
SLAMB: Accelerated Large Batch Training with Sparse Communication

Hang Xu 1 Wenxuan Zhang 1 Jiawei Fei 1 Yuzhe Wu 2 TingWen Xie 2 Jun Huang 2 Yuchen Xie 2

Mohamed Elhoseiny 1 Panos Kalnis 1

Abstract
Distributed training of large deep neural networks
requires frequent exchange of massive data be-
tween machines, thus communication efficiency
is a major concern. Existing compressed com-
munication methods are either not compatible
with large batch optimization algorithms, or do
not provide sufficient speedup in large scale. In
this paper, we combine sparsification-based gradi-
ent compression with the layer-wise adaptive mo-
ments optimizer for large batch training (LAMB).
We propose SLAMB, a novel communication-
efficient optimizer that supports large batch sizes
and scales to thousands of GPUs. SLAMB
employs momentum masking, local error com-
pensation, and element-wise adaptive rescaling
to achieve accurate layer-wise weight updates,
which translates to fast convergence for very large
batches. Our empirical results show that, com-
pared to the state-of-the-art, SLAMB transmits
half the amount of data in large-batch BERT pre-
training, without sacrificing accuracy. Moreover,
SLAMB achieves excellent scalability in large
computing infrastructures. For instance, SLAMB
with 128 GPUs reduces the training time of Swin
Transformer pre-training on ImageNet to 5.35
hours, which is 2 hours faster than the state-of-
the-art. At the extreme, we trained BERT-XL
(2.8B parameters) on 1,024 NVIDIA A100 GPUs,
where SLAMB achieved 90% scaling efficiency.

1. Introduction
Modern deep neural networks (DNNs) are becoming un-
precedentedly large in various machine learning fields, in-
cluding computer vision, natural language processing, and

1King Abdullah University of Science and Technology, Thuwal,
Kingdom of Saudi Arabia 2Meituan, Beijing, China. Correspon-
dence to: Hang Xu <hang.xu@kaust.edu.sa>, Panos Kalnis
<panos.kalnis@kaust.edu.sa>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

many others. For example, BERT (Devlin et al., 2018) has
340M parameters and GPT-3 (Brown et al., 2020) has up to
175B parameters. In order to train such models within rea-
sonable time, large-scale distributed training is commonly
utilized. Unfortunately, synchronous stochastic gradient
descent (SGD) and its variants do not scale-up well due to
two challenges: (i) using SGD with very large batch size
typically degrades generalization accuracy; and (ii) scaling
efficiency is severely compromised due to communication
overhead.

The generalization issue of large-scale training can be ad-
dressed by layer-wise adaptive large batch training tech-
niques, such as LARS (You et al., 2018) and LAMB (You
et al., 2020). For instance, LAMB can scale the batch size
of Adam (Kingma & Ba, 2015) from 512 to 64K for BERT
pre-training, without affecting accuracy. However, com-
munication is still a major performance bottleneck, due to
the frequent gradient synchronization. We find that LAMB
suffers from low scaling efficiency in large-scale distributed
training. As illustrated in Table 1, by scaling LAMB to
1,024 GPUs, the scaling efficiency over the baseline (i.e.,
Adam on 8 GPUs) is only 53%; essentially, almost half of
the 1,024 GPUs are heavily underutilized. To alleviate this,
compressed communication has been proposed to accelerate
the training speed by reducing the volume of the exchanged
data. 1-bit LAMB (Li et al., 2022) combines 1-bit quantized
compression with LAMB. However, due to its warm-up
strategy, 1-bit LAMB reduces the volume of communicated
data only by 4.6 times; in Table 1 we show that the resulting
scaling efficiency on 1,024 GPUs is 80.9%.

In this paper, we address these challenges by combining
large batch optimization (i.e., LAMB) with sparse com-
munication and propose a novel communication-efficient
large batch optimization algorithm, called SLAMB1. Our
method scales efficiently to thousands of GPUs, without
compromising accuracy. Our contributions are:

• We develop a novel communication efficient layer-wise
adaptive algorithm SLAMB for large batch DNN opti-
mization. SLAMB employs momentum masking, local

1SLAMB: Sparse Layer-wise Adaptive Moments opti-
mizer for large Batch training. Code is available at
https://github.com/hangxu0304/SLAMB

1

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 1. Comparison of scaling efficiency of different optimization algorithms on BERT-XLarge (2.7 billion parameters) pre-training task
on wikipedia dataset (128 seqlen). We measure the throughput (samples per second) on a dedicated cluster with up to 1024 NVIDIA
A100 GPUs, where each node is equipped with 8 GPUs and 100 Gbit/s inter-node network connection.

