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ABSTRACT

Neuroscientists and computer vision scientists alike have relied on model-brain
alignment benchmarks to find parallels between artificial and biological vision
systems. These benchmarks rank models according to alignment measures (AM)
such as representational similarity analysis (RSA) and linear predictivity (LP).
However, recent works have revealed a number of problems with these rankings,
such as their sensitivity towards the choice of AM, raising the deeper conceptual
question of what it means for a model to be “brain-aligned.” Here, we introduce
the notion of alignment patterns - characteristic patterns of alignment between
brain regions - and posit that models should reproduce these patterns in order to
be considered brain-aligned. First, we apply a standard benchmarking pipeline to
a broad spectrum of vision models on the BOLD-Moments video fMRI dataset
across visual regions of interest (ROIs). We find that, while this pipeline can iden-
tify nominally best predictive models, many other models fall within subject-level
variability and are therefore practically equivalent in terms of brain alignment. We
then apply our complementary relational criterion: a ROI-aligned model should
reproduce that ROIs cross-region alignment pattern. We find that, while these pat-
terns are highly stable across brains of different subjects, even top-ranked models
fail to capture them. Notably, models that appear practically equivalent in pre-
dictive accuracy diverge sharply under the relational criterion, revealing both the
limitations with respect to discriminative power of existing evaluation pipelines,
as well as alignment pattern analysis as a way of increasing this discriminative
power. Finally, we argue for a principled distinction between brain-predictivity
and brain-alignment. For applications such as digital twins, prediction perfor-
mance may suffice; but for understanding the inductive biases of the visual system,
models should satisfy stricter distributional and relational criteria.

Figure 1: Extending brain-alignment benchmarks with distributional and relational criteria.
(a) Standard brain-alignment benchmarks report model rankings based on normalized and averaged
scores obtained from some alignment measure d, obscuring both the gap to ceiling performance, as
well as the degree of variability in predictivity across the population. (b In addition to assessing the
distribution of brain-brain alignment scores across the population (“NeuroAI Turing Test”)(Feather
et al., 2025; Thobani et al., 2025), we assess the distribution of model-brain alignment scores to
define equivalence classes of models in terms of brain-alignment. (c) To distinguish between equiv-
alently aligned models, we introduce alignment pattern similarity as a relational criterion that as-
sesses whether a model reproduces the cross-region alignment patterns of visual regions of interest
(ROIs).
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1 INTRODUCTION

A central aim of vision research is to understand which evolutionary and developmental inductive bi-
ases have shaped the biological - and, in particular, the primate - visual system in a way that supports
robust visual behaviors. Over the last ten years, researchers have leveraged increasingly powerful
artificial vision models to probe candidate inductive biases Yamins et al. (2014); Yamins & DiCarlo
(2016). In this line of research, models trained on a variety of tasks from computer vision are eval-
uated with regard to how well they align to functional recordings from visual brain areas according
to a variety of measures (Klabunde et al., 2025), and high alignment is typically interpreted as ev-
idence that a model’s task, architecture, or training dataset reflect biologically relevant constraints.
Recent progress in computer vision, including large-scale self-supervised and multi-modal models
(e.g. Bear et al., 2023; Assran et al., 2025), along with the systematic collection of large-scale fMRI
datasets (Lahner et al., 2024; Allen et al., 2022) now allow to scale these efforts towards compre-
hensive brain-alignment benchmarks of vision models (Schrimpf et al., 2018; 2020; Conwell et al.,
2024; Sartzetaki et al., 2024). The conclusions drawn from such benchmarks, however, rest on the
assumption that alignment score rankings reflect differences in brain–alignment in some meaningful
way. Recent work has challenged this assumption, showing that commonly used measures yield
inconsistent results, and thus may not capture alignment in a principled way (Bowers et al., 2022;
Schaeffer et al., 2024; Soni et al., 2024). This raises a deeper question: What does it actually mean
for a model to be “brain-aligned”? Previous works (Feather et al., 2025; Thobani et al., 2025) have
posited that a model should only be considered truly brain-like if its internal representations are
indistinguishable - under a similarity transform - from those of other brains. The authors suggest a
distributional criterion to assess this: if the model-brain alignment score is within the distribution
of brain-brain alignment scores, the model is considered indistinguishable from other brains under
the similarity transform that generated the score, thereby passing the NeuroAI Turing Test (Fig. 1
a). The authors apply their distributional criterion to a range of static, i.e. image-based model-brain
alignment benchmarks and conclude that many of them are saturated, i.e., models pass the Neu-
roAI Turing Test (Feather et al., 2025). Here, we make three major contributions on top of existing
benchmarks and the NeuroAI Turing Test:

1. Benchmarking
First, we evaluate a broad family of state-of-the-art vision models on a naturalistic video
fMRI dataset spanning the entire visual hierarchy (Lahner et al., 2024), resolving brain-
alignment to individual visual ROIs (Fig. 1a). We apply the NeuroAI Turing test and find
that many models pass the NeuroAI Turing test when evaluated with Linear Predictivity
(LP), but most fail when evaluated with Representational Similarity Analysis (RSA). This
highlights the lack of robustness of standard benchmarking pipelines to the choice of align-
ment measure.

2. Defining practical equivalence in brain-alignment
Second, using a distributional criterion to analyze alignment-score rankings, we show that
for most visual ROIs, models that differ substantially in architecture, training data, and
objective are still practically equivalent in their brain-alignment (Fig. 1b). This challenges
the discriminative power of current benchmarks.

