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Abstract

Robustness has become a critical attribute for001
the deployment of RAG systems in real-world002
applications. Existing research focuses on ro-003
bustness to explicit noise (e.g., document se-004
mantics) but overlooks implicit noise (spuri-005
ous features). Moreover, previous studies on006
spurious features in LLMs are limited to spe-007
cific types (e.g., formats) and narrow scenarios008
(e.g., ICL). In this work, we statistically demon-009
strate the presence of spurious features in the010
RAG paradigm, a robustness problem caused011
by the sensitivity of LLMs to semantic-agnostic012
features. Then, we propose a comprehensive013
taxonomy of spurious features and empirically014
quantify their impact through controlled experi-015
ments. Our analysis reveals that not all spurious016
features are harmful and they can even be ben-017
eficial sometimes. Further evaluation results018
suggest that spurious features are a widespread019
and challenging problem in the field of RAG.020
The code and dataset will be released to facili-021
tate future research.022

1 Introduction023

Retrieval-Augmented Generation (RAG) has024

emerged as a promising paradigm to mitigate025

LLMs hallucinations (Gao et al., 2023; Yang et al.,026

2023a), integrating relevant external knowledge to027

improve the factuality and trustworthiness of LLM-028

generated outputs (Zhou et al., 2024). However,029

Retrieval-Augmented Language Models (RALMs)030

still face substantial robustness issue due to the031

presence of noise in retrieved documents (Liu et al.,032

2023; Li et al., 2024b).033

Recent research aims to explore the character-034

istics that affect the robustness of RAG systems035

from the perspective of grounding data construc-036

tion (Cuconasu et al., 2024). These studies exam-037

ine various factors, including the type (Wu et al.,038

2024a), number (Xu et al., 2024), and position of039

documents (Liu et al., 2024) within the prompt040

Question: The atomic number of 

indium which belongs to 5th period 

is

Same Content but Different Spurious Features

Search and Retrieve
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Figure 1: An example from the SURE_Wiki dataset
(Sec. 4), illustrating the sensitivity of RAG systems to
spurious features within grounding data. The original
retrieved document is fed into the LLMs in different
formats, leading to inconsistent responses.

context. However, previous analyses primarily fo- 041

cus on explicit noise that significantly alter the se- 042

mantic information (causal features) of grounding 043

data(Wu et al., 2024b; Cuconasu et al., 2024), while 044

neglecting implicit noise (spurious features) that in- 045

troduce semantic-agnostic modifications. This lim- 046

itation extends to existing evaluation benchmarks, 047

which simulate complex noise scenarios to assess 048

the robustness of RAG systems (Chen et al., 2024a; 049

Wu et al., 2024a), yet lack available benchmarks 050

and metrics to measure the robustness of RALMs 051

against spurious features. A more detailed discus- 052

sion of related work is in Appendix A.1. 053

Contemporary RAG systems typically employ 054

production-level retrievers, such as Bing and 055

Google, to retrieve relevant information from the 056

internet. Unlike a single corpus, the internet en- 057

compasses diverse data with distinct features. For 058

any given query, there may exist numerous golden 059

documents that contain the correct answer but dif- 060

fer in style, format, or other attributes. As shown in 061

Figure 1, we have observed that LLMs may fail to 062

consistently derive the correct answer from golden 063
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documents with different formats. A similar phe-064

