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ABSTRACT

Normative models of brain regions aim to replicate their representational geom-
etry and are widely used to study neural computation. Model–brain alignment is
typically assessed with metrics such as representational similarity analysis (RSA)
and linear predictivity (LP). Recent studies, however, show that conclusions from
such benchmarks depend strongly on the choice of metric, raising a deeper con-
ceptual problem: What do we truly mean with ”brain alignment”? We address
this by testing a broad spectrum of vision models on the BOLD-Moments video
fMRI dataset and analyzing the influence of the alignment metric in greater detail.
While benchmarks can identify a nominally best model, many other models fall
within subject-level variability and are therefore practically equivalent. To move
beyond metric dependence, we introduce Alignment Pattern Similarity (APS), a
framework that uses brain-to-brain alignment as ground truth for evaluating nor-
mative models. For each region, we compare its empirical alignment with other
regions against the alignment obtained when replacing that region’s activity with
its normative model. Strikingly, while normative models can align well with their
target region, their cross-region alignment patterns diverge systematically from
those observed in the brain. This reveals a key deficiency: current normative mod-
els do not faithfully reproduce brain-to-brain alignment patterns when substituted
for real neural data. Furthermore, we show that structural connectivity can pre-
dict aspects of these alignment patterns, illustrating how anatomical constraints
may additionally guide expectations about functional correspondence. Overall,
APS shows great promise to become a principled framework for more robust and
biologically meaningful assessments of brain–model alignment.

Figure 1: Overview of our methodology: Using the BOLDMoments dataset (Lahner et al., 2024),
we benchmark model–brain alignment in visual cortex ROIs by comparing fMRI responses with
model activations via linear predictivity (LP) and RSA. Many models appear practically equivalent
under these measures, motivating a stricter metric—Alignment Pattern Similarity (APS)—which
assesses how well similarity patterns (across brains and between models and brains) align with
anatomical evidence of ROI–ROI relationships.
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1 INTRODUCTION

A central aim of computational neuroscience is to uncover the functions performed by neural pop-
ulations. For visual processing, decades of research have resulted in a putative mapping of distinct
tasks such as object recognition and motion processing onto hierarchical pathways across visual
cortex (Goodale & Milner, 1992; Kravitz et al., 2011; Rolls, 2024). Yet it remains unclear which
evolutionary and developmental inductive biases shape the primate visual system in a way that sup-
ports robust visual behaviors.

Over the last ten years, researchers have leveraged increasingly powerful artificial vision models
to probe candidate inductive biases. In this line of research, task-driven deep learning models are
evaluated with regard to how well they align to functional recordings from visual brain areas (Yamins
& DiCarlo, 2016). Alignment is assessed using a variety of metrics (Klabunde et al., 2025), and high
alignment is typically interpreted as evidence that a model’s task, architecture, and training dataset
reflect biologically relevant constraints. Early work demonstrated that networks trained for object
recognition predict responses in high-level ventral visual cortex (e.g. Yamins et al., 2014), laying the
foundation for investigating core object recognition as the primary task of the ventral visual stream
(e.g. Schrimpf et al., 2018). Recent progress in computer vision, including the advent of large-
scale self-supervised and multimodal models (e.g. Bear et al., 2023; Assran et al., 2025a), along
with the systematic collection of large-scale fMRI datasets (Lahner et al., 2024; Allen et al., 2022)
have further broadened this research program. These developments have enabled comprehensive
benchmarks of vision models in terms of their brain alignment.

The conclusions drawn from such benchmarks, however, rest on the assumption that alignment
metrics measure brain–model alignment in a meaningful way. Recent work has challenged this
assumption, showing that commonly used metrics can yield inconsistent results and may not capture
alignment in a principled way (Bowers et al., 2022; Schaeffer et al., 2024; Soni et al., 2024). This
raises a deeper question: What does it actually mean for a model to be “brain-aligned”?