Algorithm Batch size #GPU Throughput
(samples/s) Speedup Scaling

efficiency
Volume

Reduction Large batch Compressed
communication

Compression
at all steps

Adam 512 8 435 1.0 × - -
LAMB 64K 1024 29520 67.8 × 53.0% 1.0 × ✓
1-bit LAMB 64K 1024 45083 103.6 × 80.9% 4.6 × ✓ ✓
SLAMB 64K 1024 50412 115.8 × 90.5% 9.1 × ✓ ✓ ✓

error compensation and element-wise adaptive rescal-
ing to ensure correct layer-wise scaling with sparse
communication. To the best of our knowledge, our
algorithm is the first to combine sparsification-based
compression with large-batch training.

• We provide convergence analysis for SLAMB in non-
convex settings; we show that SLAMB achieves the
same convergence rate as LAMB.

• We evaluate the performance of SLAMB in popular lan-
guage modeling and image classification tasks, namely
BERT pre-training and Swin Transformer training. In
both tasks, SLAMB with large batch training reduces
the communication volume by up to 9.1 times, without
compromising accuracy. For comparison, the existing
state-of-the-art (i.e., 1-bit LAMB) reduces the volume
of communicated data for BERT pre-training, only by
up to 4.6 times.

• We demonstrate the superiority of SLAMB on large-
scale GPU clusters. On a 128-GPU NVIDIA V100
cluster, SLAMB executes the Swin Transformer train-
ing task in 5.3 hours, which is around 2 hours faster
than the state-of-the-art (i.e., 1-bit LAMB). Moreover,
in Table 1 we show that SLAMB executes the pre-
training task of BERT-XLarge (2.7B parameters) on a
cluster with 1,024 NVIDIA A100 GPUs, with a scaling
efficiency of 90.5%.

2. Related Work
Data Parallel DNN Training. The most common dis-
tributed deep learning is data parallel training via SGD,
which enables each worker to process in parallel a different
subset (mini-batch) of the training data. At each iteration,
each worker runs forward and backward propagation inde-
pendently to generate gradients. Then, all workers combine
the local gradients to produce an averaged gradient that
is applied to the model, prior to the next iteration. The
gradient aggregation can be done synchronously or asyn-
chronously. This paper focuses on the synchronous case,
which is a widespread use due to its convergence guarantees
(Zinkevich et al., 2010).

Large Batch Training. Parallelizing DNN training work-
loads on thousands of machines inevitably results to large
batch sizes. (Hoffer et al., 2017; Keskar et al., 2017;
Krizhevsky, 2014; Li et al., 2014) found that naı̈vely increas-
ing the batch size, often results in performance degradation.
Several works alleviate this issue by carefully hand-tuning
training hyper-parameters, like learning rate (LR) and mo-
mentum (Goyal et al., 2017; Li, 2017; You et al., 2018;
Shallue et al., 2019). Linear scaling (Bottou et al., 2018)
and square root scaling (Jastrzebski et al., 2017) are two
commonly used LR heuristics. Using LR warm-up and lin-
ear scaling, (Goyal et al., 2017) managed to train ResNet-50
with batch size 8192 without loss in generalization accuracy.
To further increase the batch size, LARS (You et al., 2017)
and LAMB (You et al., 2020) propose to adaptively scale
the LR for each layer of the model. This adaptive strategy
enables 32K batch size for ImageNet training and 64K batch
size for BERT training. By combining LAMB with Nes-
terov Momentum and linear-constant LR scheduler, LANS
(Zheng et al., 2020) managed to train BERT with 96K batch
size. We focus on LAMB in this paper.

