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Abstract

Robustness has become a critical attribute for
the deployment of RAG systems in real-world
applications. Existing research focuses on ro-
bustness to explicit noise (e.g., document se-
mantics) but overlooks implicit noise (spuri-
ous features). Moreover, previous studies on
spurious features in LLMs are limited to spe-
cific types (e.g., formats) and narrow scenarios
(e.g., ICL). In this work, we statistically demon-
strate the presence of spurious features in the
RAG paradigm, a robustness problem caused
by the sensitivity of LLMs to semantic-agnostic
features. Then, we propose a comprehensive
taxonomy of spurious features and empirically
quantify their impact through controlled experi-
ments. Our analysis reveals that not all spurious
features are harmful and they can even be ben-
eficial sometimes. Further evaluation results
suggest that spurious features are a widespread
and challenging problem in the field of RAG.
The code and dataset will be released to facili-
tate future research.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as a promising paradigm to mitigate
LLMs hallucinations (Gao et al., 2023; Yang et al.,
2023a), integrating relevant external knowledge to
improve the factuality and trustworthiness of LLM-
generated outputs (Zhou et al., 2024). However,
Retrieval-Augmented Language Models (RALMs)
still face substantial robustness issue due to the
presence of noise in retrieved documents (Liu et al.,
2023; Li et al., 2024b).

Recent research aims to explore the character-
istics that affect the robustness of RAG systems
from the perspective of grounding data construc-
tion (Cuconasu et al., 2024). These studies exam-
ine various factors, including the type (Wu et al.,
2024a), number (Xu et al., 2024), and position of
documents (Liu et al., 2024) within the prompt
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Figure 1: An example from the SURE_Wiki dataset
(Sec. 4), illustrating the sensitivity of RAG systems to
spurious features within grounding data. The original
retrieved document is fed into the LLMs in different
formats, leading to inconsistent responses.

context. However, previous analyses primarily fo-
cus on explicit noise that significantly alter the se-
mantic information (causal features) of grounding
data(Wu et al., 2024b; Cuconasu et al., 2024), while
neglecting implicit noise (spurious features) that in-
troduce semantic-agnostic modifications. This lim-
itation extends to existing evaluation benchmarks,
which simulate complex noise scenarios to assess
the robustness of RAG systems (Chen et al., 2024a;
Wu et al., 2024a), yet lack available benchmarks
and metrics to measure the robustness of RALMs
against spurious features. A more detailed discus-
sion of related work is in Appendix A.1.

Contemporary RAG systems typically employ
production-level retrievers, such as Bing and
Google, to retrieve relevant information from the
internet. Unlike a single corpus, the internet en-
compasses diverse data with distinct features. For
any given query, there may exist numerous golden
documents that contain the correct answer but dif-
fer in style, format, or other attributes. As shown in
Figure 1, we have observed that LLMs may fail to
consistently derive the correct answer from golden



documents with different formats. A similar phe-
nomenon is reported in Sclar et al. (2024) and
He et al. (2024), which demonstrate that LLMs
are extremely sensitive to the format of prompts
(i.e., spurious features). For more related work, see
Appendix A.2. Unfortunately, there is no statistic
and empirical evidence to support the existence of
spurious features in the RAG paradigm. This high-
lights the urgent need to redefine spurious features
in RAG and systematically quantify the robustness
of RALMs against them.

To address these challenges, we first design a pre-
liminary experiment to demonstrate that RALMs
are sensitive to semantic-agnostic features in the
grounding data, thereby extending the definition
of spurious features to RAG systems. Building
on findings from our preliminary experiment and
recent studies, we identify five common types of
spurious features in RAG scenarios. Then, we pro-
pose a novel framework, SURE, for automating the
process of robustness evaluation. This framework
follows a perturb-then-evaluate approach, offering
great scalability. In SURE, automated perturbations
are applied to the original instances to inject the
corresponding spurious features. The perturbed in-
stances are then examined to ensure that the causal
features remain intact. After these steps, we em-
ploy tailored metrics to quantify the robustness of
RALMs against spurious features. Further analysis
reveals that not every spurious features is harmful
and they can even be beneficial sometimes. To en-
able more efficient evaluation, we distill the most
challenging instances from the synthetic data gen-
erated by our framework to create a lighter bench-
mark, SIG. Extensive evaluations on diverse LLMs
and methods indicate that maintaining robustness
against spurious features is a widespread challenge.

Our contribution can be summarized as follows:
1) We identify and define spurious features in RAG
systems. To the best of our knowledge, this is
the first comprehensive study to define and eval-
uate spurious features from RAG perspective. 2)
We propose a novel evaluation framework, SURE,
to assess the robustness of RALMs against spu-
rious features, which includes a comprehensive
taxonomy, tailored metrics, and a data synthesis
pipeline. 3) We curate a lightweight yet challeng-
ing evaluation dataset, and offer valuable insights
and baselines for future research through extensive
experiments and analysis.

2 Preliminary

In this section, we first define causal and spurious
features in the context of RAG and then demon-
strate the existence of spurious features statistically.

2.1 Causal and Spurious Features in RAG

In general, causal features are input features that
have a direct causal effect on the output of pre-
dictive model (Yu et al., 2020). Their relationship
is rooted in causality, rather than mere statistical
correlation. When it comes to Large Language
Models, the meaning and intent of prompts serve
as causal features that directly influence the models’
responses. In the context of RAG, causal features
refer to the semantic information of grounding data.

