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ABSTRACT

Aligning Large Language Models (LLMs) with human preferences is crucial for
safe and effective AI interactions. While popular methods like Direct Preference
Optimization (DPO) have simplified alignment, they remain sensitive to data noise
and overlook the differential importance of individual tokens. Existing token-level
approaches often rely on probability prediction or simplistic weighting schemes
to obtain token importance, which still cannot fully address these issues. To solve
this problem, we propose the Token-Importance Guided Direct Preference Op-
timization (TI-DPO), a framework that achieves fine-grained semantic control
through two synergistic innovations. First, we propose a novel hybrid weight-
ing mechanism that combines gradient attribution with a Gaussian prior, ensuring
both the accuracy and robustness of token importance scores. Second, we em-
ploy a triplet loss to provide structured guidance for the optimization, explicitly
guiding model outputs to approach preferred responses and diverge from non-
preferred ones. Experimental results show that TI-DPO achieves higher accuracy
and stronger generative diversity, providing more stable and computationally ef-
ficient solutions compared with DPO and other RLHF methods. Code and demo
are available at https://anonymous.4open.science/r/TI-DPO.

1 INTRODUCTION

Large Language Models (LLMs) have shown proficiency in Natural Language Processing (NLP)
(Gao et al., 2025), logical reasoning (Xie et al., 2025), and code generation (Xu et al., 2025), emerg-
ing as a focal point of recent research. However, as models may generate outputs inconsistent with
intended purposes or ethical standards, human preference alignment aims to ensure that LLMs ad-
here to human values (Liu et al., 2023), producing beneficial and harmless content. Against this
backdrop, Reinforcement Learning from Human Feedback (RLHF) has become a prevailing ap-
proach for achieving alignment (Hong et al., 2024; Hu et al., 2025). It leverages human-annotated
preference data to train reward models and fine-tunes LLMs using Reinforcement Learning (RL)
methods (Wang et al., 2023b) like Proximal Policy Optimization (PPO) (Schulman et al., 2017).

The emergence of Direct Preference Optimization (DPO) has effectively simplified the alignment
process (Rafailov et al., 2023). Inspired by DPO’s implicit reward mechanism, a series of preference
optimization models have been proposed in recent years, such as ORPO (Hong et al., 2024), f-
DPO (Wang et al., 2023a), and CPO (Feng et al., 2025). However, both DPO and RLHF have a
fundamental flaw during optimization: they optimize at the sequence level, leading to the neglect of
the influence of specific tokens, which in turn destabilizes the training process due to shifts in the
sampling distribution (Zhang et al., 2025).

Motivated by these challenges, researchers have proposed token-level variants of DPO, aiming to de-
compose preference alignment into fine-grained contributions ((Zeng et al., 2024; Xie et al., 2025;
Zhong et al., 2024)). However, achieving true fine-grained alignment requires addressing a core
challenge: We not only need to accurately identify the key tokens that have a decisive impact on
human preferences, but also need a subtle optimization objective to guide the model to adjust its
preference (Li et al., 2025). Nevertheless, existing token-level methods fall short in dealing with
this challenge for two reasons. First, their approaches to identifying key tokens often rely on biased
probability proxies (Liu et al., 2024a) or overly simplified weighting schemes (Lin et al., 2024).
Second, the optimization, they still inherit the binary comparison framework of DPO, simply distin-
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guishing between “good” and “bad” samples (Meng et al., 2024). Such coarse-grained supervision
signals cannot finely shape the model’s generation behavior in a continuous semantic space.

In our Token-Importance Guided Direct Preference Optimization (TI-DPO) framework, we intro-
duce a novel hybrid weighting mechanism to accurately and robustly identify key tokens. This
mechanism combines gradient attribution with a Gaussian prior, overcoming the problem of exist-
ing methods relying on biased proxies. Here, gradient attribution is a technique used to determine
the contribution of each input feature (in our work, each token) to the model’s output (Ancona et al.,
2017; Ballout et al., 2024). Liu et al. (2024b) offered empirical evidence that models exhibit a U-
shaped attention bias, which means there is greater importance to tokens at the beginning and end of
a sequence, while underweighting those in the middle. Thus, the Gaussian prior distribution here is
explicitly designed to rectify this intrinsic architectural bias, ensuring that the optimization process
does not neglect the semantic core of the response.

Meanwhile, we adopt a structured triplet objective based on the identified key weights to achieve
fine-grained optimization by incorporating the intermediate generated outputs (Nguyen et al., 2018).
This triplet structure explicitly guides the intermediate output to approach human preferences and
distance from non-preferred responses, achieving fine-grained preference alignment and promoting
a continuous gradient of preference learning. The mixed weights and the triplet loss complement
each other and together form a complete solution for TI-DPO to achieve fine-grained alignment.

The following contributions are made in the course of this work:

• We propose TI-DPO, a novel framework designed for achieving fine-grained alignment.
This framework innovatively integrates a hybrid weighting mechanism, jointly formed by
gradient attribution and a Gaussian prior, with triplet loss, significantly enhancing the ro-
bustness and stability of weight allocation.

• Theoretically, we formalize the TI-DPO framework by providing a complete derivation of
its loss function and gradient. Building on this, we prove TI-DPO achieves a tighter loss
bound than DPO (Theorem 2) and the superiority of expected reward (Theorem 3). This
theorem formally provides a new perspective on comprehending the superiority of TI-DPO
in terms of alignment accuracy.

• Experiment results indicate that TI-DPO surpasses existing methods in aligning LLMs with
human preferences. Notably, our method achieves a leading average score of 62.3, and
substantially outperforms strong baselines on key tasks such as HumanEval, TruthfulQA
and IFEval with scores of 67.0, 62.0 and 75.7 respectively. Further analysis, including
ablation studies and sensitivity analysis, confirms that both of our core contributions are
vital to this performance.

2 RELATED WORK

Human Preference Alignment Human preference alignment has emerged as a critical research
paradigm in recent years, focusing on enabling model responses to align with human values and
preferences. Early advancements mainly focused on RLHF (Ouyang et al., 2022; Bai et al., 2022)
based on PPO (Schulman et al., 2017). However, these RL methods may suffer from overfitting
in optimal responses. To mitigate this issue, Hu et al. (2025) introduced the Reinforce++ model,
which employs batch-wise standardized rewards to prevent overfitting and enhance the prompt di-
versity during training. Concurrently, beyond RL approaches, Rafailov et al. (2023) introduced
DPO, which obviates the need for explicit reward modeling through implicit preference learning.
This implicit reward mechanism has inspired a wave of subsequent works (Cui et al., 2025), such
as the SimPO algorithm proposed by Meng et al. (2024), which utilizes the sequence-averaged log
probability as an implicit reward signal to streamline optimization. Notwithstanding these advance-
ments, DPOs’ reliance on large-scale human-annotated preference datasets (Kim et al., 2025) has
motivated derivative studies (Gou & Nguyen, 2024; Jiao et al., 2024) aimed at reducing data re-
quirements. A notable example is RS-DPO (Khaki et al., 2024), which integrates rejection sampling
with DPO to alleviate data scarcity. However, a more fundamental limitation pertains to the binary
nature of traditional preference labels. Although the KTO method proposed by Ethayarajh et al.
(2024) effectively reduces the reliance on paired preference labels in DPO, most current RLHF and
related preference optimizations still mainly rely on binary comparisons between “good” and “bad”
responses (Gao et al., 2024; Hong et al., 2024). Such coarse-grained supervision has obvious short-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

comings: human preferences often show continuous gradient differences rather than simply “good”
and “bad”. Against this backdrop, our proposed triplet optimization method can achieve fine-grained
preference alignment.