nomenon is reported in Sclar et al. (2024) and065

He et al. (2024), which demonstrate that LLMs066

are extremely sensitive to the format of prompts067

(i.e., spurious features). For more related work, see068

Appendix A.2. Unfortunately, there is no statistic069

and empirical evidence to support the existence of070

spurious features in the RAG paradigm. This high-071

lights the urgent need to redefine spurious features072

in RAG and systematically quantify the robustness073

of RALMs against them.074

To address these challenges, we first design a pre-075

liminary experiment to demonstrate that RALMs076

are sensitive to semantic-agnostic features in the077

grounding data, thereby extending the definition078

of spurious features to RAG systems. Building079

on findings from our preliminary experiment and080

recent studies, we identify five common types of081

spurious features in RAG scenarios. Then, we pro-082

pose a novel framework, SURE, for automating the083

process of robustness evaluation. This framework084

follows a perturb-then-evaluate approach, offering085

great scalability. In SURE, automated perturbations086

are applied to the original instances to inject the087

corresponding spurious features. The perturbed in-088

stances are then examined to ensure that the causal089

features remain intact. After these steps, we em-090

ploy tailored metrics to quantify the robustness of091

RALMs against spurious features. Further analysis092

reveals that not every spurious features is harmful093

and they can even be beneficial sometimes. To en-094

able more efficient evaluation, we distill the most095

challenging instances from the synthetic data gen-096

erated by our framework to create a lighter bench-097

mark, SIG. Extensive evaluations on diverse LLMs098

and methods indicate that maintaining robustness099

against spurious features is a widespread challenge.100

Our contribution can be summarized as follows:101

1) We identify and define spurious features in RAG102

systems. To the best of our knowledge, this is103

the first comprehensive study to define and eval-104

uate spurious features from RAG perspective. 2)105

We propose a novel evaluation framework, SURE,106

to assess the robustness of RALMs against spu-107

rious features, which includes a comprehensive108

taxonomy, tailored metrics, and a data synthesis109

pipeline. 3) We curate a lightweight yet challeng-110

ing evaluation dataset, and offer valuable insights111

and baselines for future research through extensive112

experiments and analysis.113

2 Preliminary 114

In this section, we first define causal and spurious 115

features in the context of RAG and then demon- 116

strate the existence of spurious features statistically. 117

2.1 Causal and Spurious Features in RAG 118

In general, causal features are input features that 119

have a direct causal effect on the output of pre- 120

dictive model (Yu et al., 2020). Their relationship 121

is rooted in causality, rather than mere statistical 122

correlation. When it comes to Large Language 123

Models, the meaning and intent of prompts serve 124

as causal features that directly influence the models’ 125

responses. In the context of RAG, causal features 126

refer to the semantic information of grounding data. 127

In contrast, spurious features are input features 128

that co-occur with causal features and are erro- 129

neously captured by the model (Neuhaus et al., 130

2023). These features exhibit a statistical correla- 131

tion with the model’s output but lack a causal rela- 132

tionship. Recent research has shown that LLMs are 133

sensitive to seemingly trivial features like prompt 134

formatting, thereby extending the definition of spu- 135

rious features to LLMs (Sclar et al., 2024). Simi- 136

larly, we define the semantic-agnostic features of 137

the grounding data as spurious features in RAG sys- 138

tems. However, conclusions drawn from in-context 139

learning scenarios (e.g., classification and multiple- 140

choice tasks) may not applicable to RAG scenar- 141

ios, which typically involve open-ended generation 142

tasks. Therefore, we design a preliminary experi- 143

ment to validate the presence of spurious features 144

in RAG. 145

2.2 Preliminary Experiment 146

We aim to demonstrate the semantic-agnostic fea- 147

tures within real documents are spurious features, 148

i.e., to reveal their impact on the output of RAG 149

systems. 150

There are some challenges in revealing the in- 151

fluence of semantic-agnostic features. First, when 152

retrieving from a single corpus, it is difficult to 153

mine semantically equivalent counterparts that dif- 154

fer only in semantic-agnostic features. To mine 155

appropriate documents, we introduce Contriever- 156

msmarco, a traditional dense retriever, to recall 100 157

semantically similar candidates. To further elimi- 158

nate the effect of causal features, documents with- 159

out golden answers are filtered out, ensuring that 160

the remaining documents have roughly consistent 161

causal features. 162
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Still, the differences in spurious features among163

these candidate documents are often minor, and164

their impact on model responses cannot be effec-165

tively captured using binary evaluation methods166

that simply judge whether an answer is correct or167

incorrect. Thus, more fine-grained metrics are re-168

quired to detect such nuanced performance changes.169

Inspired by the use of LLMs as supervision signals170

for document utility (Izacard et al., 2023; Gan et al.,171

2024), we introduce the oracle score, which mea-172

sures fine-grained performance through calculating173

the log probability of generating correct answers174

given a specific document. The oracle score is175

defined as follows:176

Oracle(x, y, θ) =
T∑
t=1

log p(yt | x, y<t, θ) (1)177

where x is the input prompt for RALMs, including178

the instruction I , grounding data G, and query Q;179

y represents the ground truth answer; θ denotes the180

model parameters; and T is the total length of the181

answer sequence 1.182

For each query, we construct document pairs by183

selecting the first-ranked and last-ranked candidate184

documents based on their oracle scores. However,185

the presence of various semantic-agnostic features186

within each document pairs makes it challenging187

to isolate the impact of any individual features. To188

assess the influence of a given feature, we compare189

its distribution between document sets with first-190

and last-ranked oracle scores. A control group is191

constructed by randomly sampling two document192

sets. If the distributions differ significantly, it sug-193

gests that RALMs are sensitive to the feature. See194

Appendix B for implementation details of prelimi-195

nary experiments.196

We test the following features: 1) Flesh Score, 2)197

Distinct-1, 3) Dependency Tree Depth, 4) PPL, and198

5) Token Length. The results show that RALMs199

are sensitive to semantic-agnostic features. Nev-200

ertheless, it does not offer empirical evidence or201

quantitative analysis. Inspired by previous data202

synthesis studies (Tan et al., 2024b), we use a data203

synthesis approach to better control feature vari-204

ables and quantify the robustness of RALMs.205

3 Proposed Framework206

In this section, we detail our proposed evaluation207

framework, SURE (Spurious FeatUres Robustness208

1For cases with multiple answers, we compute the final
score by averaging the corresponding oracle scores across all
answers.

Evaluation), which designed specifically for as- 209

sessing the robustness of RALMs against spurious 210

features in grounding data. As illustrated in Figure 211

2, this framework comprise four components: 1) 212

Comprehensive Taxonomy. We identify and define 213

five common types of spurious features in RAG sce- 214

narios. 2) Spurious Features Injection. We design 215

a data synthesis pipeline to automate the injection 216

of spurious features, utilizing both model-based 217

and rule-based methods to construct counterparts 218

of the original document with varying spurious fea- 219

tures. 3) Causal Features Preservation. We employ 220

a bidirectional entailment algorithm and a string 221

matching strategy to ensure that the causal features 222

of grounding data remain unchanged. 4) Robust- 223

ness Evaluation. We introduce three metrics (Win 224

Rate, Lose Rate, and Robustness Rate) to facilitate 225

fine-grained, instance-level evaluation. 226

3.1 Problem Formulation 227

Given a query q , the retriever R returns a list of 228

relevant documents from a corpus D = {di}Ni=1. 229

The relevance between document d and query q can 230

be measured by various methods. In this work, we 231

use a BERT-based dense retriever to obtain the em- 232

bedding of query and documents, respectively. The 233

relevance score is calculated by computing their 234

dot-product similarity. Then, the Top-k documents 235

with the highest similarity scores are retrieved: 236

Dretrieve = argtop-k {s(q, di) | di ∈ D} . (2) 237

To formally quantify the robustness of RAG sys- 238

tems against spurious features, we define the in- 239

put prompt for the LLM-based reader as P = 240

(I,G,Q), where I represents instruction, G refers 241

to the grounding data, constituted by a subset of 242

Dretrieve, and Q is the query. A perturbation is intro- 243

duced to investigate the impact of spurious features 244

by applying a semantic-agnostic modification to 245

the original grounding data, while preserving its 246

causal features. We define g(.) to automate this 247

process, transforming G to g(G) and producing 248

a counterpart P̂ = (I, g(G), Q). The outputs of 249

LLM-based reader for P and P̂ are compared to 250

evaluate the impact of the introduced perturbation: 251

y = LLM(P ), ŷ = LLM(P̂ ). (3) 252

3.2 Taxonomy of Spurious Features 253

We develop a comprehensive taxonomy of spurious 254

features, informed by our preliminary experiments 255

and insights from prior research. The five types of 256
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Figure 2: Overview of our SURE framework. We provide a Comprehensive Taxonomy that includes five types
of spurious features, further divided into 13 subtypes of perturbations (left section). To construct the testbed, we
prepare raw instances initially and then synthesize the modified instances through a workflow consisting of Spurious
Features Injection and Causal Features Preservation (middle section). By applying carefully tailored metrics for
Robustness Evaluation, we quantify the robustness of target RAG systems (right section).