In contrast, spurious features are input features
that co-occur with causal features and are erro-
neously captured by the model (Neuhaus et al.,
2023). These features exhibit a statistical correla-
tion with the model’s output but lack a causal rela-
tionship. Recent research has shown that LLMs are
sensitive to seemingly trivial features like prompt
formatting, thereby extending the definition of spu-
rious features to LLMs (Sclar et al., 2024). Simi-
larly, we define the semantic-agnostic features of
the grounding data as spurious features in RAG sys-
tems. However, conclusions drawn from in-context
learning scenarios (e.g., classification and multiple-
choice tasks) may not applicable to RAG scenar-
ios, which typically involve open-ended generation
tasks. Therefore, we design a preliminary experi-
ment to validate the presence of spurious features
in RAG.

2.2 Preliminary Experiment

We aim to demonstrate the semantic-agnostic fea-
tures within real documents are spurious features,
i.e., to reveal their impact on the output of RAG
systems.

There are some challenges in revealing the in-
fluence of semantic-agnostic features. First, when
retrieving from a single corpus, it is difficult to
mine semantically equivalent counterparts that dif-
fer only in semantic-agnostic features. To mine
appropriate documents, we introduce Contriever-
msmarco, a traditional dense retriever, to recall 100
semantically similar candidates. To further elimi-
nate the effect of causal features, documents with-
out golden answers are filtered out, ensuring that
the remaining documents have roughly consistent
causal features.



Still, the differences in spurious features among
these candidate documents are often minor, and
their impact on model responses cannot be effec-
tively captured using binary evaluation methods
that simply judge whether an answer is correct or
incorrect. Thus, more fine-grained metrics are re-
quired to detect such nuanced performance changes.
Inspired by the use of LLMs as supervision signals
for document utility (Izacard et al., 2023; Gan et al.,
2024), we introduce the oracle score, which mea-
sures fine-grained performance through calculating
the log probability of generating correct answers
given a specific document. The oracle score is
defined as follows:

T
Oracle(x,y,0) = Zlogp(yt | 2,y<t,0) (1)
t=1
where z is the input prompt for RALMs, including
the instruction 7, grounding data GG, and query Q;
y represents the ground truth answer; 6 denotes the
model parameters; and 7' is the total length of the
answer sequence !

For each query, we construct document pairs by
selecting the first-ranked and last-ranked candidate
documents based on their oracle scores. However,
the presence of various semantic-agnostic features
within each document pairs makes it challenging
to isolate the impact of any individual features. To
assess the influence of a given feature, we compare
its distribution between document sets with first-
and last-ranked oracle scores. A control group is
constructed by randomly sampling two document
sets. If the distributions differ significantly, it sug-
gests that RALMs are sensitive to the feature. See
Appendix B for implementation details of prelimi-
nary experiments.

We test the following features: 1) Flesh Score, 2)
Distinct-1, 3) Dependency Tree Depth, 4) PPL, and
5) Token Length. The results show that RALMs
are sensitive to semantic-agnostic features. Nev-
ertheless, it does not offer empirical evidence or
quantitative analysis. Inspired by previous data
synthesis studies (Tan et al., 2024b), we use a data
synthesis approach to better control feature vari-
ables and quantify the robustness of RALMs.

3 Proposed Framework

In this section, we detail our proposed evaluation
framework, SURE (Spurious FeatUres Robustness
"For cases with multiple answers, we compute the final

score by averaging the corresponding oracle scores across all
answers.

Evaluation), which designed specifically for as-
sessing the robustness of RALMs against spurious
features in grounding data. As illustrated in Figure
2, this framework comprise four components: 1)
Comprehensive Taxonomy. We identify and define
five common types of spurious features in RAG sce-
narios. 2) Spurious Features Injection. We design
a data synthesis pipeline to automate the injection
of spurious features, utilizing both model-based
and rule-based methods to construct counterparts
of the original document with varying spurious fea-
tures. 3) Causal Features Preservation. We employ
a bidirectional entailment algorithm and a string
matching strategy to ensure that the causal features
of grounding data remain unchanged. 4) Robust-
ness Evaluation. We introduce three metrics (Win
Rate, Lose Rate, and Robustness Rate) to facilitate
fine-grained, instance-level evaluation.

3.1 Problem Formulation

Given a query ¢ , the retriever R returns a list of
relevant documents from a corpus D = {d;} .
The relevance between document d and query g can
be measured by various methods. In this work, we
use a BERT-based dense retriever to obtain the em-
bedding of query and documents, respectively. The
relevance score is calculated by computing their
dot-product similarity. Then, the Top-k documents
with the highest similarity scores are retrieved:

Dretrieve = argtop-k‘ {S(Q7 dl) | d; € D} . 2

To formally quantify the robustness of RAG sys-
tems against spurious features, we define the in-
put prompt for the LLM-based reader as P =
(I,G,Q), where I represents instruction, G refers
to the grounding data, constituted by a subset of
Diretrieve, and @ is the query. A perturbation is intro-
duced to investigate the impact of spurious features
by applying a semantic-agnostic modification to
the original grounding data, while preserving its
causal features. We define ¢(.) to automate this
process, transforming G to g(G) and producing
a counterpart P = (I, g(G), Q). The outputs of
LLM-based reader for P and P are compared to
evaluate the impact of the introduced perturbation:

y=LLM(P), 7 =LLM(P). 3)

3.2 Taxonomy of Spurious Features

We develop a comprehensive taxonomy of spurious
features, informed by our preliminary experiments
and insights from prior research. The five types of
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Figure 2: Overview of our SURE framework. We provide a Comprehensive Taxonomy that includes five types
of spurious features, further divided into 13 subtypes of perturbations (left section). To construct the testbed, we
prepare raw instances initially and then synthesize the modified instances through a workflow consisting of Spurious
Features Injection and Causal Features Preservation (middle section). By applying carefully tailored metrics for
Robustness Evaluation, we quantify the robustness of target RAG systems (right section).

spurious features and their corresponding perturba-
tions are detailed below.