Compressed Communication. Compressed communica-
tion methods aim to reduce the number of transmitted bits by
applying a carefully chosen gradient compression scheme,
while achieving similar accuracy as uncompressed methods.
For example, quantization methods (Alistarh et al., 2017;
Wen et al., 2017; Strom, 2015; Seide et al., 2014; Xu et al.,
2021a) reduce the amount of communication volume by
reducing the per-element bit-width. Sparsification meth-
ods (Lin et al., 2018; Wangni et al., 2018; Alistarh et al.,
2018; Stich et al., 2018; Xu et al., 2021b) instead send a
subset of gradient elements, which can be selected by vari-
ous selection algorithms such as hard-threshold, Top-k and
Random-k. By properly setting training parameters, gra-
dients can be quantized to 1-bit (Seide et al., 2014) or be
sparsified by up to 0.1% (Lin et al., 2018) while not affect-
ing the training accuracy. Recent works find that directly
applying existing compression methods in more complex op-
timizers (e.g. Adam, LAMB) leads to slow convergence and
low accuracy, thus requiring manual adaptation. 1-bit Adam
(Tang et al., 2021) and 1-bit LAMB (Li et al., 2022) propose
a novel two-stage compression strategy to ensure the same
convergence speed as Adam and LAMB when using 1-bit

2

SLAMB: Accelerated Large Batch Training with Sparse Communication

compression. Unlike previous work that uses quantization,
in this paper we focus on combining sparsification-based
compression with LAMB.

3. Motivation and Insights
In this section, we investigate the limitations of existing
methods and the challenges of applying gradient sparsifica-
tion in LAMB. We start by revisiting the LAMB algorithm.
The updating rule of LAMB can be summarized as:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)(gt)
2

mt = mt/(1− βt
1), vt = vt/(1− βt

2)

ut =
mt√
vt + ϵ

xt+1 = xt − ηt
ϕ(∥xt∥)
∥ut∥

ut

(1)

Here, gt,mt, vt, xt denote the mini-batch stochastic gradi-
ent, momentum, variance, and model parameters for each
layer of the neural network at step t. β1, β2 are the de-
caying parameters. η is the learning rate. ϵ is a small
constant to avoid division by zero. ϕ is a scaling func-
tion which is usually configured as a clipping function
ϕ(z) = min{max{z, a}, b}. For simplicity, we omit the
weight decay term. Intuitively, LAMB ensures the norm of
the model update is of the same order as that of the parame-
ter for each layer. This usually leads to faster convergence
in large-batch training.

1-bit LAMB. 1-bit LAMB proposes a novel way to com-
bine 1-bit gradient compression with LAMB, since naively
combining 1-bit compression with LAMB or Adam leads
to slower convergence (Li et al., 2022; Tang et al., 2021).
The main idea is that, during training, the non-linear term

in LAMB, e.g.,
√
vt, or ϕ(∥x(i)

t ∥)
∥u(i)

t ∥
, becomes stable after a

certain number of steps. Hence, by freezing these terms,
we can use LAMB in the same way as momentum SGD
(Goyal et al., 2017). However, in order to find a stable
value for these terms, we need to employ vanilla LAMB
as a warm-up for a certain number of steps, before enter-
ing its compression stage. (Li et al., 2022) reports that the
warm-up stage accounts for 16.7% - 19.2% of the total steps
in BERT pre-training task. This motivates us to develop a
new compression strategy that does not rely on freezing the
non-linear terms of LAMB.

LAMB with naive sparsification. To explore compres-
sion strategy without freezing non-linear terms, we start
by implementing the naive sparsification methods (Top-k,
Random-k) within LAMB and conduct the experiment on
BERT pre-training task (see details in Algorithm 2 in Ap-
pendix). The results are shown in Figure 1. We find that,

0 50000 100000 150000 200000
Step

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

LAMB
LAMB w/ Top-k
LAMB w/ Random-k

(a) 2K batch size

0 1000 2000 3000 4000 5000 6000 7000
Step

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

LAMB
LAMB w/ Top-k
LAMB w/ Random-k

(b) 64K batch size

Figure 1. Loss curve of BERT-Base pre-training using naive gradi-
ent sparsification in LAMB at different batch sizes (2K, 64K). We
set compression ratio k=0.1% in (a) and k=10% in (b).

for small batch size 2K, by synchronizing only 0.1% of
gradients, Top-k and Random-k convergences to the similar
loss value of LAMB, though the convergence rate is slightly
slower in the initial stage. However, when the batch size is
increased to 64K, even if we increase the compression ratio
k to 10%, both methods converge much slower than LAMB.
Such convergence degradation indicates that gradient sparsi-
fication methods do not generalize well for extremely large
batch-size settings.

