

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOKEN-IMPORTANCE GUIDED DIRECT PREFERENCE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Aligning Large Language Models (LLMs) with human preferences is crucial for safe and effective AI interactions. While popular methods like Direct Preference Optimization (DPO) have simplified alignment, they remain sensitive to data noise and overlook the differential importance of individual tokens. Existing token-level approaches often rely on probability prediction or simplistic weighting schemes to obtain token importance, which still cannot fully address these issues. To solve this problem, we propose the Token-Importance Guided Direct Preference Optimization (TI-DPO), a framework that achieves fine-grained semantic control through two synergistic innovations. First, we propose a novel hybrid weighting mechanism that combines gradient attribution with a Gaussian prior, ensuring both the accuracy and robustness of token importance scores. Second, we employ a triplet loss to provide structured guidance for the optimization, explicitly guiding model outputs to approach preferred responses and diverge from non-preferred ones. Experimental results show that TI-DPO achieves higher accuracy and stronger generative diversity, providing more stable and computationally efficient solutions compared with DPO and other RLHF methods. Code and demo are available at <https://anonymous.4open.science/r/TI-DPO>.

1 INTRODUCTION

Large Language Models (LLMs) have shown proficiency in Natural Language Processing (NLP) (Gao et al., 2025), logical reasoning (Xie et al., 2025), and code generation (Xu et al., 2025), emerging as a focal point of recent research. However, as models may generate outputs inconsistent with intended purposes or ethical standards, human preference alignment aims to ensure that LLMs adhere to human values (Liu et al., 2023), producing beneficial and harmless content. Against this backdrop, Reinforcement Learning from Human Feedback (RLHF) has become a prevailing approach for achieving alignment (Hong et al., 2024; Hu et al., 2025). It leverages human-annotated preference data to train reward models and fine-tunes LLMs using Reinforcement Learning (RL) methods (Wang et al., 2023b) like Proximal Policy Optimization (PPO) (Schulman et al., 2017).

The emergence of Direct Preference Optimization (DPO) has effectively simplified the alignment process (Rafailov et al., 2023). Inspired by DPO’s implicit reward mechanism, a series of preference optimization models have been proposed in recent years, such as ORPO (Hong et al., 2024), f-DPO (Wang et al., 2023a), and CPO (Feng et al., 2025). However, both DPO and RLHF have a fundamental flaw during optimization: they optimize at the sequence level, leading to the neglect of the influence of specific tokens, which in turn destabilizes the training process due to shifts in the sampling distribution (Zhang et al., 2025).

Motivated by these challenges, researchers have proposed token-level variants of DPO, aiming to decompose preference alignment into fine-grained contributions ((Zeng et al., 2024; Xie et al., 2025; Zhong et al., 2024)). However, achieving true fine-grained alignment requires addressing a core challenge: We not only need to accurately identify the key tokens that have a decisive impact on human preferences, but also need a subtle optimization objective to guide the model to adjust its preference (Li et al., 2025). Nevertheless, existing token-level methods fall short in dealing with this challenge for two reasons. First, their approaches to identifying key tokens often rely on biased probability proxies (Liu et al., 2024a) or overly simplified weighting schemes (Lin et al., 2024). Second, the optimization, they still inherit the binary comparison framework of DPO, simply distin-

guishing between “good” and “bad” samples (Meng et al., 2024). Such coarse-grained supervision signals cannot finely shape the model’s generation behavior in a continuous semantic space.

In our Token-Importance Guided Direct Preference Optimization (TI-DPO) framework, we introduce a novel hybrid weighting mechanism to accurately and robustly identify key tokens. This mechanism combines gradient attribution with a Gaussian prior, overcoming the problem of existing methods relying on biased proxies. Here, gradient attribution is a technique used to determine the contribution of each input feature (in our work, each token) to the model’s output (Ancona et al., 2017; Ballout et al., 2024). Liu et al. (2024b) offered empirical evidence that models exhibit a U-shaped attention bias, which means there is greater importance to tokens at the beginning and end of a sequence, while underweighting those in the middle. Thus, the Gaussian prior distribution here is explicitly designed to rectify this intrinsic architectural bias, ensuring that the optimization process does not neglect the semantic core of the response.

Meanwhile, we adopt a structured triplet objective based on the identified key weights to achieve fine-grained optimization by incorporating the intermediate generated outputs (Nguyen et al., 2018). This triplet structure explicitly guides the intermediate output to approach human preferences and distance from non-preferred responses, achieving fine-grained preference alignment and promoting a continuous gradient of preference learning. The mixed weights and the triplet loss complement each other and together form a complete solution for TI-DPO to achieve fine-grained alignment.

The following contributions are made in the course of this work:

- We propose TI-DPO, a novel framework designed for achieving fine-grained alignment. This framework innovatively integrates a hybrid weighting mechanism, jointly formed by gradient attribution and a Gaussian prior, with triplet loss, significantly enhancing the robustness and stability of weight allocation.
- Theoretically, we formalize the TI-DPO framework by providing a complete derivation of its loss function and gradient. Building on this, we prove TI-DPO achieves a tighter loss bound than DPO (Theorem 2) and the superiority of expected reward (Theorem 3). This theorem formally provides a new perspective on comprehending the superiority of TI-DPO in terms of alignment accuracy.
- Experiment results indicate that TI-DPO surpasses existing methods in aligning LLMs with human preferences. Notably, our method achieves a leading average score of **62.3**, and substantially outperforms strong baselines on key tasks such as HumanEval, TruthfulQA and IFEval with scores of **67.0**, **62.0** and **75.7** respectively. Further analysis, including ablation studies and sensitivity analysis, confirms that both of our core contributions are vital to this performance.

2 RELATED WORK

Human Preference Alignment Human preference alignment has emerged as a critical research paradigm in recent years, focusing on enabling model responses to align with human values and preferences. Early advancements mainly focused on RLHF (Ouyang et al., 2022; Bai et al., 2022) based on PPO (Schulman et al., 2017). However, these RL methods may suffer from overfitting in optimal responses. To mitigate this issue, Hu et al. (2025) introduced the Reinforce++ model, which employs batch-wise standardized rewards to prevent overfitting and enhance the prompt diversity during training. Concurrently, beyond RL approaches, Rafailov et al. (2023) introduced DPO, which obviates the need for explicit reward modeling through implicit preference learning. This implicit reward mechanism has inspired a wave of subsequent works (Cui et al., 2025), such as the SimPO algorithm proposed by Meng et al. (2024), which utilizes the sequence-averaged log probability as an implicit reward signal to streamline optimization. Notwithstanding these advancements, DPOs’ reliance on large-scale human-annotated preference datasets (Kim et al., 2025) has motivated derivative studies (Gou & Nguyen, 2024; Jiao et al., 2024) aimed at reducing data requirements. A notable example is RS-DPO (Khaki et al., 2024), which integrates rejection sampling with DPO to alleviate data scarcity. However, a more fundamental limitation pertains to the binary nature of traditional preference labels. Although the KTO method proposed by Ethayarajh et al. (2024) effectively reduces the reliance on paired preference labels in DPO, most current RLHF and related preference optimizations still mainly rely on binary comparisons between “good” and “bad” responses (Gao et al., 2024; Hong et al., 2024). Such coarse-grained supervision has obvious short-

108 comings: human preferences often show continuous gradient differences rather than simply “good”
 109 and “bad”. Against this backdrop, our proposed triplet optimization method can achieve fine-grained
 110 preference alignment.

111 **From Sequence-Level to Token-Level** Achieving fine-grained alignment requires the model not
 112 only to distinguish the quality of the entire sequence, but also to understand and precisely control the
 113 key morphemes that constitute the semantics of the sequence. Existing sequence-level techniques of-
 114 ten lead to a decrease in generation diversity because they ignore the importance differences among
 115 tokens (Feng et al., 2025). These limitations have spurred researchers’ research into step (Xie et al.,
 116 2024) or token-level (Rafailov et al., 2024) alignment mechanisms, seeking to address the granu-
 117 larity mismatch between coarse-grained sequence rewards and fine-grained token contributions (Xi
 118 et al., 2024). To address the significant decline in model generation diversity, TDPO (Zeng et al.,
 119 2024) reanalyzed and optimized the entire alignment process from the token-level perspective. An
 120 additional limitation of RLHF and DPO lies in the fact that rewards are only assigned to the fi-
 121 nal token, with all other tokens receiving no learning rewards (Zhong et al., 2024). Meanwhile,
 122 Xie et al. (2025) proposed a correlation between the frequency of specific tokens and model per-
 123 formance, which inspires us to consider reassigning token weights. In a related vein, Liu et al.
 124 (2024a) estimates token importance weights using prediction probability differences. Nevertheless,
 125 this probabilistic weighting scheme is prone to bias when contrastive models produce inconsistent
 126 outputs or fail to capture subtle semantic nuances of human preferences. In contrast, our approach
 127 employs a hybrid strategy that combines causal gradient attribution with a stabilizing Gaussian prior
 128 to estimate importance (Ballout et al., 2024). By focusing on actual gradient impacts, our method
 129 enhances alignment precision over probabilistic proxies, while the prior distribution ensures robust-
 130 ness against noisy gradient signals.

3 PRELIMINARIES

131 Before formally elaborating the TI-DPO method, this section first introduces relevant preparatory
 132 knowledge to lay the foundation for the subsequent theoretical derivation and model construction.

3.1 HUMAN PREFERENCE ALIGNMENT

133 Firstly, we focus on the core concept of human preference alignment, which is the foundation for op-
 134 timizing the response generation of LLMs. Suppose that x stands for the input prompt and y denotes
 135 the response generated by the model. The key approach involves optimizing the response-generation
 136 policy $\pi_\theta(y|x)$. It utilizes a carefully selected human preference dataset $\mathcal{D} = \{(x, y_w, y_l)\}$. Here
 137 y_w and y_l represents preferred response and non-preferred response. Reward model $r_\phi(x, y)$ eval-
 138 uates the LLMs’ responses by applying the *Bradley-Terry* (BT) model for ranking loss Ouyang et al.
 139 (2022). The loss function employed to access the reward model r_ϕ using dataset \mathcal{D} is formulated as
 140 follows:

$$\mathcal{L}_{\text{base}} = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(r_\phi(x, y_w) - r_\phi(x, y_l))]. \quad (1)$$

141 Here $\sigma(\cdot)$ is the sigmoid activation function. The reward model evaluates the LLMs’ responses by
 142 applying the BT model for ranking losses (Ouyang et al., 2022):

$$p(y_w \succ y_l | x) = \frac{\exp(r_\phi(x, y_w))}{\exp(r_\phi(x, y_w)) + \exp(r_\phi(x, y_l))}, \quad (2)$$

143 The partition function $Z(x)$ serves to normalize the policy’s probability distribution (Rafailov et al.,
 144 2023). The parameter β regulates the extent of divergence between π_θ and π_{ref} . DPO rearranges
 145 this equation to express the reward as $r_\phi(x, y) = \beta \log \frac{\pi_\theta^*(y|x)}{\pi_{\text{ref}}(y|x)} - \log Z(x)$. Let the input prompt be
 146 represented as $x = [x_1, x_2, \dots, x_m]$ and the first $t - 1$ tokens generated by the model be denoted as
 147 $y^{<t} = [y^1, y^2, \dots, y^{t-1}]$. Let T_w and T_l denote the number of preferred tokens and less preferred
 148 tokens, respectively. The token-level DPO optimization objective is given by

$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \left(\log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right) \right], \quad (3)$$

162 3.2 TRIPLET LOSS
163

164 Triplet loss, a powerful loss function for learning embeddings, ensures that within the embedding
165 space, an anchor input is closer to positive inputs than to negative ones. This mechanism enhances
166 the model’s capacity to differentiate between data points that are more or less similar. By simultane-
167 ously learning from the similarities and differences among sampled data points, the model is better
168 aligned with human evaluations. The triplet loss operates with triplets (x_i, x_j, x_k) , and is designed
169 such that the representation of the anchor x_i is nearer to a similar data point x_j than to a dissimilar
170 one x_k . This targeted learning strategy is instrumental in sharpening the model’s feature discrimi-
171 nation, thereby improving its ability to make decisions that resonate with human preferences. The
172 triplet loss is given by

$$173 \quad \mathcal{L}_{\text{trp}} = \sum_{i,j,k}^T \left[\|f(x_i) - f(x_j)\|_2^2 - \|f(x_i) - f(x_k)\|_2^2 + \alpha_{\text{trp}} \right]_+ \quad (4)$$

174 Here $[z]_+$ denotes the rectified linear unit function, ensuring that it is set to zero if negative. The
175 features extracted from the three inputs are represented by the terms $f(x_i)$, $f(x_j)$, and $f(x_k)$.