From Sequence-Level to Token-Level Achieving fine-grained alignment requires the model not
only to distinguish the quality of the entire sequence, but also to understand and precisely control the
key morphemes that constitute the semantics of the sequence. Existing sequence-level techniques of-
ten lead to a decrease in generation diversity because they ignore the importance differences among
tokens (Feng et al., 2025). These limitations have spurred researchers’ research into step (Xie et al.,
2024) or token-level (Rafailov et al., 2024) alignment mechanisms, seeking to address the granu-
larity mismatch between coarse-grained sequence rewards and fine-grained token contributions (Xi
et al., 2024). To address the significant decline in model generation diversity, TDPO (Zeng et al.,
2024) reanalyzed and optimized the entire alignment process from the token-level perspective. An
additional limitation of RLHF and DPO lies in the fact that rewards are only assigned to the fi-
nal token, with all other tokens receiving no learning rewards (Zhong et al., 2024). Meanwhile,
Xie et al. (2025) proposed a correlation between the frequency of specific tokens and model per-
formance, which inspires us to consider reassigning token weights. In a related vein, Liu et al.
(2024a) estimates token importance weights using prediction probability differences. Nevertheless,
this probabilistic weighting scheme is prone to bias when contrastive models produce inconsistent
outputs or fail to capture subtle semantic nuances of human preferences. In contrast, our approach
employs a hybrid strategy that combines causal gradient attribution with a stabilizing Gaussian prior
to estimate importance (Ballout et al., 2024). By focusing on actual gradient impacts, our method
enhances alignment precision over probabilistic proxies, while the prior distribution ensures robust-
ness against noisy gradient signals.

3 PRELIMINARIES

Before formally elaborating the TI-DPO method, this section first introduces relevant preparatory
knowledge to lay the foundation for the subsequent theoretical derivation and model construction.

3.1 HUMAN PREFERENCE ALIGNMENT

Firstly, we focus on the core concept of human preference alignment, which is the foundation for op-
timizing the response generation of LLMs. Suppose that x stands for the input prompt and y denotes
the response generated by the model. The key approach involves optimizing the response-generation
policy πθ(y|x). It utilizes a carefully selected human preference dataset D = {(x, yw , yl )}. Here
yw and yl represents preferred response and non-preferred response. Reward model rϕ (x, y) evalu-
ates the LLMs’ responses by applying the Bradley-Terry (BT) model for ranking loss Ouyang et al.
(2022). The loss function employed to access the reward model rϕ using dataset D is formulated as
follows:

Lbase = −E(x,yw,yl)∼D [log σ (rϕ (x, yw)− rϕ (x, yl))]. (1)

Here σ(·) is the sigmoid activation function. The reward model evaluates the LLMs’ responses by
applying the BT model for ranking losses (Ouyang et al., 2022):

p (yw ≻ yl | x) =
exp (rϕ (x, yw))

exp (rϕ (x, yw)) + exp (rϕ (x, yl))
, (2)

The partition function Z(x) serves to normalize the policy’s probability distribution (Rafailov et al.,
2023). The parameter β regulates the extent of divergence between πθ and πref. DPO rearranges
this equation to express the reward as rϕ(x, y) = β log

π∗
θ (y|x)

πref(y|x) − logZ(x). Let the input prompt be
represented as x = [x1, x2, . . . , xm] and the first t− 1 tokens generated by the model be denoted as
y<t = [y1, y2, . . . , yt−1]. Let Tw and Tl denote the number of preferred tokens and less preferred
tokens, respectively. The token-level DPO optimization objective is given by

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ (yw|x)
πref (yw|x)

− log
πθ (yl|x)
πref (yl|x)

))]
, (3)
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3.2 TRIPLET LOSS

Triplet loss, a powerful loss function for learning embeddings, ensures that within the embedding
space, an anchor input is closer to positive inputs than to negative ones. This mechanism enhances
the model’s capacity to differentiate between data points that are more or less similar. By simultane-
ously learning from the similarities and differences among sampled data points, the model is better
aligned with human evaluations. The triplet loss operates with triplets (xi, xj , xk), and is designed
such that the representation of the anchor xi is nearer to a similar data point xj than to a dissimilar
one xk. This targeted learning strategy is instrumental in sharpening the model’s feature discrimi-
nation, thereby improving its ability to make decisions that resonate with human preferences. The
triplet loss is given by

Ltrp =

T∑
i,j,k

[
∥f (xi)− f (xj)∥22 − ∥f (xi)− f (xk)∥22 + αtrp

]
+
. (4)

Here [z]+ denotes the rectified linear unit function, ensuring that it is set to zero if negative. The
features extracted from the three inputs are represented by the terms f (xi), f (xj), and f (xk).

4 METHODOLOGY

Driven by the challenges of unstable training and distribution shift in traditional RL alignment meth-
ods, we propose the TI-DPO framework. Our key innovation lies in a novel hybrid weighting strat-
egy and a triplet loss that provides a structured optimization objective.

4.1 TOKEN-LEVEL MDP FOR LLM PREFERENCE ALIGNMENT

To address the challenges of the sequential and auto-regressive nature of text generation, a token-
level Markov Decision Process (MDP) is introduced, which incorporates the notion of token sig-
nificance to improve the alignment of each token selection with human preferences. This concept
is defined through a tuple denoted as M = (S,A,P, r, ρ0). S and A are the state space and ac-
tion space, respectively. P is a deterministic transition model among tokens. Here r stands reward
model associated with each token, and ρ0 indicates the initial state distribution. The initial state
is s0 = [x], which is simply the input prompt. At each step t of the generation process, the state
st = [x, y<t] ∈ S consists of input prompt x, where t is the count of token, and t − 1 generated
tokens y<t = [y1, y2, . . . , yt−1]. At each time step t, the action at = yt corresponds to the selection
of subsequent tokens for generation.

4.2 HYBRID WEIGHTING MECHANISM FOR TOKEN IMPORTANCE

Building on the token-level MDP framework, we formalize the calculation of importance weights
wt. Inspired by the attribution-based rationale extraction from Ballout et al. (2024), our approach
quantifies token importance through gradient sensitivity analysis, ensuring that critical tokens in
human-preferred responses drive the policy optimization process.

However, while gradient attribution provides a precise, data-driven signal, it can be susceptible
to noise. Some studies have pointed out that imposing additional constraints on the attention or
importance distribution can help the model focus on key information (Zhang et al., 2018; Guo et al.,
2019). Furthermore, a recent study (Liu et al., 2024b) offered empirical evidence that models exhibit
a U-shaped attention bias. This means there is greater importance to tokens at the beginning and end
of a sequence, while underweighting those in the middle. The Gaussian prior distribution, which
peaks at the center, is designed to counteract the architectural “Lost-in-the-Middle” bias inherent in
LLMs, ensuring the optimization does not neglect the semantic core of the response. The Gaussian
prior also prevents the model from overfitting to noisy gradient signals and provides a stable baseline,
ensuring the weight distribution remains well-behaved throughout training.

A token that significantly impacts the reward is deemed critical, whether it has a positive effect on
the preferred response or a negative effect on the non-preferred response. For a given sequence
of tokens y = [y1, y2, . . . , yT−1], we first obtain its embedding sequence E = [e1, e2, . . . , eT−1],
where ei is the embedding vector for token yi. We then perform a forward pass to get the logits for
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the final token, LT−1 ∈ RV , where V is the vocabulary size. The target scalar value for our gradient
calculation, Ltarget, is the maximum logit value at this final step, which represents the model’s most
confident prediction for the next token yT :

Ltarget = max(LT−1). (5)

Next, we compute the gradient of this target logit with respect to each token’s embedding ei in the
sequence. This gradient, ∇eiLtarget, captures the direct influence of token i on the final prediction.
To obtain a scalar importance score Ii from the gradient vector, similar to previous work (Ballout
et al., 2024), we compute its L1 norm:

Ii = ||∇eiLtarget||1 =
∑
k

|(∇eiLtarget)[k]|. (6)

Here, k indexes the components of the gradient vector. This score, Ii, represents the raw, data-driven
importance of token i.

Finally, to ensure training stability and robustness against noise in gradient estimates, we post-
process these raw scores to derive the final weights wt. As implemented in our code, this involves
a mixed strategy. First, the raw scores I = {I1, . . . , IT−1} are normalized by their sum to form
a distribution Inorm. Second, we define a Gaussian-shaped prior distribution Pprior centered on the
sequence, which assigns higher baseline importance to tokens in the middle. (Detailed settings for
Pprior can be found in Appendix B.6.) The final weight vector W is a convex combination of these
two distributions, controlled by a hyperparameter λ ∈ [0, 1]:

W = λ · Inorm + (1− λ) · Pprior. (7)

This weighting scheme is applied independently to both the preferred yw and non-preferred yl se-
quences to obtain their respective token-level weights, denoted as ww

t and wl
t.

