (1) — A

t=1

:IE

<g pt— g ’p>+E2<g — 9" A5 () = AR ()

HM%

where the last equality follows from the definition of §* (see Alg.|3) and the fact that p* and u’“ﬁt are
expansions of A;,,l (ut) and A;tl (u”’ﬁt) respectively, augmented with the entries corresponding to
action a*. Focusing on the second sum, we have that

T

Z< —g" AN ) = A () < D 18"
t=1
T

<> lg

JIASH (1) = A5 ()|

7‘.7At
L
t=1
T
AN TP
t=1
1—-96 T t
=25 NS4 1) 3 kel PR - P )
4 t
< N2SA2 Ft At Ft xtp
= ;1' ()
4 T . t
= N2SAR Y [P ) - F ()
t=1
4 2042 t W,,’
< s Yl =,

where the fourth inequality uses that £ > 5% and that u' € SNS(A-1) "and the last inequality uses
the Lipschitz continuity of F'*. As shown in (57)), we have that

T
EY||um % = p™7|, < 3N*VSATC, ;1 + 2SN?\/2T log(NT) + AN .
t=1
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Hence,
IEZ<VFt )t — ™"y < ]EZ<g pt— pmP >+ LN3SA2(3N\/SA Ur + 2SN~/2Tlog(NT) + 4) .
t=1
Combining this result with (60) yields that
m] <E i@t —bh ot — + - LN3SA2 (BNVSATC] - + 2SN+/2T log(NT) + 4)
t=1
+20L(2 + C})pN)NT + 3LC} ;p N*[3C] ;pVSAT + 254/2T log(NT)] + 4LN (3 + 2C1 ;. N)

T
SEY (Gt = bt ut — ™y + 6202+ Cf /TN)NT +4LN (3 +2C} 7 N)

5 LC{ ;rN?SA?(BNVATCY ) + 2N+/25T log(NT) + 4) (62)

==

where the last inequality uses that C'{ /T = V/S. Note that

N
150100 = 21 g7 lls0
= lg—;(sNS(Afl)( A—1+JA—1)F (™ ) Z |, ]|
2 2 2 4 t
< GN°5A ,; (KD P
N
< TSNQSAQ\W Z |ut |2, < N5/25A2 Z_] ;1 (z,0)2 < 5N5/25A2,

where the second inequality uses Cauchy-Schwarz and the last inequality uses that u! € SVS(A=1),
Moreover, we have that b)), = S0 bl ] < SN L(N — n)C}p < LN?CY . Hence,
using that Cl/T > /S,

19t — 1.0 6N5/25A2 + LN?C}p < (L +1)Cy)pVSAPNO2.

ed

Via Lems. m and [F.11|P| we can invoke Lem.with c=5e,( = Q(L +1) 1/T\/7142N5/2 and
oy = 1/(t + 1) to get that (from the proof of Lem. [2.1)

d 2 20e*SNlog(AT)*(N + A
Mgttt -y < ( (L+1)C1pVSANY2) T 4 =5 Og(T SN+ 4)
10
Eg (L +1)C}pS%2 A2NT210g(T) .
Tuning 7 optimally yields that
T
DGt bt — ) < S +1)0 )Cl/pSA*N?21/20e2N (N + A)T log(AT)?
=1
10¢? / 3/2 A2 ATT/2
+ 25 (L +1)CqpSY" AN log(T)

°To invoke Lem. [F.11] we assume without loss of generality that the constant e specified in Asm. satisfies
1

€<ﬁ
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10e?
€

<

(L +1)C},pSA*N*log(AT)(v/(N + A)T + VSN) .

eI

=:E3

Hence, plugging back into (62)) yields that

1
E [Rr(m)] < 021 + 5(Z2 + Bs) + 4LN(3 + 20} N) .

Setting 0 := min {1, EatZs } we get that

=1

E[Ry(r)] < max {2 Z1(Z2 + 53),2(E5 + 53)} +4LN(3 +2C ;1 N) .

Consequently, the theorem follows after using the definition of C ;. from Eq. and ignoring log
factors.

F.3 Self-Concordant Regularization Approach

We have used the set (M?, )™, the preimage of M?, under the map =, (or A,), to represent in
RNS(Afl)

is that

the set of valid occupancy measures. A more concise characterization, given by Lem.

(M},)” = {g e RYSUTD: Bre > —r}s
in other words, (MZU)_ is a convex polytope formed by the constraints B?(n,x,a,-,-, )T +
Bh(x,a) = 0forn,z,a € [N] x X x A. Moreover, Lem. [F.2|asserts that int (M, )™, the interior

of (MP, )™, is not empty under Asm. 4.4

We consider then the function ¢y, : int (M7, )~ — R defined as

(&) = — Z log(B(n,z,a,-,-,")T¢ + Bu(z,a)) .