3. Alignment pattern similarity to distinguish among equivalently aligned models
Third, we introduce a relational criterion to distinguish among equivalently aligned mod-
els: We posit that a model should only be considered aligned to a brain region if it repro-
duces the cross-region alignment pattern of this brain region (Fig. 1c).

We conclude with a discussion where we argue to make a distinction between brain-aligned models
in this stricter sense, and brain-predictive models, where high LP-scores in suffice.

2 RELATED WORK

Alignment benchmarks. Kicked off by work on explaining visual object recognition (Yamins
et al., 2014), neural network models have been compared to the brain on large-scale benchmarks.
Brain-Score (Schrimpf et al., 2018) originally focused on static image processing along the ventral
stream, later adding language regions (Schrimpf et al., 2021). It provided a first large-scale platform
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for model evaluation. The Algonauts challenge brought this approach to whole-brain responses
to naturalistic stimuli, beginning with static images and later extending to dynamic movie-based
paradigms (Gifford et al., 2024; 2023; Cichy et al., 2021). Most recently, the challenge has empha-
sized multimodal video inputs, pushing alignment analyses into richer and more ecologically valid
contexts (see e.g. d’Ascoli et al., 2025).

Beyond these community benchmarks, several studies have systematically examined factors shap-
ing model–brain alignment. Conwell et al. (2024) showed that vastly different architectures can
achieve similar alignment, with variation in “visual diet” emerging as the most consistent deter-
minant. Tang et al. (2025) further found that a single predictive objective generalizes well across
cortical areas when evaluated with LP, suggesting shared computational principles across the hierar-
chy. In contrast, Sartzetaki & Groen (2025) used RSA to reveal stream-specific alignment: modular
architectures preferentially aligned with dorsal versus ventral pathways, consistent with a division
of labor between motion and object processing. Sartzetaki et al. (2024) find that while video models
achieve highest RSA-alignment in early visual regions, for both ventral and dorsal regions, semantic
objectives seem key.

Alignment metrics. Conclusions about brain–model alignment strongly depend on the choice of
alignment metric. Several recent studies have shown that different metrics can yield inconsistent
model rankings, highlighting the instability of current benchmarking practices (Soni et al., 2024; Bo
et al., 2024). In particular, LP has drawn substantial criticism: Schaeffer et al. (2024) argue that
LP primarily reveals biases of the regression framework rather than genuine alignment, while Soni
et al. (2024); Bo et al. (2024); Wu et al. (2025) show that LP offers low discriminability between
models. More broadly, Bowers et al. (2022) contend that such metrics do not provide a reliable basis
for drawing conclusions about brain alignment at all. Together, these findings underscore the need
for stricter and more interpretable criteria when assessing model–brain correspondence.

Alignment patterns. A number of works have evaluated whether the visual hierarchy of regions or
voxels is reflected in the order of their best-matching layers within a DNN, e.g., Güçlü & Van Gerven
(2015); Cichy et al. (2016); Bersch et al. (2025); Thobani et al. (2025). Nonaka et al. (2021) suggest
using such hierarchical correspondence as an alignment criterion. This evaluates whether entire
models match to entire visual streams, while we look at alignment of models to individual regions.
Thobani et al. (2025) also correlate layer dissimilarity scores to known distances between layers,
and repeat the same analysis for visual brain regions, which they assign to integer hierarchy levels 1
to 5. This serves to compare alignment methods, not to evaluate model-brain similarity.

3 METHODS

3.1 DATASET

We base our analyses on the BOLDMoments dataset (Lahner et al., 2024), a 3T fMRI dataset
recorded from 10 subjects watching over 1000 different 3-second video clips. We chose this dataset
to ensure stimulation of motion-responsive brain areas (Grossman & Blake, 2002; Sunaert et al.,
1999). Each of the 1000 stimuli in the train split was shown three times to each subject, each of
the 102 stimuli in the test split was shown ten times. Stimulus repetitions were presented in random
order across 4 sessions. We use beta values (GLMSingle regression coefficients of each voxel and
video shown), projected to fslr32k surface space, as they are output from the preprocessing pipeline
(specifically, version B) of Lahner et al. (2024). Please refer to Lahner et al. (2024) for more details.
We use the original train-test split, dropping data for 2 (4) stimuli from the train (test) set because of
frame extraction issues, and average the fMRI activity over repetitions, leading to a higher signal-to-
noise ratio on the test split, compared to the train split. While the voxel-wise beta values provided by
Lahner et al. (2024) are already centered and normalized across individual sessions, we normalize
and center them once more across the train set, and use the same standard deviation and mean per
feature to approximately center and normalize the test split.

We analyze ROIs from the Glasser HCP-MMP atlas (Glasser et al., 2016): early visual areas
(V1,V2,V3), dorsal stream (V3A, V3B, V6, V6A, V7, IPS1, MST, MT, FST, LO1–LO3), and ventral
stream (V4, V8, PIT, FFC).
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3.1.1 NOISE CEILINGS

Because fMRI data are noisy, neither perfect predictivity nor perfect representational similarity can
be expected (Walther et al., 2016). We compute two noise ceilings for each ROI in the following
ways: Upper noise ceiling. We average the fMRI data of N-1 subjects for the given ROI. Then we
use this average as predictor feature space and compute RSA/LP score between the average map
and the remaining subject’s ROI data. This yields one upper noise ceiling per subject, from which
we can compute a mean, and a 95% confidence interval of the mean, across the ten subjects. Lower
noise ceiling. As suggested in the Neuro-AI Turing test Feather et al. (2025), we compute a noise
ceiling based on pairwise alignment scores between subjects. For a given ROI, we sample five other
subjects per target subject, excluding previously sampled pairs, for a total of 50 subject pairs. For
each pair we compute the RSA/LP score between the regions’ fMRI features of the two subjects,
and again compute mean and 95% confidence interval across all pairs.