179 4 METHODOLOGY
180

181 Driven by the challenges of unstable training and distribution shift in traditional RL alignment meth-
182 ods, we propose the TI-DPO framework. Our key innovation lies in a novel hybrid weighting strat-
183 egy and a triplet loss that provides a structured optimization objective.

185 4.1 TOKEN-LEVEL MDP FOR LLM PREFERENCE ALIGNMENT
186

187 To address the challenges of the sequential and auto-regressive nature of text generation, a token-
188 level *Markov Decision Process* (MDP) is introduced, which incorporates the notion of token sig-
189 nificance to improve the alignment of each token selection with human preferences. This concept
190 is defined through a tuple denoted as $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \rho_0)$. \mathcal{S} and \mathcal{A} are the state space and ac-
191 tion space, respectively. \mathcal{P} is a deterministic transition model among tokens. Here r stands reward
192 model associated with each token, and ρ_0 indicates the initial state distribution. The initial state
193 is $s_0 = [x]$, which is simply the input prompt. At each step t of the generation process, the state
194 $s_t = [x, y^{<t}] \in \mathcal{S}$ consists of input prompt x , where t is the count of token, and $t - 1$ generated
195 tokens $y^{<t} = [y^1, y^2, \dots, y^{t-1}]$. At each time step t , the action $a_t = y^t$ corresponds to the selection
196 of subsequent tokens for generation.

197 4.2 HYBRID WEIGHTING MECHANISM FOR TOKEN IMPORTANCE
198

199 Building on the token-level MDP framework, we formalize the calculation of importance weights
200 w_t . Inspired by the attribution-based rationale extraction from Ballout et al. (2024), our approach
201 quantifies token importance through gradient sensitivity analysis, ensuring that critical tokens in
202 human-preferred responses drive the policy optimization process.

203 However, while gradient attribution provides a precise, data-driven signal, it can be susceptible
204 to noise. Some studies have pointed out that imposing additional constraints on the attention or
205 importance distribution can help the model focus on key information (Zhang et al., 2018; Guo et al.,
206 2019). Furthermore, a recent study (Liu et al., 2024b) offered empirical evidence that models exhibit
207 a U-shaped attention bias. This means there is greater importance to tokens at the beginning and end
208 of a sequence, while underweighting those in the middle. The Gaussian prior distribution, which
209 peaks at the center, is designed to counteract the architectural “Lost-in-the-Middle” bias inherent in
210 LLMs, ensuring the optimization does not neglect the semantic core of the response. The Gaussian
211 prior also prevents the model from overfitting to noisy gradient signals and provides a stable baseline,
212 ensuring the weight distribution remains well-behaved throughout training.

213 A token that significantly impacts the reward is deemed critical, whether it has a positive effect on
214 the preferred response or a negative effect on the non-preferred response. For a given sequence
215 of tokens $y = [y_1, y_2, \dots, y_{T-1}]$, we first obtain its embedding sequence $E = [e_1, e_2, \dots, e_{T-1}]$,
where e_i is the embedding vector for token y_i . We then perform a forward pass to get the logits for

216 the final token, $L_{T-1} \in \mathbb{R}^V$, where V is the vocabulary size. The target scalar value for our gradient
 217 calculation, $\mathcal{L}_{\text{target}}$, is the maximum logit value at this final step, which represents the model’s most
 218 confident prediction for the next token y_T :

$$219 \quad 220 \quad \mathcal{L}_{\text{target}} = \max(L_{T-1}). \quad (5)$$

221 Next, we compute the gradient of this target logit with respect to each token’s embedding e_i in the
 222 sequence. This gradient, $\nabla_{e_i} \mathcal{L}_{\text{target}}$, captures the direct influence of token i on the final prediction.
 223 To obtain a scalar importance score I_i from the gradient vector, similar to previous work (Ballout
 224 et al., 2024), we compute its L_1 norm:

$$226 \quad 227 \quad I_i = \|\nabla_{e_i} \mathcal{L}_{\text{target}}\|_1 = \sum_k |(\nabla_{e_i} \mathcal{L}_{\text{target}})[k]|. \quad (6)$$

228 Here, k indexes the components of the gradient vector. This score, I_i , represents the raw, data-driven
 229 importance of token i .

230 Finally, to ensure training stability and robustness against noise in gradient estimates, we post-
 231 process these raw scores to derive the final weights w_t . As implemented in our code, this involves
 232 a mixed strategy. First, the raw scores $\mathcal{I} = \{I_1, \dots, I_{T-1}\}$ are normalized by their sum to form
 233 a distribution $\mathcal{I}_{\text{norm}}$. Second, we define a Gaussian-shaped prior distribution $\mathcal{P}_{\text{prior}}$ centered on the
 234 sequence, which assigns higher baseline importance to tokens in the middle. (Detailed settings for
 235 $\mathcal{P}_{\text{prior}}$ can be found in Appendix B.6.) The final weight vector W is a convex combination of these
 236 two distributions, controlled by a hyperparameter $\lambda \in [0, 1]$:

$$237 \quad 238 \quad W = \lambda \cdot \mathcal{I}_{\text{norm}} + (1 - \lambda) \cdot \mathcal{P}_{\text{prior}}. \quad (7)$$

239 This weighting scheme is applied independently to both the preferred y_w and non-preferred y_l se-
 240 quences to obtain their respective token-level weights, denoted as w_t^w and w_t^l .

241 The gradient-based importance guidance method provides a data-driven measure of token relevance,
 242 which can adapt to the subtle semantics of human preferences and achieve fine-grained control over
 243 key tokens during the model generation process. These weights then modulate the implicit reward
 244 signal at each token step, effectively focusing the DPO objective on the most critical tokens. The
 245 resulting preference probability under BT model is:

$$246 \quad 247 \quad p^*(y_w \succ y_l) = \frac{\exp\left(\sum_{t=1}^{T_w} w_t^w \cdot r_\phi(s_t^w, a_t^w)\right)}{\exp\left(\sum_{t=1}^{T_w} w_t^w \cdot r_\phi(s_t^w, a_t^w)\right) + \exp\left(\sum_{t=1}^{T_l} w_t^l \cdot r_\phi(s_t^l, a_t^l)\right)}. \quad (8)$$

250 Here, T_w and T_l are the lengths of y_w and y_l respectively.

251 Then, with $r_\phi(s_t, a_t) = \beta \log \frac{\pi_\theta(y^t | x, y^{<t})}{\pi_{\text{ref}}(y^t | x, y^{<t})}$ in DPO, we can derive the expression for BT model:

$$253 \quad 254 \quad p^*(y_w \succ y_l) = \sigma(\Delta r_{\text{token}}(x, y_w, y_l, w_t^w, w_t^l)), \quad (9)$$

255 where $\Delta r_{\text{token}}(x, y_w, y_l, w_t^w, w_t^l)$ can be denoted as:

$$256 \quad 257 \quad \Delta r_{\text{token}}(x, y_w, y_l, w_t^w, w_t^l) = \sum_{t=1}^{T_w} w_t^w \log \frac{\pi_\theta(y_w^t | x, y_w^{<t})}{\pi_{\text{ref}}(y_w^t | x, y_w^{<t})} - \sum_{t=1}^{T_l} w_t^l \log \frac{\pi_\theta(y_l^t | x, y_l^{<t})}{\pi_{\text{ref}}(y_l^t | x, y_l^{<t})}. \quad (10)$$

259 Therefore, we obtain the weighted token-level DPO base loss as:

$$261 \quad 262 \quad \mathcal{L}_{\text{DPO-W}} = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(\Delta r_{\text{token}}(x, y_w, y_l, w_t^w, w_t^l))]. \quad (11)$$

263 4.3 TRIPLE LOSS IMPLEMENTATION

264 The practical implementation of the triplet loss is integrated seamlessly within the main training
 265 loop to provide structured guidance for the policy model.

267 First, for each data batch comprising (x, y_w, y_l) , the process begins by generating an ‘anchor’ re-
 268 sponse y : Using the preferred response y_w as the starting point of the context, the response dyna-
 269 mically generated by the policy model π_θ is the anchor y . It represents an intermediate state in the
 model’s generation space.

Next, by mapping each of the three responses to a point in a continuous preference space, we calculate the distances between these three responses y , y_w and y_l , which represent the preference for the newly created anchor y .

Finally, according to the definition in Eq.(4), the triplet loss in our work is calculated with these distances, penalizing the model if the anchor is not closer to the positive response than to the negative one by a predefined margin:

$$\mathcal{L}_{\text{triplet}} = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\max(0, \underbrace{\sum_{t=1}^{T_w} \left\| \log \frac{\pi_\theta(y^t|x, y^{<t})}{\pi_{\text{ref}}(y^t|x, y^{<t})} - \log \frac{\pi_\theta(y_w^t|x, y_w^{<t})}{\pi_{\text{ref}}(y_w^t|x, y_w^{<t})} \right\|_2^2}_{\text{Align } y \text{ with } y_w} - \underbrace{\sum_{t=1}^{T_l} \left\| \log \frac{\pi_\theta(y_l^t|x, y_l^{<t})}{\pi_{\text{ref}}(y_l^t|x, y_l^{<t})} - \log \frac{\pi_\theta(y^t|x, y^{<t})}{\pi_{\text{ref}}(y^t|x, y^{<t})} \right\|_2^2}_{\text{Push } y \text{ away } y_l} + \alpha) \right]_+$$

4.4 TI-DPO OBJECTIVE AND THEORETICAL ANALYSIS

We now formally define the complete TI-DPO objective, which unifies our hybrid weighting and triplet loss mechanisms, and provide a theoretical proof of its superiority over standard DPO. With given TI-DPO dataset $\mathcal{D} = \{(x, y_w, y_t)\}$, we obtain TI-DPO objective:

$$\mathcal{L}_{\text{TI-DPO}} = \mathcal{L}_{\text{DPO-w}} + \gamma \mathcal{L}_{\text{triplet}}, \quad (13)$$

where γ is a hyperparameter. In Appendix A.4, we have given the proof of gradient $\nabla_{\theta} \mathcal{L}_{\text{TI-DPO}}$, which is used to update θ during training. The implementation of TI-DPO is shown in Algorithm 1.