Style Perturbations The same content can be
expressed in different styles, using varying tones,
words and sentence structures. As shown in Sec-
tion 2.2, LLMs exhibit biases towards readability-
related features. Similarly, for humans, the read-
ability of a text can significantly influence its acces-
sibility to the audience (Yang et al., 2023b). There-
fore, we define two perturbations from the perspec-
tive of readability style: Simple and Complex. The
former simplifies the grounding data by using basic
vocabulary and simple sentence structure, while
the latter employs professional vocabulary and a
formal academic tone to complex the documents.

Source Perturbations LLM-generated content,
including both misinformation and correct claims,
infiltrates every corner of the internet. Recent stud-
ies have shown that neural retrievers are biased
towards LLM-generated content, leading to the
marginalization of human-authored content (Dai
et al., 2024; Chen et al., 2024b). Moreover, our
preliminary experiments demonstrate that LLMs
are biased towards the Perplexity (PPL) of text.
Thus, we define two types of source perturbations:
LLM-generated and Self-generated. Specifically,
the LLM-generated perturbation paraphrases the

original document using a powerful LLM, while
the self-generated perturbation employs the same
backbone model used as the generator in the RAG
system.

Logic Perturbations In RAG systems, docu-
ments are often segmented into multiple chunks
and may be retrieved in varying orders. Here, we
simulate scenarios where the intrinsic logical flaw
is disrupted by three different perturbations: Ran-
dom, Reverse, and LLM-reranked, each repre-
senting a distinct sentence ordering strategy.

Format Perturbations The internet contains var-
ious data formats, including HTML, Markdown,
YAML and JSON. These formats are usually pro-
cessed into plain text before being fed to LLMs. To
mitigate the loss of structural information during
this process, some RAG studies propose using the
original format, rather than plain text, to augment
the generation (Tan et al., 2024a). However, as
highlighted in previous research, the prompt for-
mat is recognized as a spurious feature that can sig-
nificantly impact model performance (Sclar et al.,
2024; He et al., 2024). Therefore, we perturb the
original document with four common formats to
explore the impact of grounding data format in the
context of RAG.



Metadata Perturbations Metadata is often in-
cluded in the HTML results returned by search
engines. In our framework, we focus on two types:
Timestamp and Data source. The timestamp
marks when the data was created, and the data
source indicates its origin. For timestamp perturba-
tions, pre and post denote whether the timestamp
is before or after the LLM’s knowledge cutoff date.
For data source perturbations, wiki and twitter rep-
resent the domains of the URLs.

3.3 Spurious Features Injection

The automation of spurious features injection is es-
sential for automating the entire evaluation frame-
work. We detail the process of collecting the origi-
nal instances and describe how the automated per-
turbation was implemented.

Instance Preparation An instance is the dy-
namic component of the prompt P, consisting of
a query () and grounding data G. To construct
the original instances, we first select 1,000 queries
from the NQ-open dataset. For each query, we
then retrieve 100 documents from the Wikipedia
dump to serve as grounding data, yielding 100,000
instances for the following perturbation step.

Automated Perturbation As introduced in Sec-
tion 3.1, the perturbation g(.) injects spurious fea-
tures by modifying the grounding data. For style
and source perturbations, ¢(.) is implemented using
an LLM? prompted by carefully crafted guidelines
to modify the raw document, producing counter-
parts of the original instances. For logic and for-
mat perturbations, we develop ¢(.) as a heuristic
method based on a set of predefined rules®. To
simulate real-world metadata, we first synthesize
pseudo Wikipedia or Twitter links for the raw in-
stances, and then organize them into HTML format
using a rule-based g(.). The complete implementa-
tion details for automated perturbation are provided
in Appendix C.

3.4 Causal Features Preservation

To eliminate the effect of causal features, it is es-
sential to follow the principle of controlled ex-
periments by keeping causal features constant
while systematically manipulating spurious fea-
tures. This approach isolates the impact of spurious

Unless otherwise specified, all model-based g(.) are im-
plemented using Llama-3.1-70B-Instruct.

3One exception is that we implement the LLM-reranked
perturbation using an LLM-based g(.).

features from that of causal features, enabling an
accurate quantification of robustness against spuri-
ous features. In our framework, we introduce two
methods to ensure the stability of causal features in
the grounding data. Implementation details can be
found in Appendix D.

Maintain Semantic Equivalence For models
capable of following human instructions, we di-
rectly instruct them to maintain semantic equiva-
lence when injecting spurious features. Nonethe-
less, it’s impossible to completely avoid semantic
shift during the perturbation process. To ensure the
semantic consistency before and after introducing
perturbation, we employ a bidirectional entailment
algorithm to filter out instance pairs (raw instance,
perturbed instance) with semantic inequivalence.
Specifically, for document G and its modified coun-
terpart g(G), we use a Natural Language Inference
(NLI) system to detect whether the latter can be
inferred from the former, and vice versa. The NLI
system classifies predictions into one of: entail-
ment, neutral, contradiction. We compute both
directions, and the algorithm returns equivalent if
and only if both directions are predicted as entail-
ment.

In general, this algorithm can be implemented
by any NLI system. However, in our case, the
concatenation of G and ¢g(G) sometimes exceeds
the context limitation of a Bert-based NLI model.
Hence, we apply an LLM-based NLI system * to
implement the bidirectional entailment algorithm.