3.2 MODELS

We evaluate 47 state-of-the-art pretrained image and video deep learning models that cover a broad
range of architectures, objectives and datatsets:

Taskonomy model bank. A collection of 26 models based on ResNet-50 and trained on the same
dataset of 4 million indoor scenes, but for different tasks (Sax et al., 2018; Zamir et al., 2018).
Supervised image models. We include ResNet (He et al., 2016) and ConvNext (Liu et al., 2022b)
models from the timm library (Wightman, 2019), all trained for object recognition on ImageNet-
1K. Self-supervised image models. As counterpart to the supervised image models, we include
ResNets trained on ImageNet-1K with the self-supervised SimCLR objective (Chen et al., 2020), as
provided by VISSL (Goyal et al., 2021). CLIP. We consider the ResNet-50 and Vision Transformer
based CLIP models from the original codebase, all trained to align image and text representation
on a large dataset of 400M image-text pairs (Radford et al., 2021). Supervised video models.
We use three video transformers from the mmaction2 toolkit (Contributors, 2020): MViT (Li et al.,
2022), Video Swin Transformer (Liu et al., 2022a), TimeSformer (Bertasius et al., 2021). All models
were trained for action recognition on the Kinetics-400 dataset. Unsupervised video models. We
include the ViT-based counterfactual world model (CWM) (Stojanov et al., 2025) which was trained
on Kinetics-400 using an adapted MAE objective (He et al., 2022). Further, we consider the V-
JEPA 2 model (Assran et al., 2025) that was trained on a large-scale video dataset using a variant of
the MAE objective in feature space. VGG Transformer (VGG-T). We include the 3D foundation
model VGG-T (Wang et al., 2025) as comparison to the dominantly semantic models described
above. This ViT-based model was trained to simultaneously predict multiple key 3D attributes from
a variable number of views of a scene.

For all models, we extract representations for the last layer of up to 15 blocks (e.g., a residual block
in a ResNet). For models with more blocks, we use 15 equally spaced blocks. We apply image
models to each frame individually, and video models and VGG-T to the entire video clip (3s), and
average representations over time. The resulting feature vectors are reduced using sparse random
projection (Achlioptas, 2003) to 5919 dimensions, following the Johnson-Lindenstrauss Lemma
with an epsilon of 0.1 (Achlioptas, 2001).

3.3 MEASURING MODEL-BRAIN ALIGNMENT

For every combination of model and ROI, we select the best layer on the training set by averaging the
alignment scores over subjects. Using the selected layer for all subjects, we then report alignment
scores on the test set. We consider the following two alignment metrics:

Representational Similarity Analysis (RSA) compares representations based on representational
dissimilarity matrices (RDMs), which are sufficient statistics for the representational geometry of
a system (Kriegeskorte & Wei, 2021; Kriegeskorte et al., 2008). RDMs are constructed for the
model and brain representation by computing the pairwise correlation distances of the representation
(1 − Pearson correlation) for all samples. The overall RSA alignment score is then the Pearson
correlation of the brain and model RDMs.

Linear predictivity (LP) measures alignment by fitting a linear model that predicts brain activity
from model features (e.g., Yamins et al. (2014)). We fit ridge regression models predicting the
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preprocessed fMRI signals on the training set using 5-fold cross-validation. We use the RidgeCV
implementation from the scikit-learn package (Pedregosa et al., 2011), which selects the optimal
alpha value using leave-one-out cross-validation from 19 candidate values on a logarithmic scale
spanning 10−9 to 109. Given the respective linear models fitted on the training set, we report the
residual sum of squares (R2) on the test set.

3.4 DETERMINING PRACTICAL EQUIVALENCE BETWEEN MODELS

To determine when models are practically indistinguishable in terms of brain alignment, we defined a
practical equivalence criterion based on bootstrap estimates of variability in model-brain alignment
scores. For a given model m with feature space Xm, we generated a bootstrap distribution of
mean brain-alignment scores under a measure M by resampling subject indices with replacement.
Specifically, we defined a bootstrap index vector

I∗ = (i∗1, . . . , i
∗
10), i∗k ∼ Unif(I) with replacement, I = {1, . . . , 10},

and computed the corresponding bootstrap estimate of the mean alignment score as

1

10

10∑
k=1

M
(
Xm, Yi∗k

)
.

We then derived 95% confidence intervals for the model’s mean brain-alignment score from the
resulting distribution. A model m was deemed practically equivalent to the top-ranking model t if
its empirical mean alignment score ⟨M(Xm, Yi)⟩i fell within the 95% confidence interval of the top
ranking model.