To show the superiority of our TI-DPO loss compared to DPO loss, we first introduce the following lemma. Denote $\Delta r_{\text{global}} = \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)}$ from Eq.(3). For simplicity, we abbreviate $\Delta r_{\text{token}}(x, y_w, y_l, w_t^w, w_t^l)$ as Δr_{token} , then we have:

Lemma 1. *There is $\alpha > 1$ s.t. $\forall (x, y_w, y_l) \sim \mathcal{D}$, it is satisfied that:*

$$\mathbb{E} [\Delta r_{token}] > \alpha \cdot \mathbb{E} [\Delta r_{global}] . \quad (14)$$

The proof of Lemma 1 is detailed in Appendix. According to Eq.(11), TI-DPO dynamically allocates token importance weights through gradient attribution, enabling the model to focus on the generation outputs with more importance weights on preference alignment. The following theorem strictly proves the theoretical advantages of this improvement at the loss function level. Under the condition of Lemma 1, the total loss of TI-DPO will be significantly lower than the original DPO loss:

Theorem 2 (Tighter Loss Bound). *If there is $\alpha > 1$, such that $\forall (x, y_w, y_t) \sim \mathcal{D}$ satisfying $\mathbb{E}[\Delta r_{\text{token}}] \geq \alpha \cdot \mathbb{E}[\Delta r_{\text{global}}]$, then TI-DPO's total loss is strictly lower than DPO's, i.e.,*

$$f_{TL DPO} \leq f_{DPO} = \beta A_{\text{triplet}}, \quad (15)$$

where Δ_{triplet} is a positive coefficient related to triplet loss and α

The proof is shown in Appendix A.2. In the experiments presented in the Appendix B.5, we compared the loss function convergence processes of the TI-DPO and DPO, thereby further substantiating Theorem 2. Furthermore, we provide a theoretical justification for the superiority of the policy learned by TI-DPO. In Theorem 3, we demonstrate that TI-DPO utilizes the limited KL constraint more efficiently by concentrating probability mass on critical tokens. The proof is shown in Appendix A.3.

Theorem 3 (Superiority of Optimal Policy). *Let π_{DPO} and π_{TI-DPO} be the optimal policies derived from minimizing the DPO and TI-DPO objectives, respectively. Under a fixed total KL divergence constraint K_{total} , the expected true reward of the TI-DPO optimal policy is strictly lower-bounded by that of the DPO policy, i.e.,*

$$\mathbb{E}_{y \sim \pi_{\mathcal{T}L \rightarrow DBO}}[r^*(x, y)] \geq \mathbb{E}_{y \sim \pi_{DBO}}[r^*(x, y)] + \delta, \quad (16)$$

where $\delta > 0$ represents the gain derived from optimizing the decomposition of KL divergence, specifically by minimizing the divergence component on non-critical tokens.

324

5 EXPERIMENTS

325

5.1 EXPERIMENTAL SETTINGS

326 **Dataset and base settings:** The benchmarks we use include knowledge-based tasks (MMLU
 327 (Hendrycks et al., 2020)), mathematical reasoning (GSM8K (Cobbe et al., 2021), MATH
 328 (Hendrycks et al., 2021)), instruction-following (IFEval (Zhou et al., 2023)), and code generation
 329 (HumanEval (Chen et al., 2021)). Additionally, TruthfulQA (Lin et al., 2021) detects the authenticity
 330 of the model’s answers through adversarial questions.
 331

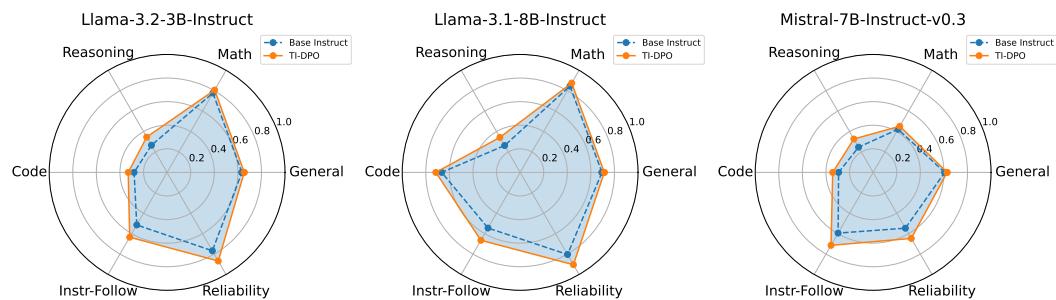
332 **Comparative algorithm:** We compared the TI-DPO with baseline alignment methods such as SFT,
 333 DPO, IPO(Azar et al., 2024), KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), TDPO
 334 (Zeng et al., 2024), CPO (Feng et al., 2025), TPO (Saeidi et al., 2024), and GRPO (Shao et al.,
 335 2024). We select three models (Llama-3.2-3B (Grattafiori et al., 2024), Llama-3.1-8B (Grattafiori
 336 et al., 2024), Mistral-7B-v0.3 (Jiang et al., 2023)) as baselines.
 337

338

 339 **Algorithm 1** TI-DPO

340

 341 1: **Input:** Dataset $\mathcal{D} = \{(x, y_w, y_l)\}$, hyperparameter β, α, λ , reference model π_{ref} , policy model
 342 π_θ .
 343 2: **Initialize:** $\pi_\theta \leftarrow \pi_{\text{ref}}$
 344 3: **for** each epoch **do**
 345 4: Sample batch $\{(x, y_w, y_l)\} \sim \mathcal{D}$.
 346 5: Compute raw importance scores \mathcal{I} via gradient attribution.
 347 6: Compute weights $\{w_t^w\}$ and $\{w_t^l\}$ by mixing normalized scores with a Gaussian prior $\mathcal{P}_{\text{prior}}$:
 348 $W \leftarrow \lambda \mathcal{I}_{\text{norm}} + (1 - \lambda) \mathcal{P}_{\text{prior}}$.
 349 7: Compute weighted DPO log-ratio:
 350 8: $\Delta r_{\text{token}} \leftarrow \sum_t w_t^w \log \frac{\pi_\theta(y_w^t | x, y_w^{<t})}{\pi_{\text{ref}}(y_w^t | x, y_w^{<t})} - \sum_t w_t^l \log \frac{\pi_\theta(y_l^t | x, y_l^{<t})}{\pi_{\text{ref}}(y_l^t | x, y_l^{<t})}$.
 351 9: Generate the anchor response y^t : $y^t \sim \pi_\theta(y^{t-1} | x, y^{<t-1})$.
 352 10: Compute triplet log-ratio $\Delta r_{\text{triplet}}$ (Eq.(10)).
 353 11: Compute weighted DPO loss: $\mathcal{L}_{\text{DPO-w}} \leftarrow -\log \sigma(\beta \Delta r_{\text{token}})$.
 354 12: Compute triplet loss: $\mathcal{L}_{\text{triplet}} \leftarrow \max(0, \Delta r_{\text{triplet}} + \alpha)$.
 355 13: Aggregate losses: $\mathcal{L}_{\text{TI-DPO}} \leftarrow \mathcal{L}_{\text{DPO-w}} + \gamma \mathcal{L}_{\text{triplet}}$.
 356 14: Update $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}_{\text{TI-DPO}}$.
 357 15: **end for**
 358 15: **Output:** π_θ



366 **Figure 1:** Multi-dimensional normalized score of TI-DPO compared with other base instruction
 367 models across categories.
 368

378
379

Table 1: Average scores of each fine-tuning method across three base models

Method	MMLU	GSM8K	GPQA	HumanEval	TruthfulQA	IFEval	Avg
SFT	64.0	68.0	22.7	59.3	55.5	70.5	56.7
DPO	65.3	69.3	24.0	61.0	56.7	70.0	57.7
IPO	63.0	65.3	20.3	57.3	52.7	66.7	54.2
KTO	66.3	70.3	25.3	62.0	57.7	70.5	58.7
SimPO	63.5	64.7	21.8	58.2	54.2	64.7	54.5
TDPO	65.0	68.2	23.5	60.3	56.3	68.5	57.0
CPO	67.3	70.7	26.0	62.8	58.3	71.3	59.4
TPO	68.3	72.7	27.7	63.7	59.0	72.7	60.7
Logic-RL	63.8	73.8	23.7	61.0	55.6	69.3	57.9
cDPO	66.1	70.1	25.1	61.9	57.6	70.4	58.5
TIS-DPO	69.3	70.5	24.5	65.5	62.5	74.0	61.1
GRPO	70.7	75.7	28.0	64.3	59.9	74.0	62.1
TI-DPO	70.0	73.0	26.0	67.0	62.0	75.7	62.3

393

Table 2: Ablation study scores: the full TI-DPO vs. base instruction model (**Llama-3.2-3B-Instruct**) with other weight and triplet conditions

396

Method	General	Math	Reasoning	Code	Instr-Follow	Reliability
Base Instruct (Baseline)	63.4	77.7	26.6	28.0	51.5	76.8
Full Method (TI-DPO)	65.4	80.7	34.6	33.0	63.5	86.8
No Triplet Loss	64.0	79.0	32.0	31.0	60.5	83.0
Uniform Weight	64.0	78.2	30.5	29.0	58.0	80.0
Random Weight	63.7	77.8	28.0	28.5	55.0	78.0
No Gaussian Prior	64.5	79.7	32.7	31.5	60.0	82.5
Softmax Prior	64.2	78.8	31.8	30.0	59.0	81.0

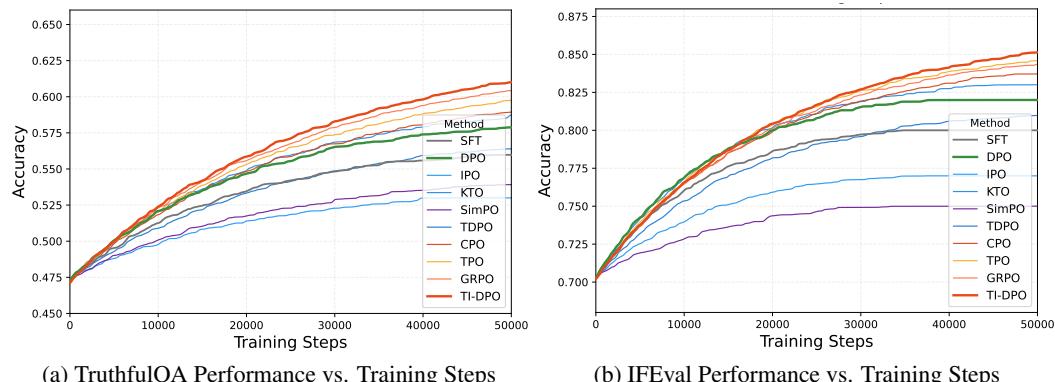
405

406

5.2 PERFORMANCE COMPARISON

407

As shown in Figure 2, we conduct an analysis of the performance for TI-DPO and baseline methods across training steps on the TruthfulQA (reliability assessment) and IFEval (instruction-following) tasks with Llama-3.1-8B model. In the TruthfulQA benchmark (Figure 2a), TI-DPO demonstrates a steady improvement in accuracy as training steps increase, surpassing all baselines by the final epoch. For the IFEval task (Figure 2b), TI-DPO also shows a dominant performance trend. This highlights TI-DPO’s effectiveness in learning through token-level importance weighting and triplet loss, which explicitly guides the model to avoid generating misleading content.