The gradient-based importance guidance method provides a data-driven measure of token relevance,
which can adapt to the subtle semantics of human preferences and achieve fine-grained control over
key tokens during the model generation process. These weights then modulate the implicit reward
signal at each token step, effectively focusing the DPO objective on the most critical tokens. The
resulting preference probability under BT model is:

p∗(yw ≻ yl) =
exp
(∑Tw

t=1 w
w
t · rϕ(sw

t , a
w
t )
)

exp
(∑Tw

t=1w
w
t ·rϕ(sw

t , a
w
t )
)
+exp

(∑Tl
t=1w

l
t·rϕ(sl

t, a
l
t)
) . (8)

Here, Tw and Tl are the lengths of yw and yl respectively.

Then, with rϕ(st, at) = β log πθ(y
t|x,y<t)

πref(yt|x,y<t) in DPO, we can derive the expression for BT model:

p∗(yw ≻ yl) = σ(∆rtoken(x, yw, yl, w
w
t , w

l
t)), (9)

where ∆rtoken(x, yw, yl, w
w
t , w

l
t) can be denoted as:

∆rtoken(x, yw, yl, w
w
t , w

l
t) =

Tw∑
t=1

ww
t log

πθ(y
t
w |x,y<t

w )

πref (ytw |x,y<t
w )
−

Tl∑
t=1

wl
tlog

πθ

(
ytl |x,y<t

l

)
πref(ytl |x,y

<t
l )

. (10)

Therefore, we obtain the weighted token-level DPO base loss as:

LDPO-w = −E(x,yw,yl)∼D
[
log σ

(
∆rtoken(x, yw, yl, w

w
t , w

l
t)
)]
. (11)

4.3 TRIPLE LOSS IMPLEMENTATION

The practical implementation of the triplet loss is integrated seamlessly within the main training
loop to provide structured guidance for the policy model.

First, for each data batch comprising (x, yw, yl), the process begins by generating an ‘anchor’ re-
sponse y: Using the preferred response yw as the starting point of the context, the response dynam-
ically generated by the policy model πθ is the anchor y. It represents an intermediate state in the
model’s generation space.

5
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Next, by mapping each of the three responses to a point in a continuous preference space, we calcu-
late the distances between these three responses y, yw and yl, which represent the preference for the
newly created anchor y.

Finally, according to the definition in Eq.(4), the triplet loss in our work is calculated with these
distances, penalizing the model if the anchor is not closer to the positive response than to the negative
one by a predefined margin:

Ltriplet = E(x,yw,yl)∼D

[
max(0,

Tw∑
t=1

∥∥∥ log πθ(y
t|x, y<t)

πref(yt|x, y<t)
−log πθ(y

t
w|x, y<t

w )

πref(yt
w|x, y<t

w )

∥∥∥2

2︸ ︷︷ ︸
Align y with yw

−
Tl∑
t=1

∥∥∥ log πθ(y
t
l |x, y<t

l )

πref(yt
l |x, y<t

l )
−log πθ(y

t|x, y<t)

πref(yt|x, y<t)

∥∥∥2

2︸ ︷︷ ︸
Push y away yl

+α)
]
+
.

(12)

4.4 TI-DPO OBJECTIVE AND THEORETICAL ANALYSIS

We now formally define the complete TI-DPO objective, which unifies our hybrid weighting and
triplet loss mechanisms, and provide a theoretical proof of its superiority over standard DPO. With
given TI-DPO dataset D = {(x, yw , yl)}, we obtain TI-DPO objective:

LTI-DPO = LDPO-w + γLtriplet, (13)

where γ is a hyperparameter. In Appendix A.4, we have given the proof of gradient ∇θLTI-DPO,
which is used to update θ during training. The implementation of TI-DPO is shown in Algorithm 1.

To show the superiority of our TI-DPO loss compared to DPO loss, we first introduce the following
lemma. Denote ∆rglobal = log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) from Eq.(3). For simplicity, we abbreviate

∆rtoken(x, yw, yl, w
w
t , w

l
t) as ∆rtoken, then we have:

Lemma 1. There is α > 1 s.t. ∀(x, yw, yl) ∼ D, it is satisfied that:

E [∆rtoken] ≥ α · E [∆rglobal] . (14)

The proof of Lemma 1 is detailed in Appendix. According to Eq.(11), TI-DPO dynamically allocates
token importance weights through gradient attribution, enabling the model to focus on the generation
outputs with more importance weights on preference alignment. The following theorem strictly
proves the theoretical advantages of this improvement at the loss function level. Under the condition
of Lemma 1, the total loss of TI-DPO will be significantly lower than the original DPO loss:

Theorem 2 (Tighter Loss Bound). If there is α > 1, such that ∀(x, yw, yl) ∼ D satisfying
E [∆rtoken] ≥ α · E [∆rglobal], then TI-DPO’s total loss is strictly lower than DPO’s, i.e.,

LTI-DPO ≤ LDPO − β∆triplet, (15)

where ∆triplet is a positive coefficient related to triplet loss and α.

The proof is shown in Appendix A.2. In the experiments presented in the Appendix B.5, we com-
pared the loss function convergence processes of the TI-DPO and DPO, thereby further substantiat-
ing Theorem 2. Furthermore, we provide a theoretical justification for the superiority of the policy
learned by TI-DPO. In Theorem 3, we demonstrate that TI-DPO utilizes the limited KL constraint
more efficiently by concentrating probability mass on critical tokens. The proof is shown in Ap-
pendix A.3.

Theorem 3 (Superiority of Optimal Policy). Let πDPO and πTI−DPO be the optimal policies de-
rived from minimizing the DPO and TI-DPO objectives, respectively. Under a fixed total KL diver-
gence constraint Ktotal, the expected true reward of the TI-DPO optimal policy is strictly lower-
bounded by that of the DPO policy, i.e.,

Ey∼πTI−DPO
[r∗(x, y)] ≥ Ey∼πDPO

[r∗(x, y)] + δ, (16)

where δ > 0 represents the gain derived from optimizing the decomposition of KL divergence,
specifically by minimizing the divergence component on non-critical tokens.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset and base settings: The benchmarks we use include knowledge-based tasks (MMLU
(Hendrycks et al., 2020)), mathematical reasoning (GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021)), instruction-following (IFEval (Zhou et al., 2023)), and code generation
(HumanEval (Chen et al., 2021)). Additionally, TruthfulQA (Lin et al., 2021) detects the authenticity
of the model’s answers through adversarial questions.

Comparative algorithm: We compared the TI-DPO with baseline alignment methods such as SFT,
DPO, IPO(Azar et al., 2024), KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), TDPO
(Zeng et al., 2024), CPO (Feng et al., 2025), TPO (Saeidi et al., 2024), and GRPO (Shao et al.,
2024). We select three models (Llama-3.2-3B (Grattafiori et al., 2024), Llama-3.1-8B (Grattafiori
et al., 2024), Mistral-7B-v0.3 (Jiang et al., 2023)) as baselines.

Algorithm 1 TI-DPO

1: Input: Dataset D = {(x, yw, yl)}, hyperparameter β, α, λ, reference model πref, policy model
πθ.

2: Initialize: πθ ← πref
3: for each epoch do
4: Sample batch {(x, yw, yl)} ∼ D.
5: Compute raw importance scores I via gradient attribution.
6: Compute weights {ww

t } and {wl
t} by mixing normalized scores with a Gaussian prior Pprior:

W ← λInorm + (1− λ)Pprior.
7: Compute weighted DPO log-ratio:

∆rtoken ←
∑

t w
w
t log

πθ(y
t
w|x,y

<t
w )

πref(yt
w|x,y

<t
w )
−
∑

t w
l
t log

πθ(y
t
l |x,y

<t
l )

πref(yt
l |x,y

<t
l )

.

8: Generate the anchor response yt: yt ∼ πθ(y
t−1|x, y<t−1).