3.5 ALIGNMENT PATTERN ANALYSIS

We define an alignment pattern α under a similarity transform M between a predictor feature space
ϕp and N target feature spaces Ψt = [ψ1

t , ..., ψ
N
t ] as

α(ϕp,Ψt) = [M(ϕp, ψ
1
t ),M(ϕp, ψ

2
t ), ...,M(ϕp, ψ

N
t )] (1)

3.5.1 FMRI-DERIVED ALIGNMENT PATTERNS

For fMRI-derived alignment patterns, both the predictor and the target feature spaces are sourced
from brain activity from the BOLDMoments dataset. fMRI-derived alignment patterns are defined
between pairs of subjects p, t, where the brain activity of subject p functions as the predictor feature
space ϕp and the brain activity of subject t functions as the target feature space Ψt The alignment
pattern for a given ROI r ∈ N and a pair of subjects p, t is then defined as

αr(ϕp,Ψt) = [M(ϕrp, ψ
1
t ),M(ϕrp, ψ

2
t ), ...,M(ϕrp, ψ

r
t ), ...,M(ϕrp, ψ

N
t ] (2)

We detail in the Appendix Section S3.1 how the variance of fMRI-derived alignment patterns is
estimated.

3.5.2 MODEL-DERIVED ALIGNMENT PATTERNS

For model-derived alignment patterns, the predictor feature space is defined as the activations in one
layer l of the model, ϕlm, and the target feature spaces are analogous to the case of fMRI-derived
alignment patterns. A model-derived alignment pattern between model m and subject t for a given
ROI r ∈ N is then

αl(ϕm,Ψt) = [M(ϕlm, ψ
1
t ),M(ϕlm, ψ

2
t ), ...,M(ϕlm, ψ

N
t ] (3)

3.5.3 STRUCTURAL CONNECTIVITY-DERIVED ALIGNMENT PATTERNS

For comparing alignment patterns to structural connectivity patterns, we use a network based on
diffusion-weighted tensor imaging (DTI) Pierpaoli et al. (1996) streamline-density from the Human
Connectome Young Adult full dataset (Caron & Pestilli, 2023) as provided through brainlife Hayashi
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et al. (2024) (provided as ‘conmat’ datatype). The procedure fits streamlines - white-matter trajec-
tory candidates Smith et al. (2012) - to diffusion MRI data. The number of streamlines intersecting
both ROIs of a pair of regions is divided by the volume of both regions to obtain the ‘density’-based
connectivity matrix we use. For more information, see Hayashi et al. (2024), section dMRI process-
ing. We average the connectivity matrices of 1065 subjects to obtain a single connectivity matrix,
C = (cr,t)r,t=1···N where cr,t is the streamline density between regions r and t. The structural
connectivity-derived alignment pattern for a given ROI r is then

αstruct(r) = [cr,1 , . . . , cr,r−1 , cr,r+1 , . . . , cr,N ] (4)

where we exclude the ROI r since self-similarity is not defined for streamline-density as alignment
measure.

3.5.4 ALIGNMENT PATTERN SIMILARITY

Alignment pattern similarity between two alignment patterns, e.g. a fMRI-derived alignment pattern
αr(ϕp,Ψt) and a model-derived alignment pattern αl(ϕm,Ψt) is calculated as

ρ(αr(ϕp,Ψt), αl(ϕm,Ψt)) (5)

where ρ is Pearson’s correlation coefficient.

4 RESULTS

4.1 BENCHMARKING ALIGNMENT OF VISION MODELS TO THE VISUAL CORTEX

4.1.1 V-JEPA ACHIEVES HIGHEST OVERALL BRAIN-ALIGNMENT SCORES

Linear Predictivity (LP)
Model-brain alignment measure

Representational Similarity Analysis (RSA)

Model ranking

Models ordered according to avg. RSA score

A
lig

nm
en

t 
sc

or
e 

(R
S
A
/L

P)

Figure 2: Standard benchmarking results for the BOLDMoments dataset. Boxplots depict the
distribution of subject-averaged alignment scores (RSA/LP) across ROIs.

We evaluated a broad range of vision models with respect to their alignment to visual cortex—
including early, ventral, and dorsal regions—using two complementary alignment measures: RSA
and LP. The models varied with respect to architecture (CNNs and Transformers), training objective
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Figure 3: ROI-wise benchmarking results including noise ceilings and practical equivalence
assessment a Benchmarking results for the top 22 models for two example regions, including upper
and lower noise ceilings (see Sec.3.1.1), as well as 95% CIs about the mean alignment score for
each model. Practically equivalent models (see Sec. 3.4 are indicated by stars. b Overview of all
models that are practically equivalent for a given ROI according to RSA, LP or both. The right-most
box shows properties of the models.

(various supervised and self-supervised objectives), modality (image and video), as well as model
size and training dataset (Methods 3.2).

Consistent with previous work (Tang et al., 2025), we found that the self-supervised V-JEPA 2
model family (Assran et al., 2025), achieved the strongest overall alignment scores across visual
cortex, according to both RSA and LP (Fig. 2). Notably, however, the best aligned models included
CLIP with a ResNet-50 backbone and the VGG-Transformer—which differ in several important
aspects from V-JEPA 2 and each other, such as the training data, training objective and overall
architecture. LP appeared to primarily separate poorly aligned models (largely from the Taskonomy
family) from the rest, while offering limited discrimination among better-aligned models. RSA, by
contrast, produced a more graded ranking that distinguished among high-performing models.