spurious features and their corresponding perturba-257

tions are detailed below.258

Style Perturbations The same content can be259

expressed in different styles, using varying tones,260

words and sentence structures. As shown in Sec-261

tion 2.2, LLMs exhibit biases towards readability-262

related features. Similarly, for humans, the read-263

ability of a text can significantly influence its acces-264

sibility to the audience (Yang et al., 2023b). There-265

fore, we define two perturbations from the perspec-266

tive of readability style: Simple and Complex. The267

former simplifies the grounding data by using basic268

vocabulary and simple sentence structure, while269

the latter employs professional vocabulary and a270

formal academic tone to complex the documents.271

Source Perturbations LLM-generated content,272

including both misinformation and correct claims,273

infiltrates every corner of the internet. Recent stud-274

ies have shown that neural retrievers are biased275

towards LLM-generated content, leading to the276

marginalization of human-authored content (Dai277

et al., 2024; Chen et al., 2024b). Moreover, our278

preliminary experiments demonstrate that LLMs279

are biased towards the Perplexity (PPL) of text.280

Thus, we define two types of source perturbations:281

LLM-generated and Self-generated. Specifically,282

the LLM-generated perturbation paraphrases the283

original document using a powerful LLM, while 284

the self-generated perturbation employs the same 285

backbone model used as the generator in the RAG 286

system. 287

Logic Perturbations In RAG systems, docu- 288

ments are often segmented into multiple chunks 289

and may be retrieved in varying orders. Here, we 290

simulate scenarios where the intrinsic logical flaw 291

is disrupted by three different perturbations: Ran- 292

dom, Reverse, and LLM-reranked, each repre- 293

senting a distinct sentence ordering strategy. 294

Format Perturbations The internet contains var- 295

ious data formats, including HTML, Markdown, 296

YAML and JSON. These formats are usually pro- 297

cessed into plain text before being fed to LLMs. To 298

mitigate the loss of structural information during 299

this process, some RAG studies propose using the 300

original format, rather than plain text, to augment 301

the generation (Tan et al., 2024a). However, as 302

highlighted in previous research, the prompt for- 303

mat is recognized as a spurious feature that can sig- 304

nificantly impact model performance (Sclar et al., 305

2024; He et al., 2024). Therefore, we perturb the 306

original document with four common formats to 307

explore the impact of grounding data format in the 308

context of RAG. 309
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Metadata Perturbations Metadata is often in-310

cluded in the HTML results returned by search311

engines. In our framework, we focus on two types:312

Timestamp and Data source. The timestamp313

marks when the data was created, and the data314

source indicates its origin. For timestamp perturba-315

tions, pre and post denote whether the timestamp316

is before or after the LLM’s knowledge cutoff date.317

For data source perturbations, wiki and twitter rep-318

resent the domains of the URLs.319

3.3 Spurious Features Injection320

The automation of spurious features injection is es-321

sential for automating the entire evaluation frame-322

work. We detail the process of collecting the origi-323

nal instances and describe how the automated per-324

turbation was implemented.325

Instance Preparation An instance is the dy-326

namic component of the prompt P , consisting of327

a query Q and grounding data G. To construct328

the original instances, we first select 1,000 queries329

from the NQ-open dataset. For each query, we330

then retrieve 100 documents from the Wikipedia331

dump to serve as grounding data, yielding 100,000332

instances for the following perturbation step.333

Automated Perturbation As introduced in Sec-334

tion 3.1, the perturbation g(.) injects spurious fea-335

tures by modifying the grounding data. For style336

and source perturbations, g(.) is implemented using337

an LLM2 prompted by carefully crafted guidelines338

to modify the raw document, producing counter-339

parts of the original instances. For logic and for-340

mat perturbations, we develop g(.) as a heuristic341

method based on a set of predefined rules3. To342

simulate real-world metadata, we first synthesize343

pseudo Wikipedia or Twitter links for the raw in-344

stances, and then organize them into HTML format345

using a rule-based g(.). The complete implementa-346

tion details for automated perturbation are provided347

in Appendix C.348

3.4 Causal Features Preservation349

To eliminate the effect of causal features, it is es-350

sential to follow the principle of controlled ex-351

periments by keeping causal features constant352

while systematically manipulating spurious fea-353

tures. This approach isolates the impact of spurious354

2Unless otherwise specified, all model-based g(.) are im-
plemented using Llama-3.1-70B-Instruct.

3One exception is that we implement the LLM-reranked
perturbation using an LLM-based g(.).