Recent benchmarks of video models have relied on a single alignment metric, while metric-
comparison studies rarely include modern video architectures — leaving it unclear how much con-
clusions for state-of-the-art vision models depend on metric choice. Here, we evaluate state-of-the-
art vision models against large-scale fMRI data from the BOLDMoments dataset (Lahner et al.,
2024), shifting the focus from single-metric rankings to the stability of rankings and their consis-
tency with biologically meaningful brain connectivity.

In summary, our work makes the following contributions:

• We benchmark state-of-the-art vision models on the BOLDMoments dataset with both
RSA and LP, showing that large-scale video models (e.g., V-JEPA2, Assran et al. (2025b))
achieve the strongest brain alignment across brain areas.

• We move beyond simple rankings by quantifying the robustness of model orderings, show-
ing that many models are effectively equivalent within subject-level variability; RSA pro-
vides modest gains in discriminability over LP.

• We introduce Alignment Pattern Similarity (APS), a connectivity-grounded criterion reveal-
ing that brain–brain similarity follows anatomical connectivity, while model–brain align-
ment remains weak.

Taken together, our findings call for stricter, biologically grounded criteria for assessing brain–model
alignment, and we discuss below how they motivate changes to current benchmarking pipelines.

2 RELATED WORK

Alignment benchmarks. Kicked off by work on explaining visual object recognition (Yamins
et al., 2014), neural network models have been compared to the brain on large-scale benchmarks.
Brain-Score (Schrimpf et al., 2018) originally focused on static image processing along the ventral
stream, later adding language regions (Schrimpf et al., 2021). It provided a first large-scale platform
for model evaluation. The Algonauts challenge brought this approach to whole-brain responses
to naturalistic stimuli, beginning with static images and later extending to dynamic movie-based
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paradigms (Gifford et al., 2024; 2023; Cichy et al., 2021). Most recently, the challenge has empha-
sized multimodal video inputs, pushing alignment analyses into richer and more ecologically valid
contexts (see e.g. d’Ascoli et al., 2025).

Beyond these community benchmarks, several studies have systematically examined factors shap-
ing model–brain alignment. Conwell et al. (2024) showed that vastly different architectures can
achieve similar alignment, with variation in “visual diet” emerging as the most consistent deter-
minant. Tang et al. (2025) further found that a single predictive objective generalizes well across
cortical areas when evaluated with LP, suggesting shared computational principles across the hierar-
chy. In contrast, Sartzetaki & Groen (2025) used RSA to reveal stream-specific alignment: modular
architectures preferentially aligned with dorsal versus ventral pathways, consistent with a division
of labor between motion and object processing. Sartzetaki et al. (2024) find that while video models
achieve highest RSA-alignment in early visual regions, for both ventral and dorsal regions, semantic
objectives seem key.

Alignment metrics. Conclusions about brain–model alignment strongly depend on the choice of
alignment metric. Several recent studies have shown that different metrics can yield inconsistent
model rankings, highlighting the instability of current benchmarking practices (Soni et al., 2024; Bo
et al., 2024). In particular, LP has drawn substantial criticism: Schaeffer et al. (2024) argue that
LP primarily reveals biases of the regression framework rather than genuine alignment, while Soni
et al. (2024); Bo et al. (2024); Wu et al. (2025) show that LP offers low discriminability between
models. More broadly, Bowers et al. (2022) contend that such metrics do not provide a reliable basis
for drawing conclusions about brain alignment at all. Together, these findings underscore the need
for stricter and more interpretable criteria when assessing model–brain correspondence.

3 METHODS

3.1 DATASET

We base our analyses on the BOLDMoments dataset (Lahner et al., 2024), a 3T fMRI dataset
recorded from 10 subjects watching over 1000 different 3-second video clips. We chose this dataset
to ensure stimulation of motion-responsive brain areas (Grossman & Blake, 2002; Sunaert et al.,
1999). Each of the 998 stimuli in the train split was shown three times to each subject, each of
the 98 stimuli in the test split was shown ten times. Stimulus repetitions were presented in random
order across 4 sessions. We use beta values (GLMSingle regression coefficients of each voxel and
video shown), projected to fslr32k surface space, as they are output from the preprocessing pipeline
(specifically, version B) of Lahner et al. (2024). Please refer to Lahner et al. (2024) for more details.
We use the original train-test split, and average the fMRI activity over repetitions, leading to a higher
signal-to-noise ratio on the test split, compared to the train split. While the voxel-wise beta values
provided by Lahner et al. (2024) are already centered and normalized across individual sessions, we
normalize and center them once more across the train set, and use the same standard deviation and
mean per feature to approximately center and normalize the test split.

