Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought
Reasoning in Large Language Models

Anonymous ACL submission

Abstract

Chain-of-Thought (CoT) reasoning, which
breaks down complex tasks into intermediate
reasoning steps, has significantly enhanced the
performance of large language models (LLMs)
on challenging tasks. However, the detailed rea-
soning process in CoT often incurs long genera-
tion times and high computational costs, partly
due to the inclusion of unnecessary steps. To
address this, we propose a method to identify
critical reasoning steps using perplexity as a
measure of their importance: a step is deemed
critical if its removal causes a significant in-
crease in perplexity. Our method enables mod-
els to focus solely on generating these critical
steps. This can be achieved through two ap-
proaches: refining demonstration examples in
few-shot CoT or fine-tuning the model using se-
lected examples that include only critical steps.
Comprehensive experiments validate the effec-
tiveness of our method, which achieves a better
balance between the reasoning accuracy and
efficiency of CoT.

1 Introduction

Large language models (LLMs) are powerful gen-
erative models capable of performing diverse tasks
in different domains (Gramopadhye et al., 2024;
Karabacak and Margetis, 2023; Ling et al., 2024)
and demonstrating strong reasoning capabilities
(Jaech et al., 2024). Recent advancements, such as
few-shot/zero-shot Chain-of-Thought (CoT) (Wei
et al., 2022; Kojima et al., 2022), as well as fine-
tuning (Liu et al., 2023), have significantly en-
hanced the LLMs’ reasoning capabilities by lever-
aging intermediate reasoning steps. In particular,
through few-shot CoT, LLMs can learn from the
reasoning steps in the demonstration examples and
apply similar reasoning patterns to target tasks. In
the case of zero-shot CoT, LLMs are prompted
to"think step by step" to generate reasoning steps.
In fine-tuning, LLMs can also learn from the rea-

soning steps in the fine-tuning samples, further
enhancing their reasoning abilities.

While many existing reasoning methods rely
on available data (e.g., few-shot examples or fine-
tuning datasets), there is limited understanding of
which reasoning steps are truly essential and how
their impact varies across different models. This
gap hinders progress in two key areas: (1) how to
effectively identify and remove unimportant rea-
soning steps from the data to reduce computational
costs, and (2) whether the important reasoning
steps for one model are also important to another.

For example, we observe that removing certain
reasoning steps from the demonstrations in few-
shot CoT can have varying effects: some models
follow the modified examples and generate much
fewer tokens while maintaining reasoning accuracy,
whereas others experience a decline in performance.
Specifically, we consider a math problem of func-
tion solving (Saxton et al., 2019). We compare two
versions of demonstrations when conducting few-
shot CoT: one with full manually crafted reasoning
paths and another containing only intuitively impor-
tant steps, as shown in Figure 1. For most models,
removing certain steps significantly reduces the
number of generated tokens with minimal impact
on accuracy, suggesting that the removed steps con-
tribute limited meaningful information. However,
LLaMA3-8B shows a noticeable decline in accu-
racy, indicating that the importance of reasoning
steps can vary across different LLMs.

Similar to the few-shot CoT scenario, when
given a set of fine-tuning samples with reason-
ing steps, some LLMs may find some steps re-
dundant, and the fine-tuning cannot improve the
prediction accuracy. However, these LLMs will
follow the fine-tuning samples to generate the addi-
tional tokens, raising the computation cost. Other
LLMs may struggle to develop reasoning capa-
bilities when given too few reasoning steps dur-
ing fine-tuning. This observation will be further

"‘*‘ Provided Demonstration Examples:

Q: Solve 258 = -4*z - 253 + 527 for z

Repeat the given equation: 258 = -4+z - 253 + 527
Simplification: 258 = -4z + 274

Moving terms: 258 - 274 = -4xz

Simplification: -16 = -4*z

Solve for variable: -16/ -4 = -4*z/ -4

obtain the results: 4 =z

Format the answer: So the answer is: 4

Performance of LLM’s prediction

Acc. #Tokens

LLaMA3.1-70B 99.80% 72.742
LLaMA3-8B 82.60% 84.358
GPT-40 99.60% 68.002
GPT-3.5-Turbo 93.60%. 68.590
Qwen2.5-7B 99.00% 68.626

Q: Solve 258 = -4xz - 253 + 527 for z

Repeat the given equation: 258 = -4z - 253 + 527
Moving terms: 258 - 274 = -4*z

Simplification: -16 = -4*z

Format the answer: So the answer is: 4

Acc. #Tokens

LLaMA3.1-70B 99.20% 49.280
LLaMA3-8B 72.60% 55.486
GPT-40 100.0% 44.600
GPT-3.5-Turbo 94.20% 46.580
Qwen2.5-7B 99.20% 38.084

Figure 1: Prediction accuracy of few-shot CoT using all/selected steps in the demonstration examples.

demonstrated in Section 4.

Therefore, in this work, we focus on identifying
unimportant reasoning steps from few-shot exam-
ples or fine-tuning data given a specific LLM. To
achieve this, we propose a method leveraging per-
plexity, a metric commonly used to measure the
confidence or fluency of model-generated text (Je-
linek et al., 1977), to quantify the impact of each
reasoning step. Our contributions are as follows:

First, since perplexity reflects an LLM’s con-
fidence in processing inputs and generating out-
puts (Jelinek et al., 1977), we hypothesize that per-
plexity can serve as an indicator of reasoning step
importance. Specifically, if the perplexity changes
significantly after removing a reasoning step, we
conjecture that the removed step plays a crucial
role in the model’s decision-making process. To
validate this hypothesis, we conduct empirical anal-
yses (Section 2.2) and observe a strong correlation
between changes in perplexity (with and without
a reasoning step) and the prediction performance.
This finding reveals that perplexity effectively quan-
tifies the significance of individual reasoning steps.