features from that of causal features, enabling an 355

accurate quantification of robustness against spuri- 356

ous features. In our framework, we introduce two 357

methods to ensure the stability of causal features in 358

the grounding data. Implementation details can be 359

found in Appendix D. 360

Maintain Semantic Equivalence For models 361

capable of following human instructions, we di- 362

rectly instruct them to maintain semantic equiva- 363

lence when injecting spurious features. Nonethe- 364

less, it’s impossible to completely avoid semantic 365

shift during the perturbation process. To ensure the 366

semantic consistency before and after introducing 367

perturbation, we employ a bidirectional entailment 368

algorithm to filter out instance pairs (raw instance, 369

perturbed instance) with semantic inequivalence. 370

Specifically, for document G and its modified coun- 371

terpart g(G), we use a Natural Language Inference 372

(NLI) system to detect whether the latter can be 373

inferred from the former, and vice versa. The NLI 374

system classifies predictions into one of: entail- 375

ment, neutral, contradiction. We compute both 376

directions, and the algorithm returns equivalent if 377

and only if both directions are predicted as entail- 378

ment. 379

In general, this algorithm can be implemented 380

by any NLI system. However, in our case, the 381

concatenation of G and g(G) sometimes exceeds 382

the context limitation of a Bert-based NLI model. 383

Hence, we apply an LLM-based NLI system 4 to 384

implement the bidirectional entailment algorithm. 385

Preserve Ground Truths While semantic equiv- 386

alence protects causal features to the greatest extent, 387

the perturbation may lead to the correct answer 388

being paraphrased into an alias (e.g., "President 389

Roosevelt" to "Roosevelt"). These variations in the 390

grounding data are likely to result in false negatives 391

when determining response correctness, despite the 392

NQ-Open dataset providing multiple potential an- 393

swer variants for each query. To address this issue, 394

we employ a simple string-matching strategy to fil- 395

ter out documents that have undergone unexpected 396

modifications. 397

3.5 Robustness Evaluation 398

We employ an evaluation method Y (.), in line 399

with Liu et al. (2024); Cuconasu et al. (2024), 400

4Farquhar et al. (2024) confirms the effectiveness of the
LLM-based NLI system through human annotation, demon-
strating that its performance is on par with the DeBERTa-large
model used in Kuhn et al. (2023).
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to measure the correctness of responses generated401

by RAG systems. This approach checks whether402

any of the correct answers is contained within the403

response produced by the LLM and then derives404

a binary label. Previous researches use accuracy405

as the primary metric and report it at dataset level406

to assess the robustness of RALMs, which is quan-407

tified by calculating the variations in the models’408

accuracy across different types of noise. However,409

dataset-level metrics has certain limitations, as it410

may fail to capture fine-grained variations that oc-411

cur at the instance level. As shown in Figure 3,412

RALMs may appear robust at dataset-level evalu-413

ations but exhibit significant sensitivity at the in-414

stance level.415

To quantify whether a RAG system is robust and416

unbiased at the instance level, we assign a ternary417

label to each instance by comparing the correctness418

of the LLM’s response before and after introducing419

the perturbation. This comparison process can be420

formulated as C = Y (yi) − Y (ŷi), where C lies421

in the set (−1, 0, 1). Based on the comparison422

outcomes, we define three metrics: Robustness423

Rate (RR), Win Rate (WR), and Lose Rate (LR).424

The RR is calculated as follows:425

RR =
1

N

N∑
i=1

I(C == 0) (4)426

where N is the total number of instances in the427

dataset; yi and ŷi represent the outputs of LLM for428

the original and perturbed instances. RR measures429

the proportion of instances where the RALM’s an-430

swer remains consistent (0) before and after intro-431

ducing the perturbation. Similarly, WR and LR432

quantify the proportions of instances where the433

correctness of the RALM’s response changes after434

the perturbation, either from incorrect to correct435

(C == −1) or from correct to incorrect (C == 1).436

4 Experiments437

In this section, we assess the robustness of RAG438

systems to spurious features by evaluating them on439

their most popular application—the Question An-440

swering (QA) task, following the standard "retrieve-441

read" setting of the RAG paradigm.442

4.1 Experimental Setup443

Datasets Through the steps of spurious features444

injection and causal features preservation, we445

derive the final dataset available for robustness eval-446

uation: SURE_Wiki. The queries are drawn from447

Raw Document

Modified Document

Instance 1 Instance 2 Instance 3 Instance N…

…

…

Dataset Level Variation: Acc w/ Raw = Acc w/ Modified

Instance Level Variation: Robustness Rate = 50%

Figure 3: A comparison of dataset-level metric (Acc)
and instance-level metric (RR) for robustness evalua-
tion. "and%indicate the correctness of responses. In
this example, RR captures instance-level unrobustness,
while Acc overlooks RALMs’ sensitivity to spurious
features within documents.

the NQ-open dataset (Lee et al., 2019), while our 448

data source is English Wikipedia dump. 449

Models We test two representative LLMs in our 450

main experiments: Mistral-7B-Instruct-v0.3 and 451

Llama-3.1-8B-Instruct. Further implementation de- 452

tails are included in Appendix F. 453

4.2 Result Analysis 454

To further analyze spurious features, we divide 455

SURE_Wiki into four subsets based on the cate- 456

gories of queries and documents within each in- 457

stance. A query is labeled as Known if it can 458

be correctly answered in a closed-book setting; 459

otherwise, it is labeled as Unknown. Documents 460

are categorized as Golden or Noise depending on 461

whether they contain ground truths. Notably, the 462

distribution of the dataset is model-specific, as the 463

classification of Known and Unknown queries is 464

determined by the intrinsic knowledge of the tar- 465

get LLM. Table 2 presents dataset statistics for 466

Mistral-7B-Instruct-v0.3, while the distribution for 467

Llama-3.1-8B-Instruct is shown in Appendix E. 468

For Different Queries and Grounding Data We 469

report the results of Mistral-7B-Instruct and Llama- 470

3.1-8B-Instruct in Table 1 and Table 7, respectively. 471

For golden documents, the robustness rates of K- 472

G and U-G are very similar for both Mistral and 473

Llama, whereas their accuracy differ significantly. 474

This suggests that, unlike robustness to explicit 475

noise (Wu et al., 2024b), robustness against spu- 476

rious features is independent of the model’s in- 477

ternal prior knowledge. 478

When tested on noise documents, the RR re- 479

mains high across all spurious features, as LLMs 480
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Mistral-7B-Instruct-v0.3

Taxonomy Perturbations
Known-Golden Known-Noise Unknown-Golden U-N

LR RR WR Org Acc LR RR WR Org Acc LR RR WR Org Acc RR

Style
Simple 7.33 85.00 7.67

73.02
73.37 4.45 91.64 3.90

10.82
10.28 7.87 82.95 9.18

56.31
57.62 98.76

Complex 6.05 87.42 6.53 73.50 3.85 92.03 4.12 11.10 6.90 85.92 7.17 56.58 98.82

Source
LLM-Generated 5.91 87.62 6.47

71.81
72.36 3.57 92.27 4.16

10.79
11.38 6.41 86.52 7.06

54.46
55.11 98.75

Self-Generated 6.30 87.06 6.64 72.15 3.94 92.02 4.04 10.89 6.26 86.80 6.94 55.14 98.77