We analyze ROIs from the Glasser HCP-MMP atlas (Glasser et al., 2016): early visual areas
(V1,V2,V3), dorsal stream (V3A, V3B, V6, V6A, V7, IPS1, MST, MT, FST, LO1–LO3), and ventral
stream (V4, V8, PIT, FFC).

3.1.1 NOISE-CEILINGS AND ROI-ROI SIMILARITY BASED ON INTER-SUBJECT RELIABILITY

Because fMRI data are noisy, neither perfect predictivity nor perfect representational similarity can
be expected (Walther et al., 2016). We compute noise ceilings and similarities between different
ROIs in the following way, for each subject: We average the fMRI data of the remaining N-1 subjects
for the first, ’source’ ROI. Then we use this average as the predictor feature space for the two metrics
and compute the RSA/LP score between this average map and the left-out subject’s ROI data for the
second ’target’ ROI. For noise ceilings, ’source’ and ’target’ are the same ROI. We do not normalize
results by the noise ceiling but additionally display the ceiling where helpful.
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3.2 MODELS

We evaluate 47 state-of-the-art pretrained image and video deep learning models that cover a broad
range of architectures, objectives and datatsets:

Taskonomy model bank. A collection of 26 models based on ResNet-50 and trained on the same
dataset of 4 million indoor scenes, but for different tasks (Sax et al., 2018; Zamir et al., 2018).
Supervised image models. We include ResNet (He et al., 2016) and ConvNext (Liu et al., 2022b)
models from the timm library (Wightman, 2019), all trained for object recognition on ImageNet-
1K. Self-supervised image models. As counterpart to the supervised image models, we include
ResNets trained on ImageNet-1K with the self-supervised SimCLR objective (Chen et al., 2020), as
provided by VISSL (Goyal et al., 2021). CLIP. We consider the ResNet-50 and Vision Transformer
based CLIP models from the original codebase, all trained to align image and text representation
on a large dataset of 400M image-text pairs (Radford et al., 2021). Supervised video models.
We use three video transformers from the mmaction2 toolkit (Contributors, 2020): MViT (Li et al.,
2022), Video Swin Transformer (Liu et al., 2022a), TimeSformer (Bertasius et al., 2021). All models
were trained for action recognition on the Kinetics-400 dataset. Unsupervised video models. We
include the ViT-based counterfactual world model (CWM) (Stojanov et al., 2025) which was trained
on Kinetics-400 using an adapted MAE objective (He et al., 2022). Further, we consider the V-JEPA
2 model (Assran et al., 2025a) that was trained on a large-scale video dataset using a variant of
the MAE objective in feature space. VGG Transformer (VGG-T). We include the 3D foundation
model VGG-T (Wang et al., 2025) as comparison to the dominantly semantic models described
above. This ViT-based model was trained to simultaneously predict multiple key 3D attributes from
a variable number of views of a scene.

For all models, we extract representations for the last layer of up to 15 blocks (e.g., a residual blocks
in a ResNet). For models with more blocks, we use 15 equally spaced blocks. We apply image
models to each frame individually, and video models and VGG-T to the entire video clip (3s, and
average representations over time. The resulting feature vectors are reduced using sparse random
projection (Achlioptas, 2003) to 5919 dimensions, following the Johnson-Lindenstrauss Lemma
with an epsilon of 0.1 (Achlioptas, 2001).