Second, inspired by this insight, we de-
velop an algorithm, Stepwise Perplexity-Gulded
RefInemenT (SPIRIT), to remove or merge unim-
portant reasoning steps. To effectively apply this
approach across different scenarios of CoT, we tai-
lor our approach for two different use cases, (1)
few-shot CoT, where the full reasoning steps in
the examples are known (SPIRIT-FS), and (2) fine-
tuning, where the samples only have input and the
final answer at the beginning (SPIRIT-FT).

When developing the algorithms, a common
technical challenge is that some steps, though con-
sidered unimportant by the selection criteria, may
still contain partial usefulness. Removing such

steps could disrupt the coherence of the remain-
ing reasoning process. To address this, we further
refine the algorithm by incorporating a merging
mechanism to ensure the overall coherence of the
whole reasoning process.

Finally, we conduct comprehensive experiments
to examine the effectiveness of the proposed al-
gorithms. In few-shot CoT, our method suc-
cessfully provides demonstrations that guide the
model to generate a more efficient reasoning
process without greatly sacrificing performance.
For fine-tuning, our approach achieves a better
effectiveness-efficiency trade-off than randomly se-
lect steps to be removed.

2 Preliminary

In this section, we first present the essentials of per-
plexity, and then introduce our exploration on how
to use perplexity to analyze the reasoning steps.

2.1 Perplexity (PPL)
Perplexity was developed in (Jelinek et al., 1977)
and is a common metric for LLMs. It is defined as

PPL(z, {ux})
1 N
- 7 1 i) 5o ey Wi—) 1
eXp(N ;:1 og p(w; | x, w1 w 1)) (D

where x represents the prompt, {fwk}{cvzl denotes
sequence of tokens with total length N which
are conditioned on x. The probability p(w; |
x,wi,ws, ..., w;—1) is the likelihood assigned by
the model to the ¢-th token given the prompt and
the preceding tokens.

In literature, many studies utilize perplexity, e.g.,
for reference model pruning (Ankner et al.), attack
detection (Alon and Kamfonas, 2023), misinforma-
tion detection (Lee et al., 2020), and uncertainty
quantification (Cooper and Scholak, 2024).

2.2 Relationship between Perplexity and CoT
Prediction Accuracy

We conduct preliminary evaluation to investigate
the relationship between PPL and CoT prediction
accuracy when changing the steps used in the rea-
soning procedure. Intuitively, a higher likelihood
indicates that the LLM is more confident to the con-
text, and from Eq.(1), a higher likelihood results is
a lower PPL. Thus, we hypothesize that the PPL is
negatively correlated with the prediction accuracy.

In the experiments summarized in Table 1, we
apply few-shot demonstrations to perform CoT rea-
soning across three tasks from the DeepMind Math-
ematics Dataset (Saxton et al., 2019): Solving lin-
ear equation (AL1), calculating derivative (Diff-
Calc), and measuring time difference (Time-Diff).
For each dataset, we manually construct the demon-
stration examples. All the constructed examples
in the same dataset share the same reasoning steps.
Then we randomly select steps to be removed from
all examples in demonstration and calculate the
perplexity of the resulting generation and the ac-
curacy of CoT reasoning. Table 1 presents the
correlation coefficient between the perplexity and
accuracy and the p-value indicating the statistical
significance of their negative relationship. Notably,
the perplexity for all experiments is computed us-
ing LLaMA3-7B, while accuracy is assessed based
on generations from both LLaMA3-7B and GPT-
40-mini (in a transfer case).

The results from Table 1 indicate a statistically
significant negative correlation between perplexity
and accuracy across all tasks, aligning with our
hypothesis. This observation paves us a way to
identify unimportant reasoning steps from the rea-
soning path: Since the correlation is negative, if we
remove some steps while maintaining the perplex-
ity of the sample, then it is likely that there will be
no accuracy loss, i.e., the removed steps are unim-
portant. Furthermore, the correlation appears trans-
ferable across models, as perplexity computed with
LLaMAZ3-7B remains strongly correlated with ac-
curacy evaluated using GPT-40-mini, indicating the
potential transferability of our proposed method.

3 The Proposed Algorithm - SPIRIT

In this section, we present the details of SPIRIT.
Since few-shot CoT and fine-tuning utilize data in
different ways, we first provide the general idea in
Section 3.1 and then describe case-specific details
in Section 3.2 (Few-Shot CoT, SPIRIT-FS) and 3.3
(Fine-Tuning, SPIRIT-FT), respectively.

Table 1: Correlation Between Perplexity of Reasoning Gen-
eration and Reasoning Accuracy, with p-Values Indicating
Statistical Confidence

LLaMA3-8B | GPT-4o-mini

r p-value ‘ r p-value
AL1 -0.690 0.0272 | -0.860 0.0014
Diff-Calc -0.997 3.37e—8 | -0.993 4.88¢—7
Time-Diff -0.850 0.0154 | -0.973 0.0002

3.1 General Idea

For both few-shot CoT and fine-tuning, the general
idea is to select unimportant reasoning steps and
then process them. When removing one reasoning
step, the final PPL will be changed. We enumerate
all reasoning steps to get the one whose removal
results in the lowest PPL.

On the other hand, a concern with step removal
is that directly eliminating a step from a structured
reasoning process can lead to coherence issues,
particularly when the step contains intermediate
results necessary for subsequent computations. For
example, consider the reasoning process in Fig-
ure 2. If we remove the step "So, the number of
students present is 40 - 4 = 36 students.”, the value
36 appears abruptly in the following step "36 * 3/4
= 27" without proper context, making the solution
difficult to follow. In such cases, merging steps
is necessary to maintain coherence. An appropri-
ate revision could be "(40-4)*3/4 = 27". Based
on these observations, we propose to incorporate a
merging paradigm into the algorithm, whose details
will be introduced in the following subsections.

3.2 Few-Shot CoT (SPIRIT-FS)

When performing few-shot CoT, we assume the
demonstration examples follow a consistent reason-
ing format, e.g., for the function solving problem,
all examples follow the same steps as in Figure 1.
For simplicity, we treat one sentence as one step in
the algorithm. Our goal is to remove unimportant
reasoning steps in the predefined demonstration
examples.