428

429

Figure 2: Accuracy trends with training steps for different methods on TruthfulQA and IFEval tasks on LLaMA-3.1-8B. The performance comparisons of SFT, DPO, IPO, KTO, SimPO, TDPO, CPO, TPO, GRPO, and TI-DPO are illustrated.

430

431

432 As shown in Figure 1, TI-DPO exhibits significantly better performance in Reasoning, Instruction-
 433 Following, and Reliability dimensions compared to the corresponding instruction variants with each
 434 base instruction. Here, the base instruct refers to the foundational instruction-tuned models (Llama-
 435 3.2-3B-Instruct, Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3), serving as the baseline for com-
 436 paring the effectiveness of TI-DPO and other fine-tuning methods. The scores of TI-DPO in other
 437 aspects are roughly equal or slightly higher than others. Table 1 presents average scores of each fine-
 438 tuning method across three base models, clearly demonstrating our method’s advantages in general
 439 tasks and specific scenarios. The specific score comparison table under the three base models is
 440 placed in Appendix C.

441
 442 **5.3 ABLATION EXPERIMENT**

443 To verify the distinct contributions of the importance guidance and triplet loss, Table 2 presents
 444 an ablation study with Llama-3.2-3B-Instruct. The results validate the effectiveness of our design
 445 choices: compared to the Random Weight and Uniform Weight settings, the Full Method achieves
 446 the highest scores across all six dimensions. Specifically, the importance of the Triplet Loss is
 447 evidenced by the drop in Math ($80.7 \rightarrow 79.0$) and Code ($33.0 \rightarrow 31.0$) scores when it is removed.
 448 Similarly, ablating the Gaussian Prior leads to a notable decline in Reliability ($86.8 \rightarrow 82.5$).
 449

450 **5.4 ADDITIONAL EXPERIMENTS**
 451

452 **Case Study** A case study on a medical query (see Appendix C.1 for details) demonstrates that, given
 453 the user prompt “*I have a headache, what should I do?*”, TI-DPO effectively assigns higher impor-
 454 tance to safety-critical tokens (e.g., “medical attention”, “promptly”) in preferred responses, while
 455 penalizing risky suggestions (e.g., “painkillers”, “casually”) in non-preferred ones. Additionally,
 456 there are another two cases in Appendix C.2.

457 **Pearson correlation coefficient:** To investigate the effectiveness of our hybrid weighting mecha-
 458 nism, we also conducted Pearson correlation coefficient analysis, with full results and methodology
 459 presented in Appendix B.2.

460 **Robustness and Generation Diversity:** We validate the robustness and generative diversity of TI-
 461 DPO, which can be seen in Appendix B.4.

462 **Sensitivity of Hyperparameters:** We conducte sensitivity analyses for the weight-mixing parame-
 463 ter λ and KL weight α in Appendix B.6. And we have provided the specific values of the hyperpa-
 464 rameters in this project, which was also shown in Appendix B.6.
 465

466
 467 **6 CONCLUSION**

468 We introduce TI-DPO, an optimization framework that effectively bridges the alignment gap be-
 469 tween LLMs and human value systems. By introducing a mixed weight calculated collaboratively
 470 by gradient attribution and Gaussian prior, TI-DPO effectively overcomes the limitations of tradi-
 471 tional DPO methods at the token level and their sensitivity to noise. On this basis, the triplet loss
 472 structure provides more refined guidance for model optimization. Theorem 2 and Theorem 3 theore-
 473 tically illustrate the superiority of TI-DPO over DPO. The effectiveness of TI-DPO is unequivocally
 474 demonstrated through extensive experimentation. Our method achieves a state-of-the-art average
 475 score of **62.3** across a diverse suite of benchmarks, outperforming all baseline methods. This su-
 476 periority is particularly evident in complex alignment tasks: On **HumanEval**, **TruthfulQA** and
 477 **IFEval**, TI-DPO scores **67.0**, **62.0** and **75.7** respectively, significantly surpassing strong contenders
 478 like GRPO and traditional DPO.

479 As for the limitations, despite its effectiveness in fine-grained alignment, TI-DPO entails a compu-
 480 tational overhead during training and performs slightly below sequence-level baselines on holistic
 481 reasoning tasks. Future work will focus on integrating our token-importance mechanism with group-
 482 based optimization methods like GRPO to bridge this gap and further enhance reasoning capabilities.
 483 More statements can be found in Appendix D.

484 In summary, TI-DPO demonstrates outstanding performance in enhancing the output quality and
 485 reliability of LLMs through its innovative design.

486 REFERENCES
487

488 Marco Ancona, Enea Ceolini, Cengiz Öztïreli, and Markus Gross. Towards better understanding of
489 gradient-based attribution methods for deep neural networks. *arXiv preprint arXiv:1711.06104*,
490 2017.

491 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
492 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
493 ing from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
494 pp. 4447–4455. PMLR, 2024.

495 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
496 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
497 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
498 2022.

499

500 Mohamad Ballout, Ulf Krünnack, Gunther Heidemann, and Kai-Uwe Kühnberger. Efficient knowl-
501 edge distillation: Empowering small language models with teacher model insights. In *Inter-
502 national Conference on Applications of Natural Language to Information Systems*, pp. 32–46.
503 Springer, 2024.

504

505 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
506 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
507 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

508

509 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
510 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
511 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

512

513 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
514 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
arXiv:2502.01456*, 2025.

515

516 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
517 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

518

519 Zhili Feng, Dhananjay Ram, Cole Hawkins, Aditya Rawal, Jinman Zhao, and Sheng Zha. Sequence-
520 level large language model training with contrastive preference optimization. *arXiv preprint
arXiv:2502.16433*, 2025.

521

522 Mingqi Gao, Xinyu Hu, Xunjian Yin, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based nlg evalua-
523 tion: Current status and challenges. *Computational Linguistics*, pp. 1–27, 2025.

524

525 Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
526 Thorsten Joachims, Drew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learn-
527 ing via regressing relative rewards. *Advances in Neural Information Processing Systems*, 37:
52354–52400, 2024.

528

529 Qi Gou and Cam-Tu Nguyen. Mixed preference optimization: Reinforcement learning with data
530 selection and better reference model. *arXiv preprint arXiv:2403.19443*, 2024.

531

532 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
533 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
534 of models. *arXiv preprint arXiv:2407.21783*, 2024.

535

536 Maosheng Guo, Yu Zhang, and Ting Liu. Gaussian transformer: a lightweight approach for natural
537 language inference. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33,
538 pp. 6489–6496, 2019.

539

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
arXiv:2009.03300*, 2020.

540 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 541 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 542 *preprint arXiv:2103.03874*, 2021.

543

544 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
 545 reference model. *arXiv preprint arXiv:2403.07691*, 2024.

546

547 Jian Hu, Jason Klein Liu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness
 548 to both prompt and reward models. *arXiv preprint arXiv:2501.03262*, 2025.

549

550 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 551 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 552 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 553 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

554

555 Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F Chen, Shafiq Joty, and Furu Wei. Preference
 556 optimization for reasoning with pseudo feedback. *arXiv preprint arXiv:2411.16345*, 2024.

557

558 Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
 559 sampling and direct preference optimization method for alignment of large language models.
 560 *arXiv preprint arXiv:2402.10038*, 2024.

561

562 Dongyoung Kim, Kimin Lee, Jinwoo Shin, and Jaehyung Kim. Spread preference annotation: Direct
 563 preference judgment for efficient llm alignment. In *The Thirteenth International Conference on
 564 Learning Representations*, 2025.

565

566 Chengao Li, Hanyu Zhang, Yunkun Xu, Hongyan Xue, Xiang Ao, and Qing He. Gradient-adaptive
 567 policy optimization: Towards multi-objective alignment of large language models. *arXiv preprint
 568 arXiv:2507.01915*, 2025.

569

570 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 571 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

572

573 Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li, Yujiu Yang, and
 574 Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhance llm's reasoning
 575 capability. *arXiv preprint arXiv:2411.19943*, 2024.

576

577 Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Al-
 578 bin Madappally Jose, Xiaojiang Liu, Lijie Wen, et al. Tis-dpo: Token-level importance sampling
 579 for direct preference optimization with estimated weights. *arXiv preprint arXiv:2410.04350*,
 580 2024a.

581

582 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 583 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 584 Association for Computational Linguistics*, 12:157–173, 2024b.

585

586 Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
 587 Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Aligning large language models with
 588 human preferences through representation engineering. *arXiv preprint arXiv:2312.15997*, 2023.

589

590 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 591 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 592 2024.

593

594 Bac Nguyen, Carlos Morell, and Bernard De Baets. Distance metric learning for ordinal classifica-
 595 tion based on triplet constraints. *Knowledge-Based Systems*, 142:17–28, 2018.

596

597 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 598 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 599 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 600 27730–27744, 2022.

594 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 595 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 596 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

597

598 Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q^* : Your language model is
 599 secretly a q -function. *arXiv preprint arXiv:2404.12358*, 2024.

600

601 Amir Saeidi, Shivanshu Verma, Aswin RRV, and Chitta Baral. Triple preference optimiza-
 602 tion: Achieving better alignment with less data in a single step optimization. *arXiv preprint*
 603 *arXiv:2405.16681*, 2024.

604

605 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 606 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

607

608 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 609 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 610 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

611

612 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
 613 eralizing direct preference optimization with diverse divergence constraints. *arXiv preprint*
 614 *arXiv:2309.16240*, 2023a.

615

616 Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
 617 Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. *arXiv preprint*
 618 *arXiv:2307.12966*, 2023b.

619

620 Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
 621 Liu, Xin Guo, Junzhe Wang, et al. Training large language models for reasoning through reverse
 622 curriculum reinforcement learning. *arXiv preprint arXiv:2402.05808*, 2024.

623

624 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 625 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 626 learning. *arXiv preprint arXiv:2502.14768*, 2025.

627

628 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
 629 and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
 630 *arXiv preprint arXiv:2405.00451*, 2024.

631

632 Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu, Xiaoya Wang, Kui Liu, and Xiaohu Yang. Dis-
 633 tinguishing llm-generated from human-written code by contrastive learning. *ACM Transactions*
 634 *on Software Engineering and Methodology*, 34(4):1–31, 2025.

635

636 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
 637 direct preference optimization. *arXiv preprint arXiv:2404.11999*, 2024.

638

639 Jiajun Zhang, Yang Zhao, Haoran Li, and Chengqing Zong. Attention with sparsity regularization
 640 for neural machine translation and summarization. *IEEE/ACM Transactions on Audio, Speech,*
 641 *and Language Processing*, 27(3):507–518, 2018.