4.1.2 MODELS PASS THE NEUROAI TURING TEST ON LP, BUT NOT ON RSA

We compared model-brain alignment scores to an upper and a lower noise ceiling derived from
inter-subject (i.e., brain-brain) alignment distributions. The lower noise ceiling is defined as the
95% confidence interval (CI) of the average alignment of brain activity of any two subjects in the
population(Feather et al., 2025; Thobani et al., 2025) (“NeuroAI Turing Test”). The upper noise
ceiling is defined as the 95% confidence interval (CI) of the average alignment of the leave-one-
subject-out average brain activity to the left-out subject. We find that for LP, many models reach
or even surpass the lower noise ceiling for many ROIs, thereby passing the NeuroAI Turing test.
However, both the noise ceiling and the absolute model performance are relatively low. In contrast,
for RSA this is rarely the case - namely, for the ROI-model combinations V-JEPA ViT-giant-384 -
V3A, V-JEPA ViT-giant-384 - V6, V-JEPA ViT-large - V6, and Opt-CWM - V6 (Fig. 3a, Figs.
S4.1–S4.7).
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4.2 DIFFERENT MODELS ARE PRACTICALLY EQUIVALENT IN MODEL-BRAIN ALIGNMENT

Next, we further assessed the robustness of model rankings and the discriminability between mod-
els in terms of brain alignment by checking for models that were practically equivalent in brain-
alignment (see Methods 3.4), i.e., whose scores fell within the 95% CI of the mean score of the
top-ranking model. This analysis revealed that many models were practically equivalent in terms
of brain alignment (Fig. 3 a, b; Figs. S4.1 - S4.7), but results differed between LP and RSA. For
example, in primary visual cortex (V1), LP grouped nine models as practically equivalent to the best
model, whereas RSA reduced this set to just two. We found a similar pattern in ventral regions such
as PIT, where LP identified ten models as equivalent compared to five with RSA. Dorsal regions, by
contrast, showed broader equivalence classes under both metrics. Overall, RSA yielded sharper dis-
tinctions than LP, classifying on average 4.1 models as practically equivalent per region, compared
to 5.6 with LP.

These findings demonstrate the lack of discriminative power of alignment-measure based model
rankings, motivating the need for additional criteria to distinguish between equivalently aligned
models.

4.3 ALIGNMENT PATTERN SIMILARITY AS A NECESSARY CRITERION FOR
BRAIN-ALIGNMENT

We propose a necessary (though not sufficient; see Discussion) criterion for alignment to a brain re-
gion: a model should not only match that region locally, but also preserve its pattern of relationships
to other regions. First, we estimated fMRI-derived cross-region alignment patterns. These patterns
are highly consistent within each ROI for both RSA and LP (RSA: Fig. 4a,b, black lines and boxes;
LP: Suppl. Fig. S4.9). Moreover, whereas RSA yields clearly distinct alignment patterns for differ-
ent ROIs, LP does not: LP-based cross-region patterns are substantially more homogeneous across
ROIs (Suppl. Fig. S4.9).

Next, we examined model-derived alignment patterns for all models in the equivalence class of
each ROI (Section 4.2). RSA produces strongly model-specific alignment patterns, enabling dis-
crimination among models that are otherwise equivalent (Fig. 4a,b, colored lines and boxes). In
contrast, LP yields uniformly high pattern similarity across models, providing little discriminability
(Suppl. Fig. S4.9). Training further increases alignment-pattern similarity (APS) for RSA—often
substantially—but has little to no effect on LP-based APS (Suppl. Fig. S4.10).

Finally, applying a lenient criterion that a model’s alignment-pattern similarity to its ROI’s pattern
must at least be positive, RSA-based APS excludes three V-JEPA variants as candidate models
across ten (mostly dorsal) ROIs (Fig. 4c). In contrast, LP-based APS excludes only three out of nine
candidate models, and only for a single ROI (V1).

Overall, these results show that RSA-based fMRI-derived APs are highly reliable and ROI-specific,
whereas LP-derived patterns are both more homogeneous across ROIs and similarly high for nearly
all models, trained or untrained. Consequently, LP offers limited ability to distinguish between
models on the basis of cross-region alignment structure.

4.4 RSA-BASED BUT NOT LP-BASED ALIGNMENT PATTERNS TRACK STRUCTURAL
CONNECTIVITY

To better understand the factors determining brain-brain alignment patterns, and the role of the align-
ment measure used to calculate APs, we estimated APs from an independent dataset of structural
connectivity from N=1065 humans(Caron & Pestilli, 2023). The similarity measure used to cal-
culate connectivity-derived APs is streamline density(Pierpaoli et al., 1996), which takes the role
of RSA/LP in the fMRI-based APs. We then compared these connectivity-derived APs with RSA-
based and LP-based fMRI-derived APs. We found that RSA-based fMRI-derived APs were similar
to connectivity-derived APs for most early, ventral and late dorsal regions (Fig. 5, 12/19 ROIs sig-
nificant; Methods), whereas the same analysis for LP-based APs revealed much lower similarity
between fMRI-derived and connectivity-derived APs (Suppl. Fig. S4.11, 5/19 ROIs significant).
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a

b

C

ROIs

Candidate ROI-aligned models
after applying distributional

and relational criterion

V1

Alignment patterns

Alignment pattern similarity distributions

MT V6

V8
fMRI-derived alignment pattern

model-derived alignment pattern

Figure 4: Alignment patterns are consistent within ROIs and distinguish equivalently aligned mod-
els. (a) RSA-based fMRI-derived (black) and model-derived (coloured) alignment patterns for four
example ROIs. Shaded area indicates +-SD (see Appendix Sec. S3.1). (b) Distributions of align-
ment pattern similarities within a ROI (black box-plots) and between a ROI and its equivalently
aligned models (coloured box-plots). (c) Same plot as Fig. 3b, but graying out models whose 95%
CI of the mean APS includes zero.