As mentioned in Sec. @, Corollary 3.1.1 in [40] yields that iy, is a ¥J-self-concordant barrier (see
Definition 3.1.1 in40) for (M?, )~ with ) = N - S - A. The approach we analyze here is to perform
OMD directly on the set (M?, )~ with ¢y, as the regularizer.

For ¢ € int (M} )~ and y € RNS(A=1) " define the local norm [y[¢ = +/yTV2¢(£)y. This

is indeed a norm since the fact that (Mﬁo)_ is bounded implies via Property II in [40, Section

2.2] that the Hessian of v, is non-singular everywhere. Its dual norm is denoted as |y|¢« =
yT(VZ1,(€)) ~y. The Dikin ellipsoid of radius 7 at £ € int (M2, )~ is given by

En(E) = {y € RYSAD sy — €l < v} = €+ (V24 (€)) VBV S,
Via Property I'in [40, Section 2.2], & (§) < (M, )~ forany § € int (M5, ).

For £,y € int (M7, )™, we denote by Dy, (y,£) = ¢w(y) — ¢ (§) — <y — &, Vo (§)) the Bregman
divergence between y and £ with respect to 1)y,. From the proof of Thm.|F.16] we recall the definition

F! := F' o A,. As alluded to above, our OMD updates will take the form

& — argmin 7{g",&) + Dy, (£,€Y),
fe(M:ﬁo)7

where g* will be chosen as a surrogate for VIF?(£?). Differently from the proof of Thm. we
redefine the smoothed approximation [F*: (M?,)~ — R such that

FH(€) i= Eyegvscamn [FH((1 = )€ + (€8 + (V2 (€1) ™ 0))] .

This is well-defined since we are evaluating IF¢ on a convex combination of the argument £ and a
point inside the ellipsoid &1 (£?), which is a subset of (/\/lﬁO )~ as cited before. Via Corollary 6.8 in
[21] and the chain rule, we have that

vt - 120

NS(A-1)Eqesnsian [ (1-0)E+0 (6 +(V24n(€9)) *u) ) (V4 (€1)) *u].
(63)
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Figure 4: This figure provides a graphical comparison between the sampling approach used in Alg.
represented on the left, and that used in Alg.[d] represented on the right. The simplified domain
here is {z € [0,1]?: |z||; < 1}. Both approaches are illustrated at three points: a, b, and c. In the
first approach, with some & € (0,1) and § := 1 — d, we sample from a circle of radius §/(2 + 1/2)
centered at a convex combination between the point of interest and o := (1/(2 + V2),1/(2 + \/i))
In the second approach, we consider the barrier —log(1 — 21 — z2) — 3,_; , log(z;) and sample
from the Dikin ellipsoid (of a certain common radius) induced by this function at each point.

Algorithm 4 Bandit O-MD-CURL with logarithmic barrier regularization

input: domain (MY, )~ with non-empty interior, learning rate 7 > 0, exploration parameter
0 €(0,1]
e eie 1s ione £1 . )
initialization: ¢ arg Milgein (A2, ) P (€)
fort=1,....,Tdo

draw ut € SVS(A=1 yniformly at random

€ €+ 6(VP4(€1)) P!

T Ap(ft)

m(alz) < i@, a)/ Yoe s A (2, a)

output 7! and observe F*(jit)

g' = USANS(A = 1)F () (V24 (&) u!

§t+1 < arg mingeim MEH-T <gt’ &+ Dy, (&, Et)
end for

Hence, with u! sampled uniformly from SV5(A=1) we pick (as mentioned in Sec. [4.2.2)

o= TN F (& 4+ 0T ) (Pl (o

such that [E,,¢ [gt] = VIF(&h), see also [47] for a similar estimator in another BCO setting. We
summarize this approach in Alg.[4] and provide in Fig.[d]a graphical comparison with the sampling
approach of Alg.[3Jon a simple decision set. Before proving the regret bound of Thm. 3] we collect
a few standard properties and auxiliary results concerning self-concordant barriers and their use as
regularizers.

48



F.3.1 Auxiliary Lemmas

For z,y € int (Mﬁo)*, it holds via Property I in [40l Section 2.2] that

1

VY (2) (65)
1=y —z].)?

whenever ||y — x|, < 1. We state the following auxiliary lemma, which will be used to assert the
proximity between &! and £¢+! for our algorithm. Establishing this ‘stability’ is a crucial step in the
local norm analysis.

Lemma F.17. Let x € int (M}, )~ and { € RVS(A=1) pe such that ¢

(1= ly = z[2)*V9(2) < VZe(y) <

o, < %, and define

y:= argmin &) + Dy, (€, x).
&eint (M7,)~

Then, y € &y ().