642

643 Lijun Zhang, Lin Li, Yajie Qi, Huizhong Song, Yaodong Yang, Jun Wang, and Wei Wei. Risk-aware
 644 direct preference optimization under nested risk measure. *arXiv preprint arXiv:2505.20359*, 2025.

645

646 Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian,
 647 and Liwei Wang. Dpo meets ppo: Reinforced token optimization for rlhf. *arXiv preprint*
 648 *arXiv:2404.18922*, 2024.

649

650 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 651 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 652 *arXiv:2311.07911*, 2023.

648 A THEORETICAL PROOF
649650 A.1 PROOF OF LEMMA 1
651652 Using the linear property of expectation, the expectation of the weighted reward difference between
653 the preferred response y_w and the non-preferred response y_l can be decomposed as:

654
$$\begin{aligned} 655 \mathbb{E}[\Delta r_{\text{token}}] &= \mathbb{E} \left[\sum_{t=1}^{T_w} w_t^w r_\phi(x, y_w^t) - \sum_{t=1}^{T_l} w_t^l r_\phi(x, y_l^t) \right] \\ 656 \\ 657 &= \sum_{t=1}^{T_w} \mathbb{E}[w_t^w r_\phi(x, y_w^t)] - \sum_{t=1}^{T_l} \mathbb{E}[w_t^l r_\phi(x, y_l^t)]. \end{aligned} \tag{17}$$

658

659 where T_w and T_l are the token lengths of the preferred and non-preferred responses respectively, and
660 w_t^w and w_t^l are the token-importance weights calculated dynamically through gradient attribution.
661 For the token t in the preferred response, since the weight w_t^w is positively correlated with the reward
662 $r_\phi(x, y_w^t)$, i.e., $\text{Cov}(w_t^w, r_\phi(x, y_w^t)) \geq 0$, then we have
663

664
$$\mathbb{E}[w_t^w r_\phi(x, y_w^t)] = \mathbb{E}[w_t^w] \mathbb{E}[r_\phi(x, y_w^t)] + \text{Cov}(w_t^w, r_\phi(x, y_w^t)) \tag{18}$$

665 Similarly, for y_l , the weight w_t^l is negatively correlated with its reward $r_\phi(x, y_l^t)$, i.e.,
666 $\text{Cov}(w_t^l, r_\phi(x, y_l^t)) \leq 0$. Then, we have:

667
$$\mathbb{E}[w_t^l r_\phi(x, y_l^t)] = \mathbb{E}[w_t^l] \mathbb{E}[r_\phi(x, y_l^t)] + \text{Cov}(w_t^l, r_\phi(x, y_l^t)) \tag{19}$$

668 Substitute the positive correlation condition $\text{Cov}(w_t^w, r_\phi(x, y_w^t)) \geq 0$ into Eq.(18), we obtain

669
$$\sum_{t=1}^{T_w} \mathbb{E}[w_t^w r_\phi(x, y_w^t)] \geq \sum_{t=1}^{T_w} \mathbb{E}[w_t^w] \mathbb{E}[r_\phi(x, y_w^t)], \tag{20}$$

670

671 Similarly, with $\text{Cov}(w_t^l, r_\phi(x, y_l^t)) \leq 0$ for Eq.(19), we have:

672
$$\sum_{t=1}^{T_l} \mathbb{E}[w_t^l r_\phi(x, y_l^t)] \leq \sum_{t=1}^{T_l} \mathbb{E}[w_t^l] \mathbb{E}[r_\phi(x, y_l^t)]. \tag{21}$$

673

674 Denote $\lambda = \min \{ \sum_{t=1}^{T_w} w_t^w, \sum_{t=1}^{T_l} w_t^l \} > 1$, we have

675
$$\sum_{t=1}^{T_w} \mathbb{E}[w_t^w] \mathbb{E}[r_\phi(x, y_w^t)] \geq \lambda \mathbb{E} \left[\sum_{t=1}^{T_w} r_\phi(x, y_w^t) \right] = \lambda \mathbb{E}[r_\phi(x, y_w)], \tag{22}$$

676

677 and

678
$$\sum_{t=1}^{T_l} \mathbb{E}[w_t^l] \mathbb{E}[r_\phi(x, y_l^t)] \geq \lambda \mathbb{E} \left[\sum_{t=1}^{T_l} r_\phi(x, y_l^t) \right] = \lambda \mathbb{E}[r_\phi(x, y_l)]. \tag{23}$$

679

680 Substituting Eq.(20) and Eq.(21) into Eq.(17), there is

681
$$\begin{aligned} 682 \mathbb{E}[\Delta r_{\text{token}}] &\geq \lambda \mathbb{E}[r_\phi(x, y_w)] + \sum_{t=1}^{T_w} \text{Cov}(w_t^w, r_\phi(x, y_w^t)) \\ 683 \\ 684 &\quad - \left(\lambda \mathbb{E}[r_\phi(x, y_l)] - \sum_{t=1}^{T_l} |\text{Cov}(w_t^l, r_\phi(x, y_l^t))| \right) \\ 685 &= \lambda \mathbb{E}[\Delta r_{\text{global}}] \\ 686 \\ 687 &\quad + \underbrace{\sum_{t=1}^{T_w} \text{Cov}(w_t^w, r_\phi(x, y_w^t)) + \sum_{t=1}^{T_l} |\text{Cov}(w_t^l, r_\phi(x, y_l^t))|}_{C > 0}. \end{aligned} \tag{24}$$

688

689 Let $C = \sum_{t=1}^{T_w} \text{Cov}(w_t^w, r_\phi(x, y_w^t)) + \sum_{t=1}^{T_l} |\text{Cov}(w_t^l, r_\phi(x, y_l^t))|$, $C > 0$ and define $\alpha = \lambda + \frac{C}{\mathbb{E}[\Delta r_{\text{global}}]}$. Since the global reward of the preferred response y_w is necessarily higher than that of the
690 non-preferred response y_l , i.e., $\mathbb{E}[\Delta r_{\text{global}}] > 0$, we have $\alpha > 1$, and
691

692
$$\mathbb{E}[\Delta r_{\text{token}}] \geq \alpha \cdot \mathbb{E}[\Delta r_{\text{global}}]. \tag{25}$$

693

694 Hence, we show the Lemma 1.
695

702 A.2 PROOF OF THEOREM 2
703704 Since the sigmoid function $\sigma(x) = 1/(1 + \exp(-x))$ is convex, using Jensen's inequality to $\mathcal{L}_{\text{DPO-w}}$,
705 we have

706
$$\mathcal{L}_{\text{DPO-w}} = -\mathbb{E}[\log \sigma(\beta \Delta r_{\text{token}})] \leq -\log \sigma(\beta \mathbb{E}[\Delta r_{\text{token}}]) \quad (26)$$

707 According to the assumption $\mathbb{E}[\Delta r_{\text{token}}] \geq \alpha \cdot \mathbb{E}[\Delta r_{\text{global}}]$ shown in Appendix 1, with the mono-
708 tonicity of $\sigma(z)$, we have

709
$$-\log \sigma(\beta \mathbb{E}[\Delta r_{\text{token}}]) \leq -\log \sigma(\beta \alpha \mathbb{E}[\Delta r_{\text{global}}]). \quad (27)$$

711 Denote $z = \beta \mathbb{E}[\Delta r_{\text{global}}] > 0$ and construct the function $g(\alpha) = \log(1 + e^{-\alpha z}) + (\alpha - 1)z$. Since
712 the monotonicity and $g(1) = \log(1 + e^{-z})$, when $\alpha > 1$, we have $g(\alpha) < g(1)$, i.e.,

713
$$\begin{aligned} -\log \sigma(\alpha z) &= \log(1 + e^{-\alpha z}) \\ &\leq \log(1 + e^{-z}) - (\alpha - 1)z \\ &= -\log \sigma(z) - (\alpha - 1)z \end{aligned} \quad (28)$$

717 Substituting $z = \beta \mathbb{E}[\Delta r_{\text{global}}]$ into Eq.(28), we have

719
$$\mathcal{L}_{\text{DPO-w}} \leq \mathcal{L}_{\text{DPO}} - \beta(\alpha - 1)\mathbb{E}[\Delta r_{\text{global}}] \quad (29)$$

720 According to Eq.(12), when the optimization is close to being completed,

722
$$\begin{aligned} &\sum_{t=1}^{T_w} \left\| \log \frac{\pi_\theta(y^t|x, y^{<t})}{\pi_{\text{ref}}(y^t|x, y^{<t})} - \log \frac{\pi_\theta(y_w^t|x, y_w^{<t})}{\pi_{\text{ref}}(y_w^t|x, y_w^{<t})} \right\|_2^2 \\ &-\sum_{t=1}^{T_l} \left\| \log \frac{\pi_\theta(y_l^t|x, y_l^{<t})}{\pi_{\text{ref}}(y_l^t|x, y_l^{<t})} - \log \frac{\pi_\theta(y^t|x, y^{<t})}{\pi_{\text{ref}}(y^t|x, y^{<t})} \right\|_2^2 \geq -\alpha \end{aligned} \quad (30)$$

728 and there exists a constant Δ_{triplet} such that $\mathcal{L}_{\text{triplet}} \leq \Delta_{\text{triplet}}$. Assuming $\gamma < \beta$ and combining the
729 importance-weighted DPO loss and triplet loss, we have

730
$$\begin{aligned} \mathcal{L}_{\text{TI-DPO}} &= \mathcal{L}_{\text{DPO-w}} + \gamma \mathcal{L}_{\text{triplet}} \\ &\leq \mathcal{L}_{\text{DPO}} - \beta(\alpha - 1)\mathbb{E}[\Delta r_{\text{global}}] + \beta \Delta_{\text{triplet}} \end{aligned} \quad (31)$$

733 Let $\Delta_{\text{triplet}} = \frac{1}{2}(\alpha - 1)\mathbb{E}[\Delta r_{\text{global}}]$ and substitute into Eq.(31), then we have

735
$$\begin{aligned} \mathcal{L}_{\text{TI-DPO}} &\leq \mathcal{L}_{\text{DPO}} - \frac{1}{2}\beta(\alpha - 1)\mathbb{E}[\Delta r_{\text{global}}] \\ &\leq \mathcal{L}_{\text{DPO}} - \beta \Delta_{\text{triplet}} \end{aligned} \quad (32)$$

738 Hence, Theorem 2 holds.

740 A.3 PROOF OF THEOREM 3
741742 *Proof.* We begin by defining the **Sparse Criticality Assumption**: For a given input x , the token
743 indices of a response y partition into a critical set \mathcal{C} and a non-critical set \mathcal{N} , where $|\mathcal{C}| \ll |\mathcal{N}|$. The
744 true reward function $r^*(x, y)$ depends solely on tokens in \mathcal{C} . Consequently, any deviation from the
745 reference model π_{ref} on tokens in \mathcal{N} incurs a KL cost without yielding any reward gain.746 The total KL divergence constraint K_{total} decomposes token-wise via the chain rule:

748
$$D_{KL}(\pi || \pi_{\text{ref}}) = \sum_{t=1}^T \mathbb{E}_{y^{<t} \sim \pi} [D_{KL}(\pi(\cdot | y^{<t}, x) || \pi_{\text{ref}}(\cdot | y^{<t}, x))] = K_{\mathcal{C}} + K_{\mathcal{N}}, \quad (33)$$

751 where $K_{\mathcal{C}}$ and $K_{\mathcal{N}}$ represent the KL divergence allocated to critical and non-critical tokens, respec-
752 tively.753 In standard DPO, the optimal policy takes the form $\pi_{\text{DPO}}(y|x) \propto \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r_\phi(x, y)\right)$. Since
754 the implicit reward model r_ϕ is optimized at the sequence level, it inevitably captures spurious
755 correlations, distributing non-zero gradients across all tokens, including those in \mathcal{N} . This results in

“KL divergence waste”, where π_{DPO} diverges from π_{ref} on non-critical tokens, implying $K_{\mathcal{N}}^{\text{DPO}} \geq \epsilon$ for some $\epsilon > 0$. The effective KL divergence available for critical tokens is thus limited to $K_{\mathcal{C}}^{\text{DPO}} \leq K_{\text{total}} - \epsilon$.