Logic
Reverse 5.44 89.34 5.22

69.91
69.69 2.99 94.10 2.92

11.77
11.70 5.97 88.54 5.49

50.26
49.79 99.04

Random 4.47 91.87 3.66 69.10 2.43 95.15 2.42 11.76 4.18 91.44 4.38 50.46 99.27
LLM-Ranked 3.52 93.15 3.33 69.72 2.07 95.84 2.09 11.79 3.57 92.89 3.54 50.24 99.30

Format

JSON 7.96 88.53 3.51

70.81

66.35 5.15 92.68 2.17

10.98

8.00 6.95 88.92 4.13

53.32

50.50 99.02
HTML 9.30 87.03 3.67 65.18 5.89 92.36 1.74 6.83 8.36 87.39 4.25 49.22 99.01
YAML 4.75 90.90 4.35 70.41 3.88 93.24 2.87 9.97 5.05 90.53 4.42 52.69 99.06
Markdown 3.98 92.49 3.53 70.36 2.91 94.36 2.72 10.79 4.11 92.59 3.31 52.52 99.15

Metadata

Timestamp (pre) 2.62 94.90 2.48

65.04

64.90 1.28 97.61 1.11

6.83

6.66 3.15 94.45 2.40

48.08

47.33 99.67
Timestamp (post) 2.74 94.87 2.40 64.70 1.16 97.63 1.21 6.88 3.45 94.41 2.14 46.77 99.68
Datasource (wiki) 3.78 92.31 3.91 65.17 1.5 96.66 1.84 7.16 3.69 92.95 3.36 47.76 99.48
Datasource (twitter) 2.68 93.59 3.73 66.08 1.3 97.22 1.48 7.00 2.04 94.90 3.06 49.10 99.59

Table 1: Robustness evaluation results of Mistral-7B-Instruct-v0.3 on the SURE_Wiki dataset. Org indicates the
accuracy on original instances, while Acc refers to the accuracy after introducing perturbations. We use Bold to
mark the WR values that are higher than the LR, suggesting that the perturbation is beneficial.

K-G K-N U-G U-N Total

Style 7766 31152 2593 37692 79203
Source 9249 32435 3228 39101 84013
Logic 9724 35537 3587 41990 90838
Format 11037 38018 4141 45518 98714
Meta 11104 38018 4255 45420 98797

Table 2: Statistics of the SURE_Wiki dataset for Mistral-
7B-Instruct-v0.3. K-G denotes the instances composed
of (Known query, Golden Document), while U-N refers
to the instances consisting of (Unknown query, Noise
Document). The values represents the number of in-
stance pairs for each type of perturbations within the
category of spurious features.

consistently generate incorrect responses in the ab-481

sence of ground truths. In this case, even though the482

responses change, the RR does not decrease since483

all responses remain incorrect. This stems from484

the evaluation method of the proposed RR metric,485

which measures unrobustness by tracking changes486

in answer correctness rather than minor variations487

in responses. This design focuses on meaningful488

differences in user-relevant performance. There-489

fore, we primarily focus on the RR results for the490

golden documents in the following experiments.491

For Different Perturbations We observe no-492

table differences in robustness rates across the five493

types of spurious features. However, within each494

category, the RR values for different perturbations495

are relatively similar. Hence, the robustness of spu-496

rious features can be estimated by averaging the497

RR values of their corresponding perturbations. 498

When further comparing perturbations within 499

the same category, we find that while their RR val- 500

ues are comparable, their WR and LR can differ 501

significantly. If the WR exceeds the LR, more in- 502

stances are corrected than misanswered after intro- 503

ducing perturbations. This suggests that not every 504

spurious feature is harmful and they can even 505

be beneficial sometimes. 506

4.3 SIG Benchmark & Further Analysis 507

The raw synthetic dataset is not ideal for extensive 508

evaluation due to its large size. Furthermore, the 509

class imbalance result in unfair comparisons across 510

different types of spurious features. To facilitate 511

more efficient evaluation, we extract the most chal- 512

lenging data from our synthetic datasets to create a 513

lightweight benchmark: SIG (Spurious features In 514

Golden document) 5. 515

Are Spurious Features a Widespread Problem? 516

To examine whether spurious features are merely 517

artifacts of specific model choices, we evaluate 518

a diverse set of SOTA LLMs on the SIG bench- 519

mark. The evaluated models include GPT-4O, GPT- 520

4O-mini, Mistral-Large-Instruct 6, Llama-3.3-70B- 521

Instruct, Qwen2.5-72B-Instruct, and DeepSeek-V3 522

(671B,MoE), covering a wide range of model series 523

and architectures. To better compare the robustness 524

of different models, we average the RR of each 525

5Specifically, we randomly select 100 instance pairs for
each perturbation where both models lack robustness.

6https://huggingface.co/mistralai/Mistral-Large-Instruct-
2411
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perturbation within a category to derive the overall526

robustness for a specific type of spurious feature.527

The performance of six SOTA LLMs is then visu-528

alized using a radar chart, as shown in Figure 4.529

Despite the impressive robustness of closed-source530

models, they still exhibit sensitivity to certain spe-531

cific perturbations. These results demonstrate532

that spurious features are a widespread issue533

across different model families, sizes, and archi-534

tectures (Dense VS. MoE).535

Figure 4: Robustness comparison of six SOTA LLMs.