To find out the fundamental reason behind the issue, we
examine the updating rule of LAMB together with gradient
sparsification. Notice that LAMB uses the momentum term
mt instead of the original gradient gt to compute the model
updates. Since mt = β1mt−1+(1−β1)gt, where β1 = 0.9
in most cases, the gradient gt in current step only contributes
to a fraction of mt. This means the model update term ut

mainly comes from the history momentum mt−1. Therefore,
only synchronizing the compressed gradient is not sufficient
for momentum-based optimizers. To overcome this, (Lin
et al., 2018) proposed to compress and synchronize the
momentum term in their method. Inspired by this, we also
employ masked momentum synchronization in SLAMB to
address this issue. See section 4.1.

LAMB with naive error compensation. We further in-
vestigate the compatibility between error compensation
mechanism and LAMB. Error compensation has been
widely adopted in various compressed communication meth-
ods (Seide et al., 2014; Karimireddy et al., 2019; Lin et al.,
2018) to improve the convergence rate due to the existence
of compression error. The basic idea is that, for vanilla SGD,
the compression error in the current step can be added to
the model updates in the next step, so that the history error
terms get cancelled over iterations. The update rule can be
written as:

xt+1 = xt−η(C[gt+δt−1]) = xt−η(gt−δt + δt−1︸ ︷︷ ︸
cancelled

) (2)

where C[·] denotes the compression operation and δt−1 =
(gt−1+δt−2)−C[gt−1+δt−2] is the compression error in t−
1 step. We can see that error compensation works for vanilla

3

SLAMB: Accelerated Large Batch Training with Sparse Communication

SGD because the model update term xt+1 − xt depends
linearly on compressed gradient C(gt). However, this is not
the case for LAMB, as the model update term ut =

mt√
vt+ϵ

indicates that
√
vt varies over iterations. Therefore, using

naive error compensation in LAMB would cause a larger
error instead of getting the error canceled. Motivated by
this, in SLAMB we use local error compensation to avoid
the accumulation of history errors. See section 4.1.

4. Algorithm
Problem setup. In this paper, we study non-convex
stochastic optimization problems of the form:

min
x∈Rd

{
f(x) :=

1

n

∑
i∈[n]

f (i)(x)
}

, (3)

where f (i) : Rd → R is a smooth non-convex function for
all i ∈ [n] := {1, 2, . . . , n} representing the loss function
on each node. d is the dimensionality of the input model x.

Notations and definitions. We use the following nota-
tions throughout the paper:

• [x]j is the j-th element of vector x.

• ∥ · ∥ denotes the l2 norm of a given vector, unless
otherwise specified.

• ⊙ denotes the dot product between two vectors.

• ¬ denotes element-wise NOT operation for a given 0/1
vector.

•
√
x and (x)2 are element-wise square root and square,

respectively, if x is a vector.

• x
y or x/y is element-wise division if x, y are vectors.

4.1. SLAMB algorithm

Based on the investigation of naive sparsification in LAMB,
we propose SLAMB, summarized in Algorithm 1. SLAMB
differs from the original LAMB algorithm in three aspects:
sparse communication, adaptive scaling function, and model
synchronization. The differences are marked by comments
in Algorithm 1. We explain each of them next.

Sparse communication and local error compensation.
Unlike LAMB performs full gradient synchronization,
SLAMB only synchronizes a subset of the elements in mo-
mentum and gradient (line 8,9 in Algo. 1). We use a 0/1
mask vector Mt to select which elements to synchronize,
where [Mt]j ∼ Bernoulli(k). Note that synchronization
requires an identical mask among all nodes. After commu-
nication, the synchronized part needs to be compensated
by the local error, which is the unsynchronized part and

Algorithm 1 SLAMB

1: Input: x1 ∈ Rd, number of nodes n, learning rate {ηt}Tt=1,
weight decay λ, parameters 0 < β1, β2, β3, k < 1, ϵ > 0,
scaling function ϕ, synchronization interval H

2: (On each node i)
3: Set m(i)

0 = 0, v(i)0 = 0, c(i)0 = 1
4: for t = 1 to T do
5: Compute local mini-batch stochastic gradient g(i)t

