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Abstract001

Chain-of-Thought (CoT) reasoning, which002
breaks down complex tasks into intermediate003
reasoning steps, has significantly enhanced the004
performance of large language models (LLMs)005
on challenging tasks. However, the detailed rea-006
soning process in CoT often incurs long genera-007
tion times and high computational costs, partly008
due to the inclusion of unnecessary steps. To009
address this, we propose a method to identify010
critical reasoning steps using perplexity as a011
measure of their importance: a step is deemed012
critical if its removal causes a significant in-013
crease in perplexity. Our method enables mod-014
els to focus solely on generating these critical015
steps. This can be achieved through two ap-016
proaches: refining demonstration examples in017
few-shot CoT or fine-tuning the model using se-018
lected examples that include only critical steps.019
Comprehensive experiments validate the effec-020
tiveness of our method, which achieves a better021
balance between the reasoning accuracy and022
efficiency of CoT.023

1 Introduction024

Large language models (LLMs) are powerful gen-025

erative models capable of performing diverse tasks026

in different domains (Gramopadhye et al., 2024;027

Karabacak and Margetis, 2023; Ling et al., 2024)028

and demonstrating strong reasoning capabilities029

(Jaech et al., 2024). Recent advancements, such as030

few-shot/zero-shot Chain-of-Thought (CoT) (Wei031

et al., 2022; Kojima et al., 2022), as well as fine-032

tuning (Liu et al., 2023), have significantly en-033

hanced the LLMs’ reasoning capabilities by lever-034

aging intermediate reasoning steps. In particular,035

through few-shot CoT, LLMs can learn from the036

reasoning steps in the demonstration examples and037

apply similar reasoning patterns to target tasks. In038

the case of zero-shot CoT, LLMs are prompted039

to"think step by step" to generate reasoning steps.040

In fine-tuning, LLMs can also learn from the rea-041

soning steps in the fine-tuning samples, further 042

enhancing their reasoning abilities. 043

While many existing reasoning methods rely 044

on available data (e.g., few-shot examples or fine- 045

tuning datasets), there is limited understanding of 046

which reasoning steps are truly essential and how 047

their impact varies across different models. This 048

gap hinders progress in two key areas: (1) how to 049

effectively identify and remove unimportant rea- 050

soning steps from the data to reduce computational 051

costs, and (2) whether the important reasoning 052

steps for one model are also important to another. 053

For example, we observe that removing certain 054

reasoning steps from the demonstrations in few- 055

shot CoT can have varying effects: some models 056

follow the modified examples and generate much 057

fewer tokens while maintaining reasoning accuracy, 058

whereas others experience a decline in performance. 059

Specifically, we consider a math problem of func- 060

tion solving (Saxton et al., 2019). We compare two 061

versions of demonstrations when conducting few- 062

shot CoT: one with full manually crafted reasoning 063

paths and another containing only intuitively impor- 064

tant steps, as shown in Figure 1. For most models, 065

removing certain steps significantly reduces the 066

number of generated tokens with minimal impact 067

on accuracy, suggesting that the removed steps con- 068

tribute limited meaningful information. However, 069

LLaMA3-8B shows a noticeable decline in accu- 070

racy, indicating that the importance of reasoning 071

steps can vary across different LLMs. 072

Similar to the few-shot CoT scenario, when 073

given a set of fine-tuning samples with reason- 074

ing steps, some LLMs may find some steps re- 075

dundant, and the fine-tuning cannot improve the 076

prediction accuracy. However, these LLMs will 077

follow the fine-tuning samples to generate the addi- 078

tional tokens, raising the computation cost. Other 079

LLMs may struggle to develop reasoning capa- 080

bilities when given too few reasoning steps dur- 081

ing fine-tuning. This observation will be further 082
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Figure 1: Prediction accuracy of few-shot CoT using all/selected steps in the demonstration examples.