Can Scaling up Model Size Solve the Problem?536

To investigate the impact of parameter scale on537

RAG robustness, we gradually increase the size538

of LLM-based readers (Qwen2.5 series, ranging539

from 0.5B to 72B) and evaluate their robustness540

across five types of spurious features. As illus-541

trated in Figure 5, the robustness rate for all spuri-542

ous features shows a relatively upward trend as the543

model size increases. However, when we further544

scale the model from 32B to 72B, the RR under-545

goes a significant decline (except for format and546

meta). Interestingly, for meta perturbations, while547

RALMs demonstrate strong robustness across all548

scales, their performance receives little to no ben-549

efit from scaling up. These findings suggest that550

although scaling up model size can enhance ro-551

bustness to some extent, it fails to fundamentally552

eliminate sensitivity to spurious features.553

Are Existing Robustness Solutions Effective?554

We evaluate whether methods developed to im-555

prove the robustness of RALMs against explicit556

noise can generalize to spurious features. Previ-557

ous work, such as Chain-of-Note (CON) (Yu et al.,558

Figure 5: Scaling analysis on Qwen2.5 series.

2023), aims to enhance robustness by generating 559

thorough rationale before producing the answer. 560

Moreover, recent breakthroughs in the reasoning ca- 561

pabilities of LLMs have significantly advanced the 562

cutting edge of RAG. By integrating with reasoning 563

models, RAG can overcome previous limitations 564

and adapt to more complex scenarios (Gao et al., 565

2025). Therefore, we test both CON and DeepSeel- 566

R1 on our SIG benchmark. Notably, the robustness 567

rate of CON is even lower than the baseline with- 568

out applying CON. A similar phenomenon was 569

observed in experiments with the reasoning model 570

DeepSeek-R1 (Guo et al., 2025), whose robustness 571

was even worse than its base model, DeepSeek-V3. 572

This indicates that the robustness against spu- 573

rious features cannot be effectively improved 574

through COT-style techniques.

Style Source Logic Format Meta

Qwen2.5-72B 78.5 76.0 88.6 92.5 95.0
+ Chain-of-Note 74.0 81.7 66.7 84.8 91.0

DeepSeek-V3 96.5 93.6 95.6 94.0 96.5
DeepSeek-R1 84.5 87.3 83.3 87.0 87.5

Table 3: Robustness evaluation of CoN and DeepSeek-
R1. Values that show improvements over the baseline
are marked in bold.

575

5 Conclusion 576

In this work, we formally highlight the spurious 577

features problem in RAG system. Through prelimi- 578

nary experiments, we provide statistical evidence 579

to support the presence of spurious features in 580

RALMs. We also propose a novel evaluation frame- 581

work, SURE, to assess the robustness of RALMs 582

against spurious features. Extensive evaluations 583

and in-depth analysis highlight the urgent need to 584

develop solutions for addressing spurious features 585

in RAG systems. 586
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6 Limitations587

We strive to comprehensively cover all types of588

spurious features that may arise in RAG scenarios.589

However, some unidentifiable spurious features590

may fall outside the scope of our taxonomy and591

thus fail to be quantified using the proposed SURE592

framework. Furthermore, while our experiments593

highlight the limitations of existing RAG robust-594

ness solutions in addressing spurious features, we595

do not propose effective methods to enhance the596

robustness of RALMs against them.597

7 Ethics Statement598

We construct our testbed using publicly available599

seed data. During the data synthesis process, we600

carefully preserve the original semantics, thereby601

avoiding the generation of toxic content.602
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A Related Work837

A.1 Robustness Evaluation of Retrieval-Augmented Generation838

RAG systems comprise two core components: a retriever and an LLM-based reader. Augmenting LLMs839

with retrieved external knowledge has been proven to effectively reduce hallucinations (Shuster et al.,840

2021; Kang et al., 2023). However, the retrieved contexts inevitably contains noise in addition to desirable841

knowledge, which may mislead LLMs to produce an incorrect response (Bian et al., 2024; Feldman842

et al., 2024). Previous works have explored automated evaluation frameworks to assess the robustness843

of RAG systems in various settings. For instance, Chen et al. (2024a) benchmarked four fundamental844

capabilities required for RAG, including noise robustness, negative rejection, information integration and845

counterfactual robustness. Some studies have provided a detailed taxonomy of noise documents to further846

simulate the complexity of real-world scenarios and highlighted the potential positive effects of certain847

types of noise (Cuconasu et al., 2024; Wu et al., 2024a). There are also some recent works that propose848

using LLM-as-a-judge (Li et al., 2024a) to evaluate the RAG system (Wang et al., 2024).849

While these studies have identified several explicit noises that affect the robustness of RAG systems,850

they overlook implicit noises. This type of noise, such as phrasing and formatting, is everywhere and851

unavoidable, as it coexists with the grounding data without altering its semantic information. In this work,852

we define these semantic-agnostic noises as spurious features and evaluate the robustness of RALMs to853

such noises.854

A.2 Prompt Sensitivity of LLMs855

Large Language Models take prompts as inputs and then generate response accordingly. Prompts are856

instructions provided to an LLM to perform specific tasks automatically and ensure desired qualities857

in the generated output. However, it is known that current LLMs are sensitive to the features of input858

prompts (Zhu et al., 2023). This sensitivity poses challenges for researchers attempting to evaluate the859

model’s performance accurately and precisely (Zhuo et al., 2024).860

Some existing works have investigated the impact of different prompt techniques on model performance,861

including chain-of-thought (Wei et al., 2022), in-context learning (Min et al., 2022), and role-play862

prompting (Kong et al., 2024). Beyond these causal features that significantly influence the meaning863

of prompts, other works have demonstrated that LLMs are highly sensitive to spurious features (Sclar864

et al., 2024), e.g, prompt formatting (He et al., 2024), language style (Li et al., 2023), the order of865

options (Pezeshkpour and Hruschka, 2024).866

Currently, there is no statistical or empirical evidence to support the existence of spurious features867

in RALMs. To address this gap, we extend the definition of spurious features to RAG systems through868

statistical testing and empirical analysis.869

B Preliminary Experiment Results870

Using Contriever-msmarco, we recall 100 documents from the Wikipedia dump for each query in the NQ-871

open dataset. After filtering out documents that do not contain golden answers, we select the first-ranked872

and last-ranked documents based on their oracle scores for each query from the remaining documents,873

resulting in two sets of 2658 samples each. By comparing the differences in feature distributions between874

these two sets, we can assess whether RALMs exhibits sensitivity toward semantic-agnostic features. If875

these two sets do not belong to the same feature distribution, this can be attributed to the inherent bias876

of LLMs towards semantic-agnostic features. To confirm that this bias is not introduced by the dense877

retriever in first-stage retrieval, we establish a control group by randomly sampling two documents instead878

of selecting the first- and last-ranked documents.879

To evaluate whether the two distributions are same, we employ the Kolmogorov-Smirnov (K-S) test.880

