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ABSTRACT

Multivariate Time Series Generation (MTSG) plays a crucial role in time series
analysis, supporting tasks such as data augmentation and anomaly detection. While
several methods exist for MTSG, recommending the most suitable method for new
scenarios remains a significant challenge. Although prior work by (Ang et al.,
2023a) provides guidance for selecting MTSG methods, it lacks coverage of re-
cent diffusion-based methods and has limited exploration of channel-independent
frameworks. We address these gaps by improving the recommendation guide, high-
lighting the effectiveness of a central discriminator within the channel-independent
framework. Our revised guide makes three key recommendations: 1) VAE-based
methods excel on small-scale datasets; 2) a channel-independent framework with
the newly designed central discriminator is optimal in most cases; and 3) a diffusion-
based method is preferable when ample data and computational resources are
available.

1 INTRODUCTION

Time series generation (TSG) involves producing synthetic sequences of temporally ordered data
that mimic the statistical properties of real-world time series. Multivariate time series generation
(MTSG) has gained prominence due to its applications in tasks like data augmentation (Ramponi
et al., 2018), time series prediction (Cirstea et al., 2022; Wu et al., 2021), and anomaly detection
(Ang et al., 2023b; Campos et al., 2021).

Numerous methods have been developed for MTSG (Ang et al., 2023a), typically falling into two
categories: 1) channel-mixing frameworks, which merge time series features using models like
generative adversarial networks (GANs) (Donahue et al., 2018; Yoon et al., 2019; Smith & Smith,
2020; Lin et al., 2020; Liao et al., 2020), variable autoencoders (VAEs) (Desai et al., 2021; Lee
et al., 2023; Li et al., 2023; Naiman et al., 2024), flow-based methods (Chen et al., 2018; Kidger
et al., 2021; Rubanova et al., 2019; Jeon et al., 2022; Zhou et al., 2023), and diffusion-based methods
(Kong et al., 2021; Huang et al., 2024; Coletta et al., 2023; Yuan & Qiao, 2024); and 2) channel-
independent frameworks with a central discriminator (Seyfi et al., 2022), which independently capture
single-channel information while the discriminator handles inter-channel correlations.

Choosing an appropriate TSG method depends on domain-specific factors such as data volume,
periodicity, and trends. For instance, Fourier flow (Alaa et al., 2021) is well-suited for tasks involving
autocorrelation, while TimeVAE (Desai et al., 2021) performs better on smaller datasets. Therefore,
a robust recommendation guide is essential for users. However, existing analyses, like (Ang et al.,
2023a), may be incomplete—favoring channel-mixing frameworks, particularly VAE-based methods,
while neglecting advanced diffusion models and offering limited exploration of channel-independent
frameworks. For example, the periodicity of the multivariate time series and the correlation between
the channels are important features. However, the central discriminator designed in (Seyfi et al.,
2022) does not adequately address this problem. In addition, (Ang et al., 2023a) has not tested
the newly proposed diffusion model-based methods and needs to be upgraded to form a reliable
recommendation guide for time series generation (Kong et al., 2021; Huang et al., 2024; Coletta et al.,
2023; Yuan & Qiao, 2024).

In light of the insufficient comparison with advanced diffusion-based generative frameworks and
limited exploration of channel-independent frameworks, we have updated the recommendation
guidelines from (Ang et al., 2023a) to better aid users in selecting TSG frameworks. Specifically, we
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advocate for an increased priority recommendation for both channel-independent and diffusion-based
generative frameworks, forming an enhanced TSGGuide.

2 RELATED WORK

2.1 CHANNEL MIXING-BASED MTSG

There is a predominant focus on channel-mixing time series generation framework. Some methods
(Mogren, 2016; Esteban et al., 2017; Wiese et al., 2020; Xu et al., 2020; Jarrett et al., 2021; Jeha et al.,
2021) employ GAN-based (Goodfellow et al., 2014) architecture combined with neural networks
like LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al., 2014), and Transformer (Vaswani
et al., 2017), which excel at capturing sequential data. Certain methods leverage VAEs (Kingma &
Welling, 2013) to effectively capture temporal features through variational inference, resulting in
efficient models with potential interpretability. Recent advancements have explored hybrid methods,
combining flow-based models with techniques such as ODE (Chen et al., 2018), or integrating them
with GANs or VAEs. Moreover, several diffusion-based methods (Yuan & Qiao, 2024; Kong et al.,
2021; Coletta et al., 2023; Huang et al., 2024) have been designed to handle MTSG. Due to their stable
training and high-quality generation, diffusion models exhibit promising performance on numerous
datasets. Employing channel-mixing framework intuitively allows for improved consideration of
correlations between channels in multivariate time series data, thereby enhancing model performance.

2.2 CHANNEL INDEPENDENCE-BASED MTSG

COSCIGAN (Seyfi et al., 2022) employs channel GANs and a central discriminator to generate
multivariate time series, but it fails to effectively capture key characteristics like periodicity and
inter-channel correlations, limiting the performance of the central discriminator. Compared to the
MLP-based discriminator in COSCIGAN, more advanced architectures such as attention mechanisms,
TimesNet (Wu et al., 2022), and ModernTCN (donghao & wang xue, 2024) offer better potential for
performance improvement. Our findings suggest that the central discriminator operates primarily
as a time series classifier in small-sample contexts. However, MLP-based methods, as well as
attention-based approaches like TimesNet, exhibit limited effectiveness in handling such scenarios.

3 BACKGROUND

3.1 PROBLEM DEFINITION

Dataset Setup. Suppose that an MTS has length L with N channels. The general length of these
time series is often long, making it difficult to input the entire time series data at once and extract
its features. To generate time series within a short period and extract features from the time series
data, we need to choose an appropriate subsequence length, denoted as l, and use a step size of 1
when performing the partition. Then we transform MTS into T ∈ RK×l×N , where K = L− l + 1.
Additionally, we normalize the dataset to the range of [0, 1] to enhance efficiency and numerical
stability.

Time Series Generation. We define p(T) as the true distribution of the time series. Our goal is to
create a synthetic time series T̂ ∈ RK×l×N in which its distribution q(T̂) is similar to p(T).

3.2 CHANNEL MIXING-BASED MTSG

Channel-mixing frameworks in time series generation models aim to learn the joint distribution of
all channels in a multivariate time series, regardless of the number of channels. The goal of these
frameworks can be defined as follows: min

q
D(p(T)∥q(T̂)), where D is any suitable measure of the

distance between two distributions. Irrespective of the utilization of GANs, VAEs, or flow-based
methods, most of them employing a channel-mixing framework strive to learn an improved q(T̂).
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Figure 1: Structure of channel independece-based MTSG.

3.3 CHANNEL INDEPENDENCE-BASED MTSG

Figure 1 illustrates the structure of the channel-independent framework with a central discriminator,
comprising two main components: 1) Channel-independent TSGs; 2) Central discriminator.

Channel-independent TSGs Here, each single-channel TSG module synthesizes one single-
channel time series. The input T is divided into N single-variable sequences Ti ∈ RK×l×1, where
i ∈ [1, N ]. Subsequently, following the channel-independent setup, the i-th channel’s time series Ti

is input into the i-th single-channel TSG module, yielding the generated single-channel time series
data T̂i = Gi,θi(z), where G is a TSG module and θi is the parameters of the ith module. This
framework allows flexibility in selecting channel-independent generators, such as GANs and VAEs.

In the channel objective, we aim to find a distribution q(T̂i) that closely approximates the true
channel distribution p(Ti) of the dataset. Subsequently, by concatenating N instances of T̂i, where
i = 1, · · · , N , along the second dimension, the generated time series T̂ is obtained. For each
channel Ti, we optimize min

q
D(p(Ti)∥q(T̂i)). When channel-independent generators are trained,

incorporating central discriminator loss suffices.

Figure 2: The structure of CCD.

Central Discriminator In the center ob-
jective, we consider the overall character-
istics of multivariate time series, which in-
volves integrating the time series signals
from all channels. This part designs power-
ful binary classifiers to distinguish between
T̂ and T. Certainly, the more difficult it is
to distinguish between T̂ and T under this
classifier, the better. We should optimize
min
q

D(p(T)∥q(T̂)).

3.4 THE DESIGNED CENTRAL
CONVOLUTION DISCRIMINATOR

CCD uses Fast Fourier Transform (FFT) or
Wavelet Transform (WT) to perform peri-
odic segmentation of the samples, reducing
the classification difficulty while revealing inter-period relationships within the samples to enhance
key features that are beneficial for classification. It then uses 2D convolution to capture both intra-
channel and inter-channel relationships. The details of CCD are shown in Appendix A. The deisigned
CCD is shown in Figure 2.

Period Block For a multivariate time series T , we utilize Frequency to obtain its periodicity in the
frequency domain.

a = Avg (Amp (Frequency(T))) (1)

3
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where Frequency(·). represents the solution to obtain the frequency. Here, we use FFT or WT. a
represents the calculated amplitude of each frequency, which is averaged from the dimensions N
using Avg(·).