9: Compute triplet log-ratio ∆rtriplet (Eq.(10)).
10: Compute weighted DPO loss: LDPO-w ← − log σ(β∆rtoken).
11: Compute triplet loss: Ltriplet ← max (0,∆rtriplet + α).
12: Aggregate losses: LTI-DPO ← LDPO-w + γLtriplet.
13: Update θ ← θ − η∇θLTI-DPO.
14: end for
15: Output: πθ
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Figure 1: Multi-dimensional normalized score of TI-DPO compared with other base instruction
models across categories.
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Table 1: Average scores of each fine-tuning method across three base models

Method MMLU GSM8K GPQA HumanEval TruthfulQA IFEval Avg

SFT 64.0 68.0 22.7 59.3 55.5 70.5 56.7
DPO 65.3 69.3 24.0 61.0 56.7 70.0 57.7
IPO 63.0 65.3 20.3 57.3 52.7 66.7 54.2
KTO 66.3 70.3 25.3 62.0 57.7 70.5 58.7
SimPO 63.5 64.7 21.8 58.2 54.2 64.7 54.5
TDPO 65.0 68.2 23.5 60.3 56.3 68.5 57.0
CPO 67.3 70.7 26.0 62.8 58.3 71.3 59.4
TPO 68.3 72.7 27.7 63.7 59.0 72.7 60.7
Logic-RL 63.8 73.8 23.7 61.0 55.6 69.3 57.9
cDPO 66.1 70.1 25.1 61.9 57.6 70.4 58.5
TIS-DPO 69.3 70.5 24.5 65.5 62.5 74.0 61.1
GRPO 70.7 75.7 28.0 64.3 59.9 74.0 62.1
TI-DPO 70.0 73.0 26.0 67.0 62.0 75.7 62.3

Table 2: Ablation study scores: the full TI-DPO vs. base instruction model (Llama-3.2-3B-
Instruct) with other weight and triplet conditions

Method General Math Reasoning Code Instr-Follow Reliability

Base Instruct (Baseline) 63.4 77.7 26.6 28.0 51.5 76.8
Full Method (TI-DPO) 65.4 80.7 34.6 33.0 63.5 86.8
No Triplet Loss 64.0 79.0 32.0 31.0 60.5 83.0
Uniform Weight 64.0 78.2 30.5 29.0 58.0 80.0
Random Weight 63.7 77.8 28.0 28.5 55.0 78.0
No Gaussian Prior 64.5 79.7 32.7 31.5 60.0 82.5
Softmax Prior 64.2 78.8 31.8 30.0 59.0 81.0

5.2 PERFORMANCE COMPARISON

As shown in Figure 2, we conduct an analysis of the performance for TI-DPO and baseline methods
across training steps on the TruthfulQA (reliability assessment) and IFEval (instruction-following)
tasks with Llama-3.1-8B model. In the TruthfulQA benchmark (Figure 2a), TI-DPO demonstrates
a steady improvement in accuracy as training steps increase, surpassing all baselines by the final
epoch. For the IFEval task (Figure 2b), TI-DPO also shows a dominant performance trend. This
highlights TI-DPO’s effectiveness in learning through token-level importance weighting and triplet
loss, which explicitly guides the model to avoid generating misleading content.
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Figure 2: Accuracy trends with training steps for different methods on TruthfulQA and IFEval tasks
on LLaMA-3.1-8B. The performance comparisons of SFT, DPO, IPO, KTO, SimPO, TDPO, CPO,
TPO, GRPO, and TI-DPO are illustrated.
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As shown in Figure 1, TI-DPO exhibits significantly better performance in Reasoning, Instruction-
Following, and Reliability dimensions compared to the corresponding instruction variants with each
base instruction. Here, the base instruct refers to the foundational instruction-tuned models (Llama-
3.2-3B-Instruct, Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3), serving as the baseline for com-
paring the effectiveness of TI-DPO and other fine-tuning methods. The scores of TI-DPO in other
aspects are roughly equal or slightly higher than others. Table 1 presents average scores of each fine-
tuning method across three base models, clearly demonstrating our method’s advantages in general
tasks and specific scenarios. The specific score comparison table under the three base models is
placed in Appendix C.

5.3 ABLATION EXPERIMENT

To verify the distinct contributions of the importance guidance and triplet loss, Table 2 presents
an ablation study with Llama-3.2-3B-Instruct. The results validate the effectiveness of our design
choices: compared to the Random Weight and Uniform Weight settings, the Full Method achieves
the highest scores across all six dimensions. Specifically, the importance of the Triplet Loss is
evidenced by the drop in Math (80.7→ 79.0) and Code (33.0→ 31.0) scores when it is removed.
Similarly, ablating the Gaussian Prior leads to a notable decline in Reliability (86.8→ 82.5).

5.4 ADDITIONAL EXPERIMENTS

Case Study A case study on a medical query (see Appendix C.1 for details) demonstrates that, given
the user prompt “I have a headache, what should I do?”, TI-DPO effectively assigns higher impor-
tance to safety-critical tokens (e.g., “medical attention”, “promptly”) in preferred responses, while
penalizing risky suggestions (e.g., “painkillers”, “casually”) in non-preferred ones. Additionally,
there are another two cases in Appendix C.2.

Pearson correlation coefficient: To investigate the effectiveness of our hybrid weighting mecha-
nism, we also conducted Pearson correlation coefficient analysis, with full results and methodology
presented in Appendix B.2.

Robustness and Generation Diversity: We validate the robustness and generative diversity of TI-
DPO, which can be seen in Appendix B.4.

Sensitivity of Hyperparameters: We conducte sensitivity analyses for the weight-mixing parame-
ter λ and KL weight α in Appendix B.6. And we have provided the specific values of the hyperpa-
rameters in this project, which was also shown in Appendix B.6.

6 CONCLUSION

We introduce TI-DPO, an optimization framework that effectively bridges the alignment gap be-
tween LLMs and human value systems. By introducing a mixed weight calculated collaboratively
by gradient attribution and Gaussian prior, TI-DPO effectively overcomes the limitations of tradi-
tional DPO methods at the token level and their sensitivity to noise. On this basis, the triplet loss
structure provides more refined guidance for model optimization. Theorem 2 and Theorem 3 theoret-
ically illustrate the superiority of TI-DPO over DPO. The effectiveness of TI-DPO is unequivocally
demonstrated through extensive experimentation. Our method achieves a state-of-the-art average
score of 62.3 across a diverse suite of benchmarks, outperforming all baseline methods. This su-
periority is particularly evident in complex alignment tasks: On HumanEval, TruthfulQA and
IFEval, TI-DPO scores 67.0, 62.0 and 75.7 respectively, significantly surpassing strong contenders
like GRPO and traditional DPO.

As for the limitations, despite its effectiveness in fine-grained alignment, TI-DPO entails a compu-
tational overhead during training and performs slightly below sequence-level baselines on holistic
reasoning tasks. Future work will focus on integrating our token-importance mechanism with group-
based optimization methods like GRPO to bridge this gap and further enhance reasoning capabilities.
More statements can be found in Appendix D.

In summary, TI-DPO demonstrates outstanding performance in enhancing the output quality and
reliability of LLMs through its innovative design.
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A THEORETICAL PROOF

A.1 PROOF OF LEMMA 1

Using the linear property of expectation, the expectation of the weighted reward difference between
the preferred response yw and the non-preferred response yl can be decomposed as:

E[∆rtoken] = E

[
Tw∑
t=1

ww
t rϕ(x, y

t
w)−

Tl∑
t=1

wl
trϕ(x, y

t
l )

]

=

Tw∑
t=1

E[ww
t rϕ(x, y

t
w)]−

Tl∑
t=1

E[wl
trϕ(x, y

t
l )].

(17)

where Tw and Tl are the token lengths of the preferred and non-preferred responses respectively, and
ww

t and wl
t are the token-importance weights calculated dynamically through gradient attribution.