The detailed procedure of SPIRIT-FS is out-
lined in Algorithm 1. For a demonstration set
D = {(¢?,R:)}, ¢ represents a demonstration
question and R; = (r},r?,...) denotes its cor-
responding reasoning process with the reasoning
steps 71,72, The calibration set C = {q¢} is a
set of questions from the dataset, containing tens
of examples, used to assess the impact of reason-
ing step removal by evaluating perplexity changes.
We iteratively refine D by removing unnecessary

Algorithm 1 SPIRIT-FS

Initialize D* + D
while True do

end while
return Refined demonstration D*

R e A A i ey

Input: Demonstration set D = {(¢¢, R;)}, calibration set C = {¢¢}™,, threshold ¢

Find the most unimportant step j* < arg min; = >, PPL({D*\r?, ¢¢}, M(D*\r?, ¢f))
Update perplexity PPLpey +— = >, PPL({D*\17", ¢¢}, M({D*\r7", ¢5}))

Derive merged reasoning D* yerge, €nsuring coherence

if removal step limit reached then break else D* <— D*crge

reasoning steps. At each iteration, we evaluate
the impact of removing each step 7/ by computing
the average of PPL({D\r7, ¢¢}, M({D\r7, ¢}))
over the calibration set (M(-) denotes the LLM
and A\b means removing the element b from set
A). The step 77" that minimizes the perplexity will
be pruned for all demonstration examples.

To maintain coherence, instead of direct removal,
step 77/ Cis merged with other steps, using either an
LLM or human effort, in a way as the example
shown in Figure 2. The merging process integrates
the step with either the preceding or subsequent
step, depending on the semantic meaning to ensure
coherence. If an LLM is used for merging, we
provide demonstration examples in the prompt to
guide the process. This procedure is repeated until
the stopping criteria is met, e.g., a specified number
of steps to be removed (used in our few-shot CoT
experiments), or a perplexity threshold (used in
fine-tuning experiments).

3.3 Fine-Tuning (SPIRIT-FT)

The full details of SPIRIT-FT are presented in Algo-
rithm 2. Compared to few-shot CoT, some changes
are made for the fine-tuning scenario.

First, in fine-tuning, not all datasets contains
complete reasoning steps. For datasets with high-
quality annotated reasoning steps, we directly use
the provided reasoning. However, for datasets that
only include rationales or lack explicit reasoning
step, we employ a capable LLLM, such as GPT-40 or
LLaMA3.1-70B, to generate the the full reasoning
steps based on the input and final answer. After
obtaining the reasoning steps, we apply Algorithm
2 to refine them.

Second, due to the different scenario of few-shot
CoT and fine-tuning, the perplexity calculation is
handled differently: In few-shot CoT, given the
prompt, we compute PPL({D, ¢{}, M({D, ¢{})),
the perplexity based on the actual model generation

in inference. We use a calibration set to compute
the average perplexity over calibration examples,
guiding the refinement of reasoning steps. The
refined steps are then applied to new testing exam-
ples. In contrast, in fine-tuning, when refining the
reasoning steps, we do not have access to inference-
time perplexity after fine-tuning. The perplexity in
this case is calculated directly on the fine-tuning
data, i.e., PPL(¢;, R;). There is no calibration set
involved, as the step selection is performed on the
fine-tuning data itself rather than requiring a sepa-
rate set for evaluation.

There are 40 students in a class. If 1/10 are absent, 3/4 of the
students who are present are in the classroom, and the rest are in
the canteen, how many students are in the canteen?

A: There are 40 students in the class.
1/10 of the students are absent, which is 40 * 1/10 = 4 students.

3/4 of the students who are present are in the classroom, which is
36 * 3/4 = 27 students.
The answer is 9.

A: There are 40 students in the class.

1/10 of the students are absent, which is 40 = 1/10 = 4 students.
3/4 of the students who are present are in the classroom, which is
(40 - 4) = 3/4 = 27 students.

The answer is 9.

Figure 2: Comparison of removing and merging.

To explain the details of Algorithm 2!, given a
set of questions @ = {¢;} and their correspond-
ing reasoning processes R = {R;}, we iteratively
refine each reasoning process R;, by selectively
removing or merging reasoning steps. At each it-
eration, we identify the step ryorst Whose removal
minimizes perplexity PPL(g;, R;«\r7). If the re-
sulting perplexity PPL,., falls below a threshold ¢
relative to the original perplexity, the step is directly

! Although Algorithm 1 allows different ways for merging
and stopping, in the fine-tuning scenario, to handle the large
amount of fine-tuning data and the diversity of the reasoning

steps among the data, we explicitly design the merging and
stopping criteria for SPIRIT-FT.

Algorithm 2 SPIRIT-FT

1: Input: Questions Q = {¢; }, reasoning processes R = {R,}, thresholds #1, t2

2: for each sample ¢ do

3: Initialize R} < R;, PPLyrig <= PPL(g;, RY)

4: while True do

5: Get the most unimportant Step ryorst = arg min,, eRx PPL(q;, R;\{r;})
6: Update perplexity PPLyem <— PPL(gi, RI\{"worst })

7: if PPL.er, > t2 - PPL,jg then break

8: else if PPL;c, < t1 - PPLoyi, then RS < {R}\7"worst}

9: else
10: Generate merged reasoning Rperge, €nsuring coherence
11: R < Rumerge if PPL(¢;, Rimerge) < PPLrem, else Ry <= {R¥\ worst }
12: end if
13: end while
14: end for

15: return Refined reasoning processes R* = {R}

removed. Otherwise, we generate a merged version
of the reasoning process and compare its perplexity
PPLperge With PPLiery, selecting the option with the
lower perplexity. This process continues iteratively
until the resulting perplexity exceeds a threshold
t2, at which point refinement is terminated.

We apply capable LLMs to conduct the merging.
The merging prompt (include several examples)
can be found in Appendix F. To save computation
cost, we do not merge steps when PPL,., is below
t1. To justify this design, we provide experiment
results (in Appendix E) to demonstrate that it is
more necessary to conduct merging when PPL e,
is large. In contrast, for small PPL.,, merging
provides only trivial improvement.