demonstrated in Section 4.083

Therefore, in this work, we focus on identifying084

unimportant reasoning steps from few-shot exam-085

ples or fine-tuning data given a specific LLM. To086

achieve this, we propose a method leveraging per-087

plexity, a metric commonly used to measure the088

confidence or fluency of model-generated text (Je-089

linek et al., 1977), to quantify the impact of each090

reasoning step. Our contributions are as follows:091

First, since perplexity reflects an LLM’s con-092

fidence in processing inputs and generating out-093

puts (Jelinek et al., 1977), we hypothesize that per-094

plexity can serve as an indicator of reasoning step095

importance. Specifically, if the perplexity changes096

significantly after removing a reasoning step, we097

conjecture that the removed step plays a crucial098

role in the model’s decision-making process. To099

validate this hypothesis, we conduct empirical anal-100

yses (Section 2.2) and observe a strong correlation101

between changes in perplexity (with and without102

a reasoning step) and the prediction performance.103

This finding reveals that perplexity effectively quan-104

tifies the significance of individual reasoning steps.105

Second, inspired by this insight, we de-106

velop an algorithm, Stepwise Perplexity-GuIded107

RefInemenT (SPIRIT), to remove or merge unim-108

portant reasoning steps. To effectively apply this109

approach across different scenarios of CoT, we tai-110

lor our approach for two different use cases, (1)111

few-shot CoT, where the full reasoning steps in112

the examples are known (SPIRIT-FS), and (2) fine-113

tuning, where the samples only have input and the114

final answer at the beginning (SPIRIT-FT).115

When developing the algorithms, a common116

technical challenge is that some steps, though con-117

sidered unimportant by the selection criteria, may118

still contain partial usefulness. Removing such119

steps could disrupt the coherence of the remain- 120

ing reasoning process. To address this, we further 121

refine the algorithm by incorporating a merging 122

mechanism to ensure the overall coherence of the 123

whole reasoning process. 124

Finally, we conduct comprehensive experiments 125

to examine the effectiveness of the proposed al- 126

gorithms. In few-shot CoT, our method suc- 127

cessfully provides demonstrations that guide the 128

model to generate a more efficient reasoning 129

process without greatly sacrificing performance. 130

For fine-tuning, our approach achieves a better 131

effectiveness-efficiency trade-off than randomly se- 132

lect steps to be removed. 133

2 Preliminary 134

In this section, we first present the essentials of per- 135

plexity, and then introduce our exploration on how 136

to use perplexity to analyze the reasoning steps. 137

2.1 Perplexity (PPL) 138

Perplexity was developed in (Jelinek et al., 1977) 139
and is a common metric for LLMs. It is defined as 140

PPL(x, {wk}Nk=1) 141

= exp

(
− 1

N

N∑
i=1

log p(wi | x,w1, . . . , wi−1)

)
, (1) 142

143
where x represents the prompt, {wk}Nk=1 denotes 144

sequence of tokens with total length N which 145

are conditioned on x. The probability p(wi | 146

x,w1, w2, . . . , wi−1) is the likelihood assigned by 147

the model to the i-th token given the prompt and 148

the preceding tokens. 149

In literature, many studies utilize perplexity, e.g., 150

for reference model pruning (Ankner et al.), attack 151

detection (Alon and Kamfonas, 2023), misinforma- 152

tion detection (Lee et al., 2020), and uncertainty 153

quantification (Cooper and Scholak, 2024). 154
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2.2 Relationship between Perplexity and CoT155

Prediction Accuracy156

We conduct preliminary evaluation to investigate157

the relationship between PPL and CoT prediction158

accuracy when changing the steps used in the rea-159

soning procedure. Intuitively, a higher likelihood160

indicates that the LLM is more confident to the con-161

text, and from Eq.(1), a higher likelihood results is162

a lower PPL. Thus, we hypothesize that the PPL is163

negatively correlated with the prediction accuracy.164

In the experiments summarized in Table 1, we165

apply few-shot demonstrations to perform CoT rea-166

soning across three tasks from the DeepMind Math-167

ematics Dataset (Saxton et al., 2019): Solving lin-168

ear equation (AL1), calculating derivative (Diff-169

Calc), and measuring time difference (Time-Diff).170

For each dataset, we manually construct the demon-171

stration examples. All the constructed examples172

in the same dataset share the same reasoning steps.173

Then we randomly select steps to be removed from174

all examples in demonstration and calculate the175

perplexity of the resulting generation and the ac-176

curacy of CoT reasoning. Table 1 presents the177

correlation coefficient between the perplexity and178

accuracy and the p-value indicating the statistical179

significance of their negative relationship. Notably,180

the perplexity for all experiments is computed us-181

ing LLaMA3-7B, while accuracy is assessed based182

on generations from both LLaMA3-7B and GPT-183

4o-mini (in a transfer case).184

The results from Table 1 indicate a statistically185

significant negative correlation between perplexity186

and accuracy across all tasks, aligning with our187

hypothesis. This observation paves us a way to188

identify unimportant reasoning steps from the rea-189

soning path: Since the correlation is negative, if we190

remove some steps while maintaining the perplex-191

ity of the sample, then it is likely that there will be192

no accuracy loss, i.e., the removed steps are unim-193

portant. Furthermore, the correlation appears trans-194

ferable across models, as perplexity computed with195

LLaMA3-7B remains strongly correlated with ac-196

curacy evaluated using GPT-4o-mini, indicating the197

potential transferability of our proposed method.198

3 The Proposed Algorithm - SPIRIT199

In this section, we present the details of SPIRIT.200

Since few-shot CoT and fine-tuning utilize data in201

different ways, we first provide the general idea in202

Section 3.1 and then describe case-specific details203

in Section 3.2 (Few-Shot CoT, SPIRIT-FS) and 3.3204

(Fine-Tuning, SPIRIT-FT), respectively.205

Table 1: Correlation Between Perplexity of Reasoning Gen-
eration and Reasoning Accuracy, with p-Values Indicating
Statistical Confidence

LLaMA3-8B GPT-4o-mini

r p-value r p-value

AL1 -0.690 0.0272 -0.860 0.0014
Diff-Calc -0.997 3.37e−8 -0.993 4.88e−7
Time-Diff -0.850 0.0154 -0.973 0.0002