Preserve Ground Truths While semantic equiv-
alence protects causal features to the greatest extent,
the perturbation may lead to the correct answer
being paraphrased into an alias (e.g., "President
Roosevelt" to "Roosevelt"). These variations in the
grounding data are likely to result in false negatives
when determining response correctness, despite the
NQ-Open dataset providing multiple potential an-
swer variants for each query. To address this issue,
we employ a simple string-matching strategy to fil-
ter out documents that have undergone unexpected
modifications.

3.5 Robustness Evaluation

We employ an evaluation method Y'(.), in line
with Liu et al. (2024); Cuconasu et al. (2024),

4Farquhar et al. (2024) confirms the effectiveness of the
LLM-based NLI system through human annotation, demon-
strating that its performance is on par with the DeBERTa-large
model used in Kuhn et al. (2023).



to measure the correctness of responses generated
by RAG systems. This approach checks whether
any of the correct answers is contained within the
response produced by the LLM and then derives
a binary label. Previous researches use accuracy
as the primary metric and report it at dataset level
to assess the robustness of RALMs, which is quan-
tified by calculating the variations in the models’
accuracy across different types of noise. However,
dataset-level metrics has certain limitations, as it
may fail to capture fine-grained variations that oc-
cur at the instance level. As shown in Figure 3,
RALMs may appear robust at dataset-level evalu-
ations but exhibit significant sensitivity at the in-
stance level.

To quantify whether a RAG system is robust and
unbiased at the instance level, we assign a ternary
label to each instance by comparing the correctness
of the LLM’s response before and after introducing
the perturbation. This comparison process can be
formulated as C' = Y (y;) — Y (¥;), where C lies
in the set (—1,0,1). Based on the comparison
outcomes, we define three metrics: Robustness
Rate (RR), Win Rate (WR), and Lose Rate (LR).
The RR is calculated as follows:

1 N
RR = ;H(C ==0) 4)

where N is the total number of instances in the
dataset; y; and y; represent the outputs of LLM for
the original and perturbed instances. RR measures
the proportion of instances where the RALM’s an-
swer remains consistent (0) before and after intro-
ducing the perturbation. Similarly, WR and LR
quantify the proportions of instances where the
correctness of the RALM’s response changes after
the perturbation, either from incorrect to correct
(C == —1) or from correct to incorrect (C == 1).

4 Experiments

In this section, we assess the robustness of RAG
systems to spurious features by evaluating them on
their most popular application—the Question An-
swering (QA) task, following the standard "retrieve-
read" setting of the RAG paradigm.

4.1 Experimental Setup

Datasets Through the steps of spurious features
injection and causal features preservation, we
derive the final dataset available for robustness eval-
uation: SURE_Wiki. The queries are drawn from
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Figure 3: A comparison of dataset-level metric (Acc)
and instance-level metric (RR) for robustness evalua-
tion. ¥ and Xindicate the correctness of responses. In
this example, RR captures instance-level unrobustness,
while Acc overlooks RALMSs’ sensitivity to spurious
features within documents.

the NQ-open dataset (Lee et al., 2019), while our
data source is English Wikipedia dump.

Models We test two representative LLMs in our
main experiments: Mistral-7B-Instruct-v0.3 and
Llama-3.1-8B-Instruct. Further implementation de-
tails are included in Appendix F.

4.2 Result Analysis

To further analyze spurious features, we divide
SURE_Wiki into four subsets based on the cate-
gories of queries and documents within each in-
stance. A query is labeled as Known if it can
be correctly answered in a closed-book setting;
otherwise, it is labeled as Unknown. Documents
are categorized as Golden or Noise depending on
whether they contain ground truths. Notably, the
distribution of the dataset is model-specific, as the
classification of Known and Unknown queries is
determined by the intrinsic knowledge of the tar-
get LLM. Table 2 presents dataset statistics for
Mistral-7B-Instruct-v0.3, while the distribution for
Llama-3.1-8B-Instruct is shown in Appendix E.

For Different Queries and Grounding Data We
report the results of Mistral-7B-Instruct and Llama-
3.1-8B-Instruct in Table 1 and Table 7, respectively.
For golden documents, the robustness rates of K-
G and U-G are very similar for both Mistral and
Llama, whereas their accuracy differ significantly.
This suggests that, unlike robustness to explicit
noise (Wu et al., 2024b), robustness against spu-
rious features is independent of the model’s in-
ternal prior knowledge.

When tested on noise documents, the RR re-
mains high across all spurious features, as LLMs



Mistral-7B-Instruct-v0.3

. Known-Golden Known-Noise Unknown-Golden U-N

Taxonomy Perturbations _—
LR RR WR Org Acc LR RR WR Org Acc LR RR WR Org Acc RR

Style Simple 7.33 85.00 7.67 3.0 7337 445 91.64 3.90 1082 1028 7.87 8295 9.18 s6.31 57.62 98.76

Complex 6.05 8742 6.53 73.50 3.85 92.03 4.12 11.10 690 8592 7.17 56.58 98.82

Source LLM-Generated 591 87.62 647 7181 7236 3.57 9227 4.16 1079 1138 641 86.52 7.06 5446 55.11 98.75

Self-Generated 6.30 87.06 6.64 ’ 72.15 394 92.02 4.04 ’ 10.89 6.26 86.80 6.94 55.14 98.77

Reverse 544 89.34 522 69.69 299 94.10 2.92 11.70 5.97 88.54 5.49 49.79  99.04

Logic Random 447 91.87 3.66 6991 69.10 243 9515 242 11.77 11.76 4.18 91.44 438 5026 5046 99.27