The true periodicity of T is computed using lp = ⌈ l
f ⌉. Depending on the selected frequency and the

corresponding period length, we can transform the dimension of the multivariate time series T and T̂
into (K, lp, N × f).

Tp ∈ RK×lp×f , T̂p ∈ RK×lp×f = Reshape(T, T̂) (2)

Conv2d Block After passing through the Period module, we utilize multiple conv2d blocks to
capture the three types of local information mentioned earlier, distinguishing between real and
synthesized multivariate time series. The formulation is as follows:

Tc, T̂c = Conv2d Block(Tp, T̂p) (3)

where we transform 2D representations Tp, T̂p ∈ RK×lp×f into 1D space Tc, T̂c ∈ RK×d. Consider-
ing both performance and efficiency, we opt for experiments using the nn.conv2d() block based on
PyTorch for our main experiments.

Finally, the features extracted through the Conv2d blocks are further processed by the feedforward
module, which consists of a linear layer followed by a sigmoid activation function, yielding the
ultimate classification results.

Figure 3: Results of six methods on real datasets.

4 EXPERIMENTS

4.1 VALIDATION OF TSGGUIDE

This section explores the performance of current typical time series generation models on different
domain data and forms a user-oriented guide for recommending time series generation models.

Baselines According to the analysis provided by (Ang et al., 2023a), 1) channel-independent
methods: COSCI-GAN (Seyfi et al., 2022); 2) channel-mixing methods: TimeVQVAE (Lee et al.,
2023), TimeVAE (Desai et al., 2021), RTSGAN (Pei et al., 2021), and LS4 (Zhou et al., 2023)
generally outperform other time series generation models. Regarding the experimental design, to
ensure fairness, the channel GANs in CCD employ LSTM models. The detailed information on
parameters metrics and datasets can be found in Appendix Section C, D, and E.
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Parameters For RTSGAN, we adhere to its complete time series generation (Pei et al., 2021) and
set β1 = 0.9 and β2 = 0.999. For COSCI-GAN, we set γ = 5, employ MLP-based networks for the
central discriminator, and follow other hyper-parameters from (Seyfi et al., 2022). For TimeVAE, we
set the latent dimension to 8 and the hidden layer sizes to 50, 100, and 200. For TimeVQVAE, we
adopt the settings from (Lee et al., 2023), with n fft = 8 and varying max epochs ∈ {2000, 10000}
for two training stages. For LS4, we set the latent space dimension to 5 and configured the batch size
to 1024.

Datasets To validate the performance of CCDGAN in real multivariate time series and assess its
generality, we selected five datasets: Stock (Yoon et al., 2019), Stock Long (Yoon et al., 2019),
Energy (Candanedo, 2017), Energy Long (Candanedo, 2017), EEG (Roesler, 2013), DLG (Hutchins,
2006), and Air (Zheng et al., 2015), covering the finance, energy, traffic, air, and medical domains
(see Appendix C for more information). We focus on datasets with a large number of channels.

Figure 4: The critical difference diagram illustrates the performance ranking of six algorithms across
five datasets employing Wilcoxon-Holm analysis (Ismail Fawaz et al., 2019) at a significance level
of p = 0.05. Algorithm positions are indicative of their mean ranks across multiple datasets, with
higher ranks signifying a method consistently outperforming competitors. Thick horizontal lines
denote scenarios where there is no statistically significant difference in algorithm performance.

Results The results shown in Figures 4 and 3 provide evidence for the effectiveness of CCDGAN
in synthesizing MTS data. We also conducted experiments based on DLG and Air, which are from
the traffic flow dataset and air dataset respectively. For more dataset details, see Appendix C. The
experimental results are shown in Tables 1 and 2. The performance of CCDGAN surpasses that of
COSCI-GAN, validating the effectiveness of the proposed CCD module. As shown in Table 11, we
choose the LSTM, which exhibits moderate generation performance, as the channel-independent
generator. However, its performance exceeds that of the current state-of-the-art channel-mixing
methods, TimeVQVAE and TimeVAE. Particularly on datasets with a higher number of channels such
as Energy and Energy Long, the superiority of CCDGAN is more pronounced. Relative to COSCI-
GAN, the proposed framework does not consume additional time. Furthermore, in comparison to
channel-mixing methods, the runtime of the channel-independent approach is competitive.

Table 1: Results on DLG dataset.

Method CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
MDD↓ 0.284 0.293 0.301 0.241 0.227 0.238
ACD↓ 0.121 0.162 0.164 0.137 0.117 0.178
SD↓ 0.214 0.235 0.209 0.257 0.216 0.227
KD↓ 12.341 12.25 12.175 12.275 12.377 12.375

ED↓ 1.12 1.363 1.315 1.641 1.363 1.177
DTW↓ 2.346 2.367 2.476 2.316 2.375 2.438

PS↓ 0.415 0.488 0.446 0.461 0.425 0.427
DS↓ 0.245 0.221 0.237 0.257 0.227 0.288

Results on Small Data We simulate the scenario of limited data and assess the model’s gener-
alization ability on small data. To ensure an accurate evaluation, we randomly selected 10% and
20% of the Stock dataset and utilized these subsets for model training, and then the entire dataset
was employed for evaluation. We also tested on 10% Energy and 10% EEG data and the results can
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Table 2: Results on Air dataset.

Method CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
MDD↓ 0.139 0.127 0.121 0.142 0.148 0.117
ACD↓ 0.109 0.117 0.109 0.117 0.115 0.126
SD↓ 0.356 0.328 0.387 0.382 0.361 0.371
KD↓ 8.147 8.278 8.178 8.187 8.169 8.171

ED↓ 0.816 0.828 0.827 0.826 0.829 0.877
DTW↓ 2.044 2.28 2.091 2.081 2.062 2.027

PS↓ 0.404 0.483 0.426 0.433 0.429 0.416
DS↓ 0.107 0.186 0.131 0.124 0.139 0.121

Table 3: Results on 10% and 20% Stock Dataset.

10% Stock CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN

MDD↓ 0.511 3.092 0.472 0.606 1.524 1.489
ACD↓ 0.049 0.027 0.173 0.083 0.197 0.203
SD↓ 0.2 0.133 0.751 0.581 0.862 0.467
KD↓ 0.861 1.492 1.023 1.422 1.013 0.799

ED↓ 2.239 1.98 1.442 1.935 1.928 1.842
DTW↓ 5.717 5.64 4.952 4.913 4.898 4.645

20% Stock CCDGAN TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN

MDD↓ 0.49 2.982 0.443 0.582 1.398 1.207
ACD↓ 0.438 0.228 0.166 0.182 0.231 0.192
SD↓ 0.088 0.127 0.739 0.428 0.814 0.308
KD↓ 0.85 1.321 1.006 1.391 0.838 0.799

ED↓ 2.099 1.089 1.382 1.752 1.79 1.661
DTW↓ 5.37 5.246 3.812 4.521 4.682 4.568

be seen in Appendix Tables 18 and 19. The results in Table 3 clearly demonstrate that TimeVAE
outperforms other methods on small datasets.

This observation can be attributed to two factors: (1) The smaller dataset size reduces distributional
complexity, amplifying inter-channel correlations, and (2) models utilizing channel-mixing are better
equipped to capture these correlations, as they process data across multiple channels simultane-
ously, unlike channel-independent methods. Additionally, VAE-based methods demonstrate superior
performance, likely due to their stable training dynamics, which demand less data.

Results on Simulated Data We evaluated the model’s robustness and overall performance on
simulated datasets, complementing the results obtained from real-world datasets. The simulated data
generation process follows the method outlined in Meidani et al. (2023) (Section 3.3), with detailed

Table 4: Results on Simulated Data

Method CCDGAN TimeVQVAE COSCI-GAN LS4 Diffusion-TS

MDD↓ 0.251 0.282 0.272 0.258 0.247
ACD↓ 0.116 0.128 0.107 0.105 0.114
SD↓ 0.241 0.259 0.244 0.248 0.246
KD↓ 11.01 11.017 11.028 11.027 11.014

ED↓ 1.153 1.151 1.158 1.155 1.151
DTW↓ 2.466 2.469 2.474 2.471 2.472

PS↓ 0.164 0.162 0.169 0.175 0.166
DS↓ 0.205 0.217 0.212 0.219 0.202
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implementation provided in Appendix L. Using 100 functions, we generated simulated time series
datasets and applied the same experimental setup and evaluation metrics as in Figure 3. Alongside
CCDGAN, we compared four other methods: TimeVQVAE, COSCIGAN, LS4, and DiffusionTS,
each representing different generative frameworks and demonstrating strong performance on real
datasets. The results are presented in Table 4.