4 Experiment

In this section, we conduct comprehensive experi-
ments to demonstrate the effectiveness of SPIRIT.
We present the results of SPIRIT-FS in Section 4.1
and demonstrate the performance of SPIRIT-FT in
Section 4.2. Both sections include the discussion
on the transferability of SPIRIT by investigating
whether the reasoning step selection process gener-
alizes across different models. Due to page limit,
we postpone the ablation studies in Appendix A,
where we examine the impact of some key compo-
nents in the design of SPIRIT-FT.

4.1 Few-shot CoT (SPIRIT-FS)

Datasets. We consider the Algebra-Linear-1d Task
(AL1) and Number-Base-Conversion Task (NBC)
from the Mathematics Dataset (Saxton et al., 2019)
for the experiments. For both tasks we randomly

select 500 examples for evaluation.

Language Models. Our experiments use five
LLMs: GPT-3.5-Turbo (Brown, 2020), GPT-
4o0-mini (Brown, 2020), LLaMA3-8B-Instruct,
LLaMA3.1-70B-Instruct (Grattafiori and et al.,
2024) and Qwen2.5-7B-Instruct (Team, 2024)
(LLaMA3-8B, LLaMA3.1-70B, Qwen2.5-7B in
short). The temperature is set to O to ensure de-
terministic outputs in generation. Notably, when
applying our algorithm to open-source models
(LLaMA3-8B, LLaMA3.1-70B, and Qwen2.5-7B),
we use the corresponding model to compute per-
plexity and refine the reasoning demonstrations.
For GPT-40-mini and GPT-3.5-Turbo, where di-
rect perplexity computation is unavailable, we in-
stead use LLaMA3.1-70B to estimate perplexity
and generate the refined demonstration examples
(in a transfer case). We show details of the hyper-
parameters of fine-tuning in Appendix D.
Procedures. For both AL1 and NBC, we manu-
ally create the detailed reasoning solution for the
demonstration examples and apply SPIRIT-FS to
refine the reasoning paths. For ALI1, we reduce
the reasoning process from 7 steps to 3 or 4 steps.
For NBC, we reduce the reasoning from 12 steps
to 9 or 6 steps. We present the corresponding ac-
curacy of few-shot CoT in Table 2 and 3, labeled
as "Ours (merge)". To measure the efficiency, we
show the number of generated tokens. To validate
the effectiveness of SPIRIT-FS, we compare the
performance with two baselines methods, (1) ran-
domly select steps to be removed ("Rand"); and
(2) directly ask the model to be concise in genera-
tion ("Concise"). Additionally, we include another

Table 2: Performance of using Algorithm 1 for steps selection in few-shot CoT with Algebra-linear-1d task.

o LLaMA3.1-70B | LLaMA3-88 | Qwen25 | GPT-3.5-Turbo | GPT-40-mini
acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens
Zero-shot 99.60 134.186 ‘ 86.40 115.698 & 99.60 142.418 ‘ 87.60 97.474 = 99.00 191.104
Few-shot (7 steps) 99.80 72.742 ‘ 82.00 84.358 99.00 68.626 ‘ 93.60 68.59 98.00 66.95
Few-shot Ours (remove) =~ 99.20 49.28 72.60 55.486 99.20 38.084 94.20 46.58 98.40 47.43
(@ steps) Ours (merge) 99.20 55.478 7140 55.814 97.80 41.78 91.63 49.185 | 98.80 49.40
Steps Rand 94.80 48.01 57.00 51.892 93.60 46.726 84.60 42.363 94.40 41.34
Few-shot Ours (remove) 95.60 35.934 62.00 42.86 95.40 35.938 9140 34536 97.00 34.196
3 sté 5 Ours (merge) 96.20 50.894 63.2 44.792 97.00 40.614 90.93 38.074 96.80 36.824
P Rand 8040 41.576 59.00 50.00 86.80 41.768 8240 37.188 78.60 37.2
Concise 98.40 77.038 ‘ 64.60 66.276 97.40 58.874 ‘ 85.40 54.39 96.80 36.82

Table 3: Performance of using Algorithm 1 for steps selection in few-shot CoT with Number-Base-Conversion task.

Method LLaMA3.1-70B | LLaMA3-88 | Qwen25 | GPT-35-Turbo | GPT-4o-mini
acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens ‘ acc(%) # tokens
Zero-shot 7540 244.10 | 3640 19500 | 82.80 27299 6200 166.39 | 92.63 319.74
Few-shot (12steps) [1950600 147.12 |[762407 151.77 |78860T 15743 [784207 16124 | 9580 156.66
Few.shoy OUrs (remove) 1951001 107.29 | 5940 12267 | 8420 12869 [78540° 113.09 [197.00 120.28
O steps) OUrs(merge) [[04407 110.66 | 160001 13224 | 8560 129.87 86801 11885 [197.807 124.68
Step: Rand 86.60 11446 | 5240 117.69 | 80.60 12323 7200 12226 | 91.60 137.28
Few.shoy OUfS (remove) 8920 9251 | 44.60 | 9327 | 7540 | 9128 77.80 9741 | 93.00 | 10693
(6stepsy OUrs (merge) | 90.60 9573 | 49.80 10439 | 7780 97.66 7940 10321 | 96.60 108.52
P Rand 81.60 117.99 | 41.80 | 10135 & 63.40 & 9257 6920 11560 | 8640 129.52
Concise 73.60 | 111.65 | 4400 | 10051 | 77.00 161.80 5880 = 11514 | 72.60 112.64

variant of our method, labeled as "Ours (remove)",
where we refine reasoning steps using SPIRIT-FS
but apply only removal without merging.

Results. From the results in Table 2 and 3, it is
observed that in general, across different models
and tasks, our algorithm achieves a better trade-off
between accuracy and efficiency by maintaining
higher accuracy under a similar number of gener-
ated tokens. For example, except for LLaMA3-
8B, all other models maintain comparable accuracy
when the number of reasoning steps is reduced
from 7 to 4 in the AL1 task. Similarly, in the NBC
task, performance remains stable when steps are
reduced from 12 to 9, except for LLaMA3-8B and
Qwen 2.5-7B, which experience a slight drop in
accuracy. In contrast, baseline methods "Concise"
and "Rand" tend to sacrifice much more accuracy
when the reasoning length is reduced.