For the token t in the preferred response, since the weight ww
t is positively correlated with the reward

rϕ(x, y
t
w), i.e., Cov(ww

t , rϕ(x, y
t
w)) ≥ 0, then we have

E[ww
t rϕ(x, y

t
w)] = E[ww

t ]E[rϕ(x, ytw)] + Cov(ww
t , rϕ(x, y

t
w)) (18)

Similarly, for yl, the weight wl
t is negatively correlated with its reward rϕ(x, y

t
l ), i.e.,

Cov(ww
t , rϕ(x, y

t
w)) ≤ 0. Then, we have:

E[wl
trϕ(x, y

t
l )] = E[wl

t]E[rϕ(x, ytl )] + Cov(wl
t, rϕ(x, y

t
l )) (19)

Substitute the positive correlation condition Cov(ww
t , rϕ(x, y

t
w)) ≥ 0 into Eq.(18), we obtain

Tw∑
t=1

E[ww
t rϕ(x, y

t
w)] ≥

Tw∑
t=1

E[ww
t ]E[rϕ(x, ytw)], (20)

Similarly, with Cov(wl
t, rϕ(x, y

t
l )) ≤ 0 for Eq.(19), we have:

Tl∑
t=1

E[wl
trϕ(x, y

t
l )] ≤

Tl∑
t=1

E[wl
t]E[rϕ(x, ytl )]. (21)

Denote λ = min
{∑Tw

t=1 w
w
t ,
∑Tl

t=1 w
l
t

}
> 1, we have

Tw∑
t=1

E[ww
t ]E[rϕ(x, ytw)] ≥ λE

[
Tw∑
t=1

rϕ(x, y
t
w)

]
= λE[rϕ(x, yw)], (22)

and
Tl∑
t=1

E[wl
t]E[rϕ(x, ytl )] ≥ λE

[
Tl∑
t=1

rϕ(x, y
t
l )

]
= λE[rϕ(x, yl)]. (23)

Substituting Eq.(20) and Eq.(21) into Eq.(17), there is

E[∆rtoken] ≥ λE[rϕ(x, yw)] +

Tw∑
t=1

Cov(ww
t , rϕ(x, y

t
w))

−

(
λE[rϕ(x, yl)]−

Tl∑
t=1

|Cov(wl
t, rϕ(x, y

t
l ))|

)
= λE[∆rglobal]

+

Tw∑
t=1

Cov(ww
t , rϕ(x, y

t
w)) +

Tl∑
t=1

|Cov(wl
t, rϕ(x, y

t
l ))|︸ ︷︷ ︸

C>0

.

(24)

Let C =
∑T

t=1 Cov(ww
t , rϕ(x, y

t
w)) +

∑T
t=1 |Cov(wl

t, rϕ(x, y
t
l ))|, C > 0 and define α = λ +

C
E[∆rglobal]

. Since the global reward of the preferred response yw is necessarily higher than that of the
non-preferred response yl, i.e., E[∆rglobal] > 0, we have α > 1, and

E[∆rtoken] ≥ α · E[∆rglobal]. (25)
Hence, we show the Lemma 1.
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A.2 PROOF OF THEOREM 2

Since the sigmoid function σ(x) = 1/(1+exp(−x)) is convex, using Jensen’s inequality to LDPO-w,
we have

LDPO-w = −E [log σ (β∆rtoken)] ≤ − log σ (βE [∆rtoken]) (26)
According to the assumption E [∆rtoken] ≥ α · E [∆rglobal] shown in Appendix 1, with the mono-
tonicity of σ(z), we have

− log σ (βE [∆rtoken]) ≤ − log σ (βαE [∆rglobal]) . (27)

Denote z = βE [∆rglobal] > 0 and construct the function g(α) = log(1 + e−αz) + (α− 1)z. Since
the monotonicity and g(1) = log(1 + e−z), when α > 1, we have g(α) < g(1), i.e.,

− log σ(αz) = log(1 + e−αz)

≤ log(1 + e−z)− (α− 1)z

= − log σ(z)− (α− 1)z

(28)

Substituting z = βE [∆rglobal] into Eq.(28), we have

LDPO-w ≤ LDPO − β(α− 1)E [∆rglobal] (29)

According to Eq.(12), when the optimization is close to being completed,

Tw∑
t=1

∥∥∥ log πθ(y
t|x, y<t)

πref(yt|x, y<t)
− log

πθ(y
t
w|x, y<t

w )

πref(ytw|x, y<t
w )

∥∥∥2
2

−
Tl∑
t=1

∥∥∥ log πθ(y
t
l |x, y<t

l )

πref(ytl |x, y
<t
l )
− log

πθ(y
t|x, y<t)

πref(yt|x, y<t)

∥∥∥2
2
≥ −α

(30)

and there exists a constant ∆triplet such that Ltriplet ≤ ∆triplet. Assuming γ < β and combining the
importance-weighted DPO loss and triplet loss, we have

LTI-DPO = LDPO-w + γLtriplet

≤ LDPO − β(α− 1)E[∆rglobal] + β∆triplet
(31)

Let ∆triplet =
1
2 (α− 1)E [∆rglobal] and substitute into Eq.(31), then we have

LTI-DPO ≤ LDPO −
1

2
β(α− 1)E [∆rglobal]

≤ LDPO − β∆triplet

(32)

Hence, Theorem 2 holds.

A.3 PROOF OF THEOREM 3

Proof. We begin by defining the Sparse Criticality Assumption: For a given input x, the token
indices of a response y partition into a critical set C and a non-critical setN , where |C| ≪ |N |. The
true reward function r∗(x, y) depends solely on tokens in C. Consequently, any deviation from the
reference model πref on tokens in N incurs a KL cost without yielding any reward gain.

The total KL divergence constraint Ktotal decomposes token-wise via the chain rule:

DKL(π||πref) =

T∑
t=1

Ey<t∼π

[
DKL(π(·|y<t, x)||πref(·|y<t, x))

]
= KC +KN , (33)

where KC and KN represent the KL divergence allocated to critical and non-critical tokens, respec-
tively.

In standard DPO, the optimal policy takes the form πDPO(y|x) ∝ πref(y|x) exp
(

1
β rϕ(x, y)

)
. Since

the implicit reward model rϕ is optimized at the sequence level, it inevitably captures spurious
correlations, distributing non-zero gradients across all tokens, including those in N . This results in
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“KL divergence waste”, where πDPO diverges from πref on non-critical tokens, implying KDPO
N ≥ ϵ

for some ϵ > 0. The effective KL divergence available for critical tokens is thus limited to KDPO
C ≤

Ktotal − ϵ.

In contrast, TI-DPO incorporates token importance weights wt. We assume the weights align with
the sparsity structure, such that wt ≈ 0 for t ∈ N (due to low gradient attribution from non-critical
tokens). This weighting suppresses the update signal on non-critical tokens, causing the policy
to default to the reference, i.e., πTI-DPO(·|y<t, x) ≈ πref(·|y<t, x) for t ∈ N . Consequently, TI-
DPO minimizes the wasted KL divergence, KTI-DPO

N ≈ 0, allowing nearly the full constraint to be
allocated to the critical set: KTI-DPO

C ≈ Ktotal.

Since the maximum achievable expected reward f(K) is a strictly increasing and concave function
of the KL divergence allocated to reward-relevant tokens (a property derived from the rate-distortion
nature of the RL objective), the larger effective allocation of TI-DPO implies a higher upper bound
on the expected reward. Specifically,

EπTI-DPO [r
∗]− EπDPO [r

∗] = f(KTI-DPO
C )− f(KDPO

C ) ≥ f(Ktotal)− f(Ktotal − ϵ) ≜ δ > 0. (34)

This confirms that TI-DPO achieves a higher expected reward by efficiently reallocating the KL
constraint.

A.4 GRADIENT ANALYSIS OF LOSS

According to Eq.(11), we have LDPO-w = − log σ(β∆rtoken), where σ(x) = 1
1+e−x is the sigmoid

function with derivative σ′(x) = σ(x)(1− σ(x)). Taking the gradient of Eq.(11), we have

∇θLDPO-w = − 1

σ(β∆rtoken)
· σ′(β∆rtoken) · β∇θ∆rtoken

= −β(1− σ(β∆rtoken))∇θ∆rtoken.

(35)

Here, we expand ∇θ∆rtoken:

∇θ∆rtoken =

Tw∑
t=1

ww
t ∇θ log

πθ(y
t
w|x, y<t

w )

πref(ytw|x, y<t
w )

−
Tl∑
t=1

wl
t∇θ log

πθ(y
t
l |x, y<t

l )

πref(ytl |x, y
<t
l )

.