The results demonstrate that both the diffusion-based channel-mixing framework Diffusion-TS and
the GAN-based channel-independent framework CCDGAN excel across multiple evaluation metrics,
with each achieving top rankings in three categories. CCDGAN outperforms in two distance-based
metrics, likely due to GANs’ strength in capturing temporal distance characteristics. Meanwhile,
Diffusion-TS exhibits balanced performance across all metrics, highlighting the overall effectiveness
of diffusion-based generation models.

CCDGAN v.s. Diffusion-based Methods In recent years, diffusion models have been increasingly
applied to MTSG, achieving notable results. From the above experimental results, CCDGAN
performs better when the amount of data is sufficient. We replicate the experimental setup from
(Yoon et al., 2019), detailed in Appendix Section I.

Baselines. To facilitate a fair comparison among different approaches and provide updated recom-
mendations for MTSG methods, we compare CCDGAN with three diffusion-based TSG methods:
Diffwave (Kong et al., 2021), DiffTime (Coletta et al., 2023), and Diffusion-TS (Yuan & Qiao, 2024).
These methods, including Diffusion-TS, DiffWave, and DiffTime, are all based on DDPM, with
modifications tailored to the characteristics of time series data.

Parameters. For Diffusion-TS, DiffWave and DiffTime, to ensure the fairness of the experiments,
we strived to maintain consistency in parameter settings. We chose 4 attention heads, each with a
dimension of 16, and selected 2 encoder and decoder layers.

Datasets. For dataset selection, we chose the previously mentioned Stock and Energy datasets.
For the Sine dataset, we opted for the sine wave dataset provided in (Yoon et al., 2019), which is
channel-independent and exhibits more diverse variations.

Table 5: Results between CCDGAN and Diffusion-based methods. Bold indicates best performance.

Metric Methods Sines Stocks Energy

Context-FID↓
CCDGAN 0.008±.001 0.158±.022 0.134±.019

Diffusion-TS 0.006±.000 0.147±.025 0.089±.024
Diffwave 0.014±.002 0.232±.032 1.031±.131
DiffTime 0.006±.001 0.236±.074 0.279±.045

Correlational
Score↓

CCDGAN 0.016±.000 0.023±.012 0.823±.108
Diffusion-TS 0.015±.004 0.004±.001 0.856±.147

Diffwave 0.022±.005 0.030±.020 5.001±.154
DiffTime 0.017±.004 0.006±.002 1.158±.095

Discriminative
Score↓

CCDGAN 0.009±.000 0.138±.042 0.131±.000
Diffusion-TS 0.006±.007 0.067±.015 0.122±.003

Diffwave 0.017±.008 0.232±.061 0.493±.004
DiffTime 0.013±.006 0.097±.016 0.445±.004

Predictive
Score↓

CCDGAN 0.093±.000 0.041±.000 0.250±.000
Diffusion-TS 0.093±.000 0.036±.000 0.250±.000

Diffwave 0.093±.000 0.047±.000 0.251±.000
DiffTime 0.093±.000 0.038±.001 0.252±.000

Training
Time(min)↓

CCDGAN 11 10 37
Diffusion-TS 17 15 60

Diffwave 19 16 68
DiffTime 19 16 69

2000 Data
Sampling
Time(s)↓

CCDGAN 5 7 13
Diffusion-TS 23 26 65

Diffwave 24 30 70
DiffTime 24 29 69
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Table 6: Results between CCDGAN and Diffusion-TS on 10% Stock Dataset. Bold indicates best
performance.

Method CCDGAN Diffusion-TS

MDD↓ 0.511 0.613
ACD↓ 0.049 0.058
SD↓ 0.2 0.244
KD↓ 0.861 1.015

ED↓ 2.239 1.996
DTW↓ 5.717 5.931

The results, presented in Table 5, indicate that diffusion-based methods generally exhibit superior
performance. However, they also require significant time and computational resources. For those
prioritizing stable training and high-quality results, diffusion-based methods are recommended.
Nonetheless, CCDGAN outperforms certain diffusion-based methods in terms of performance while
demanding less time and computational resources, highlighting its competitive advantage in both
effectiveness and efficiency.

We tested CCDGAN and DiffusionTS using a 10% Stock dataset to compare the performance of the
two methods in small dataset scenarios. The hyperparameter settings are consistent with Table 3,
and the experimental results are shown in Table 6. The test results show that CCDGAN performs
better than Diffusion-TS on small datasets. This may be related to the inherent characteristics of the
diffusion model. Since the training of the diffusion model usually requires a large amount of data, its
performance under small dataset conditions is not as good as other generative models.

4.2 TSGGUIDE: RECOMMENDATION GUIDELINES

Finally, combining the guidelines from the study by TSGBench (Ang et al., 2023a), we offer guidance
to assist users in effectively selecting suitable TSG methods. In contrast to TSGBench, the updated
sections are shown in Appendix Section K.

1. In Figure 3, VAE-based methods demonstrate faster training times and rank above average
on several metrics. This makes VAE-based methods suitable for initial attempts due to their
lower time requirements. Additionally, the results in Tables 3, and Appendix Tables 18 and
19 show that VAE-based methods perform well on small datasets, making them applicable
to various types of datasets. As a foundational step, we recommend that users start with
the VAE-based method. Its consistently excellent computational efficiency makes it the
preferred choice for initial exploration and handling of small data sets.

2. If we emphasize autocorrelation or forecasting, such as predictive maintenance or stock
market analysis, the ACD measure becomes crucial. CCDGAN is highly suitable for these
scenarios.

3. In Figure 3, CCD shows a leading performance on the majority of datasets, proving that
CCDGAN performs well on real-world datasets, even though they come from different
domains. When the dataset originates from a novel domain or exhibits complex multivariate
relationships, CCDGAN is a recommended choice. It shows excellent performance across
data sets from various domains and outperforms other methods, particularly on datasets with
a large number of variables.

4. In Table 5, diffusion model-based methods achieve certain advantages in metrics. However,
these methods require significant training and sampling time, leading to higher computational
costs. Therefore, if ample computational resources are available, diffusion model-based
approaches should be considered. When computational resources and dataset are abundant
and optimal results are desired, it is recommended to utilize Diffusion-TS. These methods
typically exhibit stable training and yield superior performance.

5. Users can further adjust method selection based on specific application requirements, in-
cluding identifying the appropriate channel-independent TSG module (see Section J).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 VALIDATION OF CCD

This section examines the effect of the central discriminator within the channel-independent genera-
tion framework. We compared COSCI-GAN using common attention mechanisms and TimesNet,
a state-of-the-art time series classification framework, as baselines. Experiments were conducted
on both the full Stock dataset and a reduced version with 10% of the data, maintaining the same
number of channels in COSCI-GAN. The central discriminator in COSCI-GAN was replaced by
the Transformer Encoder, TimesNet, and CCD for evaluation. The Transformer Encoder structure
followed (Vaswani et al., 2017) with N = 6. Detailed information on parameter metrics and datasets
is provided in Appendix Section C and D.

Table 7: The results of Transformer, Timesnet, COSCIGAN, and CCD on the Stock dataset and
the 10% Stock dataset. Due to poor downstream task performance with 10% of the Stock data,
comparative results are omitted. Bold numbers in the table indicate the best performance.

100% Stock 10% Stock

Methods CCD Transformer Timesnet COSCIGAN CCD Transformer Timesnet COSCIGAN

MDD↓ 0.315 0.341 0.38 0.334 0.511 0.692 1.036 0.606
ACD↓ 0.015 0.027 0.029 0.037 0.049 0.132 0.135 0.083
SD↓ 0.127 0.149 0.133 0.217 0.200 0.431 0.344 0.581
KD↓ 0.446 0.449 0.485 1.647 0.861 1.392 1.492 1.422

ED↓ 1.068 1.094 1.100 1.101 2.239 2.58 2.98 1.935
DTW↓ 2.772 2.805 2.959 3.014 5.717 5.93 6.64 4.913

PS↓ 0.073 0.097 0.091 0.086 - - - -
DS↓ 0.327 0.339 0.341 0.396 - - - -

As shown in Table 7, these methods struggled with small sample scenarios, exhibiting a notable
performance drop with 10% of the Stock data. The heavy parameterization of attention mechanisms
likely made them less effective for limited data. TimesNet, designed for single-channel time series,
failed to capture inter-channel dependencies, a critical aspect for multi-channel time series generation.
In contrast, CCD demonstrated superior performance, particularly with the 10% Stock data, where its
advantage was most pronounced. More discussion of CCD can be found in Appendix J.

5 CONCLUSION

In this work, we tackled the limitations in existing multivariate time series generation frameworks
by proposing an updated recommendation guide, TSGGuide, aimed at improving the selection
of generation methods. Our comprehensive analysis revealed gaps in prior work, particularly in
the limited exploration of channel-independent frameworks and the absence of evaluations for
diffusion-based models. We have demonstrated that by enhancing the central discriminator within the
channel-independent framework—integrating methods like TimesNet and attention mechanisms—and
ultimately introducing CCD, significant performance improvements can be achieved, particularly in
small sample scenarios.