Proof. For § € int (M2, )7, let
9(&) = {6, &) + Dy, (§,2) = {6, &) + Yi(&) — v (x) — € — 2, Vi(x)) -

Note that g is a self-concordant function on int (Mﬁo)_ (Item (ii) in 40, Proposition 2.1.1), whose
Hessian (hence, local norms and Dikin ellipsoids) coincides with that of vy, everywhere. Moreover, g
is below bounded thanks to (Mﬁo)_ being a bounded set, which implies that g attains its minimum
on int (M%)~ (Property VIin!40, Section 2.2). This minimum is also unique via strict convexity.
Hence, y is well-defined.

The rest of the proof is similar to the proof of Lem. 13 in [S1] and Lem. 9 in [S0]. Thanks to the
strict convexity of g, to show that y € &,,() it suffices to show that for any £ on the boundary of
Evp(), g(x) < g(§); this is because x € £,(z) and y = arg minge e )- g(&). For any such &

on the boundary of £/,(x), Taylor’s theorem implies that there exists some z on the line segment
between x and £ such that

9(6) — g(x) = € — 2, Vg(a)) + 5 (€~ 0)TVg()(E ~ )
= (€~ + 5(E— ) VA ()(E ~ )
> (6= 2,0 + 56— ) VPun(a) (€ — 2
=~ 2,0+ e —al?

1
> —[€ = alo ]z + €~ x|

1 1
=——|¢ x — = Oa
Sl + 55
where the second equality holds since V2g = V2, and Vg(z) = £ + Vo (z) — Vibp(z) = £,
the first inequality holds via (63) and the fact that z € &y (), the second inequality holds via the
definition of a dual norm, the last equality holds since £ is on the boundary of £1/,(z), and the last

inequality holds via the assumption that [ ¢|| . < 7. O

For x € int (M, )™, the Minkowski function of (M7, )~ with the pole at x is defined as [40, Section
3.2]

7 (y) = inf{t >0:x+ til(y —x)€ (Mﬁo)i}

for y € (M? )~. The following lemma readily follows from the properties of the Minkowski
function. It is used in the analysis to handle the bias term of the standard OMD regret guarantee,
which is slightly more involved in this case considering that the comparator need not belong to the
interior of (MP_)~, where 1, is defined (and finite).

Ho
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Lemma F.18. Let x € int (M7, )", ye (ML )7, 5 € (0,1), and z := (1 — &)y + dx. Then,

Yi(2) < Yi(x) + NSAlogs .
Further, let © := arg min_;,, (MZ,) _p(a) and 3 = (1 — 8)y + 6i. Then,

Dy, (3,#) < NSAlogd™".

Proof. Since ¢y, is an N S A-self-concordant barrier for M7, ', Property Il in [40, Section 3.2] implies
that

Uin(2) < Yn(x) + NSAlog ﬁx(z) .
On the other hand,
+(1-0)ter—2)=2+1 -6 1-0y+dz—a)=x+y—az=ye (./\/lﬂo)77
implying that 7, (2) < 1 — §. Hence, ¥1,(2) < ¢p(x) + NSAlog§—1.
Next, we note that the optimality of = implies that
Dy, (2, %) = thip(2) — th () — (2 = &, Vb (2)) < thin(2) — () ,
which concludes the proof when combined with the first part. O

F.3.2 Regret Analysis

We are now ready to prove the regret bound of Thm. .5 which is stated more explicitly in the
following theorem.

Theorem F.19. Under Asm. Alg. with T = %q/% and 6 =

. 3/4 @3/4 23/4 1/4 . .
mm{q / % NS ’;1/4(1% ES) , 1} satisfies for any policy 7 € 11 that

E[Ry(7)] < max{4\/17 LN7/4(SAT)** (log T) /4 34«/N5S3A3TlogT} +2LN.

Proof. Firstly, we assert that the iterates £¢ are well defined; similar to what was argued in the proof
of Lem. [E.17} the functions ¢/p(-) and 7{g*,-) + Dy, (-,£") are self-concordant on int (M? )~
(Item (ii) in 40, Proposition 2.1.1) and bounded from below thanks to (M, )~ being a bounded
set, implying via Property VI in [40, Section 2.2] that each of these functions attains its minimum
on int (Mﬁ )™, which is also unique via strict convexity. Also note that indeed /it € MP, since

{A te (./\/lﬁ ,)” as we argued before presenting the algorithm.