5 DISCUSSION

In this work, we show that model rankings produced by standard brain-alignment benchmarking
pipelines are insufficient both for identifying the most brain-aligned models as well as for distin-
guishing them from merely brain-predictive models. To alleviate this problem, we introduce and
apply a relational criterion - alignment pattern similarity - and propose to use it as an additional
criterion in alignment benchmarks to increase their discriminative power.
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a

Similarity between connectivity-derived
and RSA-based alignment patterns

Figure 5: Connectivity-derived alignment pattern similarity across ROIs and models. Colour
code as in previous plots. APS is calculated between RSA-based fMRI-derived and connectivity-
derived APs (black box-plots), and between RSA-based model-derived and connectivity-derived
APs (coloured box-plots) (see Methods Sec. 3.5.2). Stars indicate significantly higher fMRI-
connectivity APS than with random connectivity-derived APs (see Appendix Sec. S3.2).

What does it mean to be “brain-aligned”? As pointed out by Schaeffer et al. (Schaeffer et al.,
2024), “NeuroAI lacks canonical definitions of neural similarity”. This lack of canonical defini-
tions, among other factors, underlies recent discussions about common practices of brain-alignment
benchmarking and the kinds of conclusions that can (or cannot) be drawn about model-brain sim-
ilarity based on the results of such benchmarks (e.g. Dujmovi et al. (2024); Bowers et al. (2023)).
At the core of the discussion is the repeated finding that models often achieve high brain-alignment
according to some measure while diverging from the brain in other aspects that neuroscientists con-
sider relevant to “true” brain-alignment (Schaeffer et al., 2022; Malhotra & Bowers, 2024), without
the field agreeing on what those aspects are. Here, we propose alignment pattern similarity as an ad-
ditional necessary, but not sufficient criterion for brain-alignment: low APS excludes models from
the pool of potentially brain-aligned models, but high APS does not confirm brain-alignment of a
model.

Alignment patterns reveal additional implicit biases of alignment measures Consistent with
recent work (e.g. Soni et al. (2024)), our results highlight systematic differences between linear
predictivity (LP) and representational similarity analysis (RSA) for state-of-the-art vision models
trained on large-scale internet image and video datasets. It has been conjectured that LP implic-
itly rewards higher-dimensional predictor feature spaces (Schaeffer et al., 2024), which warrants
caution in drawing conclusions about brain-alignment from LP-based model rankings. Our results
are consistent with this conjecture: LP-based rankings mostly separate models with richer feature
spaces from those with less rich feature spaces. Here, in addition to this, we find that LP-based
alignment patterns are similar in shape (Suppl. Fig.S4.8), leading to a second conjecture: LP scores
carry implicit biases not only about the richness of the predictor feature spaces, but also about the
predictability of the target feature spaces.

Distinguishing between brain-predictivity and brain-alignment These findings motivate a
clear distinction: LP may be effective at identifying brain-predictive models - which can be very
useful e.g. as digital twins in a variety of settings such as BMI-applications - but insufficient for
discriminating between more and less brain-aligned models in a stricter sense of the term. Recent
works have made progress towards narrowing down the set of candidate brain-aligned models by
increasing the discriminative power of benchmarks. A promising approach relies on combining
complementary measures (Wu et al., 2025). We propose APS in a similar spirit: as a biologically
motivated complementary measure for brain-alignment.
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Daniel N Bullock, Giulia Bertò, Guiomar Niso, Sandra Hanekamp, Daniel Levitas, et al. brainlife.
io: a decentralized and open-source cloud platform to support neuroscience research. Nature
methods, 21(5):809–813, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, June 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
Autoencoders Are Scalable Vision Learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of
neural network models: A survey of functional and representational measures. ACM Computing
Surveys, 57(9):1–52, 2025.

Nikolaus Kriegeskorte and Xue Xin Wei. Neural tuning and representational geometry. Nature
Reviews Neuroscience, 22:703–718, 2021. ISSN 14710048. doi: 10.1038/s41583-021-00502-3.
URL http://dx.doi.org/10.1038/s41583-021-00502-3.

12

https://github.com/open-mmlab/mmaction2
https://arxiv.org/abs/2502.16238
https://github.com/facebookresearch/vissl
http://dx.doi.org/10.1038/s41583-021-00502-3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikolaus Kriegeskorte, Marieke Mur, and Peter A. Bandettini. Representational similarity
analysis - connecting the branches of systems neuroscience. 2, 2008. ISSN 1662-5137.
doi: 10.3389/neuro.06.004.2008. URL https://www.frontiersin.org/journals/
systems-neuroscience/articles/10.3389/neuro.06.004.2008/full. Pub-
lisher: Frontiers.

Benjamin Lahner, Kshitij Dwivedi, Polina Iamshchinina, Monika Graumann, Alex Lascelles,
Gemma Roig, Alessandro Thomas Gifford, Bowen Pan, SouYoung Jin, N. Apurva Ratan Murty,
Kendrick Kay, Aude Oliva, and Radoslaw Cichy. Modeling short visual events through
the BOLD moments video fMRI dataset and metadata. 15(1):6241, 2024. ISSN 2041-
1723. doi: 10.1038/s41467-024-50310-3. URL https://www.nature.com/articles/
s41467-024-50310-3. Publisher: Nature Publishing Group.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and
detection. In CVPR, 2022.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 3202–3211, 2022a.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. CoRR, abs/2201.03545, 2022b. URL https://arxiv.org/abs/
2201.03545.