In addition, comparing "Ours (merge)" and
"Ours (removal)", it is observed that for the sim-
pler AL1 task, merging does not yield a significant
accuracy improvement, while slightly increasing
the number of generated tokens. But for the more
difficult task NBC, "Ours (merge)" demonstrate a
better accuracy, indicating the necessity of merging
to ensure performance in more complex reasoning
scenarios.

Transferability. From the results in Table 2 and 3,

we can see that, reasoning step selection based on
the perplexity of LLaMA3.1-70B leads to good

performance when applied to GPT-40-mini and
GPT-3.5-turbo. Specifically, for the AL1 and NBC
tasks, when the number of reasoning steps is re-
duced to 4 and 9, respectively, accuracies remain
unchanged or even slightly improve. As steps are
further reduced, accuracies gradually decrease, but
still outperforms both random step removal and
the approach of simply prompting the model to be
more concise. This suggests that perplexity-based
step selection generalizes well across models.

4.2 Fine-Tuning (SPIRIT-FT)

Datasets. We consider two main datasets in-
cluding GSM8K (Cobbe et al., 2021) and Meta-
MathQA (Yu et al., 2023). For GSM8K, the entire
training set (with 7.4k examples) is utilized for ex-
ample refinement and fine-tuning, with evaluation
performed on the full evaluation set (with 1.3k ex-
amples). For MetaMathQA, we randomly select
19k examples for refinement and fine-tuning, while
1.95k examples are selected as the testing data.
Language Models. Our main experiments involve
two LLMs: LLaMA3-8B-Instruct and Qwen2.5-
7B-Instruct (LLaMA3-8B, Qwen2.5-7B in short).
Fine-tuning Methods. = We consider two fine-
tuning methods including Supervised Fine-tuning
(SFT) and Odds Ratio Preference Optimization
(ORPO) (Hong et al., 2024). We applied LoRA (Hu
et al., 2022) for both methods.

Procedures. We applied SPIRIT-FT to refine the
reasoning paths, fine-tuned the model with the re-

fined data, and evaluated the fine-tuned model by
measuring both prediction accuracy and the num-
ber of generated tokens. The trade-off between
accuracy and efficiency was controlled by adjust-
ing t9, which determines the extent of step re-
moval/merging. Notably, when fine-tuning with
different models, we used the specific model itself
to compute perplexity for unimportant step deter-
mination. We present the relationship between ac-
curacy and efficiency across different models and
different datasets in Figure 3 and 4 for SFT and
ORPO, respectively. The results are labeled as
"Min PPL (merge)".

For evaluation, in the experiments of SFT, we
compare SPIRIT-FT with three control sets, (1) a
variant of SPIRIT-FT where we only remove but
not merge steps ("Min PPL (remove)"); (2) ran-
domly select steps to be removed ("Randomly re-
move"); and (3) applying an inverse of Algorithm 2
to remove the most important steps whose removal
maximize the perplexity ("Max PPL (Remove)").
For ORPO, we utilize some of the above datasets
to form chosen/rejected pairs: (1) Chosen: Min
PPL (Merge) / Rejected: Max PPL (Remove); (2)
Chosen: Min PPL (Remove) / Rejected: Max PPL
(Remove); (3) Chosen: Max PPL (Remove)/ Re-
jected: Min PPL (Remove). The labels for the
above settings are "Min PPL (merge)", "Min PPL
(remove)" and "Max PPL (remove)", respectively.

110

=
N
o

100

90

o
=
o

80

=
o
o

70

©
o

Tokens Generated

60

®
o

50

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.4 0.5 0.6 0.7 0.8
Accuracy Accuracy
(a) (b)
150 140
g0 130
130
] 120
&’) 120
2110 110
£ 100 100
<l
90 90
80 80

0.70 0.75 0.80 0.85 0.65 0.68 0.70 0.73 0.75 0.78 0.80
Accuracy Accuracy

(© (@

—— Max PPL (remove)
Randomly remove

—=— Min PPL (remove)
—— Min PPL (merge)

Figure 3: Accuracy-Efficiency Relation when fine-tuning
with SFT. (a) Qwen2.5-7B, GSMS8K; (b) LLAMA3-8B,
GSMSK; (c) Qwen2.5-7B, MetaMathQA ; (b) LLAMA3-8B,
MetaMathQA

Results. Based on the SFT results in Figure 3,

125
g 120
©

£ 115
110
(6]

@ 105
[

£ 100
® 9

0.70 0.75 0.80 0.85 0.90 0.40 0.50 0.60 0.70 0.8
Accuracy Accuracy

(b)

0.70 0.75 0.80 0.85 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy Accuracy
©)
—— Max PPL (remove), ORPO
—— Min PPL (merge), ORPO
Min PPL (remove), ORPO

--=-- Min PPL (merge), SFT
Min PPL (remove), SFT

Figure 4: Accuracy-Efficiency Relation when fine-tuning
with ORPO. (a) Qwen2.5-7B, GSM8K; (b) LLAMA3-8B,
GSMSK; (c) Qwen2.5-7B, MetaMathQA; (b) LLAMA3-8B,
MetaMathQA

across different models and datasets, compared
with randomly selecting steps to be removed,
SPIRIT-FT consistently demonstrate a better trade-
off between accuracy and efficiency by achieving
a higher accuracy when the number of generated
tokens is similar. In addition, the performance
of "Randomly remove" is better than "Max PPL
(remove)", which provide further evidence that per-
plexity is effective in measuring the importance of
the reasoning steps. Comparing the results of "Min
PPL (remove)" and "Min (merge)", the algorithm
with merging demonstrates a better performance
than directly removing steps, which confirms the
necessity of conducting merging to maintain coher-
ence in the reasoning process.