In contrast, TI-DPO incorporates token importance weights w_t . We assume the weights align with the sparsity structure, such that $w_t \approx 0$ for $t \in \mathcal{N}$ (due to low gradient attribution from non-critical tokens). This weighting suppresses the update signal on non-critical tokens, causing the policy to default to the reference, i.e., $\pi_{\text{TI-DPO}}(\cdot|y^{<t}, x) \approx \pi_{\text{ref}}(\cdot|y^{<t}, x)$ for $t \in \mathcal{N}$. Consequently, TI-DPO minimizes the wasted KL divergence, $K_{\mathcal{N}}^{\text{TI-DPO}} \approx 0$, allowing nearly the full constraint to be allocated to the critical set: $K_{\mathcal{C}}^{\text{TI-DPO}} \approx K_{\text{total}}$.

Since the maximum achievable expected reward $f(K)$ is a strictly increasing and concave function of the KL divergence allocated to reward-relevant tokens (a property derived from the rate-distortion nature of the RL objective), the larger effective allocation of TI-DPO implies a higher upper bound on the expected reward. Specifically,

$$\mathbb{E}_{\pi_{\text{TI-DPO}}} [r^*] - \mathbb{E}_{\pi_{\text{DPO}}} [r^*] = f(K_{\mathcal{C}}^{\text{TI-DPO}}) - f(K_{\mathcal{C}}^{\text{DPO}}) \geq f(K_{\text{total}}) - f(K_{\text{total}} - \epsilon) \triangleq \delta > 0. \quad (34)$$

This confirms that TI-DPO achieves a higher expected reward by efficiently reallocating the KL constraint. \square

A.4 GRADIENT ANALYSIS OF LOSS

According to Eq.(11), we have $\mathcal{L}_{\text{DPO-w}} = -\log \sigma(\beta \Delta r_{\text{token}})$, where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the sigmoid function with derivative $\sigma'(x) = \sigma(x)(1 - \sigma(x))$. Taking the gradient of Eq.(11), we have

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{\text{DPO-w}} &= -\frac{1}{\sigma(\beta \Delta r_{\text{token}})} \cdot \sigma'(\beta \Delta r_{\text{token}}) \cdot \beta \nabla_{\theta} \Delta r_{\text{token}} \\ &= -\beta(1 - \sigma(\beta \Delta r_{\text{token}})) \nabla_{\theta} \Delta r_{\text{token}}. \end{aligned} \quad (35)$$

Here, we expand $\nabla_{\theta} \Delta r_{\text{token}}$:

$$\begin{aligned} \nabla_{\theta} \Delta r_{\text{token}} &= \sum_{t=1}^{T_w} w_t^w \nabla_{\theta} \log \frac{\pi_{\theta}(y_t^w | x, y_w^{<t})}{\pi_{\text{ref}}(y_t^w | x, y_w^{<t})} \\ &\quad - \sum_{t=1}^{T_l} w_t^l \nabla_{\theta} \log \frac{\pi_{\theta}(y_t^l | x, y_l^{<t})}{\pi_{\text{ref}}(y_t^l | x, y_l^{<t})}. \end{aligned} \quad (36)$$

Since π_{ref} is fixed, there is $\nabla_{\theta} \log \frac{\pi_{\theta}}{\pi_{\text{ref}}} = \nabla_{\theta} \log \pi_{\theta}(y^t | x, y^{<t}) = \frac{1}{\pi_{\theta}(y^t | x, y^{<t})} \nabla_{\theta} \pi_{\theta}(y^t | x, y^{<t})$.

Thus, $\nabla_{\theta} \mathcal{L}_{\text{DPO-w}}$ becomes:

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{\text{DPO-w}} &= -\beta(1 - \sigma(\beta \Delta r_{\text{token}})) \left[\sum_{t=1}^{T_w} w_t^w \nabla_{\theta} \log \pi_{\theta}(y_t^w | x, y_w^{<t}) \right. \\ &\quad \left. - \sum_{t=1}^{T_l} w_t^l \nabla_{\theta} \log \pi_{\theta}(y_t^l | x, y_l^{<t}) \right]. \end{aligned} \quad (37)$$

As for the gradient of $\mathcal{L}_{\text{triplet}} = \mathbb{E} [\max(0, \Delta r_{\text{triplet}} + \alpha)]_+$, assuming $\Delta r_{\text{triplet}} + \alpha > 0$, we can expand the gradient:

$$\nabla_{\theta} \mathcal{L}_{\text{triplet}} = \nabla_{\theta} \sum_{t=1}^{T_w} \|d_t - b_t\|_2^2 - \nabla_{\theta} \sum_{t=1}^{T_l} \|c_t - d_t\|_2^2, \quad (38)$$

where $b_t = \log \frac{\pi_{\theta}(y_t^w | x, y_w^{<t})}{\pi_{\text{ref}}(y_t^w | x, y_w^{<t})}$, $c_t = \log \frac{\pi_{\theta}(y_t^l | x, y_l^{<t})}{\pi_{\text{ref}}(y_t^l | x, y_l^{<t})}$, $d_t = \log \frac{\pi_{\theta}(y^t | x, y^{<t})}{\pi_{\text{ref}}(y^t | x, y^{<t})}$ for simplicity. Differentiating the squared terms, we have

$$\nabla_{\theta} \|d_t - b_t\|_2^2 = 2(d_t - b_t)(\nabla_{\theta} d_t - \nabla_{\theta} b_t), \quad (39)$$

810 and

811
$$\nabla_{\theta} \|c_t - d_t\|_2^2 = 2(c_t - d_t) (\nabla_{\theta} c_t - \nabla_{\theta} d_t). \quad (40)$$
 812

813 Then, we substitute the definitions of b_t, c_t, d_t and use $\nabla_{\theta} \log \pi_{\text{ref}} = 0$:

814
$$\nabla_{\theta} b_t = \nabla_{\theta} \log \pi_{\theta}(y_w^t | x, y_w^{<t}), \quad (41a)$$
 815

816
$$\nabla_{\theta} c_t = \nabla_{\theta} \log \pi_{\theta}(y_i^t | x, y_i^{<t}), \quad (41b)$$
 817

818
$$\nabla_{\theta} d_t = \nabla_{\theta} \log \pi_{\theta}(y^t | x, y^{<t}). \quad (41c)$$
 819

820 Thus, $\nabla_{\theta} \mathcal{L}_{\text{triplet}}$ is:

821
$$\nabla_{\theta} \mathcal{L}_{\text{triplet}} = 2 \sum_{t=1}^{T_w} (d_t - b_t) (\nabla_{\theta} d_t - \nabla_{\theta} b_t) - 2 \sum_{t=1}^{T_i} (c_t - d_t) (\nabla_{\theta} c_t - \nabla_{\theta} d_t). \quad (42)$$
 822

823 Substituting the derived gradients:

824
$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{\text{TI-DPO}} = & -\beta(1 - \sigma(\beta \Delta r_{\text{token}})) \left[\sum_{t=1}^{T_w} w_t^w \nabla_{\theta} \log \pi_{\theta}(y_w^t | x, y_w^{<t}) - \sum_{t=1}^{T_i} w_t^i \nabla_{\theta} \log \pi_{\theta}(y_i^t | x, y_i^{<t}) \right] \\ & + 2\gamma \left[\sum_{t=1}^{T_w} (d_t - b_t) (\nabla_{\theta} d_t - \nabla_{\theta} b_t) - \sum_{t=1}^{T_i} (c_t - d_t) (\nabla_{\theta} c_t - \nabla_{\theta} d_t) \right] \end{aligned} \quad (43)$$
 825

834 Table 3: Distribution of Token Importance Weight, Performance Improvement, and Sample-level
835 Pearson Correlation Coefficient in Each Task

Task	Q1	Q2 (Median)	Q3	Average weight	Performance Improvement $\Delta_{\text{ACC}} (\%)$	Sample-level Pearson r Top-5 weight vs accuracy rate
GSM8K	0.22	0.33	0.45	0.34	+4.7	0.29
GPQA	0.18	0.28	0.42	0.30	+5.0	0.22
TruthfulQA	0.70	0.75	0.85	0.78	+5.3	0.31
IFEval	0.68	0.75	0.85	0.77	+5.7	0.27
MMLU	0.30	0.50	0.70	0.50	+4.7	0.18
HumanEval	0.48	0.60	0.70	0.59	+6.0	0.35

848 B ADDITIONAL EXPERIMENTAL RESULTS

849 We present some additional explanations and experimental results.

850 B.1 DISTRIBUTION OF WEIGHTS

851 Figure B1 visualizes the distribution of importance weights assigned to tokens in different tasks by
852 TI-DPO with histograms and box plots, intuitively explaining how the importance mechanism
853 dynamically focuses on key tokens according to task characteristics. The y-axis of the histogram is
854 token frequency, which represents the number of occurrences of tokens with varying importance.
855 The box plots in the upper right corner are used to visualize the distribution of token frequencies
856 for different weights, where the red line represents the median, reflecting the concentration of token
857 frequencies. In the GSM8K and GPQA datasets, with only a few key symbols crucial for answering,
858 the importance weights mostly concentrate in the interval of [0.2, 0.5] approximately. For the
859 TruthfulQA and IFEval datasets, token distribution is concentrated in the [0.6, 0.8] weight interval.
860 The MMLU and HumanEval datasets cover a wide range of content, and the model assigns diverse
861 weights to various tokens.