Let 4¢* € argmine S F'(u)and Ry = EX|_ (F'(u™ t(w*)), which satisfies
1

Ry = maxgen E [Ry(m)]. Define €% := (1 — §)A, (u*) + o€, where be (07 ) is a constant to
be specified later. To start with, we have that

T T T
Ry =E Y (F'(u™ ") — F'(u*)) =E Y (F'(3") — = E Y (FY(E) — F* (A, (1)) -

t=1 t=1 t=1

Next, we derive that
F(E) ~ (€
= (€0 + (V2 E)ut) ~ Byepnaia [Ft (€ + 5V () ™0) |
< LEyepnsca-n|[Ap (€8 + 8(V2m (€)™ 20) — Ap (€' + 6(V2 4 (€)' ?0) |,
= 5LE1,€BNS<A—1>HAp((Vzwlb(ft))_l/Qut) Ap (Vi (€1)) 712 v) ||,
= 0LE ,cpnsca- ||Ap (€8 + (Vzlblb(ft))flp“t) — Ap (& + (V2u(€) ™ 1/2'”)||1
< OLE epneinn [[Ap (€ + (VHm(€)) 2|, + [ (€ + (V())20)
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< 26LN,

where the first inequality uses the Lipschitz smoothness of F'* and the fact that F* = F* o A,; the
second and third equalities use the fact that A, is an affine function; and the last inequality holds

since both & + (V24 (€1)) 712wt &8 + (V2 (€))7 2v € £1(&h) = (MP,)~, and that for any
§e (Mh)7, Ap(§) € MP, | and therefore satisfies [A,(§)[1 < N. We similarly derive that
P ()
L s* +0(E"+ (V€)™ 0)) ] = F* (A, (")
[F*((1 = 0)(1 = 9)A, (1) + (1= 0)o€" +3(¢" + (V2 (€)™ *v))]
= (A (1))
< LE,epvscan |[(1 = 8)(1 = 8)p* + (1 — 8)dA,(€") + dA, (" + (v%lb(gt))—l/% — ¥,
< L epsias [168 = 8 — dl1s* 1 + (1= 8)3]|A, )], + A5 (€ + (T2um(e) )], ]

= E,eprvsa-1

’UG]BNS(A 1)

< LEqegnscan | (0 + 8) ¥ + 8| 85(6M)][, + 3l|Ap (€ + (V2un(€) ™ 0) |, ]
< 26LN + 25LN .

Hence, using also the convexity of IAFt, we obtain that

T
Ry <E (F'(¢') — F*(&*)) + 40LNT + 20LNT
t=1
T .
<E <V1Ft(§ ), & — &)+ 4SLNT + 25LNT . (66)
t=1
In this proof, let 7; := o (u', ..., u') denote the o-algebra generated by u', ..., u'; and let B[] :=

E[- | Fi—1] with Fy being the trivial o-algebra. We then have that

F'(¢") = Eu[g'] = Ee[g'],
where the first equality follows from (63) and the the second equality holds since conditioned on
Fi_1, ul is the only source of randomness in g° and is sampled identically and independently in
every round. Using that £ — £* is measurable with respect to F;_1, we then obtain that

T T
Ry <E ) (Eig' & — &) + 40LNT + 20LNT = E ) {g",&" — £*) + 46LNT + 20LNT .

t=1 t=1
Via the definition of £' and the fact that £* € int (M2, )~, Lem. 6.16 in [43] implies that

T T

Dy(e*,e)) &
et — ey < D) LTy
=1 T =2

where (! lies on the line segment between &¢ and £+, We firstly observe that

2
ot = (S5 2S04 = DFEY ) ()T (Tm(E) 2 (T20m(E) (T H0m(E) 2

1-6 t/~t 2 1 402 42
_(( - INS(A—1)F (M)) < GNisA,

where we have used that F** (i) < N. Hence, if
)
S Tman
16N2SA
then 7|g¢| ¢t » < 1/16. Consequently, Lem. (with x = ¢!,y = ¢+ and ¢ = 7g;) would assert
that £ e &£, (¢"); and hence, (' € &1, (¢"). It would then hold via (63) that

1
2 2 2
gt < gt < 4 gellge s
H ”C‘,* (1 ”Ct gtHEt)Q H Hgt,* H H{f,*

(67)
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On the other hand, via Lem. and the definitions of £ L and &*, we have that
Dy, (€%,¢") < NSAlogé~".
Hence, conditioned on (67)), we obtain the following regret bound

- |
Ry < NOAlBOT ?—;—N4S2A2T + 46LNT + 26LNT . (68)

T

Setting

.1 § | logT | [17 N3/483/4 A3/4(log T)M/*
(5=T, T:T6 N3GAT and 6=m1n{ 1 T/ J10:

we obtain that

Rr < NSAlogT

N 2T
T 02

1
< %«/N5S3A3TlogT + ASLNT + 2LN
< max{4\/17LN7/4 (SATYY* (log T)Y/*, 344/N5S3 43T log T} +2LN.  (69)
If T > NSAlog(T), then our choice of 7 indeed satisfies (67):
6 | logT §
T=— < .
16 V N3SAT ~ 16N2SA

Otherwise, we can fall back to the trivial regret bound

Ry < NT < N*SAlog(T),

NAS?2A%T + 45LNT + 2LN

which is dominated by the bound in (69); hence, the theorem follows. 0
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