6: Generate 0/1 mask vector Mt by Random-k selection
7: m

(i)
t = β1m

(i)
t−1 + (1− β1)g

(i)
t

8: m
(i)
t = m

(i)
t ⊙ ¬Mt+

1
n

∑n
i=1[m

(i)
t ⊙Mt] {Sync m}

9: g
(i)
t = g

(i)
t ⊙ ¬Mt+

1
n

∑n
i=1[g

(i)
t ⊙Mt] {Sync g}

10: v
(i)
t = β2v

(i)
t−1 + (1− β2)(g

(i)
t)2

11: m
(i)
t = m

(i)
t /(1− βt

1), v
(i)
t = v

(i)
t /(1− βt

2)

12: u
(i)
t =

m
(i)
t√

v
(i)
t +ϵ

+ λx
(i)
t

13: c
(i)
t = 1⊙Mt + β3c

(i)
t−1 ⊙ ¬Mt {Update staleness}

14: for each layer ℓ do

15: ϕmax = ϕ(
∥x(ℓ,i)

t ⊙M
(ℓ)
t ∥∥u(ℓ,i)

t ∥

∥u(ℓ,i)
t ⊙M

(ℓ)
t ∥

)

16: ϕmin = ϕ(
∥x(ℓ,i)

t ⊙¬M
(ℓ)
t ∥∥u(ℓ,i)

t ∥

∥u(ℓ,i)
t ⊙¬M

(ℓ)
t ∥

)

17: ϕ̃ = ϕmaxc
(ℓ,i)
t + ϕmin(1− c

(ℓ,i)
t) {Rescale ϕ}

18: η̃t = ηtc
(ℓ,i)
t + ηt√

n
(1− c

(ℓ,i)
t) {Rescale η}

19: x
(ℓ,i)
t+1 = x

(ℓ,i)
t − η̃t

ϕ̃

∥u(ℓ,i)
t ∥

u
(ℓ,i)
t

20: end for
21: if t ∈ {H, 2H, 3H, ..., T} then
22: xt+1 = 1

n

∑n
i=1 x

(i)
t+1 {Sync x}

23: end if
24: end for
25: Output: x

can be selected by ¬Mt. Now each node has a partially
synchronized local momentum m

(i)
t and gradient g(i)t . This

leads to a partially synchronized model update u
(i)
t (line 12

in Algo. 1.). However, if we continue the model updating
by the same scaling rule as LAMB, our algorithm will suffer
from slow convergence. We find that ∥u(i)

t ∥ becomes larger
than the fully synchronized one in LAMB, thus the scaling
coefficients diminish a lot; see Figure 2. This is mainly due
to the local error compensation, where the high variance of
the unsynchronized part in u

(i)
t results in a larger ∥u(i)

t ∥. In
addition, we find that synchronizing m

(i)
t is more efficient

than synchronizing g
(i)
t in terms of variance reduction in

u
(i)
t . Therefore, in practice we skip the synchronization of

g
(i)
t as it does not affect the accuracy. Please refer to Ap-

pendix H Table 13 for experiments validation and Appendix
C for convergence analysis.

Adaptive scaling function. Since we know ∥u(i)
t ∥ is bi-

ased, we can fix it by modifying the scaling function term
ϕ(∥x(i)

t ∥) (lines 15-17 in Algo. 1.). Intuitively, if we use

4

SLAMB: Accelerated Large Batch Training with Sparse Communication

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000
Step

LAMB
LAMB w/ Random-k
SLAMB

(a) norm of model update

0.00

0.10

0.20

0.30

0.40

0.50

0 1000 2000 3000 4000 5000 6000 7000
Step

LAMB
LAMB w/ Random-k
SLAMB

(b) scaling coefficient

Figure 2. The norm of model update (∥u(i)
t ∥) and the scaling coef-

ficients (LAMB: ϕ(∥x(i)
t ∥)

∥u(i)
t ∥

, SLAMB: ϕ̃

∥u(i)
t ∥

) of the first attention

layer in BERT-Base pre-training (seqlen=128).

the synchronized part of u(i)
t and ϕ(∥x(i)

t ∥) to compute the
scaling coefficient, it will be unbiased and can be a good
approximation, as if u(i)

t was fully synchronized, assuming
x
(i)
t is synchronized. In this way, by using ϕmax, we cancel

out the bias in ∥u(i)
t ∥ and obtain ϕ

(
∥x(ℓ,i)

t ⊙M
(ℓ)
t ∥

∥u(ℓ,i)
t ⊙M

(ℓ)
t ∥

)
as the

scaling coefficient (see lines 15, 19 in Algo. 1). However,
simply applying ϕmax for the whole layer may cause diver-
gence, because ϕmax is too large for the non-synchronized
part of u(i)

t . Therefore, we need a more fine-grained way to
adaptively rescale the learning rate for each element in u