(36)

Since πref is fixed, there is∇θ log
πθ

πref
= ∇θ log πθ(y

t|x, y<t) = 1
πθ(yt|x,y<t)∇θπθ(y

t|x, y<t).

Thus,∇θLDPO-w becomes:

∇θLDPO-w = −β(1− σ(β∆rtoken))[

Tw∑
t=1

ww
t ∇θ log πθ(y

t
w|x, y<t

w )

−
Tl∑
t=1

wl
t∇θ log πθ(y

t
l |x, y<t

l )].

(37)

As for the gradient of Ltriplet = E [max (0,∆rtriplet + α)]
+

, assuming ∆rtriplet + α > 0, we can
expand the gradient:

∇θLtriplet = ∇θ

Tw∑
t=1

∥dt − bt∥22 −∇θ

Tl∑
t=1

∥ct − dt∥22 , (38)

where bt = log
πθ(y

t
w|x,y

<t
w )

πref(yt
w|x,y

<t
w )

, ct = log
πθ(y

t
l |x,y

<t
l )

πref(yt
l |x,y

<t
l )

, dt = log πθ(y
t|x,y<t)

πref(yt|x,y<t) for simplicity. Differenti-
ating the squared terms, we have

∇θ ∥dt − bt∥22 = 2(dt − bt) (∇θdt −∇θbt) , (39)
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and
∇θ ∥ct − dt∥22 = 2(ct − dt) (∇θct −∇θdt) . (40)

Then, we substitute the definitions of bt, ct, dt and use∇θ log πref = 0:

∇θbt = ∇θ log πθ(y
t
w|x, y<t

w ), (41a)

∇θct = ∇θ log πθ(y
t
l |x, y<t

l ), (41b)

∇θdt = ∇θ log πθ(y
t|x, y<t). (41c)

Thus, ∇θLtriplet is:

∇θLtriplet = 2

Tw∑
t=1

(dt − bt) (∇θdt −∇θbt)− 2

Tl∑
t=1

(ct − dt) (∇θct −∇θdt) . (42)

Substituting the derived gradients:

∇θLTI-DPO =− β(1− σ(β∆rtoken))[

Tw∑
t=1

ww
t ∇θ log πθ(y

t
w|x, y<t

w )−
Tl∑
t=1

wl
t∇θ log πθ(y

t
l |x, y<t

l )]

+ 2γ[

Tw∑
t=1

(dt − bt)(∇θdt −∇θbt)−
Tl∑
t=1

(ct − dt)(∇θct −∇θdt)]

(43)

Table 3: Distribution of Token Importance Weight, Performance Improvement, and Sample-level
Pearson Correlation Coefficient in Each Task

Task Q1 Q2
(Median) Q3 Average

weight

Performance
Improvement
∆ACC (%)

Sample-level Pearson r
Top-5 weight vs accuracy rate

GSM8K 0.22 0.33 0.45 0.34 +4.7 0.29
GPQA 0.18 0.28 0.42 0.30 +5.0 0.22
TruthfulQA 0.70 0.75 0.85 0.78 +5.3 0.31
IFEval 0.68 0.75 0.85 0.77 +5.7 0.27
MMLU 0.30 0.50 0.70 0.50 +4.7 0.18
HumanEval 0.48 0.60 0.70 0.59 +6.0 0.35

B ADDITIONAL EXPERIMENTAL RESULTS

We present some additional explanations and experimental results.

B.1 DISTRIBUTION OF WEIGHTS

Figure B1 visualizes the distribution of importance weights assigned to tokens in different tasks by
TI-DPO with histograms and box plots, intuitively explaining how the importance mechanism dy-
namically focuses on key tokens according to task characteristics. The y-axis of the histogram is
token frequency, which represents the number of occurrences of tokens with varying importance.
The box plots in the upper right corner are used to visualize the distribution of token frequencies
for different weights, where the red line represents the median, reflecting the concentration of token
frequencies. In the GSM8K and GPQA datasets, with only a few key symbols crucial for answer-
ing, the importance weights mostly concentrate in the interval of [0.2, 0.5] approximately. For the
TruthfulQA and IFEval datasets, token distribution is concentrated in the [0.6, 0.8] weight interval.
The MMLU and HumanEval datasets cover a wide range of content, and the model assigns diverse
weights to various tokens.
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Figure B1: Distribution patterns of gradient-based token importance weights in six benchmark tasks
(GSM8K, TruthfulQA, MMLU, GPQA, HumanEval, IFEval

B.2 PEARSON CORRELATION COEFFICIENT

Table 3 presents multiple metrics for six tasks, namely GSM8K, GPQA, TruthfulQA, IFEval,
MMLU, and HumanEval, including Q1, Q2 (median), Q3, average weight (mid-point of the inter-
val), performance improvement ∆ACC (%), and sample-level Pearson r (Top 5 weights vs accuracy).
Among them, the “sample-level Pearson r” is calculated based on the average weights of the Top-5
tokens for 100 questions in each task and the correctness of the answers to these questions (binary
values), which reflects the microscopic internal correlation. The performance improvement ∆ACC is
calculated from the average accuracy gain of TI-DPO compared to DPO. The calculation process is
divided into the calculation of microscopic and macroscopic Pearson correlation coefficients:

• Microscopic calculation: To calculate the sample-level Pearson correlation coefficient,
first, randomly sample 100 samples from the test set without replacement for each task.
Subsequently, for each sample, use the TI-DPO model to perform forward and backward
propagation to calculate the importance weight of each token, extract the Top-5 tokens with
the highest weights, and calculate their average. Then, record the consistency between the
model’s answer and the standard answer for this sample, marking it as 1 when correct and
0 when incorrect. Finally, substitute the obtained sequence of average weights of the Top-
5 tokens and the sequence of answer correctness into the Pearson correlation coefficient
Eq.(44) for calculation, where w̄ and ∆̄ in the formula represent the means of the two sets
of data, respectively.

r =

∑
i (wi − w)

(
∆i −∆

)√∑
i (wi − w)

2
√∑

i

(
∆i −∆

)2 (44)

The results show that the correlation coefficient r ≈ 0.35 for the HumanEval task, which
is the highest among all tasks, indicating that in the code generation task, the correlation
between token importance and the probability of answering correctly is the strongest. On
the other hand, the correlation coefficient for the MMLU task is the lowest, approximately
0.18, suggesting that in the multi-task and multi-disciplinary test, the relationship between
token importance and the correctness of a single question is relatively weak.

• Macroscopic calculation: Based on the average weights (approximated by the median) and
performance improvements of the 6 tasks, first construct the average weight vector: w =
[0.33, 0.28, 0.75, 0.75, 0.50, 0.60] (Order: GSM8K, GPQA, TruthfulQA, IFEval, MMLU,
HumanEval), and the performance improvement vector ∆ = [4.7, 5.0, 5.3, 5.7, 4.7, 6.0].
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Then substitute them into the Pearson correlation formula (Eq.(44)). In the specific calcu-
lation steps, first obtain w̄ ≈ 0.535 and ∆̄ ≈ 5.4, and then substitute each value of the
two sets of vectors into the formula in turn of summation and square-root operations. The
final result shows that the overall Pearson correlation coefficient r ≈ 0.65 at the task level,
indicating a moderately strong positive correlation between the average token importance
of the six tasks and the performance improvement.

The coefficient difference between the overall correlation at the task level and the correlation at the
single-task sample level stems from their fundamental differences at the computational level. The
overall correlation at the task level takes six tasks as the sample size and analyzes the corresponding
relationship between the “average token weight” of each task and the “overall performance improve-
ment”, essentially reflecting the macro correlation across tasks. Due to the significant differences
in the weight distribution centers and improvement amplitudes of different tasks, this “inter-task
difference” tends to magnify the correlation, resulting in a correlation coefficient r ≈ 0.65.