LLM-Ranked 352 93.15 3.33 69.72 2.07 9584 2.09 11.79 3.57 92.89 3.54 50.24  99.30

JSON 7.96 88.53 3.1 66.35 5.15 92.68 2.17 8.00 6.95 8892 4.13 50.50  99.02

Format HTML 9.30 87.03 3.67 70.81 65.18 589 9236 1.74 10.98 6.83 836 8739 4.25 533 4922 99.01

YAML 4.75 90.90 4.35 7041 3.88 9324 2.87 9.97 5.05 90.53 4.42 52.69 99.06

Markdown 398 9249 353 7036 291 9436 272 1079 4.11 9259 331 52.52 99.15

Timestamp (pre) 2.62 9490 248 6490 1.28 97.61 1.11 6.66 3.15 9445 240 4733 99.67

Metadata Timestamp (pc?stA) 274 94.87 240 65.04 6470 1.16 97.63 1.21 6.83 6.88 345 9441 2.14 48.08 46.77  99.68

Datasource (wiki) 3.78 9231 391 65.17 1.5 96.66 1.84 7.16 3.69 9295 3.36 47.76  99.48

Datasource (twitter) 2.68 93.59 3.73 66.08 1.3 9722 148 7.00 2.04 9490 3.06 49.10  99.59

Table 1: Robustness evaluation results of Mistral-7B-Instruct-v0.3 on the SURE_Wiki dataset. Org indicates the
accuracy on original instances, while Acc refers to the accuracy after introducing perturbations. We use Bold to
mark the WR values that are higher than the LR, suggesting that the perturbation is beneficial.

K-G K-N UG U-N  Total
Style 7766 31152 2593 37692 79203
Source 9249 32435 3228 39101 84013
Logic 9724 35537 3587 41990 90838
Format 11037 38018 4141 45518 98714
Meta 11104 38018 4255 45420 98797

Table 2: Statistics of the SURE_Wiki dataset for Mistral-
7B-Instruct-v0.3. K-G denotes the instances composed
of (Known query, Golden Document), while U-N refers
to the instances consisting of (Unknown query, Noise
Document). The values represents the number of in-
stance pairs for each type of perturbations within the
category of spurious features.

consistently generate incorrect responses in the ab-
sence of ground truths. In this case, even though the
responses change, the RR does not decrease since
all responses remain incorrect. This stems from
the evaluation method of the proposed RR metric,
which measures unrobustness by tracking changes
in answer correctness rather than minor variations
in responses. This design focuses on meaningful
differences in user-relevant performance. There-
fore, we primarily focus on the RR results for the
golden documents in the following experiments.

For Different Perturbations We observe no-
table differences in robustness rates across the five
types of spurious features. However, within each
category, the RR values for different perturbations
are relatively similar. Hence, the robustness of spu-
rious features can be estimated by averaging the

RR values of their corresponding perturbations.

When further comparing perturbations within
the same category, we find that while their RR val-
ues are comparable, their WR and LR can differ
significantly. If the WR exceeds the LR, more in-
stances are corrected than misanswered after intro-
ducing perturbations. This suggests that not every
spurious feature is harmful and they can even
be beneficial sometimes.

4.3 SIG Benchmark & Further Analysis

The raw synthetic dataset is not ideal for extensive
evaluation due to its large size. Furthermore, the
class imbalance result in unfair comparisons across
different types of spurious features. To facilitate
more efficient evaluation, we extract the most chal-
lenging data from our synthetic datasets to create a
lightweight benchmark: SIG (Spurious features In
Golden document) .

Are Spurious Features a Widespread Problem?
To examine whether spurious features are merely
artifacts of specific model choices, we evaluate
a diverse set of SOTA LLMs on the SIG bench-
mark. The evaluated models include GPT-40, GPT-
40-mini, Mistral-Large-Instruct 6 Llama-3.3-70B-
Instruct, Qwen2.5-72B-Instruct, and DeepSeek-V3
(671B,MoE), covering a wide range of model series
and architectures. To better compare the robustness
of different models, we average the RR of each

SSpeciﬁcally, we randomly select 100 instance pairs for

each perturbation where both models lack robustness.

®https://huggingface.co/mistralai/Mistral-Large-Instruct-
2411



perturbation within a category to derive the overall
robustness for a specific type of spurious feature.
The performance of six SOTA LLMs is then visu-
alized using a radar chart, as shown in Figure 4.
Despite the impressive robustness of closed-source
models, they still exhibit sensitivity to certain spe-
cific perturbations. These results demonstrate
that spurious features are a widespread issue
across different model families, sizes, and archi-
tectures (Dense VS. MoE).

——- Qwen2.5-72B  —--
----- GPT-40-mimi

GPT-40 —-

Mistral-Large
Uama3.3-70B  ----- Deepseek-v3

Figure 4: Robustness comparison of six SOTA LLMs.

Can Scaling up Model Size Solve the Problem?
To investigate the impact of parameter scale on
RAG robustness, we gradually increase the size
of LLM-based readers (Qwen2.5 series, ranging
from 0.5B to 72B) and evaluate their robustness
across five types of spurious features. As illus-
trated in Figure 5, the robustness rate for all spuri-
ous features shows a relatively upward trend as the
model size increases. However, when we further
scale the model from 32B to 72B, the RR under-
goes a significant decline (except for format and
meta). Interestingly, for meta perturbations, while
RALMs demonstrate strong robustness across all
scales, their performance receives little to no ben-
efit from scaling up. These findings suggest that
although scaling up model size can enhance ro-
bustness to some extent, it fails to fundamentally
eliminate sensitivity to spurious features.