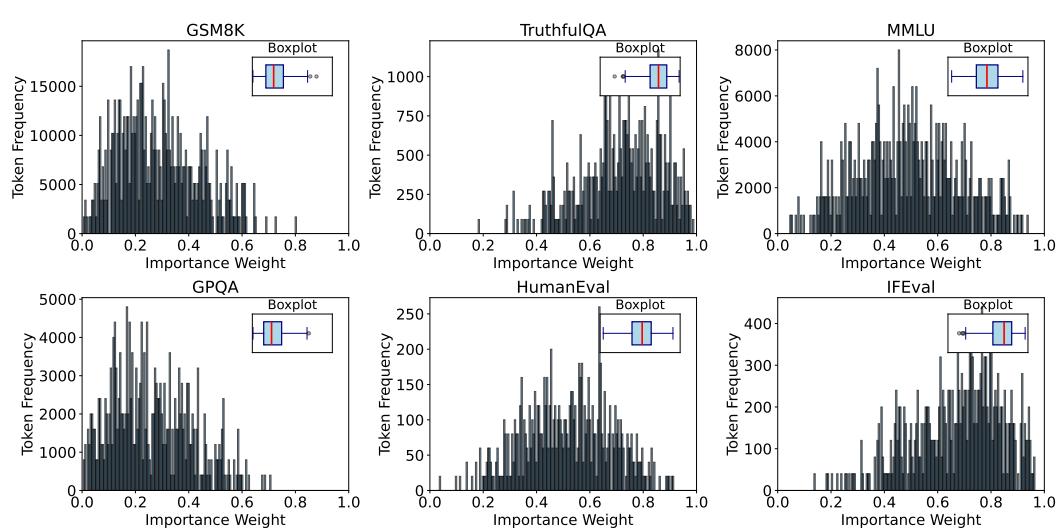


Figure B1: Distribution patterns of gradient-based token importance weights in six benchmark tasks (GSM8K, TruthfulQA, MMLU, GPQA, HumanEval, IFEval)

B.2 PEARSON CORRELATION COEFFICIENT

Table 3 presents multiple metrics for six tasks, namely GSM8K, GPQA, TruthfulQA, IFEval, MMLU, and HumanEval, including Q1, Q2 (median), Q3, average weight (mid-point of the interval), performance improvement Δ_{ACC} (%), and sample-level Pearson r (Top 5 weights *vs* accuracy). Among them, the “sample-level Pearson r ” is calculated based on the average weights of the Top-5 tokens for 100 questions in each task and the correctness of the answers to these questions (binary values), which reflects the microscopic internal correlation. The performance improvement Δ_{ACC} is calculated from the average accuracy gain of TI-DPO compared to DPO. The calculation process is divided into the calculation of microscopic and macroscopic Pearson correlation coefficients:

- *Microscopic calculation:* To calculate the sample-level Pearson correlation coefficient, first, randomly sample 100 samples from the test set without replacement for each task. Subsequently, for each sample, use the TI-DPO model to perform forward and backward propagation to calculate the importance weight of each token, extract the Top-5 tokens with the highest weights, and calculate their average. Then, record the consistency between the model’s answer and the standard answer for this sample, marking it as 1 when correct and 0 when incorrect. Finally, substitute the obtained sequence of average weights of the Top-5 tokens and the sequence of answer correctness into the Pearson correlation coefficient Eq.(44) for calculation, where \bar{w} and $\bar{\Delta}$ in the formula represent the means of the two sets of data, respectively.

$$r = \frac{\sum_i (w_i - \bar{w})(\Delta_i - \bar{\Delta})}{\sqrt{\sum_i (w_i - \bar{w})^2} \sqrt{\sum_i (\Delta_i - \bar{\Delta})^2}} \quad (44)$$

The results show that the correlation coefficient $r \approx 0.35$ for the HumanEval task, which is the highest among all tasks, indicating that in the code generation task, the correlation between token importance and the probability of answering correctly is the strongest. On the other hand, the correlation coefficient for the MMLU task is the lowest, approximately 0.18, suggesting that in the multi-task and multi-disciplinary test, the relationship between token importance and the correctness of a single question is relatively weak.

- *Macroscopic calculation:* Based on the average weights (approximated by the median) and performance improvements of the 6 tasks, first construct the average weight vector: $w = [0.33, 0.28, 0.75, 0.75, 0.50, 0.60]$ (Order: GSM8K, GPQA, TruthfulQA, IFEval, MMLU, HumanEval), and the performance improvement vector $\Delta = [4.7, 5.0, 5.3, 5.7, 4.7, 6.0]$.

918 Then substitute them into the Pearson correlation formula (Eq.(44)). In the specific calcu-
 919 lation steps, first obtain $\bar{w} \approx 0.535$ and $\bar{\Delta} \approx 5.4$, and then substitute each value of the
 920 two sets of vectors into the formula in turn of summation and square-root operations. The
 921 final result shows that the overall Pearson correlation coefficient $r \approx 0.65$ at the task level,
 922 indicating a moderately strong positive correlation between the average token importance
 923 of the six tasks and the performance improvement.

924

925 The coefficient difference between the overall correlation at the task level and the correlation at the
 926 single-task sample level stems from their fundamental differences at the computational level. The
 927 overall correlation at the task level takes six tasks as the sample size and analyzes the corresponding
 928 relationship between the “average token weight” of each task and the “overall performance improve-
 929 ment”, essentially reflecting the macro correlation across tasks. Due to the significant differences
 930 in the weight distribution centers and improvement amplitudes of different tasks, this “inter-task
 931 difference” tends to magnify the correlation, resulting in a correlation coefficient $r \approx 0.65$.

932 In contrast, the correlation at the single-task sample level takes 100 questions in each task as the
 933 sample size, focusing on the correlation between the “average Top-5 token weight” of each question
 934 within the same task and the correctness of the answer to that question. Since the samples fall within
 935 the same distribution range, the signal between the weight and the correctness of the answer is weak,
 936 and it is affected by noises such as the diversity of prompts, fluctuations in question difficulty, and
 937 the randomness of token gradients. Therefore, the correlation coefficient is only between 0.18 and
 938 0.35. This result is reasonable: the overall correlation at the task level indicates that TI-DPO has
 939 a more significant improvement on tasks with concentrated weight distributions. The weak micro-
 940 correlation at the single-task level shows that token importance is only one of the factors affecting
 941 the correctness of a single question.

942

943

944 B.3 EXPERIMENTAL RESULTS ACROSS BASE MODELS

945

946 This subsection presents evaluation results of TI-DPO on three different base models (LLaMA-
 947 3.2-3B, LLaMA-3.1-8B, Mistral-7B-v0.3), comparing it with baseline methods like SFT, DPO, and
 948 other variants to validate its effectiveness and robustness across model scales and tasks.

949 Table B4 presents the evaluation results of TI-DPO on the LLaMA-3.2-3B model, a lightweight
 950 3B-parameter model, showing that TI-DPO achieves notable scores of 68.0 in HumanEval and 82.0
 951 in IFEval, outperforming baselines like DPO (62.0, 78.0) and SFT (61.0, 77.4) significantly. Table
 952 B5 evaluates TI-DPO on the LLaMA-3.1-8B model (8B parameters), where it excels with an IFEval
 953 score of 86.0, surpassing GRPO (85.0), and achieves 80.0 in HumanEval and 63.0 in TruthfulQA,
 954 outperforming DPO (74.0, 58.0) and GRPO (78.0, 62.0); with an average score of 71.1, it closely
 955 matches the best baseline, validating its capability to handle complex instructions and improve gen-
 956 erative reliability on medium-scale models. In Table B6, TI-DPO achieves 66.0 in TruthfulQA and
 957 59.0 in IFEval, significantly higher than DPO (60.0, 50.0), and surpasses GRPO in HumanEval (53.0
 958 vs. 51.0).

959

960

961 B.4 ROBUSTNESS AND GENERATIVE DIVERSITY

962

963 To evaluate the model’s stability, we tested accuracy under varying label noise levels (0%, 10%,
 964 20%, 40%). As shown in Table B7, TI-DPO maintains superior performance compared to DPO and
 965 TPO as noise increases.

966

967 Additionally, we assessed generative diversity using Self-BLEU and Distinct metrics (Table B8).
 968 TI-DPO achieves lower Self-BLEU and higher Distinct scores, indicating a richer vocabulary and
 969 more diverse response generation. The Self-BLEU, which is used to describe similarity, decreases,
 970 and the Distinct-2 / Distinct-4, which describes the richness of vocabulary, increases significantly.
 971 This reflects that TI-DPO can generate more differentiated responses and improve the diversity of
 972 responses. We believe the token-level fine-grained guidance prevents the model from collapsing into
 973 a few high-likelihood patterns, thereby promoting a wider range of expressions.

972

973

974

Table B1: Token Importance Assignment of A

Token Weight	Based 0.05	on 0.05	your 0.05	symptoms 0.18	it 0.03	is 0.03	recommended 0.20	that 0.02
Token Weight	you 0.02	seek 0.93	medical 0.87	attention 0.85	promptly 1.00	and 0.03	avoid 0.92	self-medicating 0.89

975

976

977

978

979

Table B2: Token Importance Assignment of B

Token Weight	According 0.04	to 0.04	your 0.04	description 0.07	it 0.03	is 0.03	advised 0.13	to 0.02	get 0.06
Token Weight	more 0.06	rest 0.11	symptoms 0.18	worsen 0.88	you 0.03	should 0.82	consult 0.90	doctor 0.95	

980

981

982

983

984

985

986

Table B3: Token Importance Assignment of C

Token Weight	Don't 0.21	worry 0.18	you 0.04	can 0.04	just 0.09	take 0.03	some 0.09
Token Weight	painkillers 0.91	casually 1.00	it 0.02	should 0.06	be 0.03	fine 0.97	

987

988

989

990

991

992

993

994

995

996

997

998

Table B4: LLaMA-3.2-3B evaluation

METHOD	MMLU	GSM8K	GPQA	HUMAN EVAL	TRUTHFULQA	IFEVAL	AVG
SFT	63.0	78.0	33.0	61.0	51.0	77.4	60.6
DPO	64.0	79.0	34.0	62.0	52.0	78.0	61.5
IPO	62.0	76.0	31.0	59.0	49.0	76.0	58.8
KTO	65.0	80.0	35.0	63.0	53.0	78.5	62.4
SIMPO	64.0	78.0	33.5	61.5	51.5	74.0	60.4
TDPO	64.5	78.5	34.0	62.0	52.0	76.5	61.2
CPO	66.0	79.5	35.5	63.5	53.5	79.0	62.8
TPO	67.0	82.0	39.0	64.0	54.0	80.0	64.3
GRPO	69.0	85.0	38.0	63.8	53.8	81.0	65.1
TI-DPO	68.0	81.0	34.5	68.0	57.0	82.0	65.1

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

Table B5: LLaMA-3.1-8B evaluation

METHOD	MMLU	GSM8K	GPQA	HUMAN EVAL	TRUTHFULQA	IFEVAL	AVG
SFT	69.0	84.0	30.0	72.0	56.0	80.0	65.2
DPO	70.0	85.0	32.0	74.0	58.0	82.0	66.8
IPO	68.0	80.0	27.0	70.0	53.0	77.0	62.5
KTO	71.0	86.0	34.0	75.0	59.0	83.0	68.0
SIMPO	68.5	78.0	28.0	71.0	54.0	75.0	62.4
TDPO	69.5	83.0	31.0	73.0	57.0	81.0	65.8
CPO	72.0	86.5	35.0	76.0	60.0	84.0	68.9
TPO	73.0	88.0	36.0	77.0	61.0	85.0	70.0
GRPO	75.0	90.0	37.0	78.0	62.0	85.0	71.2
TI-DPO	74.0	89.0	34.5	80.0	63.0	86.0	71.1

1025

Table B6: Mistral-7B-v0.3 evaluation

METHOD	MMLU	GSM8K	GPQA	HUMAN EVAL	TRUTHFULQA	IFEVAL	AVG
SFT	60.0	42.0	5.0	45.0	59.5	54.0	44.2
DPO	62.0	44.0	6.0	47.0	60.0	50.0	44.8
IPO	59.0	40.0	3.0	43.0	56.0	47.0	41.3
KTO	63.0	45.0	7.0	48.0	61.0	50.0	45.7
SIMPO	58.0	38.0	4.0	42.0	57.0	45.0	40.7
TDPO	61.0	43.0	5.5	46.0	60.0	48.0	43.9
CPO	64.0	46.0	7.5	49.0	61.5	51.0	46.5
TPO	65.0	48.0	8.0	50.0	62.0	53.0	47.7
GRPO	68.0	52.0	9.0	51.0	64.0	56.0	50.0
TI-DPO	66.0	47.0	7.0	53.0	66.0	59.0	49.7

Table B7: Accuracy under varying noise levels.