Our contributions offer a more balanced assessment of both channel-independent and diffusion-based
methods, underscoring their value in time series generation tasks. This work provides a more nuanced
framework for selecting TSG methods, addressing both the data-specific needs of users and the
current state of the field. Future research should continue to investigate the evolving landscape of
MTSG, with an emphasis on addressing periodicity and inter-channel correlation challenges. With
the conditional time series generation problem posed, it makes sense to explore the advantages and
disadvantages of these schemes.
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A CCDGAN

Since time series generation tasks are motivated by small sample sizes, the central discriminator in
the channel independent generation framework is essentially a small sample time series classifier.
The main challenges in small-sample time series classification arise from the difficulty of adequately
training neural networks with limited data, which reduces their classification performance. Possible
solutions include: 1) performing data augmentation to increase the data size; 2) decomposing the
problem to reduce the classification difficulty; 3) enhancing the information to capture key features
that aid classification; and 4) using a small-parameter, high-performance mapping framework. The
deisigned CCD is shown in Figure 2.

Period Block In multivariate time series, changes in one channel often have short-term effects
on other channels. COSCIGAN (Seyfi et al., 2022) may tend to overlook the crucial mechanism
of sharing information between adjacent time steps. Additionally, considering the periodic nature
of time series, models should be able to capture time patterns across different cycles. Each time
point involves two types of temporal changes: intra-cycle changes and inter-cycle changes, which
correspond to adjacent regions and different phases of the same cycle.

For a multivariate time series T , we utilize Frequency to obtain its periodicity in the frequency
domain.

a = Avg (Amp (Frequency(T))) (4)

where Frequency(·). represents the solution to obtain the frequency. Here, we use FFT or WT. a
represents the calculated amplitude of each frequency, which is averaged from the dimensions N
using Avg(·).
In consideration of the sparsity in the frequency domain and to avoid noise caused by irrelevant high
frequencies, we conducted testing and found that selecting only the first amplitude value is sufficient.
We denote the non-normalized amplitude as a and obtain the most significant frequency f from it.
The true periodicity of T is computed using lp = ⌈ l

f ⌉. Depending on the selected frequency and the

corresponding period length, we can transform the dimension of the multivariate time series T and T̂
into (K, lp, N × f).

Tp ∈ RK×lp×f , T̂p ∈ RK×lp×f = Reshape(T, T̂) (5)

It is worth noting that this transformation enhances three types of local information to the transformed
3D tensor: 1) local information between adjacent time points in the same channel (within one cycle),
2) local information between adjacent periods in the same channel (across cycles), and 3) local
information of adjacent time steps in different channels. Therefore, through the receptive field of the
convolution structure, CCD can better preserve the correlations between channels.

Conv2d Block After passing through the Period module, we utilize multiple conv2d blocks to
capture the three types of local information mentioned earlier, distinguishing between real and
synthesized multivariate time series. The formulation is as follows:

Tc, T̂c = Conv2d Block(Tp, T̂p) (6)

where we transform 2D representations Tp, T̂p ∈ RK×lp×f into 1D space Tc, T̂c ∈ RK×d.

After conducting tests, we recommend adopting a progressive kernel size expansion strategy for
convolution operations. The specific sizes for the kernel are kernel size = 2 × i + 1, where
i = 1, 2, · · · , k and k is the number of Conv2d blocks. In addition to the aforementioned approach,
we can choose various convolution modules from computer vision, such as widely used models like
ResNet (He et al., 2016) and ResNeXt (Xie et al., 2017), for feature extraction within the Conv2d
Block. Generally, stronger 2D backbones for representation learning lead to better performance.
Considering both performance and efficiency, we opt for experiments using the nn.conv2d() block
based on PyTorch for our main experiments. Later we will talk about the influence on kernel size.

Finally, the features extracted through the Conv2d blocks are further processed by the feedforward
module, which consists of a linear layer followed by a sigmoid activation function, yielding the
ultimate classification results.
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Loss Function In designing the loss function, our approach propagates the CD loss to each single-
channel time series generation module. By incorporating CD loss terms, we aim to enhance the
modules’ focus on inter-channel correlations.

If we select pure GAN-based methods to be the single-channel time series generation module, the
objectives function can be summarized as follows:

min
θi

max
ϕi

max
α

L = ETi∼Pdata [log(Di,ϕi(Ti)) + γ · log(CCDα(Ti))]

+Ez∼Pz [log(1−Di,ϕi(Gi,θi(z))) + γ · log(1− CCDα(Gi,θi(z), Gj ̸=i(z)))]
(7)

where Gi,θi represents the generator of the i-th channel independent GAN with parameters θi, and
Di,ϕi

represents the discriminator of the i-th channel independent generator with parameters ϕi.
CCDα represents the central discriminator with parameter α. Pdata represents the distribution of
real time series. Gj ̸=i represents all other generators with fixed parameters, except Gi,θi , in the
optimization steps. γ is a hyper-parameter that controls the balance between three types of locality
among channels and generates higher-quality signals within each channel. z is a shared noise vector
sampled from the distribution Pz .

Model Training Our training approach using the channel-independent framework is similar to
that of COSCIGANs. In each training iteration, N channel-independent generators are first trained.
These modules generate single-channel time series T̂i for their respective channels, which are then
concatenated to form T̂. This concatenated time series T̂, along with the real MTS T, is then used to
train the CCD and channel-independent generators.

B ADDITIONAL INFORMATION FOR SIMULATED DATASETS

Simulated Datasets To effectively assess the performance and significance of CCD, we require a
customizable time series dataset. Therefore, we utilized three synthetic datasets with dual channels
as proposed by (Seyfi et al., 2022).

Simple sine The formula for a basic sine function is given as: x = A sin(2πft) + ϵ, where A, f ,
and ϵ are hyperparameters. Across all time series data, channel 1 maintains a frequency f of 0.01,
while channel 2’s frequency is set to 0.005. For the first data type, the amplitude A is sampled from
N(0.4, 0.05), and for the second type, it is sampled from N(0.6, 0.05).

Sine with frequency changes This variant is derived from a basic sine wave with a doubled frequency
at the midpoint of the time series. By altering the frequency, we can observe how the model generates
data with varying frequencies.

Anomalies Anomalies are generated from basic sine waves by replacing the original data at the
midpoint of the time series with Gaussian noise. This allows us to evaluate the model’s performance
in generating data with outliers.

Parameters The CCD module was configured with k = 3. Moreover, the training epochs were
fixed at 500, simulating a resource and time-limited scenario, enabling a more effective evaluation of
CCD.

Metrics Following (Seyfi et al., 2022), we conducted a quantitative comparison of the correlation
matrices between the two channels using several metrics: (1) Mean Squared Error (MSE), (2)
Frobenius norm (FN), (3) Spearman’s ρ, and (4) Kendall’s τ . The MSE and Frobenius norm metrics
indicate a higher similarity between the correlation matrices of the real dataset and the generated
synthetic dataset when smaller values are obtained. On the other hand, Spearman’s coefficient and
Kendall’s coefficient approach a value of 1 as the similarity increases.

C DATASET SELECTION

Dataset Selection. To ensure reproducibility and mitigate biases or oversimplification in our eval-
uations, we exclusively employ publicly available, real-world datasets. It is crucial to emphasize
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Table 8: The statistics of the five datasets.

Datasets R l N Domain

Stock (Yoon et al., 2019) 3,294 24 6 Financial
Stock Long (Yoon et al., 2019) 3,204 125 6 Financial
Energy (Candanedo, 2017) 17,739 24 28 Appliances
Energy Long (Candanedo, 2017) 17,649 125 28 Appliances
EEG (Roesler, 2013) 13,366 128 14 Medical
DLG (Hutchins, 2006) 246 14 20 Traffic
Air (Zheng et al., 2015) 7731 168 6 Sensor

that our objective is not to accumulate an exhaustive collection of datasets, but rather to curate a
diverse set encompassing multiple domains, showcasing varied data statistics and distributions. Table
8 summarizes their statistics. Below, we provide a brief description of each dataset.

• Stock (Yoon et al., 2019). It comprises daily historical Google stock data from 2004 to
2019, including volume and high, low, opening, closing, and adjusted closing prices.

• Stock Long (Yoon et al., 2019). It is identical to the Stock dataset but with a sequence
length of 125.

• Energy (Candanedo, 2017). It includes information on appliance’s energy use in a low-
energy building.

• Energy Long (Candanedo, 2017). It is identical to the Energy dataset but with a sequence
length of 125.

• EEG (Roesler, 2013). It is with the measurements derived from ElectroEncephaloGraphy
(EEG) data captured by Emotiv EEG Neuroheadset. It helps to understand brainwave
patterns, especially those under specific cognitive conditions or stimuli.

• Dodgers Loop Game (DLG) Hutchins (2006). It consists of loop sensor data from the
Glendale on-ramp for the 101 North freeway in Los Angeles.