3.3 MEASURING MODEL-BRAIN ALIGNMENT

For every combination of model and ROI, we select the best layer on the training set by averaging the
alignment scores over subjects. Using the selected layer for all subjects, we then report alignment
scores on the test set. We consider the following two alignment metrics:

Representational Similarity Analysis (RSA) compares representations based on representational
dissimilarity matrices (RDMs), which are sufficient statistics for the representational geometry of
a system (Kriegeskorte & Wei, 2021; Kriegeskorte et al., 2008). RDMs are constructed for the
model and brain representation by computing the pairwise correlation distances of the representation
(1−correlation) for all samples. The overall RSA alignment score is then the correlation of the brain
and model RDMs.

Linear predictivity (LP) measures alignment by fitting a linear model that predicts brain activity
from model features (e.g., Yamins et al. (2014)). We fit ridge regression models predicting the
preprocessed fMRI signals on the training set using 5-fold cross-validation. We use the RidgeCV
implementation from the scikit-learn package (Pedregosa et al., 2011), which selects the optimal
alpha value using leave-one-out cross-validation from 19 candidate values on a logarithmic scale
spanning 10−9 to 109. Given the respective linear models fitted on the training set, we report the
residual sum of squares (R2) on the test set.

3.4 DETERMINING PRACTICAL EQUIVALENCE BETWEEN MODELS

To assess when models can be considered practically indistinguishable in terms of brain alignment,
we defined an equivalence criterion based on subject-level variability. Variability was estimated via
bootstrap resampling: subjects (n = 10) were sampled with replacement, mean ROI-level alignment
was recomputed for each resample, and 95% confidence intervals were derived from the resulting
distribution. A model was deemed practically equivalent to the top-ranking model if its average
alignment score fell within the 95% confidence interval of the top model.
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3.5 CONNECTIVITY-BASED ALIGNMENT PATTERN ANALYSIS

For any given ROI, we define its alignment pattern as the vectorof similarities between this ROI
and all ROIs (incl. the ROI in question) analysed. The similarity s can be given by a metric such
as RSA and LP. We additionally define a metric- and data-independent measure of similarity based
on anatomical connectivity. Specifically, we arrange ROIs in an undirected graph G = (V,E),
where each ROI corresponds to a vertex v and there exists an edge ei,j between two vertices vi, vj
if there is a known feedforward connection between these two ROIs (Rolls, 2024). Note that we do
not take feedback connections into account here. For the connectivity-based alignment similarity
between ROI i and j, we then calculate the length l of the shortest path between vi, vj , and set the
similarity to sc(i, j) = sc(j, i) = λl, with λ = 0.9. The alignment pattern of ROI i then results
as the vector Sc(i) = {sc(i, j)} for j = 1, ..., Nrois. Metric-based alignment patterns derived
from functional (i.e. fMRI-measurements) are defined analogously, with sRSA(i, j) simply given
by the RSA score between ROI i and j. Alignment pattern similarity is then defined as the Pearson
correlation between Sc(i) and SRSA/LP (i). For model-to-brain comparisons, sRSA/LP (m, j) is the
similarity/predictivity between model m and ROI j. APS is then computed between highly scoring
models for ROI i, mi

1, ...mK as the correlation between SRSA/LP (m
i
k) and Sc(i).

4 RESULTS

In the following sections, we first present the overall results regarding the alignment of models
and neural data (4.1). We then analyze the influence of the respective metrics on the results in
greater detail (4.2 and 4.3), and conclude by exposing the limits of SOTA model brain alignment by
comparing to brain-brain alignment (Alignment Pattern Similary (APS), 4.4).

4.1 BENCHMARKING ALIGNMENT OF VISION MODELS TO THE VISUAL CORTEX

Models, ordered by average LP alignment
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Figure 2: Alignment scores across models. Boxplots depict the distribution of subject-averaged
alignment scores (RSA/LP) across ROIs, with models ordered by their average LP alignment.

We evaluated a range of vision models on their alignment to visual cortex—including early, ventral,
and dorsal regions (Fig. 2)—using two complementary alignment metrics: RSA and LP. The models
varied with respect to architecture (CNNs and Transformers), training objective (various supervised
and self-supervised objectives), modality (image and video), as well as model size and training
dataset (Methods 3.2).