3.1 General Idea 206

For both few-shot CoT and fine-tuning, the general 207

idea is to select unimportant reasoning steps and 208

then process them. When removing one reasoning 209

step, the final PPL will be changed. We enumerate 210

all reasoning steps to get the one whose removal 211

results in the lowest PPL. 212

On the other hand, a concern with step removal 213

is that directly eliminating a step from a structured 214

reasoning process can lead to coherence issues, 215

particularly when the step contains intermediate 216

results necessary for subsequent computations. For 217

example, consider the reasoning process in Fig- 218

ure 2. If we remove the step "So, the number of 219

students present is 40 - 4 = 36 students.", the value 220

36 appears abruptly in the following step "36 * 3/4 221

= 27" without proper context, making the solution 222

difficult to follow. In such cases, merging steps 223

is necessary to maintain coherence. An appropri- 224

ate revision could be "(40-4)*3/4 = 27". Based 225

on these observations, we propose to incorporate a 226

merging paradigm into the algorithm, whose details 227

will be introduced in the following subsections. 228

3.2 Few-Shot CoT (SPIRIT-FS) 229

When performing few-shot CoT, we assume the 230

demonstration examples follow a consistent reason- 231

ing format, e.g., for the function solving problem, 232

all examples follow the same steps as in Figure 1. 233

For simplicity, we treat one sentence as one step in 234

the algorithm. Our goal is to remove unimportant 235

reasoning steps in the predefined demonstration 236

examples. 237

The detailed procedure of SPIRIT-FS is out- 238

lined in Algorithm 1. For a demonstration set 239

D = {(qdi ,Ri)}, qdi represents a demonstration 240

question and Ri = (r1i , r
2
i , . . .) denotes its cor- 241

responding reasoning process with the reasoning 242

steps r1i , r
2
i , . . .. The calibration set C = {qci } is a 243

set of questions from the dataset, containing tens 244

of examples, used to assess the impact of reason- 245

ing step removal by evaluating perplexity changes. 246

We iteratively refine D by removing unnecessary 247
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Algorithm 1 SPIRIT-FS

1: Input: Demonstration set D = {(qdi ,Ri)}, calibration set C = {qci }mi=1, threshold t
2: Initialize D∗ ← D
3: while True do
4: Find the most unimportant step j∗ ← argminj

1
m

∑
i PPL({D∗\rj , qci },M(D∗\rj , qci ))

5: Update perplexity PPLbest ← 1
m

∑
i PPL({D∗\rj∗ , qci },M({D∗\rj∗ , qci }))

6: Derive merged reasoning D∗
merge, ensuring coherence

7: if removal step limit reached then break else D∗ ← D∗
merge

8: end while
9: return Refined demonstration D∗

reasoning steps. At each iteration, we evaluate248

the impact of removing each step rj by computing249

the average of PPL({D\rj , qci },M({D\rj , qci }))250

over the calibration set (M(·) denotes the LLM251

and A\b means removing the element b from set252

A). The step rj
∗

that minimizes the perplexity will253

be pruned for all demonstration examples.254

To maintain coherence, instead of direct removal,255

step rj
∗

i is merged with other steps, using either an256

LLM or human effort, in a way as the example257

shown in Figure 2. The merging process integrates258

the step with either the preceding or subsequent259

step, depending on the semantic meaning to ensure260

coherence. If an LLM is used for merging, we261

provide demonstration examples in the prompt to262

guide the process. This procedure is repeated until263

the stopping criteria is met, e.g., a specified number264

of steps to be removed (used in our few-shot CoT265

experiments), or a perplexity threshold (used in266

fine-tuning experiments).267

3.3 Fine-Tuning (SPIRIT-FT)268

The full details of SPIRIT-FT are presented in Algo-269

rithm 2. Compared to few-shot CoT, some changes270

are made for the fine-tuning scenario.271

First, in fine-tuning, not all datasets contains272

complete reasoning steps. For datasets with high-273

quality annotated reasoning steps, we directly use274

the provided reasoning. However, for datasets that275

only include rationales or lack explicit reasoning276

step, we employ a capable LLM, such as GPT-4o or277

LLaMA3.1-70B, to generate the the full reasoning278

steps based on the input and final answer. After279

obtaining the reasoning steps, we apply Algorithm280

2 to refine them.281

Second, due to the different scenario of few-shot282

CoT and fine-tuning, the perplexity calculation is283

handled differently: In few-shot CoT, given the284

prompt, we compute PPL({D, qci },M({D, qci })),285

the perplexity based on the actual model generation286

in inference. We use a calibration set to compute 287

the average perplexity over calibration examples, 288

guiding the refinement of reasoning steps. The 289

refined steps are then applied to new testing exam- 290

ples. In contrast, in fine-tuning, when refining the 291

reasoning steps, we do not have access to inference- 292

time perplexity after fine-tuning. The perplexity in 293

this case is calculated directly on the fine-tuning 294

data, i.e., PPL(qi,Ri). There is no calibration set 295

involved, as the step selection is performed on the 296

fine-tuning data itself rather than requiring a sepa- 297

rate set for evaluation. 298

Figure 2: Comparison of removing and merging.