Gaurav Malhotra and Jeffrey Bowers. Predicting brain activation does not license conclusions re-
garding dnn-brain alignment: The case of brain-score. 2024. URL http://arxiv.org/
abs/1811.12231.

Soma Nonaka, Kei Majima, Shuntaro C Aoki, and Yukiyasu Kamitani. Brain hierarchy score:
Which deep neural networks are hierarchically brain-like? IScience, 24(9), 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Carlo Pierpaoli, Peter Jezzard, Peter J Basser, Alan Barnett, and Giovanni Di Chiro. Diffusion tensor
mr imaging of the human brain. Radiology, 201(3):637–648, 1996.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Christina Sartzetaki and Iris I A Groen. Mapping modular processing of compressed videos across
human visual cortex. August 2025.

Christina Sartzetaki, Gemma Roig, Cees GM Snoek, and Iris IA Groen. One hundred neural net-
works and brains watching videos: Lessons from alignment. bioRxiv, pp. 2024–12, 2024.

Alexander Sax, Bradley Emi, Amir R. Zamir, Leonidas J. Guibas, Silvio Savarese, and Jitendra
Malik. Mid-level visual representations improve generalization and sample efficiency for learning
visuomotor policies. 2018.

Rylan Schaeffer, Mikail Khona, and Ila Fiete. No free lunch from deep learning in neuro-
science: A case study through models of the entorhinal-hippocampal circuit. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 16052–16067. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/66808849a9f5d8e2d00dbdc844de6333-Paper-Conference.pdf.

13

https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/neuro.06.004.2008/full
https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/neuro.06.004.2008/full
https://www.nature.com/articles/s41467-024-50310-3
https://www.nature.com/articles/s41467-024-50310-3
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
https://arxiv.org/abs/2103.00020
https://proceedings.neurips.cc/paper_files/paper/2022/file/66808849a9f5d8e2d00dbdc844de6333-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/66808849a9f5d8e2d00dbdc844de6333-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rylan Schaeffer, Mikail Khona, Sarthak Chandra, Mitchell Ostrow, Brando Miranda, and Sanmi
Koyejo. Position: Maximizing neural regression scores may not identify good models of the
brain. In UniReps: 2nd Edition of the Workshop on Unifying Representations in Neural Models,
October 2024.

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Ko-
hitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which
artificial neural network for object recognition is most brain-like? BioRxiv, pp. 407007, 2018.

Martin Schrimpf, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty, Robert Ajemian, and
James J DiCarlo. Integrative benchmarking to advance neurally mechanistic models of human
intelligence. Neuron, 108(3):413–423, 2020.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: In-
tegrative modeling converges on predictive processing. Proceedings of the National Academy of
Sciences, 118(45):e2105646118, 2021.

Robert E Smith, Jacques-Donald Tournier, Fernando Calamante, and Alan Connelly. Anatomically-
constrained tractography: improved diffusion mri streamlines tractography through effective use
of anatomical information. Neuroimage, 62(3):1924–1938, 2012.

Ansh Soni, Sudhanshu Srivastava, Konrad Kording, and Meenakshi Khosla. Conclusions about
neural network to brain alignment are profoundly impacted by the similarity measure. bioRxiv,
pp. 2024.08.07.607035, August 2024.

Stefan Stojanov, David Wendt, Seungwoo Kim, Rahul Venkatesh, Kevin Feigelis, Jiajun Wu, and
Daniel LK Yamins. Self-supervised learning of motion concepts by optimizing counterfactuals,
2025. URL https://arxiv.org/abs/2503.19953.

Stefan Sunaert, Paul Van Hecke, Guy Marchal, and Guy A Orban. Motion-responsive regions of the
human brain. Experimental brain research, 127(4):355–370, 1999.

Yingtian Tang, Abdulkadir Gokce, Khaled Jedoui Al-Karkari, Daniel Yamins, and Martin Schrimpf.
Many-two-one: Diverse representations across visual pathways emerge from a single objective.
bioRxiv, pp. 2025.07.22.664908, July 2025.

Imran Thobani, Javier Sagastuy-Brena, Aran Nayebi, Jacob Prince, Rosa Cao, and Daniel Yamins.
Model-brain comparison using inter-animal transforms, 2025. URL https://arxiv.org/
abs/2510.02523.

Alexander Walther, Hamed Nili, Naveed Ejaz, Arjen Alink, Nikolaus Kriegeskorte, and Jörn
Diedrichsen. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage,
137:188–200, 2016.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2025.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Jialin Wu, Shreya Saha, Yiqing Bo, and Meenakshi Khosla. Measuring the measures: Discriminative
capacity of representational similarity metrics across model families. arXiv [cs.LG], September
2025.

Daniel L K Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. 19(3):356–365, March 2016.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

Amir Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning, 2018. URL https://arxiv.org/abs/
1804.08328.

14

https://arxiv.org/abs/2503.19953
https://arxiv.org/abs/2510.02523
https://arxiv.org/abs/2510.02523
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/1804.08328
https://arxiv.org/abs/1804.08328


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

S1 DISCLOSURE OF LLM USE

We have used LLMs to assist in the code writing process, including for plot creation, to discuss ideas
and concepts, in literature search, for searching information in a given work, and for refining text in
this paper.