(i)
t ,

according to their synchronization frequencies. We use the
decaying factor β3 and the staleness vector ct to monitor the
status of each element. Then, we use the weighted average
between ϕmax and ϕmin to generate a new scaling function
ϕ̃, where ϕmin is the lower bound. This is because we want
to adjust the scaling coefficient according to the proportion
of the synchronized parts in the momentum: when the mo-
mentum term is accumulated by a unsynchronized gradient,
the proportion of the synchronized part is decreased by a
factor of β1. Hence we use a similar factor β3 to capture this
proportion. In this way, we manage to recover the scaling
coefficient to the same magnitude as that of the original
LAMB; see Figure 2 (b). Note that the learning rate also
needs to be rescaled in the same way to avoid potential di-
vergence (line 18 in Algo. 1.). We set the lower bound to
η/

√
n by the square root scaling rule, since each node has

1/n local mini-batch size.

Model synchronization. Since the model update u
(i)
t is

not fully synchronized, we end up with non-synchronized
model parameters x

(i)
t on each node. During non-

synchronized steps, x(i)
t has larger variance than the fully

synchronized xt, which makes the scaling coefficient larger
than LAMB’s in some cases; see Figure 2 (b). Therefore,
we perform the synchronization of model parameters every
H steps, to bound the variance. Note that the last step T is

always included for synchronization. In our experiment, we
find that H is not a sensitive parameter; therefore, we set
H = 100 as default.

4.2. Convergence analysis

In this section, we provide the convergence rate analysis for
SLAMB in general non-convex settings. We follow (Gor-
bunov et al., 2021) to use virtual iterates xt. It is defined
as the mean of the local iterates xt = 1

n

∑
i∈[n] x

(i)
t , but

only computed physically at synchronized steps, i .e., t ∈
{H, 2H, 3H, . . . , T}. g

(i)
t is the stochastic gradient com-

puted batch-wise on each node with non-synchronized pa-
rameters x(i)

t satisfying E[g(i)t] = ∇f (i)(x
(i)
t). We further

define g̃t =
1
n

∑
i∈[n] g̃

(i)
t , where g̃

(i)
t is computed on each

node with synchronized parameters xt in synchronized steps.
For the non-synchronized steps, g̃(i)t is computed virtually.
It follows that E[g̃t] = ∇f(xt). Our goal is to find an ϵ-
solution of any (random) initial point x1 such that for every
synchronized parameters xt, E

[
∥∇f(xt)∥2

]
is bounded.

Assumptions. We first introduce the assumptions fol-
lowing (You et al., 2020) and observations in the experi-
ments. We assume coordinate-wise L-smoothness for ev-
ery f (i) with respect to [x

(i)
t]j , where j ∈ [d]. That is

|∇jf
(i)(x) − ∇jf

(i)(y)| ≤ L
(i)
j

∣∣[x]j − [y]j
∣∣We use L to

denote maxj∈[d],i∈[n] L
(i)
j .

For any stochastic gradient g(i)t , we assume its variance is
coordinate-wise bounded. That is, there exists σ(i)

j for j ∈
[d], i ∈ [n] such that: E

∥∥[g(i)t]j − [∇jf
(i)(xt)]

∥∥2 ≤ [σ
(i)
j]2.

We use σ(i) to denote maxj∈[d] σ
(i)
j .

We assume the coordinate-wisely bounded stochastic gradi-
ent ∥g(i)t ∥∞ ≤ G, where G ∈ R and G > 0.

For every H non-synchronize steps with compression ra-
tio k, we assume that the virtual gradient g̃t and aver-
aged local gradients are element-wise bounded, that is
E
∥∥ 1
n

∑
i∈[n][g

(i)
t]j − [g̃t]j∥2 ≤ ϵ2H,k.

We assume there exists at least one global minimum x∗,
where f(x) ≤ f(x∗) for all x ∈ Rd.

For all i ∈ [n], we assume the local gradients are unbiased,
that is 1

n

∑
i∈[n] E[g

(i)
t] = ∇f(xt)

Convergence of SLAMB. Similar as LAMB, we establish
the convergence rate when β1 = 0, λ = 0, β2 > 0, β3 = 1.