To explain the details of Algorithm 21, given a 299

set of questions Q = {qi} and their correspond- 300

ing reasoning processesR = {Ri}, we iteratively 301

refine each reasoning process Ri, by selectively 302

removing or merging reasoning steps. At each it- 303

eration, we identify the step rworst whose removal 304

minimizes perplexity PPL(qi,Ri∗\rji ). If the re- 305

sulting perplexity PPLrem falls below a threshold t1 306

relative to the original perplexity, the step is directly 307

1Although Algorithm 1 allows different ways for merging
and stopping, in the fine-tuning scenario, to handle the large
amount of fine-tuning data and the diversity of the reasoning
steps among the data, we explicitly design the merging and
stopping criteria for SPIRIT-FT.
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Algorithm 2 SPIRIT-FT
1: Input: Questions Q = {qi}, reasoning processesR = {Ri}, thresholds t1, t2
2: for each sample i do
3: InitializeR∗

i ← Ri, PPLorig ← PPL(qi,R∗
i )

4: while True do
5: Get the most unimportant step rworst ← argminrj∈R∗

i
PPL(qi,R∗

i \{rj})
6: Update perplexity PPLrem ← PPL(qi,R∗

i \{rworst})
7: if PPLrem > t2 · PPLorig then break
8: else if PPLrem < t1 · PPLorig thenR∗

i ← {R∗
i \rworst}

9: else
10: Generate merged reasoningRmerge, ensuring coherence
11: R∗

i ← Rmerge if PPL(qi,Rmerge) < PPLrem, elseR∗
i ← {R∗

i \rworst}
12: end if
13: end while
14: end for
15: return Refined reasoning processesR∗ = {R∗

i }

removed. Otherwise, we generate a merged version308

of the reasoning process and compare its perplexity309

PPLmerge with PPLrem, selecting the option with the310

lower perplexity. This process continues iteratively311

until the resulting perplexity exceeds a threshold312

t2, at which point refinement is terminated.313

We apply capable LLMs to conduct the merging.314

The merging prompt (include several examples)315

can be found in Appendix F. To save computation316

cost, we do not merge steps when PPLrem is below317

t1. To justify this design, we provide experiment318

results (in Appendix E) to demonstrate that it is319

more necessary to conduct merging when PPLrem320

is large. In contrast, for small PPLrem, merging321

provides only trivial improvement.322

4 Experiment323

In this section, we conduct comprehensive experi-324

ments to demonstrate the effectiveness of SPIRIT.325

We present the results of SPIRIT-FS in Section 4.1326

and demonstrate the performance of SPIRIT-FT in327

Section 4.2. Both sections include the discussion328

on the transferability of SPIRIT by investigating329

whether the reasoning step selection process gener-330

alizes across different models. Due to page limit,331

we postpone the ablation studies in Appendix A,332

where we examine the impact of some key compo-333

nents in the design of SPIRIT-FT.334

4.1 Few-shot CoT (SPIRIT-FS)335

Datasets. We consider the Algebra-Linear-1d Task336

(AL1) and Number-Base-Conversion Task (NBC)337

from the Mathematics Dataset (Saxton et al., 2019)338

for the experiments. For both tasks we randomly339

select 500 examples for evaluation. 340

Language Models. Our experiments use five 341

LLMs: GPT-3.5-Turbo (Brown, 2020), GPT- 342

4o-mini (Brown, 2020), LLaMA3-8B-Instruct, 343

LLaMA3.1-70B-Instruct (Grattafiori and et al., 344

2024) and Qwen2.5-7B-Instruct (Team, 2024) 345

(LLaMA3-8B, LLaMA3.1-70B, Qwen2.5-7B in 346

short). The temperature is set to 0 to ensure de- 347

terministic outputs in generation. Notably, when 348

applying our algorithm to open-source models 349

(LLaMA3-8B, LLaMA3.1-70B, and Qwen2.5-7B), 350

we use the corresponding model to compute per- 351

plexity and refine the reasoning demonstrations. 352

For GPT-4o-mini and GPT-3.5-Turbo, where di- 353

rect perplexity computation is unavailable, we in- 354

stead use LLaMA3.1-70B to estimate perplexity 355

and generate the refined demonstration examples 356

(in a transfer case). We show details of the hyper- 357

parameters of fine-tuning in Appendix D. 358

Procedures. For both AL1 and NBC, we manu- 359

ally create the detailed reasoning solution for the 360

demonstration examples and apply SPIRIT-FS to 361

refine the reasoning paths. For AL1, we reduce 362

the reasoning process from 7 steps to 3 or 4 steps. 363

For NBC, we reduce the reasoning from 12 steps 364

to 9 or 6 steps. We present the corresponding ac- 365

curacy of few-shot CoT in Table 2 and 3, labeled 366

as "Ours (merge)". To measure the efficiency, we 367

show the number of generated tokens. To validate 368

the effectiveness of SPIRIT-FS, we compare the 369

performance with two baselines methods, (1) ran- 370

domly select steps to be removed ("Rand"); and 371

(2) directly ask the model to be concise in genera- 372

tion ("Concise"). Additionally, we include another 373

5



Table 2: Performance of using Algorithm 1 for steps selection in few-shot CoT with Algebra-linear-1d task.