Are Existing Robustness Solutions Effective?
We evaluate whether methods developed to im-
prove the robustness of RALMs against explicit
noise can generalize to spurious features. Previ-
ous work, such as Chain-of-Note (CON) (Yu et al.,

Robustness Rate

style
Source
Logic

@ Format

—x— Meta

058 158 E . 148 28 728
Scale

Figure 5: Scaling analysis on Qwen2.5 series.

2023), aims to enhance robustness by generating
thorough rationale before producing the answer.
Moreover, recent breakthroughs in the reasoning ca-
pabilities of LLLMs have significantly advanced the
cutting edge of RAG. By integrating with reasoning
models, RAG can overcome previous limitations
and adapt to more complex scenarios (Gao et al.,
2025). Therefore, we test both CON and DeepSeel-
R1 on our SIG benchmark. Notably, the robustness
rate of CON is even lower than the baseline with-
out applying CON. A similar phenomenon was
observed in experiments with the reasoning model
DeepSeek-R1 (Guo et al., 2025), whose robustness
was even worse than its base model, DeepSeek-V 3.
This indicates that the robustness against spu-
rious features cannot be effectively improved
through COT-style techniques.

Style Format Meta

Qwen2.5-72B 78.5 76.0  88.6 925 950
+ Chain-of-Note ~ 74.0 81.7  66.7 84.8 91.0

DeepSeek-V3 96.5 936 956 940 965
DeepSeek-R1 84.5 873 833 87.0 875

Source Logic

Table 3: Robustness evaluation of CoN and DeepSeek-
R1. Values that show improvements over the baseline
are marked in bold.

5 Conclusion

In this work, we formally highlight the spurious
features problem in RAG system. Through prelimi-
nary experiments, we provide statistical evidence
to support the presence of spurious features in
RALMs. We also propose a novel evaluation frame-
work, SURE, to assess the robustness of RALMs
against spurious features. Extensive evaluations
and in-depth analysis highlight the urgent need to
develop solutions for addressing spurious features
in RAG systems.



6 Limitations

We strive to comprehensively cover all types of
spurious features that may arise in RAG scenarios.
However, some unidentifiable spurious features
may fall outside the scope of our taxonomy and
thus fail to be quantified using the proposed SURE
framework. Furthermore, while our experiments
highlight the limitations of existing RAG robust-
ness solutions in addressing spurious features, we
do not propose effective methods to enhance the
robustness of RALMs against them.

7 Ethics Statement

We construct our testbed using publicly available
seed data. During the data synthesis process, we
carefully preserve the original semantics, thereby
avoiding the generation of toxic content.
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A Related Work

A.1 Robustness Evaluation of Retrieval-Augmented Generation

RAG systems comprise two core components: a retriever and an LLM-based reader. Augmenting LL.Ms
with retrieved external knowledge has been proven to effectively reduce hallucinations (Shuster et al.,
2021; Kang et al., 2023). However, the retrieved contexts inevitably contains noise in addition to desirable
knowledge, which may mislead LLMs to produce an incorrect response (Bian et al., 2024; Feldman
et al., 2024). Previous works have explored automated evaluation frameworks to assess the robustness
of RAG systems in various settings. For instance, Chen et al. (2024a) benchmarked four fundamental
capabilities required for RAG, including noise robustness, negative rejection, information integration and
counterfactual robustness. Some studies have provided a detailed taxonomy of noise documents to further
simulate the complexity of real-world scenarios and highlighted the potential positive effects of certain
types of noise (Cuconasu et al., 2024; Wu et al., 2024a). There are also some recent works that propose
using LL.M-as-a-judge (Li et al., 2024a) to evaluate the RAG system (Wang et al., 2024).

While these studies have identified several explicit noises that affect the robustness of RAG systems,
they overlook implicit noises. This type of noise, such as phrasing and formatting, is everywhere and
unavoidable, as it coexists with the grounding data without altering its semantic information. In this work,
we define these semantic-agnostic noises as spurious features and evaluate the robustness of RALMs to
such noises.

A.2 Prompt Sensitivity of LLMs

Large Language Models take prompts as inputs and then generate response accordingly. Prompts are
instructions provided to an LLM to perform specific tasks automatically and ensure desired qualities
in the generated output. However, it is known that current LLLMs are sensitive to the features of input
prompts (Zhu et al., 2023). This sensitivity poses challenges for researchers attempting to evaluate the
model’s performance accurately and precisely (Zhuo et al., 2024).

Some existing works have investigated the impact of different prompt techniques on model performance,
including chain-of-thought (Wei et al., 2022), in-context learning (Min et al., 2022), and role-play
prompting (Kong et al., 2024). Beyond these causal features that significantly influence the meaning
of prompts, other works have demonstrated that LLLMs are highly sensitive to spurious features (Sclar
et al., 2024), e.g, prompt formatting (He et al., 2024), language style (Li et al., 2023), the order of
options (Pezeshkpour and Hruschka, 2024).

Currently, there is no statistical or empirical evidence to support the existence of spurious features
in RALMs. To address this gap, we extend the definition of spurious features to RAG systems through
statistical testing and empirical analysis.

B Preliminary Experiment Results

Using Contriever-msmarco, we recall 100 documents from the Wikipedia dump for each query in the NQ-
open dataset. After filtering out documents that do not contain golden answers, we select the first-ranked
and last-ranked documents based on their oracle scores for each query from the remaining documents,
resulting in two sets of 2658 samples each. By comparing the differences in feature distributions between
these two sets, we can assess whether RALMs exhibits sensitivity toward semantic-agnostic features. If
these two sets do not belong to the same feature distribution, this can be attributed to the inherent bias
of LLMs towards semantic-agnostic features. To confirm that this bias is not introduced by the dense
retriever in first-stage retrieval, we establish a control group by randomly sampling two documents instead
of selecting the first- and last-ranked documents.