For the results regarding ORPO in Figure 4, a
general order of the performance among different
sets in terms of accuracy-efficiency trade-offs is
"Min PPL (merge)" > "Min PPL (remove)" > "Max
PPL (remove)". These results also provide evi-
dence that minimizing perplexity is an effective
criterion for selecting reasoning steps, and incor-
porating merging further enhances performance by
preserving coherence in the reasoning process.

Transferability. We examine the transferability of
SPIRIT-FT across models in Figure 5. It shows
the results where LLaMA3-8B is used to calculate
perplexity, and the refined dataset is subsequently
applied to fine-tune either LLaMA?2-7B-Chat or
Qwenl.5-7B-Chat. For comparison, we also pro-

vide the results in which the step removal is per-
formed using the perplexity computed by the same
model as the fine-tuning target.

From Figure 5 we can see that, in general, the
the ranking of the performance among "Max PPL
(Remove)," "Randomly Remove,"” "Min PPL (Re-
move)," and "Min PPL (Merge)" remain consis-
tent even when the perplexity is computed using a
different model. This suggests that the LLaMA3-
8B exhibit similar patterns with LLaMA2-7B and
Qwen2.5-7B in how to process and learn from
data, indicating a shared understanding of reason-
ing step importance and a transferability of perplex-
ity across models.

On the other hand, a surprising observation in
Figure 5 is that when applying the method to
LLaMAZ2-7B and Qwenl.5-7B, using the perplex-
ity of LLaMA3-7B to calculat perplexity results in
even better prediction performance than using the
corresponding LL.Ms themselves for determining
unimportant steps. To explain this, our conjecture
is that the perplexity of weaker LLMs is influenced
by additional factors beyond the true importance of
reasoning steps such as the coherence as a human
language (i.e., utility (Shi et al., 2024)) and the un-
derstanding of math notations (Zhang et al., 2024b),
making it less effective for uncertainty quantifica-
tion for the reasoning itself.

1101 —— Max PPL (remove), LLaMA3-8B
Randomly remove

—=— Min PPL (remove), LLaMA3-8B

1001 . Min PPL (merge), LLaMA3-88

#- Min PPL (remove), LLaMA2-7B

90

80

Tokens Generated

70

60

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Accuracy

—4— Max PPL (remove), LLaMA3-8B

Randomly remove A
1201 —=— Min PPL (remove), LLaMA3-88 /’
—a&- Min PPL (remove), Qwenl.5-7B 4
—a— Min PPL (merge), LLaMA3-8B

1104

100+

Tokens Generated

90

80

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Accuracy

Figure 5: Transferability of PPL when calculated using
LLaMAZ3-8B and evaluated on LLaMA2-7B / Qwen1.5-7B.

5 Related Works

Inference-Stage Techniques in LLM Reasoning.
Many studies aim to enhance LLM reasoning at the
inference stage, without modifying model weights.
Early work (Wei et al., 2022) uses few-shot demon-
strations to guide reasoning, while (Kojima et al.,
2022) shows that simply prompting the LLM to
"think step by step” also improves the accuracy
without demonstrations. Subsequent techniques,
such as Graph-of-Thoughts (Besta et al., 2024),
Tree-of-Thoughts (Yao et al., 2024), and Forest
of Thoughts (Bi et al., 2024), further adapt the
reasoning paradigm. Other works focus on self-
consistency (Wang et al., 2022; Wan et al., 2023)
or structured input analysis (He et al., 2024). Dif-
ferent from the aforementioned literature, our work
examines the importance of each reasoning step.
CoT Fine-Tuning. In literature and real practice,
there are two common types of LLM fine-tuning
methods: supervised fine-tuning (SFT) and rein-
forcement learning (RL)-based alignment methods.

SFT is commonly used to adapt an LLM to down-
stream task, and various studies have investigated
SFT. For example, (Zhou et al., 2024) hypothesizes
that LL.Ms require only a few samples from the tar-
get task to align with desired behaviors.(Dong et al.,
2023) explores how SFT affects different LLM ca-
pabilities, while (Ovadia et al., 2023) compares
fine-tuning with retrieval-augmented generation,
and (Ling et al., 2024) investigates overfitting in
SFT. Other works focus on data selection for SFT,
such as (Shen, 2024) and (Zhang et al., 2024a).

RL-based alignment methods incorporate prefer-
ence labels into loss function, e.g., reinforcement
learning with human feedback (Ziegler et al., 2019),
direct preference optimization (DPO) (Rafailov
etal.,2024), ORPO (Hong et al., 2024), BCO (Jung
et al., 2024), and KTO (Ethayarajh et al.).

6 Conclusion

In this paper, we introduce SPIRIT, a method
for refining reasoning steps in few-shot CoT and
CoT fine-tuning for improving reasoning efficiency
while maintaining accuracy. Based on the obser-
vation that changes in perplexity correlate with
reasoning step importance, SPIRIT works by itera-
tively identifying unimportant steps through eval-
uating the change in perplexity, then merge the
unimportant steps. Experiments demonstrate the
effectiveness of SPIRIT in improving the trade-off
between accuracy and efficiency in both few-shot
CoT and CoT in fine-tuning.

Limitations

While the main observation in Section 4.2 is on
the transferability of the algorithm, we also ob-
serve that the perplexity from the stronger model
(LLaMA3-8B) works even better than using the
weaker model’s own perplexity (Qwen1.5-7B and
LLaMAZ2-7B) in selecting the unimportant reason-
ing steps. This implies that perplexity contains
more information than what is needed in SPIRIT,
indicating the potential limitation of using perplex-
ity in the algorithm: If we want to fine-tune an
even weaker model, we would better use a stronger
model’s perplexity. This observation also implies
the potential interplay between data quality and the
model’s capability: A "good" quality with high-
quality complex reasoning steps may not benefit
a weak model. We believe this observation can
inspire future works in data attrition and data selec-
tion to consider the model’s own capability.