The following semantic-agnostic features are measured in the experiments:881

• Flesch Score: A readability metric designed to evaluate text difficulty. It is calculated based on the882

average number of syllables per word and the average number of words per sentence. The Flesch883
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score is a number on a scale from 0 to 100, where a higher score indicates that the text is easier to 884

read. 885

• Distinct-1: A metric used to assess the diversity of generated text. It calculates the proportion of 886

unique words (distinct words) to the total number of words in the output. A higher Distinct-1 score 887

indicates that the text contains a greater variety of unique words, implying more diversity in the 888

generated content. 889

• Dependency Tree Depth (DTD): A syntactic complexity metric calculated by analyzing its depen- 890

dency tree. Dependency Tree Depth refers to the maximum depth of a sentence’s dependency parse 891

tree. A deeper tree suggests more complex sentence structures, while a shallower tree indicates 892

simpler syntactic constructions. 893

• Perplexity (PPL): A metric used for evaluating language models, measuring how well a probabilistic 894

model predicts a given text. It reflects the uncertainty of a language model when generating sequences 895

of words. Lower PPL values indicate better predictive performance, meaning the model assigns 896

higher probabilities to the actual labels in the sequence. 897

• Token Length: We compute the total number of tokens in a text as an alternative measure of text 898

length, given that the documents in our corpus have been pre-segmented into fixed 100-word chunks. 899

The value is model-specific and depends on the model’s vocabulary. 900

Kolmogorov-Smirnov (K-S) Test The K-S test is a non-parametric statistical test used to compare the 901

distribution of two datasets. It evaluate whether two samples come from the same underlying probability 902

distribution. The null hypothesis of the K-S test is that the two samples are drawn from the same 903

distribution, while the alternative hypothesis is that the two samples are drawn from different distributions. 904

There are two key values provided by K-S test: the K-S Statistic quantifies the largest difference between 905

the two sample distributions, and the p-value assess the statistical significance of that difference. If the 906

p-value is lower than a chosen significance level (0.05 in our experiments), we reject the null hypothesis, 907

concluding that the two distributions are significantly different. Otherwise, we fail to reject the null 908

hypothesis, suggesting that there is no significant difference between the two distributions. 909

The K-S statistic and P-value are presented in Table 4 and Table 5. Furthermore, we visualize the 910

feature distributions for both the experimental and control groups in Figure 6. For all tested features 911

in the experimental group, the K-S test rejects the null hypothesis, concluding that the distribution of 912

the two sets are significantly different. In contrast, for the control group, the K-S test fails to reject the 913

null hypothesis. The results for Llama-3.1-8B-Instruct are also provided in Figure 7. According to these 914

results, we can conclude that RALMs exhibit bias toward spurious features in documents. 915

Experimental Group Control Group

K-S statistic P-value K-S statistic P-value

Flesch score 0.0677 1.01× 10−5∗∗∗ 0.0301 0.1799
Distinct-1 0.0756 4.95× 10−7∗∗∗ 0.0203 0.6431
DTD 0.0636 4.29× 10−5∗∗∗ 0.0124 0.9866
PPL 0.0722 1.88× 10−6∗∗∗ 0.0162 0.8776
Token Length 0.1708 2.91× 10−34∗∗∗ 0.0256 0.3493

Table 4: K-S test results for Mistral-7B-Instruct-v0.3 as the oracle retriever.

C Implementation Details for Injecting Spurious Features 916

We provide detailed prompts for LLM-based perturbations in Figure 8. For rule-based perturbations, 917

placeholder template is presented in Figure 9. 918
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Experimental Group Control Group

K-S statistic P-value K-S statistic P-value

Flesch score 0.0305 0.1694 0.0173 0.8210
Distinct-1 0.0798 8.94× 10−8∗∗∗ 0.0327 0.1159
DTD 0.0474 0.0051∗∗ 0.0203 0.6431
PPL 0.0538 0.0009∗∗∗ 0.0181 0.7791
Token Length 0.1275 2.99× 10−19∗∗∗ 0.0188 0.7349

Table 5: K-S test results for Llama-3.1-8B-Instruct as the oracle retriever.

(a) Feature distributions of the experimental group (b) Feature distribution of the control group

Figure 6: Visualization of feature distributions for Mistral-7B-Instruct-v0.3
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(a) Feature distributions of the experimental group (b) Feature distribution of the control group

Figure 7: Visualization of feature distributions for Llama-3.1-8B-Instruct
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Style Perturbations

[Simple]
Please simplify the following text while preserving its original meaning. Use shorter
sentences, basic vocabulary, and clear language. Avoid complex structures, technical terms,
or ambiguous expressions.
Here is the passage to simplify:{Document}
[Complex]
Please complexify the following text while preserving its original meaning. Use longer
sentences, intricate sentence structures, and advanced vocabulary. Avoid contractions,
informal language, and colloquial expressions, ensuring the text maintains a professional
and authoritative tone throughout.
Here is the passage to complexify:{Document}

Source Perturbations

Please rewrite the following passage. Ensure that the overall meaning, tone, and important
details remain intact. Avoid any significant shifts in style or focus. The aim is to create a
fresh version while faithfully conveying the original content.
Here is the passage to paraphrase:{Document}

Logic Perturbations

[LLM-Ranked]
Rearrange the following list of sentences in your preferred logical order and provide only
the indices of the sentences. Please do not include any explanations.
Example:{Example}
Sentences List:{Sentences List}
The length of the Sentences List is {Length of Sentences List}. Therefore, the indices must
contain {Length of Sentences List} elements, and the index values cannot exceed {Length
of Sentences List - 1}.
[Reverse] [Pyhton Code]
[Random] [Python Code]