Method
LLaMA3.1-70B LLaMA3-8B Qwen 2.5 GPT-3.5-Turbo GPT-4o-mini

acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens

Zero-shot 99.60 134.186 86.40 115.698 99.60 142.418 87.60 97.474 99.00 191.104

Few-shot (7 steps) 99.80 72.742 82.00 84.358 99.00 68.626 93.60 68.59 98.00 66.95

Few-shot
(4 steps)

Ours (remove) 99.20 49.28 72.60 55.486 99.20 38.084 94.20 46.58 98.40 47.43
Ours (merge) 99.20 55.478 71.40 55.814 97.80 41.78 91.63 49.185 98.80 49.40

Rand 94.80 48.01 57.00 51.892 93.60 46.726 84.60 42.363 94.40 41.34

Few-shot
(3 steps)

Ours (remove) 95.60 35.934 62.00 42.86 95.40 35.938 91.40 34.536 97.00 34.196
Ours (merge) 96.20 50.894 63.2 44.792 97.00 40.614 90.93 38.074 96.80 36.824

Rand 80.40 41.576 59.00 50.00 86.80 41.768 82.40 37.188 78.60 37.2

Concise 98.40 77.038 64.60 66.276 97.40 58.874 85.40 54.39 96.80 36.82

Table 3: Performance of using Algorithm 1 for steps selection in few-shot CoT with Number-Base-Conversion task.

Method
LLaMA3.1-70B LLaMA3-8B Qwen 2.5 GPT-3.5-Turbo GPT-4o-mini

acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens

Zero-shot 75.40 244.10 36.40 195.00 82.80 272.99 62.00 166.39 92.63 319.74

Few-shot (12 steps) 95.60 147.12 62.40 151.77 88.60 157.43 84.20 161.24 95.80 156.66

Few-shot
(9 steps)

Ours (remove) 95.00 107.29 59.40 122.67 84.20 128.69 85.40 113.09 97.00 120.28
Ours (merge) 94.40 110.66 60.00 132.24 85.60 129.87 86.80 118.85 97.80 124.68

Rand 86.60 114.46 52.40 117.69 80.60 123.23 72.00 122.26 91.60 137.28

Few-shot
(6 steps)

Ours (remove) 89.20 92.51 44.60 93.27 75.40 91.28 77.80 97.41 93.00 106.93
Ours (merge) 90.60 95.73 49.80 104.39 77.80 97.66 79.40 103.21 96.60 108.52

Rand 81.60 117.99 41.80 101.35 63.40 92.57 69.20 115.60 86.40 129.52

Concise 73.60 111.65 44.00 100.51 77.00 161.80 58.80 115.14 72.60 112.64

variant of our method, labeled as "Ours (remove)",374

where we refine reasoning steps using SPIRIT-FS375

but apply only removal without merging.376

Results. From the results in Table 2 and 3, it is377

observed that in general, across different models378

and tasks, our algorithm achieves a better trade-off379

between accuracy and efficiency by maintaining380

higher accuracy under a similar number of gener-381

ated tokens. For example, except for LLaMA3-382

8B, all other models maintain comparable accuracy383

when the number of reasoning steps is reduced384

from 7 to 4 in the AL1 task. Similarly, in the NBC385

task, performance remains stable when steps are386

reduced from 12 to 9, except for LLaMA3-8B and387

Qwen 2.5-7B, which experience a slight drop in388

accuracy. In contrast, baseline methods "Concise"389

and "Rand" tend to sacrifice much more accuracy390

when the reasoning length is reduced.391

In addition, comparing "Ours (merge)" and392

"Ours (removal)", it is observed that for the sim-393

pler AL1 task, merging does not yield a significant394

accuracy improvement, while slightly increasing395

the number of generated tokens. But for the more396

difficult task NBC, "Ours (merge)" demonstrate a397

better accuracy, indicating the necessity of merging398

to ensure performance in more complex reasoning399

scenarios.400

Transferability. From the results in Table 2 and 3,401

we can see that, reasoning step selection based on402

the perplexity of LLaMA3.1-70B leads to good403

performance when applied to GPT-4o-mini and 404

GPT-3.5-turbo. Specifically, for the AL1 and NBC 405

tasks, when the number of reasoning steps is re- 406

duced to 4 and 9, respectively, accuracies remain 407

unchanged or even slightly improve. As steps are 408

further reduced, accuracies gradually decrease, but 409

still outperforms both random step removal and 410

the approach of simply prompting the model to be 411

more concise. This suggests that perplexity-based 412

step selection generalizes well across models. 413

4.2 Fine-Tuning (SPIRIT-FT) 414

Datasets. We consider two main datasets in- 415

cluding GSM8K (Cobbe et al., 2021) and Meta- 416

MathQA (Yu et al., 2023). For GSM8K, the entire 417

training set (with 7.4k examples) is utilized for ex- 418

ample refinement and fine-tuning, with evaluation 419

performed on the full evaluation set (with 1.3k ex- 420

amples). For MetaMathQA, we randomly select 421

19k examples for refinement and fine-tuning, while 422

1.95k examples are selected as the testing data. 423

Language Models. Our main experiments involve 424

two LLMs: LLaMA3-8B-Instruct and Qwen2.5- 425

7B-Instruct (LLaMA3-8B, Qwen2.5-7B in short). 426

Fine-tuning Methods. We consider two fine- 427

tuning methods including Supervised Fine-tuning 428

(SFT) and Odds Ratio Preference Optimization 429

(ORPO) (Hong et al., 2024). We applied LoRA (Hu 430

et al., 2022) for both methods. 431

Procedures. We applied SPIRIT-FT to refine the 432

reasoning paths, fine-tuned the model with the re- 433
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fined data, and evaluated the fine-tuned model by434