• D9: Air Zheng et al. (2015). It has air quality, meteorological, and weather forecast data
from 4 major Chinese cities: Beijing, Tianjin, Guangzhou, and Shenzhen from 2014/05/01
to 2015/04/30.

This study selected five datasets from different real-world domains: the Stock dataset from the
financial domain, the Energy dataset from the energy sector, the EEG dataset from biological signals,
the DLG dataset from traffic, and the Air dataset. To better investigate the impact of subsequence
length on the model, we set different values of l for the Stock and Energy datasets. Therefore, our
method is applicable to real cases or practical applications.

D EVALUATION MEASURE SUITE

Numerous metrics are available to assess the quality of TSG (Time Series Generation) methods,
which commonly adhere to principles such as diversity, fidelity, and utility.

Model-based Measures These measures primarily follow the TSTR scheme (Esteban et al., 2017;
Jordon et al., 2018), wherein synthetically generated series are utilized to train a post-hoc neural
network, which is then evaluated on the original time series.

• Discriminative Score (DS) (Yoon et al., 2019). This study utilizes a post-hoc time-series clas-
sification model, leveraging 2-layer GRUs or LSTMs, to discern between original and generated
series (Yoon et al., 2019). The original series are denoted as ”real,” whereas the generated series
are labeled as ”synthetic.” Subsequently, an RNN classifier is trained using these labels. The
fidelity of the generation model is assessed by measuring the classification error on a separate
test set.

• Predictive Score (PS) (Yoon et al., 2019). It focuses on training a post-hoc time series predic-
tion model using synthetic data (Yoon et al., 2019). The model leverages GRUs or LSTMs
to predict either the temporal vectors of each input series for future steps (Yoon et al., 2019;
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Jarrett et al., 2021) or the entire vector (Jeon et al., 2022). To assess performance, the model is
evaluated on the original dataset using the mean absolute error metric.

Feature-based Measures These measures aim to capture inter-series correlations and temporal
dependencies, evaluating the extent to which the generated time series preserves the original char-
acteristics. Feature-based measures offer a distinct advantage by providing clear and deterministic
results, ensuring an unambiguous assessment of the quality of the generated time series.

• Marginal Distribution Difference (MDD) (Ni et al., 2021). This measure calculates empirical
histograms for each dimension and time step in the generated series. The bin centers and widths
from the original series are used for this purpose. By computing the average absolute difference
between these histograms and those of the original series across bins, it assesses the alignment
of the distributions between the original and generated series.

• AutoCorrelation Difference (ACD) (Lai et al., 2018). This measure calculates the autocorre-
lation of both the original and generated time series and determines their difference (Parzen,
1963; Lai et al., 2018). By comparing the autocorrelations, we can assess the preservation of
dependencies in the generated time series.

• Skewness Difference (SD). In addition to ACF, this study incorporates statistical measures to
assess the quality of the generated time series (Wang et al., 2023). One such measure is skewness,
which quantifies the distribution asymmetry of a time series and is crucial for analyzing its
marginal distribution. Given the mean (standard deviation) of the train time series T tr

s as µtr
s

(σtr
s ) and the generated time series T gen

s as µgen
s (σgen

s ), we evaluate the fidelity of T gen
s by

computing the skewness difference between them as:

SD =

∣∣∣∣E[(T gen
s − µgen

s )3]

σgen
s

3 − E[(T tr
s − µtr

s )3]

σtr
s

3

∣∣∣∣ . (8)

• Kurtosis Difference (KD). Similar to skewness, kurtosis is employed to evaluate the tail be-
havior of a distribution, uncovering extreme deviations from the mean. Using notations from
Equation 8, the kurtosis difference between T tr

s and T gen
s is calculated as:

KD =

∣∣∣∣E[(T gen
s − µgen

s )4]

σgen
s

4 − E[(T tr
s − µtr

s )4]

σtr
s

4

∣∣∣∣ . (9)

Training Efficiency Training efficiency plays a critical role, especially in scenarios that require fast
time series generation methods or when computational resources are limited. However, only a limited
number of studies, such as (Desai et al., 2021; Jeon et al., 2022), have been utilized for evaluation in
this particular context.

• Training Time. Training time, referring to the wall clock time required for training a time series
generation (TSG) method, is a crucial metric for evaluating and deploying TSG methods. It
holds significant importance due to economic considerations.

Distance-based Measures To address the challenges associated with data synthesis (DS) and
privacy preservation (PS), we propose the integration of two distance-based measures as a means of
achieving an efficient and deterministic evaluation.

• Euclidean Distance (ED). For each original series str = (x1, · · · , xl) and its generated series

sgen = (y1, · · · , yl), ED =
√∑l

i=1(xi − yi)
2. The mean of the Euclidean distance (ED) is

computed for all series and samples. As the input time series has been preprocessed to fall
within the range of [0, 1], ED allows for a deterministic evaluation of the similarity between
sgen and str. It facilitates a value-wise comparison of the time series.

• Dynamic Time Warping (DTW) (Berndt & Clifford, 1994). In order to account for align-
ment, we incorporate DTW to capture the optimal alignment between series, regardless of their
pace or timing. The alignment facilitated by DTW provides valuable insights into the predictive
quality of the generated series. Additionally, studies such as (Shokoohi-Yekta et al., 2017) have
demonstrated that multi-dimensional DTW can enhance downstream classification tasks, making
it a discriminative measure.
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By leveraging the metrics of ED and DTW, we can efficiently and effectively assess the quality
of generated time series. These metrics provide streamlined alternatives to evaluate time series
generation, with similar goals as those of DS and PS.

D.1 AED AND AWD

Time series generation tasks consider two key factors: Fidelity and Correlation Preservation. Fidelity
aims to generate results that match the distribution of the original time series while avoiding mode
collapse. We use the Average Wasserstein Distance (AWD) to reflect the diversity of the generated
results. A smaller AWD indicates a closer resemblance to the true distribution and better fidelity.
Correlation Preservation aims to maintain the same channel correlations as the original time series for
different channels of the generated results. We map the generated time series onto a two-dimensional
plane and calculate the Average Euclidean Distance (AED) between the generated series and the
line with an amplitude and slope of 1. We use AED to measure the correlation preservation of the
generated results.

E BASELINES

We present a detailed analysis of five representative time series generation (TSG) methods that are
based on three foundational generative models. To ensure experimental fairness, all experiments
are conducted on a machine with Intel® Core® i9 12900K CPU @ 5.20 GHz, 64 GB memory, and
NVIDIA GeForce RTX 3090.

Pure GAN-based Methods Early studies (Mogren, 2016; Esteban et al., 2017) incorporated vanilla
GAN architectures originally designed for image generation and combined them with neural networks
such as RNN and LSTM, specifically tailored for sequential data. Subsequent research has been
dedicated to pioneering techniques that adapt to time series data and enhance performance.

• RTSGAN (Pei et al., 2021). RTSGAN integrates an autoencoder into GANs and focuses on
generating time series with variable lengths while effectively handling missing data.

• COSCI-GAN (Seyfi et al., 2022). COSCI-GAN is specifically designed to explicitly capture
the complex dynamical patterns within each series, with a focus on preserving the relationships
among channels or features.

Pure VAE-based Methods VAE-based methods commonly leverage variational inference to ef-
fectively capture temporal features. These methods are known for their efficiency and potential
interpretability.

• TimeVAE (Desai et al., 2021). TimeVAE extends the application of Variational Autoencoders
(VAEs) to general-purpose time series generation. It incorporates convolutional operations and
enhances interpretability through time series decomposition techniques.

• TimeVQVAE (Lee et al., 2023). TimeVAE incorporates the Short-Time Fourier Transform
(STFT) to decompose input time series into low-frequency and high-frequency components. It
further enhances the modeling of these components by integrating Vector Quantization with
VAEs (Lee et al., 2023), ensuring the preservation of both the general shape and specific details
of the time series.

Mixed-Type Methods Recent advancements in time series generation (TSG) have explored mixed-
type methods, which involve combining flow-based models with techniques such as Discrete Fourier
Transform (DFT) or Ordinary Differential Equations (ODEs). Additionally, these methods have been
integrated with Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) to
further enhance their capabilities.

• LS4 (Zhou et al., 2023). LS4 is derived from deep state-space models and integrates stochastic
latent variables to augment the model’s capacity while leveraging the training objectives of
Variational Autoencoders (VAEs).
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F RESULTS ON SYNTHETIC DATASET

Experimental Setup To effectively assess the performance and significance of CCD, we require a
customizable time series dataset. Therefore, we utilized three synthetic datasets (Simple sine, Sine
with frequency changes, and Anomalies) with dual channels as proposed by (Seyfi et al., 2022).
Following (Seyfi et al., 2022), we conducted a quantitative comparison of the correlation matrices
between the two channels using several metrics: (1) Frobenius norm (FN), (2) Spearman’s ρ, and (3)
Kendall’s τ . The detailed information on datasets, parameters, and metrics can be found in Appendix
Section B.