Figure 8: Prompt templates for LLM-based perturbations.
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Format Perturbations

[JSON]
{

"title": "{Title}",
"text": "{Document}"

}

[HTML]
<html lang="en">
<head>

<meta charset="UTF-8">
{Title}

</head>
<body> {Document} </body>
</html>

[YAML]
Title: {Title}
Text: {Document}

[Markdown]
# {Title}
{Document}

Metadata Perturbations

[Timestamp]
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name='timestamp' content='{timestamp}'>
{Title}

</head>
<body> {Document} </body>
</html>

[Datasource]
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name='datasource' content='{datasource}'>
{Title}

</head>
<body> {Document} </body>
</html>

Figure 9: Placeholder templates for rule-Based perturbations.
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D Implementation Details for Preserving Causal Features919

We employ a bidirectional entailment algorithm to ensure the semantic equivalence before and after920

introducing spurious features. The prompts for its core component, NLI model, are shown in Figure921

10. Furthermore, we apply a simple string-matching strategy to preserve ground truths. Specifically, for922

Golden documents that originally contained the correct answers, we keep them only if they preserve the923

ground truths after perturbation. For Noise documents that initially lack the correct answers, we discard924

them if they unexpectedly acquire ground truths due to perturbations.925

Consider the two passages below.
Premise: {raw text}
Hypothesis: {perturbated text}
Does the premise semantically entail the hypothesis? Answer with ’entailment’ if they are
paraphrases,’contradiction’ if they have opposing meanings, or ’neutral’ if they are neither.
Response:

Figure 10: Prompts for LLM-based NLI system.

E Statistics of the Synthetic Dataset926

We present the dataset statistics for evaluating Llama-3.1-8B-Instruct in Table 6.927

K-G K-N U-G U-N Total

Style 7321 28975 3038 39869 79203
Source 8768 30145 3709 41391 84013
Logic 9229 33294 4082 44233 90838
Format 10481 35616 4697 47920 98714
Meta 10563 35451 4796 47987 98797

Table 6: Distribution of the SURE_Wiki dataset for Llama-3.1-8B-Instruct.
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F Experimental Setup Details 928

Prompts The instruction I in the RAG prompt P = (I,G,Q), shown in Figure 11, is derived from Cu- 929

conasu et al. (2024), with slight modifications to better adapt to our setting. 930

Implementation Details We follow the typical "retrieve-read" setting of RAG paradigm. For the 931

retrieval module, we use Contriever-msmarco7, a BERT-based dense retriever, as the default retriever. It is 932

finetuned on the MS MARCO dataset (Bajaj et al., 2016) after unsupervised pretraining via contrastive 933

learning (Izacard et al., 2021). To optimize the efficiency of vector similarity searches, we employ the 934

Faiss library (Douze et al., 2024). For the read module, we deploy LLMs on NVIDIA A100 GPUs 935

and accelerate inference with vllm8. We set the temperature to 0.1 to ensure stable outputs and strong 936

reproducibility. 937

You are given a question and you MUST respond by EXTRACTING the answer (max 5 tokens)
from the provided document. If the document does not contain the answer, respond with NO-RES.

Figure 11: Instruction I used for the QA task.

Llama-3.1-8B-Instruct

Taxonomy Perturbations
Known-Golden Known-Noise Unknown-Golden U-N

LR RR WR Org Acc LR RR WR Org Acc LR RR WR Org Acc RR

Style
Simple 7.79 83.04 9.18

66.03
67.42 1.70 95.80 2.50

4.12
4.92 8.43 82.88 8.69

51.42
51.68 99.45

Complex 6.00 85.60 8.40 68.43 1.91 96.59 1.50 3.71 6.71 84.86 8.43 53.13 99.57

Source
LLM-Generated 5.89 86.43 7.69

65.62
67.43 1.43 96.83 1.74

4.13
4.45 6.20 85.71 8.09

49.15
51.04 99.56

Self-Generated 6.55 85.01 8.44 67.52 1.55 96.37 2.09 4.67 6.52 86.36 7.12 49.74 99.57

Logic
Reverse 5.06 90.82 4.12

62.95
62.01 1.13 97.82 1.06

4.43
4.36 5.73 89.71 4.56

45.84
44.66 99.67

Random 3.91 93.16 2.93 61.97 0.86 98.31 0.83 4.40 4.21 91.67 4.12 45.74 99.72
LLM-Ranked 3.24 93.93 2.83 62.54 0.82 98.43 0.74 4.36 3.58 93.36 3.06 45.32 99.76

Format

JSON 7.01 88.25 4.74

63.91

61.64 1.70 97.25 1.05

3.87

3.21 5.92 89.63 4.45

49.35

47.88 99.61
HTML 11.85 84.46 3.69 55.75 2.70 96.90 0.40 1.56 9.33 86.78 3.90 43.92 99.61
YAML 5.26 89.94 4.80 63.45 1.26 97.41 1.33 3.94 4.79 90.80 4.41 48.97 99.67
Markdown 2.32 92.23 5.45 67.04 0.60 96.89 2.51 5.77 2.34 93.46 4.19 51.20 99.61

Metadata

Timestamp (pre) 2.08 95.81 2.11

55.77

55.80 0.28 99.42 0.29

1.58

1.59 2.54 95.56 1.90

43.31

42.66 99.95
Timestamp (post) 2.04 95.86 2.10 55.84 0.25 99.43 0.32 1.64 2.81 95.56 1.63 42.12 99.95
Datasource (wiki) 2.11 93.45 4.44 58.10 0.23 98.96 0.81 2.17 3.25 92.47 4.27 44.33 99.86
Datasource (twitter) 2.27 94.11 3.62 57.11 0.31 99.25 0.43 1.70 2.77 93.97 3.25 43.79 99.91

Table 7: Robustness evaluation results of Llama-3.1-8B-Instruct on the synthetic dataset. We use Bold to mark the
WR values that are higher than the LR, suggesting that the perturbation is beneficial.

7https://huggingface.co/facebook/contriever-msmarco
8https://github.com/vllm-project/vllm
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