measuring both prediction accuracy and the num-435

ber of generated tokens. The trade-off between436

accuracy and efficiency was controlled by adjust-437

ing t2, which determines the extent of step re-438

moval/merging. Notably, when fine-tuning with439

different models, we used the specific model itself440

to compute perplexity for unimportant step deter-441

mination. We present the relationship between ac-442

curacy and efficiency across different models and443

different datasets in Figure 3 and 4 for SFT and444

ORPO, respectively. The results are labeled as445

"Min PPL (merge)".446

For evaluation, in the experiments of SFT, we447

compare SPIRIT-FT with three control sets, (1) a448

variant of SPIRIT-FT where we only remove but449

not merge steps ("Min PPL (remove)"); (2) ran-450

domly select steps to be removed ("Randomly re-451

move"); and (3) applying an inverse of Algorithm 2452

to remove the most important steps whose removal453

maximize the perplexity ("Max PPL (Remove)").454

For ORPO, we utilize some of the above datasets455

to form chosen/rejected pairs: (1) Chosen: Min456

PPL (Merge) / Rejected: Max PPL (Remove); (2)457

Chosen: Min PPL (Remove) / Rejected: Max PPL458

(Remove); (3) Chosen: Max PPL (Remove)/ Re-459

jected: Min PPL (Remove). The labels for the460

above settings are "Min PPL (merge)", "Min PPL461

(remove)" and "Max PPL (remove)", respectively.

Figure 3: Accuracy-Efficiency Relation when fine-tuning
with SFT. (a) Qwen2.5-7B, GSM8K; (b) LLAMA3-8B,
GSM8K; (c) Qwen2.5-7B, MetaMathQA; (b) LLAMA3-8B,
MetaMathQA

462
Results. Based on the SFT results in Figure 3,463

Figure 4: Accuracy-Efficiency Relation when fine-tuning
with ORPO. (a) Qwen2.5-7B, GSM8K; (b) LLAMA3-8B,
GSM8K; (c) Qwen2.5-7B, MetaMathQA; (b) LLAMA3-8B,
MetaMathQA

across different models and datasets, compared 464

with randomly selecting steps to be removed, 465

SPIRIT-FT consistently demonstrate a better trade- 466

off between accuracy and efficiency by achieving 467

a higher accuracy when the number of generated 468

tokens is similar. In addition, the performance 469

of "Randomly remove" is better than "Max PPL 470

(remove)", which provide further evidence that per- 471

plexity is effective in measuring the importance of 472

the reasoning steps. Comparing the results of "Min 473

PPL (remove)" and "Min (merge)", the algorithm 474

with merging demonstrates a better performance 475

than directly removing steps, which confirms the 476

necessity of conducting merging to maintain coher- 477

ence in the reasoning process. 478

For the results regarding ORPO in Figure 4, a 479

general order of the performance among different 480

sets in terms of accuracy-efficiency trade-offs is 481

"Min PPL (merge)" > "Min PPL (remove)" > "Max 482

PPL (remove)". These results also provide evi- 483

dence that minimizing perplexity is an effective 484

criterion for selecting reasoning steps, and incor- 485

porating merging further enhances performance by 486

preserving coherence in the reasoning process. 487

Transferability. We examine the transferability of 488

SPIRIT-FT across models in Figure 5. It shows 489

the results where LLaMA3-8B is used to calculate 490

perplexity, and the refined dataset is subsequently 491

applied to fine-tune either LLaMA2-7B-Chat or 492

Qwen1.5-7B-Chat. For comparison, we also pro- 493
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vide the results in which the step removal is per-494

formed using the perplexity computed by the same495

model as the fine-tuning target.496

From Figure 5 we can see that, in general, the497

the ranking of the performance among "Max PPL498

(Remove)," "Randomly Remove," "Min PPL (Re-499

move)," and "Min PPL (Merge)" remain consis-500

tent even when the perplexity is computed using a501

different model. This suggests that the LLaMA3-502

8B exhibit similar patterns with LLaMA2-7B and503

Qwen2.5-7B in how to process and learn from504

data, indicating a shared understanding of reason-505

ing step importance and a transferability of perplex-506

ity across models.507

On the other hand, a surprising observation in508

Figure 5 is that when applying the method to509

LLaMA2-7B and Qwen1.5-7B, using the perplex-510

ity of LLaMA3-7B to calculat perplexity results in511

even better prediction performance than using the512

corresponding LLMs themselves for determining513

unimportant steps. To explain this, our conjecture514

is that the perplexity of weaker LLMs is influenced515

by additional factors beyond the true importance of516

reasoning steps such as the coherence as a human517

language (i.e., utility (Shi et al., 2024)) and the un-518

derstanding of math notations (Zhang et al., 2024b),519

making it less effective for uncertainty quantifica-520

tion for the reasoning itself.

Figure 5: Transferability of PPL when calculated using
LLaMA3-8B and evaluated on LLaMA2-7B / Qwen1.5-7B.