Consistent with previous work (Tang et al., 2025), we found that the self-supervised V-JEPA 2
model family (Assran et al., 2025a), achieved the strongest overall alignment across visual cortex,
according to both RSA and LP. Notably, however, the best aligned models included CLIP with a
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ResNet-50 backbone and the VGG-Transformer—which differ in several important aspects from
vJEPA and each other, such as the training data, training objective and overall architecture.

LP appeared to primarily separate poorly aligned models (largely from the Taskonomy family) from
the rest, while offering limited discrimination among better-aligned models. RSA, by contrast,
produced a more graded ranking that distinguished among high-performing models.

4.2 PRACTICAL EQUIVALENCE IN MODEL-BRAIN ALIGNMENT

Next, we further assessed the robustness of model rankings and the discriminability between models
in terms of brain alignment as predicted by both metrics. To this end, we examined alignment at the
level of individual regions-of-interest (ROIs), checking for models that were practically equivalent
in brain-alignment (see Methods 3.4). This analysis revealed that many models were practically
equivalent in terms of brain alignment (Fig. 3, Fig. S11). For example, in early visual cortex (V1),
LP grouped eight models as practically equivalent to the best model, whereas RSA reduced this set
to just two. A similar pattern emerged in ventral regions such as PIT, where LP identified ten models
as equivalent compared to five with RSA. Dorsal regions, by contrast, showed broader equivalence
classes under both metrics. Overall, RSA yielded sharper distinctions than LP, classifying on average
only 4.1 models as practically equivalent per region, compared to 5.73 with LP (Fig. S8).

These findings demonstrate that ranking models without considering the magnitude of their
alignment differences can be misleading, since many models are often practically equivalent—
underscoring the importance of incorporating stricter or additional measures when evaluating
brain–model alignment.

LO3

Models, ordered according to each ROI's RSA score
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V1 MT

PIT

LP
RSA

Noise ceiling

Best model CI
lower bound  

Models 
within CI

Figure 3: Model rankings for individual ROIs. Models are ordered according to each ROI’s RSA
alignment score. Opaque symbols denote models outside the 95% confidence interval (CI) of the
most-aligned model, while star-highlighted symbols indicate models within the 95% CI. Dotted lines
show the inter-subject noise ceiling, and horizontal bars mark the lower bound of the 95% CI for the
top model.

4.3 DIFFERENT MODELING APPROACHES YIELD EQUIVALENT BRAIN ALIGNMENT

Building on the results from the previous sections, we evaluated whether models that are practically
equivalent share major design parameters, such as model architecture, training dataset or training
objective.
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Again, we find that this depends on the metric and also on the brain region being analyzed (Fig.
4). For instance, RSA identified unsupervised transformer architectures trained on video datasets
as top performers in all early visual regions as well as V4, the entry point of the ventral stream.
This pattern shifted in later ventral regions: In FFC, image-based supervised models—both CNNs
and transformers—ranked highest. Dorsal regions showed a more heterogeneous picture, but a
similar trend emerged, with unsupervised video models dominating earlier areas and supervised
image models performing better in later ones.

Conversely, LP yielded a less differentiated picture. Across regions, it largely identified the same
set of high-performing models, but tended not to exclude models that RSA ranked lower. More
generally, rather than highlighting clear shifts between model types across the hierarchy, LP often
grouped a broader range of architectures, objectives, and modalities as equivalently aligned.

RSA BothLP

RSARSA and/or LP LP
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p
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s

Figure 4: Equivalently brain-aligned models for RSA and LP. The 2D plots show models (y-axis)
versus ROIs, with colored markers indicating equivalently aligned models per ROI: LP (blue), RSA
(red), and overlap (purple). The right panel summarizes properties of the models along the y-axis,
including dataset size used for training.

In summary, while both metrics distinguish poorly aligned models from better aligned ones, LP
offers little discriminability among the large set of well-performing models. RSA separates these
models more effectively and highlights region-specific preferences, yet even RSA sometimes assigns
similar alignment to models that differ in architecture, modality, training objective, or dataset (e.g.,
in V8). This raises a broader question: What does it actually mean for a model to be “brain-aligned”?