Comparison with COSCIGAN We compare our method with the state-of-the-art (SoTA) channel-
independent method to demonstrate the performance improvements achieved by our method. To
ensure experimental fairness, CCDGAN and COSCIGAN utilize the same single-channel gener-
ator and single-channel discriminator. The single-channel generator consists of a 1-layer LSTM
network and three linear layers, while the single-channel discriminator consists of four linear layers.
COSCIGAN’s CD consists of four linear layers. Table 9 presents the results, highlighting significant
advancements in three key metrics. For the Anomalies dataset, our performance in Kendall’s τ falls
short of COSCIGAN. This discrepancy can be attributed to Kendall’s τ ’s focus on order correla-
tion while remaining insensitive to outliers. Given the Anomalies dataset’s substantial number of
anomalies, the resulting weaker order correlation adversely impacts the fairness of metric evaluation.

Table 9: Results of CCDGAN and COSCIGAN
on simulated datasets, where bold indicates meth-
ods that perform well in the respective metric.
The performance of the central discriminator was
evaluated by employing the same channel gener-
ator. ↑ represents the larger the value, the better,
while ↓ represents the smaller the value, the bet-
ter.

Dataset Method FN↓ ρ↑ τ↑
Simple CCDGAN 3.725 0.667 0.021
Sine COSCIGAN 5.002 0.208 -0.01

Freq CCDGAN 1.868 0.659 -0.009
changes COSCIGAN 2.285 -0.075 -0.05

Anomalies CCDGAN 2.041 0.767 -0.005
COSCIGAN 2.531 0.032 0.02

Table 10: The types of central discriminator
(MLP or CCD) on the performance of channel
independent framework. The smaller the values
for AWD and AED, the better.

Dataset CD type AWD↓ AED↓
Simple None 0.047 0.133
Sine MLP 0.08 0.018

CCD 0.055 0.014

Freq None 0.04 0.077
changes MLP 0.068 0.024

CCD 0.061 0.017

Anomalies None 0.054 0.077
MLP 0.073 0.077
CCD 0.066 0.071

Table 11: The results of different channel-independent generators with CCD. Among them, channel-
independent GANs based on MLP, GRU, and TimeGAN were employed. We also utilized VAE to
investigate whether non-GAN models, apart from GAN, can adopt the channel-independent approach.

Dataset Model FN↓ ρ↑ τ↑
Simple MLP 6.737 0.122 -0.108
Sine GRU 5.509 0.235 -0.01

TimeGAN 5.268 0.288 -0.007
VAE 7.338 0.170 -0.016

Freq MLP 3.004 -0.144 -0.198
changes GRU 2.291 -0.081 -0.059

TimeGAN 2.334 -0.118 -0.124
VAE 5.004 -0.104 -0.037

Anomalies MLP 4.889 -0.1 -0.016
GRU 2.531 0.039 0.032

TimeGAN 3.829 0.027 0.107
VAE 3.482 0.002 0.021
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Analysis of Channel Independent Generator We explore the impact of different single-channel
TSG modules on the overall framework. Considering the channel independence, we selected MLP,
GRU, TimeGAN, and VAE as our channel-independent TSG modules incorporating the CCD as the
central discriminator.

If we select pure VAE-based methods to be single-channel time series generation module, the
objectives of these three components can be summarized as follows:
min
θi

max
α

L(VAEi,θi , CCDα) = LVAEi,θi
+ γ · log(1− CCDα(VAEi,θi(z),VAEj ̸=i(z)))) (10)

LVAEi,θi
= −Ei,θi,q(z|ti)[log p(ti|z)] + β · KLi,θi,(q(z|ti)∥p(z)) + γ · log(CCDα(ti)) (11)

where −Eq(z|ti)[log p(ti|z)] represents the reconstruction loss in the original loss function of VAE.
Here, q(z|ti) represents the approximate posterior distribution of latent variables generated by
the encoder, and p(ti|z) represents the reconstruction data distribution produced by the decoder.
KL(q(z|ti)∥p(z)) represents the KL divergence loss, where p(z) represents the prior distribution,
typically assumed to be a multivariate Gaussian distribution. β and γ are hyperparameters used to
balance the KL divergence loss and the CCD loss.

Table 11 indicates that choosing alternative modules for the single-channel TSG modules is a
viable approach. Regarding the module selection, it is advisable to opt for methods that exhibit
superior performance in channel-mixing techniques while striking a balance between performance
and computational resources. We also analyzed the performance of the entire framework when
incorporating the non-GAN module VAE as the single-channel TSG module. Using VAE yields
inferior results compared to GAN-based approaches. This discrepancy can be attributed to the
possibility that the current training objectives of the channel-independent framework may not be
suitable for VAE-based methods.

Ablation Study of CCD We verified the effectiveness of the CCD module in capturing temporal
dependencies within multivariate time series, both within and across periods. The Average Wasserstein
Distance (AWD) was used to measure the diversity of generated results, while the Average Euclidean
Distance (AED) assessed correlation preservation.

A channel-independent GAN method served as the baseline, with identical settings for all channel
generators as described in Section F. The CD type used ’None’ to denote the absence of a CD module
and ’MLP’ for the MLP-based central discriminator, which consists of consists of four linear layers.
It concatenates the time series (l ×N ) horizontally, resulting in a tensor with dimensions l ×N .

Table 10 shows that achieving both high fidelity and strong correlation preservation is challenging.
While the central discriminator improves correlation, it may slightly reduce fidelity. In contrast, CCD
outperforms the MLP-based central discriminator in both fidelity and correlation preservation.

G RESULTS ON REAL DATASET

The experimental results for Section 5.5 are included in the supplementary materials due to space
limitations.

H CHANNEL INDEPENDENT TIMEVAE ADDING CCD

We utilized TimeVAE, a VAE-based model, and incorporated CCD loss into the loss function to
investigate whether non-GAN models, apart from GAN, can adopt the channel-independent approach.
In the following, bold indicates methods that perform well in the respective metric.

I ADDITIONAL INFORMATION FOR CCDGAN V.S. DIFFUSION-BASED
METHODS

Baselines We compared CCDGAN with three diffusion model-based approaches: Diffusion-
TS(Yuan & Qiao, 2024), DiffWave(Kong et al., 2021), and DiffTime(Coletta et al., 2023). These
methods, including Diffusion-TS, DiffWave, and DiffTime, are all based on DDPM, with modifica-
tions tailored to the characteristics of time series data.
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Table 12: Detail results about Figure 3 on Stock dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.315 1.186 0.327 0.334 0.502 0.319
ACD↓ 0.015 0.017 0.078 0.037 0.031 0.029
SD↓ 0.127 0.059 0.4 0.217 0.215 0.138
KD↓ 0.446 0.458 2.54 1.647 0.958 0.771

ED↓ 1.068 1.051 1.088 1.101 1.098 1.075
DTW↓ 2.772 2.791 2.787 3.014 2.781 2.784

PS↓ 0.073 0.094 0.084 0.086 0.109 0.088
DS↓ 0.327 0.163 0.177 0.396 0.482 0.339

Time 52min11s 1h43min 1min33s 55min35s 47min50s 1h03min

Table 13: Detail results about Figure 3 on Stock Long dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.451 1.207 0.455 0.457 0.482 0.516
ACD↓ 0.128 0.143 0.235 0.131 0.135 0.157
SD↓ 0.206 0.303 0.528 0.215 0.069 0.238
KD↓ 2.223 0.782 2.541 1.414 0.569 1.115

ED↓ 2.388 2.697 2.486 2.539 2.722 2.532
DTW↓ 6.229 6.269 6.319 6.625 6.698 6.626

PS↓ 0.093 0.112 0.086 0.095 0.093 0.084
DS↓ 0.314 0.244 0.124 0.399 0.471 0.382

Time↓ 49min 4h41min 56s 57min 44min 1h40min

Table 14: Detail results about Figure 3 on Energy dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.289 0.328 0.386 0.307 0.294 0.306
ACD↓ 0.023 0.074 0.118 0.028 0.075 0.099
SD↓ 0.062 0.129 0.138 0.07 0.218 0.34
KD↓ 0.572 0.421 0.674 0.588 0.824 0.723

ED↓ 0.966 0.956 0.987 0.972 0.92 0.775
DTW↓ 6.045 6.025 5.799 6.267 5.928 4.984

PS↓ 0.247 0.252 0.288 0.256 0.492 0.311
DS↓ 0.419 0.335 0.487 0.469 0.471 0.488

Time↓ 2h32min 3h27min 15min19s 2h11min 1h38min 1h9min

Table 15: Detail results about Figure 3 on Energy Long dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.319 0.413 0.431 0.328 0.783 0.433
ACD↓ 0.103 0.123 0.27 0.109 0.29 0.403
SD↓ 0.088 0.153 0.183 0.093 0.592 0.192
KD↓ 0.289 0.185 0.621 0.489 6.735 0.823

ED↓ 2.017 2.189 2.035 2.297 2.342 2.349
DTW↓ 13.377 13.549 12.527 13.776 13.788 14.325

PS↓ 0.311 0.253 0.289 0.254 0.488 0.253
DS↓ 0.477 0.492 0.499 0.483 0.486 0.496

Time↓ 1h57min 2h58min 43min 1h42min 3h05min 2h24min
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Table 16: Detail results about Figure 3 on EEG dataset

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN
Metrics

MDD↓ 0.208 0.214 0.347 0.316 0.249 0.233
ACD↓ 0.043 0.068 0.148 0.047 0.143 0.076
SD↓ 0.167 0.188 0.241 0.174 0.381 0.27
KD↓ 0.509 0.361 0.958 0.662 1.51 0.663

ED↓ 1.331 1.693 1.517 1.831 1.578 1.762
DTW↓ 6.263 6.371 6.538 7.182 6.121 7.049

PS↓ 0.041 0.033 0.039 0.045 0.218 0.041
DS↓ 0.442 0.339 0.475 0.451 0.491 0.404

Time↓ 2h02min 4h30min 42min 2h12min 3h51min 2h12min

Table 17: Channel Independent TimeVAE adding CCD.