521

5 Related Works 522

Inference-Stage Techniques in LLM Reasoning. 523

Many studies aim to enhance LLM reasoning at the 524

inference stage, without modifying model weights. 525

Early work (Wei et al., 2022) uses few-shot demon- 526

strations to guide reasoning, while (Kojima et al., 527

2022) shows that simply prompting the LLM to 528

"think step by step" also improves the accuracy 529

without demonstrations. Subsequent techniques, 530

such as Graph-of-Thoughts (Besta et al., 2024), 531

Tree-of-Thoughts (Yao et al., 2024), and Forest 532

of Thoughts (Bi et al., 2024), further adapt the 533

reasoning paradigm. Other works focus on self- 534

consistency (Wang et al., 2022; Wan et al., 2023) 535

or structured input analysis (He et al., 2024). Dif- 536

ferent from the aforementioned literature, our work 537

examines the importance of each reasoning step. 538

CoT Fine-Tuning. In literature and real practice, 539

there are two common types of LLM fine-tuning 540

methods: supervised fine-tuning (SFT) and rein- 541

forcement learning (RL)-based alignment methods. 542

SFT is commonly used to adapt an LLM to down- 543

stream task, and various studies have investigated 544

SFT. For example, (Zhou et al., 2024) hypothesizes 545

that LLMs require only a few samples from the tar- 546

get task to align with desired behaviors.(Dong et al., 547

2023) explores how SFT affects different LLM ca- 548

pabilities, while (Ovadia et al., 2023) compares 549

fine-tuning with retrieval-augmented generation, 550

and (Ling et al., 2024) investigates overfitting in 551

SFT. Other works focus on data selection for SFT, 552

such as (Shen, 2024) and (Zhang et al., 2024a). 553

RL-based alignment methods incorporate prefer- 554

ence labels into loss function, e.g., reinforcement 555

learning with human feedback (Ziegler et al., 2019), 556

direct preference optimization (DPO) (Rafailov 557

et al., 2024), ORPO (Hong et al., 2024), BCO (Jung 558

et al., 2024), and KTO (Ethayarajh et al.). 559

6 Conclusion 560

In this paper, we introduce SPIRIT, a method 561

for refining reasoning steps in few-shot CoT and 562

CoT fine-tuning for improving reasoning efficiency 563

while maintaining accuracy. Based on the obser- 564

vation that changes in perplexity correlate with 565

reasoning step importance, SPIRIT works by itera- 566

tively identifying unimportant steps through eval- 567

uating the change in perplexity, then merge the 568

unimportant steps. Experiments demonstrate the 569

effectiveness of SPIRIT in improving the trade-off 570

between accuracy and efficiency in both few-shot 571

CoT and CoT in fine-tuning. 572
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Limitations573

While the main observation in Section 4.2 is on574

the transferability of the algorithm, we also ob-575

serve that the perplexity from the stronger model576

(LLaMA3-8B) works even better than using the577

weaker model’s own perplexity (Qwen1.5-7B and578

LLaMA2-7B) in selecting the unimportant reason-579

ing steps. This implies that perplexity contains580

more information than what is needed in SPIRIT,581

indicating the potential limitation of using perplex-582

ity in the algorithm: If we want to fine-tune an583

even weaker model, we would better use a stronger584

model’s perplexity. This observation also implies585

the potential interplay between data quality and the586

model’s capability: A "good" quality with high-587

quality complex reasoning steps may not benefit588

a weak model. We believe this observation can589

inspire future works in data attrition and data selec-590

tion to consider the model’s own capability.591

Another limitation is that, in the algorithm and592

experiments, we assume reasoning steps among593

few-shot examples match with each other sentence594

by sentence. This can be further enhanced if the595

reasoning steps match the general pattern. How-596

ever, since different tasks have diverse reasoning597

patterns, we anticipate that such an enhancement598

should be specifically designed for the given task599

and dataset.600
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A Ablation Studies 784

In this section, we conduct ablation studies by applying different variations of SPIRIT-FT to validate the 785

reasonableness behind the key components in the design of the algorithm: 786

787

(1) Always applying merging and no removal: Instead of comparing the effects of merging and removal, 788

we modify the approach to always apply merging after selecting a step for refinement. 789

(2) Removing the threshold t1: , meaning that after determining which step to remove, we no longer 790

check if the resulting perplexity is below a threshold. Instead, we always proceed with merging and then 791

compare the effects of merging versus removal. 792

The results of (1) and (2) are presented as scatter point in Figure 6 and 7 respectively, labeled as "Always 793

merging" or "Removing t1 threshold", respectively, with comparisons to the performance of the original 794

algorithm. 795

From the results in Figure 6, we observe that always applying merging leads to performance comparable 796

to the original algorithm, when the number of generated tokens is high. However, as the number of tokens 797

is reduced below 80, performance degrades significantly compared to the original design, indicating that 798

blindly merging steps without considering removal can compromise reasoning effectiveness. 799

In addition, Figure 7 shows that, when removing t1 threshold, performance appears to improve slightly. 800

However, this comes at the cost of greatly increased computation, as the algorithm involves more rounds 801

of merging. This results highlight that our method provides a more computationally efficient approach 802

while effectively preserving performance.