Another limitation is that, in the algorithm and
experiments, we assume reasoning steps among
few-shot examples match with each other sentence
by sentence. This can be further enhanced if the
reasoning steps match the general pattern. How-
ever, since different tasks have diverse reasoning
patterns, we anticipate that such an enhancement
should be specifically designed for the given task
and dataset.

References

Gabriel Alon and Michael Kamfonas. 2023. Detect-
ing language model attacks with perplexity. arXiv
preprint arXiv:2308.14132.

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan,
Max Marion, Matthew L Leavitt, and Mansheej Paul.
Perplexed by perplexity: Perplexity-based pruning
with small reference models. In ICLR 2024 Work-
shop on Mathematical and Empirical Understanding
of Foundation Models.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682—-17690.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and
Yunhe Wang. 2024. Forest-of-thought: Scaling test-
time compute for enhancing llm reasoning. arXiv
preprint arXiv:2412.09078.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-

seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Nathan Cooper and Torsten Scholak. 2024. Perplexed:
Understanding when large language models are con-
fused. arXiv preprint arXiv:2404.06634.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv
preprint arXiv:2310.05492.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. Model alignment as
prospect theoretic optimization. In Forty-first Inter-
national Conference on Machine Learning.

Ojas Gramopadhye, Saeel Sandeep Nachane, Prateek
Chanda, Ganesh Ramakrishnan, Kshitij Sharad Jad-
hav, Yatin Nandwani, Dinesh Raghu, and Sachindra
Joshi. 2024. Few shot chain-of-thought driven rea-
soning to prompt llms for open ended medical ques-
tion answering. arXiv preprint arXiv:2403.04890.

Aaron Grattafiori and et al. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783.

Pengfei He, Zitao Li, Yue Xing, Yaling Li, Jiliang Tang,
and Bolin Ding. 2024. Make llms better zero-shot
reasoners: Structure-orientated autonomous reason-
ing. arXiv preprint arXiv:2410.19000.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo:
Monolithic preference optimization without refer-
ence model. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 11170-11189.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations (ICLR).

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):5S63-S63.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Seungjae Jung, Gunsoo Han, Daniel Wontae Nam, and
Kyoung-Woon On. 2024. Binary classifier optimiza-
tion for large language model alignment. arXiv
preprint arXiv:2404.04656.

Mert Karabacak and Konstantinos Margetis. 2023. Em-
bracing large language models for medical applica-
tions: opportunities and challenges. Cureus, 15(5).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199—
22213.

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pas-
cale Fung. 2020. Misinformation has high perplexity.
arXiv preprint arXiv:2006.04666.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2024.
Deductive verification of chain-of-thought reasoning.
Advances in Neural Information Processing Systems,

36.

Yixin Liu, Avi Singh, C Daniel Freeman, John D Co-
Reyes, and Peter J Liu. 2023. Improving large lan-
guage model fine-tuning for solving math problems.
arXiv preprint arXiv:2310.10047.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. International Confer-
ence on Learning Representations (ICLR).

Oded Ovadia, Menachem Brief, Moshik Mishaeli, and
Oren Elisha. 2023. Fine-tuning or retrieval? com-
paring knowledge injection in llms. arXiv preprint
arXiv:2312.05934.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok
Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha,
Christopher Ré, et al. 2024. Archon: An architec-
ture search framework for inference-time techniques.
arXiv preprint arXiv:2409.15254.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Ming Shen. 2024. Rethinking data selection for super-
vised fine-tuning. arXiv preprint arXiv:2402.06094.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika
Malladi, Jieyu Zhao, Ari Holtzman, Daogao Liu,
Luke Zettlemoyer, Noah A Smith, and Chiyuan
Zhang. 2024. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint
arXiv:2407.06460.

10

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Qwen Team. 2024. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan O Arik,
and Tomas Pfister. 2023. Better zero-shot reason-
ing with self-adaptive prompting. arXiv preprint
arXiv:2305.14106.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Hengyuan Zhang, Yanru Wu, Dawei Li, Sak Yang, Rui
Zhao, Yong Jiang, and Fei Tan. 2024a. Balancing spe-
ciality and versatility: a coarse to fine framework for
supervised fine-tuning large language model. arXiv
preprint arXiv:2404.10306.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu,
Kai-Wei Chang, Yu Qiao, et al. 2024b. Mathverse:
Does your multi-modal llm truly see the diagrams in
visual math problems? In European Conference on
Computer Vision, pages 169-186. Springer.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan lyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2412.15115

A Ablation Studies

In this section, we conduct ablation studies by applying different variations of SPIRIT-FT to validate the
reasonableness behind the key components in the design of the algorithm:

(1) Always applying merging and no removal: Instead of comparing the effects of merging and removal,
we modify the approach to always apply merging after selecting a step for refinement.

(2) Removing the threshold ¢;: , meaning that after determining which step to remove, we no longer
check if the resulting perplexity is below a threshold. Instead, we always proceed with merging and then
compare the effects of merging versus removal.

The results of (1) and (2) are presented as scatter point in Figure 6 and 7 respectively, labeled as "Always
merging" or "Removing ¢; threshold", respectively, with comparisons to the performance of the original
algorithm.

From the results in Figure 6, we observe that always applying merging leads to performance comparable
to the original algorithm, when the number of generated tokens is high. However, as the number of tokens
is reduced below 80, performance degrades significantly compared to the original design, indicating that
blindly merging steps without considering removal can compromise reasoning effectiveness.

In addition, Figure 7 shows that, when removing ¢; threshold, performance appears to improve slightly.
However, this comes at the cost of greatly increased computation, as the algorithm involves more rounds
of merging. This results highlight that our method provides a more computationally efficient approach
while effectively preserving performance.

1104
—— Max PPL (remove)

Randomly remove
1001 —s— Min PPL (remove)
—— Min PPL (merge)
904 x Always merging

804

70 4

Tokens Generated

60 1

50

0.4 05 06 0.7 08
Accuracy

Figure 6: Performance of SPIRIT-FT when always applying merging

1104
—+— Max PPL (remove)

Randomly remove
1004 —s— Min PPL (remove)
—a— Min PPL (merge)

90 Removing t; threshold

80

704

Tokens Generated

604

504

0.4 05 06 0.7 058
Accuracy

Figure 7: Performance of SPIRIT-FT when removing the ¢ threshold.