Dataset Model MSE↓ FN↓ ρ↑ τ↑
Simple Sine Without CCD 0.167 9.071 -0.019 -0.129

With CCD 0.121 7.338 0.17 -0.016

Freq changes Without CCD 0.179 6.382 -0.191 -0.235
With CCD 0.123 5.004 -0.104 -0.037

Anomalies Without CCD 0,236 7.711 -0.136 -0.113
With CCD 0.143 3.482 0.002 0.021

Table 18: The results of different methods on 10% Energy dataset.

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN

MDD↓ 0.312 0.471 0.403 0.529 0.31 0.477
ACD↓ 0.19 0.173 0.192 0.232 0.286 0.308
SD↓ 0.381 0.272 0.386 0.394 0.573 0.407
KD↓ 0.697 0.494 0.958 0.723 1.801 0.931

ED↓ 1.66 1.832 1.775 1.994 1.989 1.982
DTW↓ 6.833 6.92 6.986 7.636 7.146 7.534

Table 19: The results of different methods on 10% EEG dataset.

Methods CCD TimeVQVAE TimeVAE COSCI-GAN LS4 RTSGAN

MDD↓ 0.441 0.404 0.432 0.783 0.528 0.476
ACD↓ 0.13 0.092 0.081 0.125 0.199 0.152
SD↓ 0.301 0.371 0.366 0.473 0.542 0.492
KD↓ 0.797 0.52 1.025 0.992 1.611 0.835

ED↓ 1.405 1.933 1.671 1.915 1.883 1.924
DTW↓ 6.835 6.711 6.709 7.529 6.802 7.635
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Parameters For Diffusion-TS, DiffWave and DiffTime, to ensure the fairness of the experiments,
we strived to maintain consistency in parameter settings. We chose 4 attention heads, each with a
dimension of 16, and selected 2 encoder and decoder layers.

Datasets For dataset selection, we chose the previously mentioned Stock and Energy datasets.
For the Sine dataset, we opted for the sine wave dataset provided in (Yoon et al., 2019), which is
channel-independent and exhibits more diverse variations.

Evaluation Metrics 1) Context-Fréchet Inception Distance (Context-FID) score (Paul et al.,
2022) quantifies the quality of the synthetic time series samples by computing the difference between
representations of time series that fit into the local context; 2) Correlational score (CS) (Ni et al.,
2020) uses the absolute error between cross correlation matrices by real data and synthetic data to
assess the temporal dependency.

2) Correlational Score To mitigate the challenges associated with DS and PS, we propose the
incorporation of distance-based measures to provide an efficient, deterministic evaluation.

3) Discriminative Score For a quantitative measure of similarity, we train a post-hoc time-series
classification model (by optimizing a 2-layer LSTM) to distinguish between sequences from the
original and generated datasets. First, each original sequence is labeled real, and each generated
sequence is labeled not real. Then, an off-the-shelf (RNN) classifier is trained to distinguish between
the two classes as a standard supervised task.

4) Predictive Score In order to be useful, the sampled data should inherit the predictive characteristics
of the original. In particular, we expect TimeGAN to excel in capturing conditional distributions
over time. Therefore, using the synthetic dataset, we train a post-hoc sequence-prediction model (by
optimizing a 2-layer LSTM) to predict next-step temporal vectors over each input sequence. Then,
we evaluate the trained model on the original dataset.

5) Training Time It refers to the wall clock time for training a TSG method. It is a vital measure for
evaluating and deploying TSG methods due to economic considerations.

6) 2000 Data Sampling Time It evaluates the time spent by the model in generating data, which was
not previously emphasized, but significantly affects the user experience with the model. Additionally,
methods based on diffusion models require longer generation times, leading to increased attention to
sampling time.

J ANALYSIS OF CHANNEL-INDEPENDENT FRAMEWORK

Table 20: Ablation study of Period and Conv2D modules on the Stock and Energy datasets.

Dataset Stock Energy

Metrics No Period No Conv2d CCD No Period No Conv2d CCD

MDD↓ 0.433 0.431 0.305 0.226 0.395 0.219
ACD↓ 0.022 0.039 0.015 0.037 0.044 0.023
SD↓ 0.149 0.142 0.127 0.29 0.285 0.272
KD↓ 0.829 0.848 0.556 0.781 0.801 0.748

ED↓ 1.103 1.097 1.068 0.994 0.979 0.966
DTW↓ 4.442 4.39 4.252 7.131 7.195 7.045

PS↓ 0.09 0.127 0.073 0.305 0.28 0.247
DS↓ 0.408 0.483 0.327 0.424 0.433 0.419

Exploration of Different Channel Independent Generators Following (Seyfi et al., 2022), we
conducted a quantitative comparison on three synthetic datasets (Simple sine, Sine with frequency
changes, and Anomalies). We explore the impact of different channel independent generators on the
overall framework. The detailed results can be found in Appendix Section F. TimeGAN is a better
team for CCD than MLP, GRU, and VAE.
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J.1 ANALYSIS OF CCD

Table 21: Analysis of Period
Block on Stock dataset. WT
stands for Wavelet transform.

Period Block FFT WT

MDD↓ 0.315 0.313
ACD↓ 0.015 0.019
SD↓ 0.127 0.132
KD↓ 0.446 0.448

ED↓ 1.068 1.062
DTW↓ 2.772 2.779

PS↓ 0.073 0.086
DS↓ 0.327 0.319

Ablation Study of CCD We validated the effectiveness of the
Period and Conv2D modules on the Stock(Yoon et al., 2019)
and Energy(Candanedo, 2017) datasets. No Period indicates the
removal of the Period module from CCD, avoiding manipulation
of real and fake time series dimensions. No Conv2D denotes the
replacement of the Conv2D block with three linear layers.

The results in Table 20 show that removing either the Period
or Conv2D block decreases performance. This underscores the
importance of both components in CCD, highlighting their role in
enhancing and capturing various types of local information across
different datasets.

Exploration of Period Blocks in CCD We investigated the
impact of using FFT versus Wavelet Transform in the Period
Block. While FFT focuses solely on the frequency domain, the Wavelet Transform offers both
frequency and time localization. Experiments on the Stock dataset, with consistent parameters
except for frequency extraction, revealed minimal performance differences between FFT and Wavelet
Transform, as shown in Table 21.

Table 22: Analysis of Kernel size on Energy and Stock dataset.

Dataset Stock Energy

Kernel Size 1 3 5 varied 1 3 5 varied

MDD↓ 0.485 0.433 0.572 0.305 0.306 0.289 0.251 0.219
ACD↓ 0.171 0.211 0.193 0.015 0.049 0.051 0.052 0.023
SD↓ 0.174 0.16 0.152 0.127 0.296 0.267 0.284 0.272
KD↓ 0.807 0.719 0.692 0.556 0.912 0.959 0.761 0.700

ED↓ 1.102 1.079 1.092 1.068 0.992 0.979 0.971 0.966
DTW↓ 5.104 4.829 4.701 4.252 7.281 7.163 7.082 7.045

PS↓ 0.166 0.092 0.096 0.073 0.466 0.301 0.288 0.247
DS↓ 0.468 0.391 0.383 0.327 0.484 0.466 0.451 0.419

Analysis of Kernel Size We investigated the selection of Conv2D kernel sizes, testing two strategies:
fixed kernel sizes (1, 3, and 5) and varied kernel sizes defined by kernel size = 2 × i + 1 for
i = 0, 1, · · · , k with k = 3 as the number of Conv2D blocks. Results on the Stock and Energy
datasets, shown in Table 22, demonstrate that the varied kernel size strategy outperforms the fixed
kernel size approach. Stacking Conv2D modules with increasing kernel sizes allows the model to
capture more diverse and richer feature representations.