4.4 BRAIN ALIGNMENT AS ALIGNMENT PATTERN SIMILARITY

We propose that a model is meaningfully aligned to a brain region if it not only matches that region
locally, but also preserves its pattern of relationships to other regions. For example, V1 is most
similar to V2, less similar to V3, and very different from PIT. A V1-aligned model should exhibit
the same relational profile. We refer to this relational profile as a region’s alignment pattern.

We define alignment patterns independently of any functional alignment metric. Otherwise, a model
might appear aligned simply because it shares an idiosyncratic feature of that metric, rather than
capturing the functional profile of the region. Anatomical connectivity provides a suitable proxy
because it constrains and shapes functional interactions across the visual system: Regions that are
strongly connected are more likely to share information and thus exhibit similar representational
profiles. Based on recent literature on the human connectome (Rolls, 2024), we constructed a con-
nectivity graph (Fig. 5a, see Methods 3.5) and defined similarity between regions as a function of the
length of the shortest path between them. We included ROIs along the well-established ventrolateral
and dorsal stream with sufficiently clear connectivity. This yielded a connectivity-based similarity
matrix (Fig. 5b), where each row or column corresponds to a region’s alignment pattern (Fig. 5c).

We validate this approach by predicting brain-to-brain functional alignment patterns between ROIs
as measured by RSA and LP via cross-subject prediction: For each ROI, the average activity of
N − 1 subjects served as the predictor feature space, and the activity of the held-out subject as the
target (Fig. 5d). We correlated (Pearson) each ROI’s connectivity-based alignment pattern with its
functional alignment pattern, yielding an alignment pattern similarity (APS) score (Fig. 5d, right).
Both metrics produced relatively high APS at the group level, reaching up to 0.88 (RSA) and 0.82
(LP) for V1, with mean values of 0.5 += 0.23 (RSA) and 0.65 += 0.15 (LP) across ROIs.
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Different from high brain-to-brain alignment, we find that models do not achieve high APS. For
each ROI, we compute the alignment pattern of the top-ranked (Fig. 5e, stars) and the practically
equivalent models (Fig. 5e, boxplots; see Methods 3.4) under each metric and compared it to the
ROI’s connectivity-based alignment pattern. Strikingly, both metrics sometimes selected models
with poor or even negative APS (Fig. 5e). For example, RSA’s top model for V1 (V-JEPA2 ViT-
Giant 384) achieved an APS of 0.63, whereas LP’s top model (V-JEPA2 ViT-Large) scored –0.31.
Generally, RSA tended to favor models with higher APS in early and ventral regions, while the
pattern was more mixed in dorsal areas. Overall, the models selected by the benchmarking pipeline
using RSA as alignment metric achieve an average APS of 0.24, whereas the models selected by the
pipeline using LP as alignment metric achieve an average APS of 0.02.
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Figure 5: Alignment pattern similarity across ROIs and models. a) Connectivity graph defining the
similarity structure based on known connectivity (Rolls, 2024). b) Corresponding similarity matrix
derived from the graph. c) Example alignment patterns for three ROIs (V1, MT, PIT) relative to
all others. d) Top: brain–brain similarity patterns for RSA and LP compared to the connectivity-
derived pattern. Bottom: similarity patterns of the most ROI-aligned models for RSA and LP, for
three example ROIs. e) APS for best-performing (star) and equivalent (boxplots) models for LP
(left) and RSA (right).

These results indicate that current benchmarking pipelines do not reliably identify models that pre-
serve connectivity-based alignment patterns. Although RSA performs somewhat better than LP,
both metrics can mis-rank models when judged against this stricter criterion of brain alignment.
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5 DISCUSSION

Our main finding is that state-of-the-art vision models—despite their scale and performance—
remain only weakly aligned to the human brain when evaluated with stricter, biologically grounded
criteria. Conversely, brain–to–brain alignment across subjects remains consistently high. This sug-
gests that conventional benchmarks overestimate how well models capture neural organization.