11

B Additional Implementation Details and Adjustments

Perplexity Calculation Adjustment In practice, when calculating the perplexity, the computation starts
from the second token rather than including the first generated token. This avoids the potential issue that
the initial token is assigned a very low probability and acts as an outlier. Including the initial token could
unintentionally correlate the perplexity with the generation length, as its effect diminishes when averaged
over a longer sequence.

Alignment Adjustment for Qwen2.5-7B Fine-Tuning. Notably, when applying fine-tuning to Qwen2.5-
7B, a challenge is that standard LoRA sometimes failed to achieve proper alignment between the model’s
generation and the fine-tuning data, particularly when more removal was involved. To address this, we
applied a backdoor technique by adding a control phrase to the prompt during fine-tuning. Specifically,
we appended "Answer should end with *The answer is’" at the end of the question in the fine-tuning data.
During inference, we included the same phrase to reinforce the pattern learned from fine-tuning, ensuring
better alignment in the model’s response generation.

C Additional related works

Test-Time Scaling Law. There are some recent discoveries of the test-time scaling law (Brown et al.,
2024; Snell et al., 2024; Saad-Falcon et al., 2024). While our method focuses on enhancing the reasoning
efficiency through removing unimportant reasoning steps from the data, one may question whether
this contradicts to the test-time scaling law. To explain this, there is no self-reflection/self-correction
mechanism considered in this work, and there is only one reasoning path for each example/fine-tuning
data, and we observe an accuracy-token length trade-off. In contrast, for test-time scaling law, if we
explore more reasoning paths, such an over-thinking can help obtain the correct answer. Our method is
perpendicular to the test-time scaling law, and the idea of removing unimportant reasoning steps in our
work is also applicable to the test-time methods to reduce the computation cost as well.

D Additional Experiment Details.

Hyperparameters in Fine-tuning. For SFT, we set the batch size to 128, the learning rate to Se-5, and the
training epoch to 3.0 for all datasets. For ORPO, the batch size is 64, learning rate is 5.0e-6 and training
epoch is 5.0. The optimizer for all fine-tuning experiments is AdamW (Loshchilov and Hutter, 2019).

12

E Additional Validation to Support the Design of ;.

In this section, we provide additional empirical experiment to demonstrate that when PPL.y, is larger, it
is more necessary to conduct merging.

We manually examine several removal cases, where a reasoning step is eliminated, and categorize them
into three classes:
(1) No coherence issue — Removing the step does not disrupt reasoning, so merging is unnecessary.
(2) Minor coherence issue — Removing the step slightly affects coherence; merging is beneficial but not
essential.
(3) Obvious coherence issue — Removing the step leads to a clear loss of coherence, making merging
necessary.
For each case, we compute the perplexity change ratio (after removal / before removal) and plot the results
in Figure 8.

1.30r

1.25¢

= = =
= =]
o u =]

Ratio of Perplexity Change

=
o
v

1.00F

0950 i i
No coherence Minaor Obvious
issue coherence issue coherence issue

Figure 8: Perplexity Change across different cases.
From Figure 8, we observe that, in general, the greater the need for merging, the higher the perplexity

change. These results support the choice of setting a threshold ¢;, as when the perplexity gain is small,
direct removal is sufficient, making merging unnecessary.

13

F Prompt for Instructing Merging

Example 1:

Q: A portable computer drive has enough kilobytes of storage space to store 2000 photos. Each photo is 1.5 kilobytes in size.
How many 200-kilobyte videos can it store if it already has 400 photos on it? Let’s think step by step.

A: The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.

It already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.

So, it has 3000 - 600 = 2400 kilobytes of storage space left.

Each video is 200 kilobytes in size.

The answer is 12

After removing *The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.’, the answer become:
A: The drive already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.

So, it has 2000 photos * 1.5 kilobytes - 600 kilobytes = 2400 kilobytes of storage space left.

Each video is 200 kilobytes in size.

The answer is 12

Example 2:

Q: Leah bought 3 boxes of birdseed. When she went to put them away, she discovered that she already had 5 boxes in the pantry.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week. If each box of birdseed
contains 225 grams, for how many weeks can she feed her birds without going back to the store? Let’s think step by step.

A: Leah has a total of 3 + 5 = 8 boxes of birdseed. Each box contains 225 grams of birdseed, so she has a total of 8 * 225 = 1800
grams of birdseed.

Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.

To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams):

1800/ 150 = 12 weeks

The answer is 12

After removing ’'Leah has a total of 3 + 5 = 8 boxes of birdseed.’, the answer become:

A: Each box contains 225 grams of birdseed, so Leah has a total of (3 + 5) * 225 = 1800 grams of birdseed.

Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.

To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams): 1800 / 150 = 12 weeks

The answer is 12

Example 3: Q: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120 pages? Let’s think
step by step.

A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page.

To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages: 2.5 minutes per
page * 120 pages = 300 minutes.

To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes / 60 = 5 hours.
The answer is 5

After removing “To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes /
60 =5 hours.’, the answer become:

A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page. To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages:
2.5 minutes per page * 120 pages = 300 minutes.

The answer is (300 / 60) =5

Learn from the above example to do the following modification. Remember not to change the final results (the number after *The
answer is’).

14

	Introduction
	Preliminary
	Perplexity (PPL)
	Relationship between Perplexity and CoT Prediction Accuracy

	The Proposed Algorithm - SPIRIT
	General Idea
	Few-Shot CoT (SPIRIT-FS)
	Fine-Tuning (SPIRIT-FT)

	Experiment
	Few-shot CoT (SPIRIT-FS)
	Fine-Tuning (SPIRIT-FT)

	Related Works
	Conclusion
	Ablation Studies
	Additional Implementation Details and Adjustments
	Additional related works
	Additional Experiment Details.
	Additional Validation to Support the Design of t1.
	Prompt for Instructing Merging