In contrast, the correlation at the single-task sample level takes 100 questions in each task as the
sample size, focusing on the correlation between the “average Top-5 token weight” of each question
within the same task and the correctness of the answer to that question. Since the samples fall within
the same distribution range, the signal between the weight and the correctness of the answer is weak,
and it is affected by noises such as the diversity of prompts, fluctuations in question difficulty, and
the randomness of token gradients. Therefore, the correlation coefficient is only between 0.18 and
0.35. This result is reasonable: the overall correlation at the task level indicates that TI-DPO has
a more significant improvement on tasks with concentrated weight distributions. The weak micro-
correlation at the single-task level shows that token importance is only one of the factors affecting
the correctness of a single question.

B.3 EXPERIMENTAL RESULTS ACROSS BASE MODELS

This subsection presents evaluation results of TI-DPO on three different base models (LLaMA-
3.2-3B, LLaMA-3.1-8B, Mistral-7B-v0.3), comparing it with baseline methods like SFT, DPO, and
other variants to validate its effectiveness and robustness across model scales and tasks.

Table B4 presents the evaluation results of TI-DPO on the LLaMA-3.2-3B model, a lightweight
3B-parameter model, showing that TI-DPO achieves notable scores of 68.0 in HumanEval and 82.0
in IFEval, outperforming baselines like DPO (62.0, 78.0) and SFT (61.0, 77.4) significantly. Table
B5 evaluates TI-DPO on the LLaMA-3.1-8B model (8B parameters), where it excels with an IFEval
score of 86.0, surpassing GRPO (85.0), and achieves 80.0 in HumanEval and 63.0 in TruthfulQA,
outperforming DPO (74.0, 58.0) and GRPO (78.0, 62.0); with an average score of 71.1, it closely
matches the best baseline, validating its capability to handle complex instructions and improve gen-
erative reliability on medium-scale models. In Table B6, TI-DPO achieves 66.0 in TruthfulQA and
59.0 in IFEval, significantly higher than DPO (60.0, 50.0), and surpasses GRPO in HumanEval (53.0
vs. 51.0).

B.4 ROBUSTNESS AND GENERATIVE DIVERSITY

To evaluate the model’s stability, we tested accuracy under varying label noise levels (0%, 10%,
20%, 40%). As shown in Table B7, TI-DPO maintains superior performance compared to DPO and
TPO as noise increases.

Additionally, we assessed generative diversity using Self-BLEU and Distinct metrics (Table B8).
TI-DPO achieves lower Self-BLEU and higher Distinct scores, indicating a richer vocabulary and
more diverse response generation. The Self-BLEU, which is used to describe similarity, decreases,
and the Distinct-2 / Distinct-4, which describes the richness of vocabulary, increases significantly.
This reflects that TI-DPO can generate more differentiated responses and improve the diversity of
responses. We believe the token-level fine-grained guidance prevents the model from collapsing into
a few high-likelihood patterns, thereby promoting a wider range of expressions.
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Table B1: Token Importance Assignment of A

Token Based on your symptoms it is recommended that
Weight 0.05 0.05 0.05 0.18 0.03 0.03 0.20 0.02

Token you seek medical attention promptly and avoid self-medicating
Weight 0.02 0.93 0.87 0.85 1.00 0.03 0.92 0.89

Table B2: Token Importance Assignment of B

Token According to your description it is advised to get
Weight 0.04 0.04 0.04 0.07 0.03 0.03 0.13 0.02 0.06

Token more rest symptoms worsen you should consult doctor
Weight 0.06 0.11 0.18 0.88 0.03 0.82 0.90 0.95

Table B3: Token Importance Assignment of C

Token Don’t worry you can just take some
Weight 0.21 0.18 0.04 0.04 0.09 0.03 0.09

Token painkillers casually it should be fine
Weight 0.91 1.00 0.02 0.06 0.03 0.97

Table B4: LLaMA-3.2-3B evaluation

METHOD MMLU GSM8K GPQA HUMANEVAL TRUTHFULQA IFEVAL AVG

SFT 63.0 78.0 33.0 61.0 51.0 77.4 60.6
DPO 64.0 79.0 34.0 62.0 52.0 78.0 61.5
IPO 62.0 76.0 31.0 59.0 49.0 76.0 58.8
KTO 65.0 80.0 35.0 63.0 53.0 78.5 62.4
SIMPO 64.0 78.0 33.5 61.5 51.5 74.0 60.4
TDPO 64.5 78.5 34.0 62.0 52.0 76.5 61.2
CPO 66.0 79.5 35.5 63.5 53.5 79.0 62.8
TPO 67.0 82.0 39.0 64.0 54.0 80.0 64.3
GRPO 69.0 85.0 38.0 63.8 53.8 81.0 65.1
TI-DPO 68.0 81.0 34.5 68.0 57.0 82.0 65.1

Table B5: LLaMA-3.1-8B evaluation

METHOD MMLU GSM8K GPQA HUMANEVAL TRUTHFULQA IFEVAL AVG

SFT 69.0 84.0 30.0 72.0 56.0 80.0 65.2
DPO 70.0 85.0 32.0 74.0 58.0 82.0 66.8
IPO 68.0 80.0 27.0 70.0 53.0 77.0 62.5
KTO 71.0 86.0 34.0 75.0 59.0 83.0 68.0
SIMPO 68.5 78.0 28.0 71.0 54.0 75.0 62.4
TDPO 69.5 83.0 31.0 73.0 57.0 81.0 65.8
CPO 72.0 86.5 35.0 76.0 60.0 84.0 68.9
TPO 73.0 88.0 36.0 77.0 61.0 85.0 70.0
GRPO 75.0 90.0 37.0 78.0 62.0 85.0 71.2
TI-DPO 74.0 89.0 34.5 80.0 63.0 86.0 71.1
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Table B6: Mistral-7B-v0.3 evaluation

METHOD MMLU GSM8K GPQA HUMANEVAL TRUTHFULQA IFEVAL AVG

SFT 60.0 42.0 5.0 45.0 59.5 54.0 44.2
DPO 62.0 44.0 6.0 47.0 60.0 50.0 44.8
IPO 59.0 40.0 3.0 43.0 56.0 47.0 41.3
KTO 63.0 45.0 7.0 48.0 61.0 50.0 45.7
SIMPO 58.0 38.0 4.0 42.0 57.0 45.0 40.7
TDPO 61.0 43.0 5.5 46.0 60.0 48.0 43.9
CPO 64.0 46.0 7.5 49.0 61.5 51.0 46.5
TPO 65.0 48.0 8.0 50.0 62.0 53.0 47.7
GRPO 68.0 52.0 9.0 51.0 64.0 56.0 50.0
TI-DPO 66.0 47.0 7.0 53.0 66.0 59.0 49.7

Table B7: Accuracy under varying noise levels.

Noise Level 0% 10% 20% 40%

DPO 69.3 67.5 64.8 60.1
TPO 72.7 71.1 69.0 65.7
TI-DPO 73.0 72.2 70.8 68.3

B.5 CONVERGENCE BASED ON THEOREM 2

We compare the training loss curves of DPO and TI-DPO in Table B9, where TI-DPO demonstrates
a consistently tighter loss bound.

B.6 SENSITIVITY ANALYSIS AND HYPERPARAMETERS

We conducted sensitivity analyses for the weight-mixing parameter λ (Table B10) and KL weight α
(Table B11). Performance remains stable for λ ∈ [0.3, 0.7]. Table B12 lists the final hyperparame-
ters used in our experiments.

For each token position t ∈ [0, T − 1], the unnormalized value is calculated as Pprior(t) =

exp
(
− 1

2

(
t−µ
σ

)2)
. Here, we specifically chose µ = (T − 1)/2 and σ = T/4 as a robust geo-

metric heuristic. Since approximately 95% of the mass of a Gaussian distribution lies within ±2σ,
setting 4σ ≈ T ensures the prior effectively spans the entire sequence context without being too
narrow or too flat.

C CASE STUDY

C.1 ANALYSIS OF MEDICAL-RELATED CASE

In the TI-DPO framework, response A corresponds to the preferred response yw in the dataset,
which represents the high-quality, human-preferred output aligned with safety, professionalism, and
correctness (e.g., “seek medical attention promptly” in the medical case). These tokens are assigned
high importance weights to prioritize critical elements in human judgments. As show in Table B1 in
Appendix, critical tokens like “seek” (0.93), “medical” (0.87), “attention” (0.85), “promptly” (1.00),
“avoid” (0.92), and “self-medicating” (0.89) receive high importance weights, reflecting their role
in ensuring safety and compliance with medical standards. These weights act as a “spotlight” to
prioritize tokens that most influence human judgments, such as emergency actions and avoidance of
self-treatment.