Figure 6: Performance of SPIRIT-FT when always applying merging
803

Figure 7: Performance of SPIRIT-FT when removing the t1 threshold.
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B Additional Implementation Details and Adjustments804

Perplexity Calculation Adjustment In practice, when calculating the perplexity, the computation starts805

from the second token rather than including the first generated token. This avoids the potential issue that806

the initial token is assigned a very low probability and acts as an outlier. Including the initial token could807

unintentionally correlate the perplexity with the generation length, as its effect diminishes when averaged808

over a longer sequence.809

Alignment Adjustment for Qwen2.5-7B Fine-Tuning. Notably, when applying fine-tuning to Qwen2.5-810

7B, a challenge is that standard LoRA sometimes failed to achieve proper alignment between the model’s811

generation and the fine-tuning data, particularly when more removal was involved. To address this, we812

applied a backdoor technique by adding a control phrase to the prompt during fine-tuning. Specifically,813

we appended "Answer should end with ’The answer is’" at the end of the question in the fine-tuning data.814

During inference, we included the same phrase to reinforce the pattern learned from fine-tuning, ensuring815

better alignment in the model’s response generation.816

C Additional related works817

Test-Time Scaling Law. There are some recent discoveries of the test-time scaling law (Brown et al.,818

2024; Snell et al., 2024; Saad-Falcon et al., 2024). While our method focuses on enhancing the reasoning819

efficiency through removing unimportant reasoning steps from the data, one may question whether820

this contradicts to the test-time scaling law. To explain this, there is no self-reflection/self-correction821

mechanism considered in this work, and there is only one reasoning path for each example/fine-tuning822

data, and we observe an accuracy-token length trade-off. In contrast, for test-time scaling law, if we823

explore more reasoning paths, such an over-thinking can help obtain the correct answer. Our method is824

perpendicular to the test-time scaling law, and the idea of removing unimportant reasoning steps in our825

work is also applicable to the test-time methods to reduce the computation cost as well.826

D Additional Experiment Details.827

Hyperparameters in Fine-tuning. For SFT, we set the batch size to 128, the learning rate to 5e-5, and the828

training epoch to 3.0 for all datasets. For ORPO, the batch size is 64, learning rate is 5.0e-6 and training829

epoch is 5.0. The optimizer for all fine-tuning experiments is AdamW (Loshchilov and Hutter, 2019).830
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E Additional Validation to Support the Design of t1. 831

In this section, we provide additional empirical experiment to demonstrate that when PPLrem is larger, it 832

is more necessary to conduct merging. 833

We manually examine several removal cases, where a reasoning step is eliminated, and categorize them 834

into three classes: 835

(1) No coherence issue – Removing the step does not disrupt reasoning, so merging is unnecessary. 836

(2) Minor coherence issue – Removing the step slightly affects coherence; merging is beneficial but not 837

essential. 838

(3) Obvious coherence issue – Removing the step leads to a clear loss of coherence, making merging 839

necessary. 840

For each case, we compute the perplexity change ratio (after removal / before removal) and plot the results 841

in Figure 8. 842

Figure 8: Perplexity Change across different cases.

From Figure 8, we observe that, in general, the greater the need for merging, the higher the perplexity 843

change. These results support the choice of setting a threshold t1, as when the perplexity gain is small, 844

direct removal is sufficient, making merging unnecessary. 845
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F Prompt for Instructing Merging846

Example 1:
Q: A portable computer drive has enough kilobytes of storage space to store 2000 photos. Each photo is 1.5 kilobytes in size.
How many 200-kilobyte videos can it store if it already has 400 photos on it? Let’s think step by step.
A: The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.
It already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.
So, it has 3000 - 600 = 2400 kilobytes of storage space left.
Each video is 200 kilobytes in size.
The answer is 12

After removing ’The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.’, the answer become:
A: The drive already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.
So, it has 2000 photos * 1.5 kilobytes - 600 kilobytes = 2400 kilobytes of storage space left.
Each video is 200 kilobytes in size.
The answer is 12

Example 2:
Q: Leah bought 3 boxes of birdseed. When she went to put them away, she discovered that she already had 5 boxes in the pantry.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week. If each box of birdseed
contains 225 grams, for how many weeks can she feed her birds without going back to the store? Let’s think step by step.
A: Leah has a total of 3 + 5 = 8 boxes of birdseed. Each box contains 225 grams of birdseed, so she has a total of 8 * 225 = 1800
grams of birdseed.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.
To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams):
1800 / 150 = 12 weeks
The answer is 12

After removing ’Leah has a total of 3 + 5 = 8 boxes of birdseed.’, the answer become:
A: Each box contains 225 grams of birdseed, so Leah has a total of (3 + 5) * 225 = 1800 grams of birdseed.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.
To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams): 1800 / 150 = 12 weeks
The answer is 12

Example 3: Q: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120 pages? Let’s think
step by step.
A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page.
To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages: 2.5 minutes per
page * 120 pages = 300 minutes.
To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes / 60 = 5 hours.
The answer is 5

After removing ’To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes /
60 = 5 hours.’, the answer become:
A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page. To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages:
2.5 minutes per page * 120 pages = 300 minutes.
The answer is (300 / 60) = 5

Learn from the above example to do the following modification. Remember not to change the final results (the number after ’The
answer is’).

847
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