S2 SUPPLEMENTARY DISCUSSION

Relation to prior benchmarks Our results replicate and refine conclusions from prior bench-
marks. We replicate the finding by Sartzetaki et al. (2024) that modeling temporal dynamics is
key for RSA-alignment to early visual regions, whereas models trained with semantic objectives
are more aligned to higher-level regions. Tang et al. (2025) found that a single predictive objective
generalized across cortical areas under LP. Using both LP and RSA, we likewise identify the same
best-performing model overall. However, our results suggest that rather than reflecting a single uni-
fying objective, this apparent generalization may instead arise from the flexibility of large feature
spaces. In particular, distinct subspaces within a model’s representation may be selectively exploited
by linear readouts, each supporting different tasks across cortical areas. A closer analysis of these
subspaces could clarify whether cross-regional alignment reflects genuine commonalities or sim-
ply the representational versatility of large models. Finally, large-scale efforts such as BrainScore
(Schrimpf et al., 2018) and the Algonauts challenges (Gifford et al., 2024; 2023; Cichy et al., 2021)
have advanced the field, but their reliance on LP may systematically overstate alignment.

S3 DETAILED METHODS

S3.1 ALIGNMENT PATTERN SIMILARITY DISTRIBUTIONS

S3.1.1 ALIGNMENT PATTERN SIMILARITY DISTRIBUTIONS

To assess whether model-brain alignment pattern similarities fall within or outside the distribution
of brain-brain alignment pattern similarities, we first define a subject-specific reference alignment
pattern.

For a given ROI r and a subject t0, we compute the mean brain-brain alignment pattern across all
pairs of subjects (p, t) in which t0 does not participate, i.e., p ̸= t0 and t ̸= t0. The subject-specific
reference pattern for p0 is then obtained by averaging over all such alignment patterns that exclude
p0:

α(t0)
r =

1

|P \ {t0}| · |T \ {t0}|
∑

p∈P\{t0}
t∈T\{t0}

αr(ϕp,Ψt), (S1)

where P and T denote the sets of all predictor and target subjects.

The brain-brain alignment pattern similarity distribution for subject t0 , ROI r is then defined as the
set of similarities between the reference pattern α(t0)

r and all individual alignment patterns in which
t0 functions as the target:

D
(t0)
brain =

{
ρ
(
α(t0)
r , αr(ϕp,Ψt0)

)
∀p ∈ P \ {t0}

}
. (S2)

Analogously, the model-brain alignment pattern similarity distribution for subject t0 is computed
using the model feature space ϕm as predictor:

D
(t0)
model =

{
ρ
(
α(t0)
r0 , αr0(ϕm,Ψt0)

)}
. (S3)
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S3.2 SIGNIFICANCE OF FMRI-DERIVED–TO–STRUCTURAL ALIGNMENT PATTERN
SIMILARITY

To determine whether an APS value between a structural and an fMRI-derived alignment pattern is
meaningful and not due to random chance, we create a null distribution of structural patterns, and
compute APS between the fMRI-derived pattern to those random patterns.

We create random patterns by sampling 18 regions k = (k1, . . . , k16) at random from all regions
contained in the full structural connectivity matrix C̃ = (c̃i,j)i,j=1...M , M > N , containing addi-
tional regions to the ones included in our analysis. This yields one random alignment pattern per
region,

αrand,k(r) = [c̃σ(r),k1
, . . . , c̃σ(r),k16

] (S4)

where σ(r) is the index of region r in matrix C̃. We then compute the APS to fMRI-derived align-
ment pattern α(ϕrp,Ψt) as

ρ(α(ϕrp,Ψt), αrand,k(r))

according to equation 3.5.4.

We repeat this 100 times to get a 95% percentile range of APS values due to random chance. We
consider a fMRI-derived–to–structural APS value significant if it falls outside this range.

S4 SUPPLEMENTARY RESULTS
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Figure S4.1: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.2: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.3: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.4: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.5: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.6: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.7: Benchmarking results for each ROI. Legend see main Figure 2
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Figure S4.8: fMRI-derived alignment patterns and their similarities, RSA-based vs. LP-based. (a)
Alignment patterns as heatmaps. (b) Confusions matrices based on pairwise correlations between
alignment patterns. (c) Difference in correlation (RSA-titled panel in (b) - LP-titled panel in (b)).
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Alignment patterns

Alignment pattern similarity distributions

Candidate ROI-aligned models
after applying distributional

and relational criterion

a

b

c

Figure S4.9: Alignment patterns and their similarities for ROIs and models, evaluated with LP. Same
as figure 4 but with LP instead of RSA used as alignment measure.
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Alignment pattern similarities for trained and untrained models

RSA

LP

a

b

Figure S4.10: Alignment patterns and their similarities for trained and untrained models. a) RSA:
Boxplots showing interquartile range of brain-brain APS (black) compared to model-brain APS for
all models practically equivalent to the model with highest alignment to the region. Filled colorful
boxes: trained models, white-filled boxes: untrained models. For model colors see legend. b) Same,
but with LP as alignment measure.
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Similarity between connectivity-derived
and LP-based alignment patterns

Figure S4.11: Similarity between connectivity-derived and LP-based alignment patterns. Same as
fig. 5 but for LP instead of RSA.
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