To evaluate whether the two distributions are same, we employ the Kolmogorov-Smirnov (K-S) test.
The following semantic-agnostic features are measured in the experiments:

* Flesch Score: A readability metric designed to evaluate text difficulty. It is calculated based on the
average number of syllables per word and the average number of words per sentence. The Flesch
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score is a number on a scale from O to 100, where a higher score indicates that the text is easier to
read.

* Distinct-1: A metric used to assess the diversity of generated text. It calculates the proportion of
unique words (distinct words) to the total number of words in the output. A higher Distinct-1 score
indicates that the text contains a greater variety of unique words, implying more diversity in the
generated content.

* Dependency Tree Depth (DTD): A syntactic complexity metric calculated by analyzing its depen-
dency tree. Dependency Tree Depth refers to the maximum depth of a sentence’s dependency parse
tree. A deeper tree suggests more complex sentence structures, while a shallower tree indicates
simpler syntactic constructions.

* Perplexity (PPL): A metric used for evaluating language models, measuring how well a probabilistic
model predicts a given text. It reflects the uncertainty of a language model when generating sequences
of words. Lower PPL values indicate better predictive performance, meaning the model assigns
higher probabilities to the actual labels in the sequence.

* Token Length: We compute the total number of tokens in a text as an alternative measure of text
length, given that the documents in our corpus have been pre-segmented into fixed 100-word chunks.
The value is model-specific and depends on the model’s vocabulary.

Kolmogorov-Smirnov (K-S) Test The K-S test is a non-parametric statistical test used to compare the
distribution of two datasets. It evaluate whether two samples come from the same underlying probability
distribution. The null hypothesis of the K-S test is that the two samples are drawn from the same
distribution, while the alternative hypothesis is that the two samples are drawn from different distributions.
There are two key values provided by K-S test: the K-S Statistic quantifies the largest difference between
the two sample distributions, and the p-value assess the statistical significance of that difference. If the
p-value is lower than a chosen significance level (0.05 in our experiments), we reject the null hypothesis,
concluding that the two distributions are significantly different. Otherwise, we fail to reject the null
hypothesis, suggesting that there is no significant difference between the two distributions.

The K-S statistic and P-value are presented in Table 4 and Table 5. Furthermore, we visualize the
feature distributions for both the experimental and control groups in Figure 6. For all tested features
in the experimental group, the K-S test rejects the null hypothesis, concluding that the distribution of
the two sets are significantly different. In contrast, for the control group, the K-S test fails to reject the
null hypothesis. The results for Llama-3.1-8B-Instruct are also provided in Figure 7. According to these
results, we can conclude that RALMs exhibit bias toward spurious features in documents.

Experimental Group Control Group
K-S statistic P-value K-S statistic P-value
Flesch score 0.0677 1.01 x 1075 0.0301 0.1799
Distinct-1 0.0756 4.95 x 1077 0.0203 0.6431
DTD 0.0636 4.29 x 1075*** 0.0124 0.9866
PPL 0.0722 1.88 x 107 6%* 0.0162 0.8776

Token Length 0.1708 2.91 x 10 3% 0.0256 0.3493

Table 4: K-S test results for Mistral-7B-Instruct-v0.3 as the oracle retriever.

C Implementation Details for Injecting Spurious Features

We provide detailed prompts for LLM-based perturbations in Figure 8. For rule-based perturbations,
placeholder template is presented in Figure 9.
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Experimental Group

Control Group

K-S statistic

P-value

K-S statistic

P-value

Flesch score
Distinct-1
DTD

PPL

Token Length

0.0305
0.0798
0.0474
0.0538
0.1275

0.1694
8.94 x 10~ 8***
0.0051**
0.0009***
2.99 x 1019

0.0173
0.0327
0.0203
0.0181
0.0188

0.8210
0.1159
0.6431
0.7791
0.7349

Table 5: K-S test results for Llama-3.1-8B-Instruct as the oracle retriever.
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Style Perturbations

[Simple]

Please simplify the following text while preserving its original meaning. Use shorter
sentences, basic vocabulary, and clear language. Avoid complex structures, technical terms,
or ambiguous expressions.

Here is the passage to simplify: { Document }

[Complex]

Please complexify the following text while preserving its original meaning. Use longer
sentences, intricate sentence structures, and advanced vocabulary. Avoid contractions,
informal language, and colloquial expressions, ensuring the text maintains a professional
and authoritative tone throughout.

Here is the passage to complexify:{Document}

Source Perturbations

Please rewrite the following passage. Ensure that the overall meaning, tone, and important
details remain intact. Avoid any significant shifts in style or focus. The aim is to create a
fresh version while faithfully conveying the original content.

Here is the passage to paraphrase: { Document}

Logic Perturbations

[LLM-Ranked]

Rearrange the following list of sentences in your preferred logical order and provide only
the indices of the sentences. Please do not include any explanations.

Example:{Example}

Sentences List: {Sentences List}

The length of the Sentences List is {Length of Sentences List}. Therefore, the indices must
contain {Length of Sentences List} elements, and the index values cannot exceed {Length
of Sentences List - 1}.