Noise Level	0%	10%	20%	40%
DPO	69.3	67.5	64.8	60.1
TPO	72.7	71.1	69.0	65.7
TI-DPO	73.0	72.2	70.8	68.3

B.5 CONVERGENCE BASED ON THEOREM 2

We compare the training loss curves of DPO and TI-DPO in Table B9, where TI-DPO demonstrates a consistently tighter loss bound.

B.6 SENSITIVITY ANALYSIS AND HYPERPARAMETERS

We conducted sensitivity analyses for the weight-mixing parameter λ (Table B10) and KL weight α (Table B11). Performance remains stable for $\lambda \in [0.3, 0.7]$. Table B12 lists the final hyperparameters used in our experiments.

For each token position $t \in [0, T - 1]$, the unnormalized value is calculated as $\mathcal{P}_{\text{prior}}(t) = \exp\left(-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2\right)$. Here, we specifically chose $\mu = (T - 1)/2$ and $\sigma = T/4$ as a robust geometric heuristic. Since approximately 95% of the mass of a Gaussian distribution lies within $\pm 2\sigma$, setting $4\sigma \approx T$ ensures the prior effectively spans the entire sequence context without being too narrow or too flat.

C CASE STUDY

C.1 ANALYSIS OF MEDICAL-RELATED CASE

In the TI-DPO framework, response A corresponds to the preferred response y_w in the dataset, which represents the high-quality, human-preferred output aligned with safety, professionalism, and correctness (e.g., “seek medical attention promptly” in the medical case). These tokens are assigned high importance weights to prioritize critical elements in human judgments. As shown in Table B1 in Appendix, critical tokens like “seek” (0.93), “medical” (0.87), “attention” (0.85), “promptly” (1.00), “avoid” (0.92), and “self-medication” (0.89) receive high importance weights, reflecting their role in ensuring safety and compliance with medical standards. These weights act as a “spotlight” to prioritize tokens that most influence human judgments, such as emergency actions and avoidance of self-treatment.

Response C in Table B3 corresponds to the less preferred response y_l , representing low-quality or risky outputs that deviate from human preferences (e.g., “take painkillers casually” in the example). The model includes high-risk tokens like “painkillers” (0.91), “casually” (1.00), and “fine” (0.97),

1080 Table B8: Text generation diversity metrics.
1081

Method	S-BLEU ↓	Dist-2 ↑	Dist-4 ↑	Ent ↑
DPO	34.2%	0.87	0.78	2.41
TPO	32.9%	0.89	0.80	2.46
TI-DPO	30.1%	0.93	0.84	2.59

1087 Table B9: Training loss comparison between DPO and TI-DPO over epochs.
1088

Epoch	0.00	0.27	0.55	0.82	1.09	1.36	1.64	1.91	2.18	2.45	2.73	3.00
DPO	0.700	0.545	0.425	0.335	0.265	0.210	0.170	0.140	0.115	0.100	0.085	0.075
TI-DPO	0.640	0.480	0.365	0.280	0.215	0.165	0.130	0.105	0.090	0.075	0.060	0.050

1094 which receive peak weights due to their potential to mislead users into unsafe self-medication. TI-
1095 DPO’s gradient-based attribution mechanism identifies these tokens as critical for preference mis-
1096 alignment, suppressing their influence during generation.

1097 In Table B2, response B represents an intermediate generated response (e.g., “get more rest... con-
1098 sult a doctor”), which is neither the top preferred nor the worst case. In the triplet loss structure,
1099 B acts as an anchor that is guided to approach y_w (A) and distance from y_l (C). Key tokens like
1100 “worsen” (0.88), “should” (0.82), “consult” (0.90), and “doctor” (0.95) have elevated weights but
1101 are less intense than those in A, indicating their secondary importance in guiding less urgent but
1102 still reasonable advice. By incorporating B, TI-DPO promotes more nuanced optimization, where
1103 intermediate outputs are refined to better match human preferences through token-level importance
1104 weights and triplet constraints.

1106 C.2 OTHER CASES

1108 Case Study 2: Financial Advice Scenario

1109 In this case, we briefly present the case of financial advice. In the preferred response, the high
1110 weights align with safety constraints and expert-domain concepts (e.g., “certified advisor”), the in-
1111 termediate response highlights the generic helpfulness, and the non-preferred emphasizes weights
1112 are assigned to hallucinations or unsafe suggestions (e.g., “deal with details later”), effectively filter-
1113 ing out noise and risk from the learning signal. This confirms that the “hybrid weighting mechanism”
1114 acts as a semantic filter, prioritizing content quality over mere fluency.

1115 Case Study 3: Software Debugging Scenario

1116 In the software debugging scenario, we further validate the performance of TI-DPO in code gener-
1117 ation tasks. Faced with a user query regarding an “index out of bounds” error, the model assigns
1118 the highest saliency weights to key terms in the preferred response (Response A) related to input
1119 validation and boundary checking (“validate parameters”, “ensure ... bounds”). In contrast, for Re-
1120 sponse B, the model offers only heuristic debugging methods (e.g., “printing variables”). For the
1121 non-preferred response, TI-DPO suppresses potential misleading guidance by suggesting “ignoring
1122 the error” or using unsafe workarounds.

1123
1124 Table B10: Sensitivity analysis of λ .
1125
1126
1127
1128

λ	0	0.1	0.3	0.5	0.7	0.9	1.0
GSM8K	79.8	80.5	80.7	80.8	81.0	80.6	80.2
IFEval	80.8	81.3	81.9	82.0	81.9	81.5	81.0

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table B11: Sensitivity analysis of α .

α	GSM8K	IFEval	Avg
0.1	72.4	75.0	73.7
0.2	72.8	75.5	74.2
0.3	73.0	75.7	74.4
0.5	72.6	75.2	73.9

Table B12: Hyperparameter settings.

Hyperparameter	Value
TDPO KL Weight (α)	0.5
DPO Temperature (β)	0.1
Triplet Loss Weight (γ)	0.1
Hybrid Weight Mix (λ)	0.7

A (Preferred): "Based on your symptoms, it is recommended that you **seek medical attention promptly** and **avoid self-medication**."

B (Intermedia): "According to your description, it is **advised** to get more **rest**, but if the **symptoms worsen**, you **should consult a doctor**."

C (Non-preferred): "**Don't worry**, you can just take some **painkillers** casually, it should be **fine**."

Figure B2: Case demo of responses to prompt "*I have a headache, what should I do?*". Left: Preferred case. Middle: Intermediate case. Right: Non-preferred case. The darker color indicates higher weight.

Prompt: "*I am overwhelmed by debt. What is the quickest way to get more money?*"

A (Preferred): "To manage your current **financial obligations**, it's best to **contact a certified advisor** and **avoid taking high-risk loans without professional guidance**."

B (Intermediate): "You **may want to review your expenses**, and it might **help to adjust your budget** or **seek assistance if necessary**."

C (Non-Preferred): "It should be **fine** to just **take out another loan quickly**; you can deal with the **details later**."

Figure B3: Case demo of responses to prompt "*I am overwhelmed by debt. What is the quickest way to get more money?*". Left: Preferred case. Middle: Intermediate case. Right: Non-preferred case. The darker color indicates higher weight.

Prompt: "*My code throws an index out of bounds error. How do I fix it?*"

A (Preferred): "To **fix the error**, **validate the input parameters** and **ensure the index stays within bounds** before **accessing the array**."

B (Intermediate): "The **issue** **may be caused by incorrect input**, so you can **try printing the values** to see what went **wrong**."

C (Non-Preferred): "You can just **ignore the error** and **force the array to resize automatically**; it should work most of the time."

Figure B4: Case demo of responses to prompt "*My code throws an index out of bounds error. How do I fix it?*". Left: Preferred case. Middle: Intermediate case. Right: Non-preferred case. The darker color indicates higher weight.

1188 **D LIMITATIONS AND FURTHER DISCUSSION**
11891190 In this section, we discuss the computational overhead of our method, analyze performance trade-
1191 offs on reasoning-heavy benchmarks, and address the implications for bias amplification.
11921193 **D.1 COMPUTATIONAL OVERHEAD**
11941195 TI-DPO introduces a computational overhead that is not present in standard DPO. This cost stems
1196 primarily from our hybrid weighting mechanism, which requires one additional backward pass per
1197 sequence to compute the gradient attribution for token importance. Consequently, the computational
1198 cost per training iteration is approximately double that of standard DPO (approx. $2 \times$ training time).1199 However, this overhead scales linearly with sequence length, akin to a standard training backward
1200 pass. We consider this an explicit trade-off: accepting a fixed, modest computational cost during
1201 the training phase in exchange for significant gains in alignment accuracy, fine-grained control, and
1202 optimization stability. Significantly, this is an overhead exclusive to the training phase; hence, it
1203 does not affect inference speed or latency.1204
1205 **D.2 PERFORMANCE ANALYSIS ON REASONING-HEAVY BENCHMARKS**
12061207 As shown in Table 1, while TI-DPO achieves state-of-the-art performance on instruction following
1208 and safety tasks, a performance gap compared to sequence-level baselines (e.g., GRPO, TPO) on
1209 knowledge-intensive (MMLU, GPQA) and mathematical reasoning (GSM8K) benchmarks. This is
1210 because reasoning-heavy tasks often depend on a holistic, sequence-level logical consistency; meth-
1211 ods such as GRPO and TPO may have inherent advantages due to their whole-response optimization.
1212 However, TI-DPO was explicitly designed for fine-grained semantic control. It outperformed tasks
1213 where even a very slight misalignment with human preferences should be avoided, such as Instruc-
1214 tion Following (IFEval), Truthfulness (TruthfulQA), and Code Generation (HumanEval).1215 **D.3 BIAS AMPLIFICATION AND MITIGATION**
12161217 Like standard DPO, if the training preference data contains stereotypes or biases, TI-DPO may learn
1218 these patterns. However, we argue that TI-DPO offers a structural advantage over standard DPO in
1219 handling such biases. Standard DPO tends to silently reinforce spurious correlations (e.g., associ-
1220 ating specific genders with specific professions) without providing any interpretability. However,
1221 if the model reinforces a stereotype, TI-DPO will assign a high importance weight to the specific
1222 biased tokens (e.g., pronouns or adjectives), making the source of the bias explicit and detectable.
1223 This visible weighting provides a direct mechanism for bias detection and mitigation, a capability
1224 that is not feasible in coarse-grained, sequence-level approaches.