Complementary perspectives of LP and RSA. Consistent with recent work (e.g. Bo et al.
(2024)), our results highlight systematic differences between linear predictivity (LP) and repre-
sentational similarity analysis (RSA) for state-of-the-art vision models trained on large-scale in-
ternet image and video datasets. LP rewards high-dimensional feature spaces that can be linearly
reweighted to predict neural responses, making it effective for identifying candidate “digital twins”
(i.e., predictive models) of neural data. Yet this flexibility reduces its ability to discriminate among
well-performing models. RSA, by contrast, compares the relational geometry of representations,
which makes it more sensitive to region-specific preferences and better at distinguishing among
high-scoring models. However, because RSA relies on second-order similarity, it can assign similar
scores to models with different training objectives or modalities if their representational structures
align. Similar to Conwell et al. (2024), we conclude that, while different metrics are complementary,
they might be too flexible if the goal is to identify meaningfully brain-aligned models.

What is meaningful alignment? Meaningful alignment should reflect biologically grounded or-
ganization rather than predictive flexibility (e.g. see Nonaka et al. (2021)). As a step towards
this goal, we introduced Alignment Pattern Similarity, which evaluates whether models capture the
relational structure between brain regions (based on anatomy and/or function). Developing and
standardizing such criteria remains an open challenge.

Relation to prior benchmarks Our results also refine conclusions from prior benchmarks. We
replicate the finding by Sartzetaki et al. (2024) that modeling temporal dynamics is key for RSA-
alignment to early visual regions, whereas models trained with semantic objectives are more aligned
to higher-level regions. Tang et al. (2025) found that a single predictive objective generalized across
cortical areas under LP. Using both LP and RSA, we likewise identify the same best-performing
model overall. However, our results suggest that rather than reflecting a single unifying objective,
this apparent generalization may instead arise from the flexibility of large feature spaces. In par-
ticular, distinct subspaces within a model’s representation may be selectively exploited by linear
readouts, each supporting different tasks across cortical areas. A closer analysis of these subspaces
could clarify whether cross-regional alignment reflects genuine commonalities or simply the repre-
sentational versatility of large models. Our results also refine conclusions from prior benchmarks.
Sartzetaki & Groen (2025) reported stream-specific alignment of modular architectures, which we
replicate and show to be clearer under RSA than LP. Tang et al. (2025) found that a single predictive
objective generalized across cortical areas under LP. We also observe broad alignment with LP, but
suggest this may reflect the flexibility of large feature spaces rather than a unified computational
principle. Finally, large-scale efforts such as BrainScore (Schrimpf et al., 2018) and the Algonauts
challenges (Gifford et al., 2024; 2023; Cichy et al., 2021) have advanced the field, but their reliance
on LP may systematically overstate alignment. We extend these frameworks in two directions: (i)
by analyzing the number of practically equivalent models and (ii) by introducing APS as an anatom-
ically grounded measure. In both analyses, RSA proved more informative than LP.

Implications We find that current normative models—even if brain-aligned in the sense of stan-
dard metrics like RSA and LP—do not faithfully reproduce brain-to-brain alignment patterns when
substituted for real neural data. Progress will require the field to define and agree on stricter align-
ment criteria to complement existing measures. The key challenge is not only to build more powerful
models, but also to evaluate them against criteria that more directly capture the organization of the
brain.
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A APPENDIX

A.1 DISCLOSURE OF LLM USE

We have used LLMs to assist in the code writing process, including for plot creation, to discuss ideas
and concepts, in literature search, for searching information in a given work, and for refining text in
this paper.

A.2 NOISE CEILINGS

Figure 6: Noise ceilings per ROI. Left: test split, right: train split of BOLDMoments. For each ROI:
Middle line: mean across all subject, upper and lower line: highest and lowest noise ceiling across
subjects.

A.3 MODEL ALIGNMENT BY VISUAL AREAS

A.4 EQUIVALENT MODELS BY VISUAL AREA
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early ROIs

ventral ROIs

dorsal ROIs

Figure 7: Alignment scores of all models in early layers, dorsal stream, and ventral stream. Boxplots
show scores across ROIs.
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Figure 10: Model rankings for individual ROIs.
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