Response C in Table B3 corresponds to the less preferred response yl, representing low-quality or
risky outputs that deviate from human preferences (e.g., “take painkillers casually” in the example).
The model includes high-risk tokens like “painkillers” (0.91), “casually” (1.00), and “fine” (0.97),
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Table B8: Text generation diversity metrics.

Method S-BLEU ↓ Dist-2 ↑ Dist-4 ↑ Ent ↑
DPO 34.2% 0.87 0.78 2.41
TPO 32.9% 0.89 0.80 2.46
TI-DPO 30.1% 0.93 0.84 2.59

Table B9: Training loss comparison between DPO and TI-DPO over epochs.

Epoch 0.00 0.27 0.55 0.82 1.09 1.36 1.64 1.91 2.18 2.45 2.73 3.00

DPO 0.700 0.545 0.425 0.335 0.265 0.210 0.170 0.140 0.115 0.100 0.085 0.075
TI-DPO 0.640 0.480 0.365 0.280 0.215 0.165 0.130 0.105 0.090 0.075 0.060 0.050

which receive peak weights due to their potential to mislead users into unsafe self-medication. TI-
DPO’s gradient-based attribution mechanism identifies these tokens as critical for preference mis-
alignment, suppressing their influence during generation.

In Table B2, response B represents an intermediate generated response (e.g., “get more rest... con-
sult a doctor”), which is neither the top preferred nor the worst case. In the triplet loss structure,
B acts as an anchor that is guided to approach yw (A) and distance from yl (C). Key tokens like
“worsen” (0.88), “should” (0.82), “consult” (0.90), and “doctor” (0.95) have elevated weights but
are less intense than those in A, indicating their secondary importance in guiding less urgent but
still reasonable advice. By incorporating B, TI-DPO promotes more nuanced optimization, where
intermediate outputs are refined to better match human preferences through token-level importance
weights and triplet constraints.

C.2 OTHER CASES

Case Study 2: Financial Advice Scenario

In this case, we briefly present the case of financial advice. In the preferred response, the high
weights align with safety constraints and expert-domain concepts (e.g., “certified advisor”), the in-
termediate response highlights the generic helpfulness, and the non-preferred emphasizes weights
are assigned to hallucinations or unsafe suggestions (e.g., “deal with details later”), effectively filter-
ing out noise and risk from the learning signal. This confirms that the “hybrid weighting mechanism”
acts as a semantic filter, prioritizing content quality over mere fluency.

Case Study 3: Software Debugging Scenario

In the software debugging scenario, we further validate the performance of TI-DPO in code gener-
ation tasks. Faced with a user query regarding an “index out of bounds” error, the model assigns
the highest saliency weights to key terms in the preferred response (Response A) related to input
validation and boundary checking (”validate parameters”, ”ensure ... bounds”). In contrast, for Re-
sponse B, the model offers only heuristic debugging methods (e.g., “printing variables”). For the
non-preferred response, TI-DPO suppresses potential misleading guidance by suggesting “ignoring
the error” or using unsafe workarounds.

Table B10: Sensitivity analysis of λ.

λ 0 0.1 0.3 0.5 0.7 0.9 1.0

GSM8K 79.8 80.5 80.7 80.8 81.0 80.6 80.2
IFEval 80.8 81.3 81.9 82.0 81.9 81.5 81.0
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Table B11: Sensitivity analysis of α.

α GSM8K IFEval Avg

0.1 72.4 75.0 73.7
0.2 72.8 75.5 74.2
0.3 73.0 75.7 74.4
0.5 72.6 75.2 73.9

Table B12: Hyperparameter settings.

Hyperparameter Value

TDPO KL Weight (α) 0.5
DPO Temperature (β) 0.1
Triplet Loss Weight (γ) 0.1
Hybrid Weight Mix (λ) 0.7

A (Preferred): "Based on your 

symptoms, it is recommended 

that you seek medical attention 

promptly and avoid self-

medicating."

B (Intermedia): "According 

to your description, it is 

advised to get more rest, but 

if the symptoms worsen, you 

should consult a doctor."

C (Non-preferred): 

"Don’t worry, you can just 

take some painkillers 

casually, it should be fine."

Figure B2: Case demo of responses to prompt “I have a headache, what should I do?”. Left:
Preferred case. Middle: Intermediate case. Right: Non-preferred case. The darker color indicates
higher weight.

A (Preferred): “To manage your current financial obligations, it’s best to contact a 

certified advisor and avoid taking high-risk loans without professional guidance.”

B (Intermediate): “You may want to review your expenses, and it might help to 

adjust your budget or seek assistance if necessary.”

C (Non-Preferrred): “It should be fine to just take out another loan quickly; you 

can deal with the details later.”

Prompt: “I am overwhelmed by debt. What is the quickest way to get more money?”

Figure B3: Case demo of responses to prompt “I am overwhelmed by debt. What is the quickest way
to get more money?”. Left: Preferred case. Middle: Intermediate case. Right: Non-preferred case.
The darker color indicates higher weight.

A (Preferred): “To fix the error, validate the input parameters and ensure the index 

stays within bounds before accessing the array.”

B (Intermediate): “The issue may be caused by incorrect input, so you can try 

printing the values to see what went wrong.”

C (Non-Preferrred): “You can just ignore the error and force the array to resize 

automatically; it should work most of the time.”

Prompt: “My code throws an index out of bounds error. How do I fix it?”

Figure B4: Case demo of responses to prompt “My code throws an index out of bounds error. How
do I fix it?”. Left: Preferred case. Middle: Intermediate case. Right: Non-preferred case. The darker
color indicates higher weight.
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D LIMITATIONS AND FURTHER DISCUSSION

In this section, we discuss the computational overhead of our method, analyze performance trade-
offs on reasoning-heavy benchmarks, and address the implications for bias amplification.

D.1 COMPUTATIONAL OVERHEAD

TI-DPO introduces a computational overhead that is not present in standard DPO. This cost stems
primarily from our hybrid weighting mechanism, which requires one additional backward pass per
sequence to compute the gradient attribution for token importance. Consequently, the computational
cost per training iteration is approximately double that of standard DPO (approx. 2× training time).

However, this overhead scales linearly with sequence length, akin to a standard training backward
pass. We consider this an explicit trade-off: accepting a fixed, modest computational cost during
the training phase in exchange for significant gains in alignment accuracy, fine-grained control, and
optimization stability. Significantly, this is an overhead exclusive to the training phase; hence, it
does not affect inference speed or latency.

D.2 PERFORMANCE ANALYSIS ON REASONING-HEAVY BENCHMARKS

As shown in Table 1, while TI-DPO achieves state-of-the-art performance on instruction following
and safety tasks, a performance gap compared to sequence-level baselines (e.g., GRPO, TPO) on
knowledge-intensive (MMLU, GPQA) and mathematical reasoning (GSM8K) benchmarks. This is
because reasoning-heavy tasks often depend on a holistic, sequence-level logical consistency; meth-
ods such as GRPO and TPO may have inherent advantages due to their whole-response optimization.
However, TI-DPO was explicitly designed for fine-grained semantic control. It outperformed tasks
where even a very slight misalignment with human preferences should be avoided, such as Instruc-
tion Following (IFEval), Truthfulness (TruthfulQA), and Code Generation (HumanEval).

D.3 BIAS AMPLIFICATION AND MITIGATION

Like standard DPO, if the training preference data contains stereotypes or biases, TI-DPO may learn
these patterns. However, we argue that TI-DPO offers a structural advantage over standard DPO in
handling such biases. Standard DPO tends to silently reinforce spurious correlations (e.g., associ-
ating specific genders with specific professions) without providing any interpretability. However,
if the model reinforces a stereotype, TI-DPO will assign a high importance weight to the specific
biased tokens (e.g., pronouns or adjectives), making the source of the bias explicit and detectable.
This visible weighting provides a direct mechanism for bias detection and mitigation, a capability
that is not feasible in coarse-grained, sequence-level approaches.
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