The benefits of adopting such a strategy are as follows: 1) Compared to a fixed convolutional kernel,
by stacking conv2d modules with increasing kernel sizes, the model can extract more diverse and
richer feature representations. Different kernel sizes can capture different types of features. 2) By
using smaller kernel sizes in the initial convolutions, the model can simultaneously focus on finer
local features. As the conv2d blocks are stacked, the model needs to acquire broader global features.

Effect of no. of Channels on CCD We explored the impact of the number of channels N , using
the Energy dataset as an example. We randomly selected channel data with numbers 4, 8, and 12
in the Energy dataset. The results, as shown in Table 23, indicate that the number of channels has
almost no impact on CCDGAN.

We investigated the impact of subsequence length l. The Stock dataset was divided into Stock (l = 24)
and Stock Long (l = 125) lengths, and the Energy dataset was divided into Energy (l = 24) and
Energy Long (l = 125). Experimental results are shown in Tables 9-12. As the subsequence length l
increases, the performance metrics of CCDGAN degrade but still outperform other methods.
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Table 23: Analysis of number of channels on
Energy dataset.

No. of channels 4 8 12

MDD↓ 0.314 0.315 0.315
ACD↓ 0.017 0.015 0.013
SD↓ 0.128 0.127 0.127
KD↓ 0.442 0.446 0.445

ED↓ 1.068 1.068 1.07
DTW↓ 2.773 2.772 2.773

PS↓ 0.071 0.073 0.081
DS↓ 0.32 0.327 0.331

Table 24: Analysis of number of layers on Stock
dataset.

No. of layers 2 3 4

MDD↓ 0.307 0.315 0.318
ACD↓ 0.017 0.015 0.014
SD↓ 0.133 0.127 0.127
KD↓ 0.442 0.446 0.445

ED↓ 1.066 1.068 1.067
DTW↓ 2.775 2.772 2.78

PS↓ 0.08 0.073 0.079
DS↓ 0.331 0.327 0.325

Effect of No. of convolution layers on CCD For the number of convolution layers, we exper-
imented with 2, 3, and 4 layers on the Stock dataset, while keeping other experimental settings
and parameters constant. The results are shown in Table 24. The results indicate that setting the
convolution layers to 3 yields relatively good experimental results on the Stock dataset. Therefore,
this setting can be initially applied to other datasets, with adjustments made based on the actual
situation.

K TSGGUIDE VERSUS TSGBENCH

In contrast to TSGBench (Ang et al., 2023a), the updated sections are marked in blue.

K.1 TSGBENCH

1. As a foundational step, we advocate for users to commence with VAE-based methods (e.g.,
TimeVAE and LS4). Their consistent leading performance and superior computational
efficiency make them go-to choices for initial exploration.

2. In applications that emphasize autocorrelation or forecasting, such as predictive maintenance
or stock market analysis, the ACD measure becomes crucial. Fourier Flow, which is
recognized for maintaining temporal dependencies, is highly suitable for these scenarios. On
the other hand, for capturing complex multi-variate relationships in datasets, COSCI-GAN
is the recommended choice.

3. Subsequent considerations focus on dataset size and domain specificity. For small-sized
datasets, RTSGAN and LS4, which excel in single DA, are strong choices. For heterogeneous
datasets, or when the goal is to generate time series for a new target domain, TimeVAE and
COSCI-GAN stand out for their effectiveness in cross DA.

4. Users can further fine-tune their method selection based on specific real-world application
needs, which involves identifying the most relevant evaluation measures. In this case, Figure
1 serves as a valuable visual guide.

K.2 TSGGUIDE

1. In Figure 3, VAE-based methods demonstrate faster training times and rank above average
on several metrics. This makes VAE-based methods suitable for initial attempts due to their
lower time requirements. Furthermore, the results in Tables 3, and Appendix Tables 18 and
19 show that VAE-based methods perform well on small datasets, making them applicable
to various types of datasets. As a foundational step, we recommend that users start with
the VAE-based method. Its consistently excellent computational efficiency makes it the
preferred choice for initial exploration and handling of small data sets.

2. If we emphasize autocorrelation or forecasting, such as predictive maintenance or stock
market analysis, the ACD measure becomes crucial. CCDGAN is highly suitable for these
scenarios.

3. In Figure 3, CCD shows a leading performance on the majority of datasets, proving that
CCDGAN performs well on real-world datasets, even though they come from different
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domains. When the dataset originates from a novel domain or exhibits complex multivariate
relationships, CCDGAN is a recommended choice. It shows excellent performance across
data sets from various domains and outperforms other methods, particularly on datasets with
a large number of variables.

4. In Table 5, diffusion model-based methods achieve certain advantages in metrics. However,
these methods require significant training and sampling time, leading to higher computational
costs. Therefore, if ample computational resources are available, diffusion model-based
approaches should be considered. When computational resources and dataset are abundant
and optimal results are desired, it is recommended to utilize Diffusion-TS. These methods
typically exhibit stable training and yield superior performance.

5. Users can further adjust method selection based on specific application requirements, in-
cluding identifying the appropriate channel-independent TSG module for CCDGAN (see
Appendix Section F).

L PRE-TRAINING DATA DETAILS

We provide additional details regarding the pre-training data. In our approach, 4 is pre-trained on a
large synthetic dataset of paired numeric and symbolic data, utilizing the data generation technique
from Kamienny et al. (2022). Each example consists of a set of N points (x, y) ∈ RD+1 and an
associated mathematical function f(·), such that y = f(x). These examples are generated by first
sampling a function f , followed by sampling N numeric input points xi; i = 1, . . . , N ∈ RD from
f , and then calculating the target value yi = f(xi).

L.1 SAMPLING OF FUNCTIONS

To generate random functions f , we employ the strategy outlined in Kamienny et al. (2022), building
random trees with mathematical operators as nodes and variables/constants as leaves. This process
includes:

Input Dimension Selection. We begin by selecting the input dimension D for the functions from a
uniform distribution U(1, Dmax). This step ensures variability in the number of input variables.

Binary Operator Quantity Selection. Next, we determine the quantity of binary operators b by
sampling from U(D − 1, D + bmax) and selecting b operators randomly from the set U(+,−,×).
This step introduces variability in the complexity of the generated functions.

Tree Construction. Using the chosen operators and input variables, we construct binary trees,
simulating the mathematical function’s structure. The construction process is performed following
the method proposed in Kamienny et al. (2022).

Variable Assignment to Leaf Nodes. Each leaf node in the binary tree corresponds to a variable,
which is sampled from the set of available input variables (xd for d = 1, . . . , D).

Unary Operator Insertion. Additionally, we introduce unary operators by selecting their quantity u
from U(0, umax) and randomly inserting them from a predefined set (Ou) of unary operators where
Ou = [inv, abs,pow2,pow3, sqrt, sin, cos, tan, arctan, log, exp].

Affine Transformation. To further diversify the functions, we apply random affine transformations
to each variable (xd) and unary operator (u). These transformations involve scaling (a) and shifting
(b) by sampling values from Daff. In other words, we replace xd with axd + b and u with au + b,
where (a, b) are samples from Daff. This step enhances the variety of functions encountered during
pre-training and ensures the model encounters a unique function each time, aiding in mitigating the
risk of overfitting as well as memorization. We used ten functions to generate 100 datasets. The
following are the functions we used: add, sub, mul, div, abs, inv, sqrt, log, exp, sin.

L.2 SAMPLING OF DATAPOINTS

Once have generated a sample function f , we proceed to generate N input points xi ∈ RD and
calculate their corresponding target value yi = f(xi). To maintain data quality and relevance, we
follow the guidelines from Kamienny et al. (2022), which include: Discarding and Restarting: If any
input point xi falls outside the function’s defined domain or if the target value yi exceeds 10100, we
discard the sample function and restart the generation process. This ensures that the model learns
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meaningful and well-behaved functions. Avoidance and Resampling: Avoidance and resampling of
out-of-distribution xi values provide additional insights into f as it allows the model to learn its
domain. This practice aids the model in handling input variations. Diverse Input Distributions: To
expose the model to a broad spectrum of input data distributions, we draw input points from a mixture
of distributions, such as uniform or Gaussian. These distributions are centered around k randomly
chosen centroids, introducing diversity and challenging the model’s adaptability.

The generation of input points involves the following steps:

Cluster and Weight Selection. We start by sampling the number of clusters k from a uniform distri-
bution U(1, kmax). Additionally, we sample k weights {wj ∼ U(0, 1)}kj=1, which are normalized to∑

j wj = 1.

Cluster Parameters. For each cluster, we sample a centroid µj ∼ N (0, 1)D, a vector of variances
σj ∼ U(0, 1)D, and a distribution shape Dj from {N ,U} (Gaussian or uniform). These parameters
define the characteristics of each cluster.

Input Point Generation. We sample [wjN ] input points from the distribution Dj(µj , σj) for each
cluster j. This sampling with different weights from different distributions ensures the sampling of a
diverse set of input points with varying characteristics.

Normalization. Finally, all generated input points are concatenated and normalized by subtracting
the mean and dividing by the standard deviation along each dimension.
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