[Reverse] [Pyhton Code]

[Random] [Python Code]

Figure 8: Prompt templates for LLM-based perturbations.
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Format Perturbations

[JSON]
{
"title": "{Title}",
"text": "{Document}"
}
[HTML]
<html lang="en">
<head>
<meta charset="UTF-8">
{Title}
</head>
<body> {Document} </body>
</html>

[YAML]

Title: {Title}
Text: {Document}

[Markdown]

# {Title}
{Document}

Metadata Perturbations

[Timestamp]

<html lang="en">

<head>
<meta charset="UTF-8">
<meta name='timestamp' content='{timestamp}'>
{Title}

</head>

<body> {Document} </body>

</html>

[Datasource]

<html lang="en">

<head>
<meta charset="UTF-8">
<meta name='datasource' content='{datasource}'>
{Title}

</head>

<body> {Document} </body>

</html>

Figure 9: Placeholder templates for rule-Based perturbations.
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D Implementation Details for Preserving Causal Features

We employ a bidirectional entailment algorithm to ensure the semantic equivalence before and after
introducing spurious features. The prompts for its core component, NLI model, are shown in Figure
10. Furthermore, we apply a simple string-matching strategy to preserve ground truths. Specifically, for
Golden documents that originally contained the correct answers, we keep them only if they preserve the
ground truths after perturbation. For Noise documents that initially lack the correct answers, we discard
them if they unexpectedly acquire ground truths due to perturbations.

Consider the two passages below.

Premise: {raw text}

Hypothesis: {perturbated text}

Does the premise semantically entail the hypothesis? Answer with ’entailment’ if they are
paraphrases,’ contradiction’ if they have opposing meanings, or ’neutral’ if they are neither.
Response:

Figure 10: Prompts for LLM-based NLI system.

E Statistics of the Synthetic Dataset

We present the dataset statistics for evaluating Llama-3.1-8B-Instruct in Table 6.

K-G K-N UG U-N  Total

Style 7321 28975 3038 39869 79203
Source 8768 30145 3709 41391 84013
Logic 9229 33294 4082 44233 90838
Format 10481 35616 4697 47920 98714
Meta 10563 35451 4796 47987 98797

Table 6: Distribution of the SURE_Wiki dataset for Llama-3.1-8B-Instruct.
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F Experimental Setup Details

Prompts The instruction I in the RAG prompt P = (I, G, @), shown in Figure 11, is derived from Cu-
conasu et al. (2024), with slight modifications to better adapt to our setting.

Implementation Details We follow the typical "retrieve-read"” setting of RAG paradigm. For the
retrieval module, we use Contriever-msmarco’, a BERT-based dense retriever, as the default retriever. It is
finetuned on the MS MARCO dataset (Bajaj et al., 2016) after unsupervised pretraining via contrastive
learning (Izacard et al., 2021). To optimize the efficiency of vector similarity searches, we employ the
Faiss library (Douze et al., 2024). For the read module, we deploy LLMs on NVIDIA A100 GPUs
and accelerate inference with vIlm®. We set the temperature to 0.1 to ensure stable outputs and strong
reproducibility.

You are given a question and you MUST respond by EXTRACTING the answer (max 5 tokens)
from the provided document. If the document does not contain the answer, respond with NO-RES.

Figure 11: Instruction [ used for the QA task.

Llama-3.1-8B-Instruct

. Known-Golden Known-Noise Unknown-Golden U-N

Taxonomy Perturbations
LR RR  WR Org Acc LR RR  WR Org Acc LR RR  WR Org Acc RR
Style Simple 779  83.04 9.18 66.03 6742 1.70 95.80 2.50 4l 492 843 8288 8.69 5142 51.68 99.45
Complex 6.00 85.60 8.40 68.43 191 96.59 1.50 371 671 84.86 843 53.13  99.57
Source LLM-Generated 589 8643 7.69 65.62 6743 143 96.83 1.74 413 445 6.20 8571 8.09 49.15 51.04 99.56
Self-Generated 6.55 85.01 8.44 ' 67.52 155 9637 209 4.67 6.52 8636 7.12 ' 49.74  99.57
Reverse 5.06 90.82 4.12 62.01 1.13 97.82 1.06 436 5.73 89.71 4.56 44.66  99.67
Logic Random 391 9316 293 6295 6197 0.86 9831 083 443 440 421 91.67 4.12 4584 4574 99.72
LLM-Ranked 324 9393 283 62.54 0.82 98.43 0.74 436 3.58 9336 3.06 4532 99.76
JSON 7.01 8825 4.74 61.64 1.70 97.25 1.05 321 592 89.63 4.45 47.88 99.61
Format HTML 11.85 84.46 3.69 63.91 55775 270 96.90 0.40 387 1.56 9.33 86.78 3.90 4935 4392 99.61
YAML 526 89.94 4.80 63.45 126 9741 1.33 394 479 90.80 441 4897 99.67
Markdown 232 9223 545 67.04 0.60 96.89 2.51 577 234 9346 4.19 51.20 99.61
Timestamp (pre) 2.08 9581 211 55.80 0.28 99.42 0.29 1.59 254 9556 1.90 42.66 99.95
Metadata Timestamp (p(?st') 2.04 9586 2.10 5577 55.84 0.25 99.43 0.32 158 1.64 281 9556 1.63 4331 4212 99.95
Datasource (wiki) 2.11 9345 4.44 58.10 0.23 98.96 0.81 2.17 325 9247 427 4433 99.86
Datasource (twitter) 2.27 94.11 3.62 57.11 031 99.25 043 1.70 277 9397 3.25 4379 99.91

Table 7: Robustness evaluation results of Llama-3.1-8B-Instruct on the synthetic dataset. We use Bold to mark the
WR values that are higher than the LR, suggesting that the perturbation is beneficial.

"https://huggingface.co/facebook/contriever-msmarco
8https://github.com/vllm-project/vllm
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