Theorem 4.1. Let ηt = η =
√

2(f(x1)−f(x∗))
α2

u∥L∥1T
for all t ∈

[T], b = T , di = d/h for all i ∈ [h], and αl ≤ ϕ(v) ≤ αu

for all v > 0 where αl, αu > 0. Then for xt generated
using SLAMB (Algorithm 1), we have the following bounds:

5

SLAMB: Accelerated Large Batch Training with Sparse Communication

0 2000 4000 6000 8000
Step

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

LAMB
1-bit LAMB
SLAMB

(a) Step-wise convergence

0 2 4 6 8 10 12
Time (h)

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

LAMB
1-bit LAMB
SLAMB

(b) Time-wise convergence

Figure 3. Training loss convergence for BERT-Large pre-training
with LAMB and SLAMB. We use standard two-phase training
strategy: phase1 with 128 seqlen for 7038 steps, and phase2 uses
512 seqlen for 1563 steps. The batch size for phase1/phase2 is
64K/32K.

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ O
(√ G2d

h(1− β2)[√8(f(x1)− f(x∗))∥L∥1
T

+
1

n

∑
i∈[n]

2∥σ(i)∥1√
T

+ d
2ϵH,k√

T

])
(4)

where k is the compression ratio, H is the synchronization
frequency, and x∗ is the optimal solution to the problem
defined in Eq. 3, xt ∈ {xH , x2H , x3H . . . , xT }.

In general, both SLAMB and LAMB have convergence
rates of the same order in terms of T . However, com-
pressed communication has an impact on the convergence
rate of SLAMB in two ways: Firstly, the convergence rate
of SLAMB depends on the variance of the local gradients,
using the distributed format 1

n

∑
i∈[n] ∥σ(i)∥1. This is in

contrast to the convergence rate of LAMB, which is depen-
dent on the synchronized gradient variance bound. Secondly,
the convergence rate of SLAMB also depends on ϵH,k, the
bounded error between the virtual gradient and the average
over all local gradients. Both terms are of the same order as
LAMB’s, as long as the compression ratio k and synchro-
nization frequency H are properly set. If k is too small or
H is too large, SLAMB converges slower than LAMB.

Table 2. BERT-Large pre-training final validation loss, and SQuAD
average/max dev set F1 scores using the pre-trained models. We
run this experiment on 128 V100 GPUs and repeat 3 times using
different random seeds.

Algorithm LAMB 1-bit LAMB SLAMB

BERT validation loss 1.447 1.422 1.419
SQuAD Avg. F1 90.582 90.633 90.646
SQuAD Max F1 90.754 90.763 90.790

Volume Reduction 1.0 × 4.6 × 9.1 ×
Time (h) 12.9 10.3 9.7

5. Experiments
We validate SLAMB on two DNN training tasks: language
modeling and image classification, on up to 1,024 GPUs.
We show that SLAMB converges at similar speed as LAMB
but runs 1.3 to 2.3 times faster in end-to-end training than
uncompressed LAMB.

5.1. BERT pre-training Task

Model and Dataset. We run the BERT-Large pre-training
task on the dataset introduced by (Devlin et al., 2018), which
is a concatenation of Wikipedia and BooksCorpus with 2.5B
and 800M words, respectively. We use NVIDIA’s implemen-
tation2 of BERT-Large (340M parameters) and the LAMB
optimizer as the baseline. We further manually increase the
size of BERT-Large by increasing the size of hidden layer
and intermediate layer and obtain BERT-XLarge (2.8B pa-
rameters) for performance analysis. See detailed model
configuration in Appendix E, Table 8.

Hardware. We use two different types of clusters in our
experiment: (i) a V100 cluster on Amazon EC2 cloud,
where each machine is equipped with 4 NVIDIA V100
GPUs (16GB memory each) and 10Gbps network (i.e.,
P3.16xlarge instance), with an optional upgrade to 8 GPUs
per node and 100Gbps network; and (ii) an A100 cluster,
where each machine has 8 NVIDIA A100 GPUs (80GB
memory each) and 100Gbps Infiniband network. For both
types of clusters, the GPUs within each node are connected
with high speed NVLink.

Training setup. The pre-training of BERT consists of
phase1 and phase2, with the input sequence length set to 128
and 512, respectively. We use the F1 score of SQuAD 1.1 3

fine-tuning task as the accuracy metric to evaluate the pre-
trained models. Note that the fine-tuning task uses the Adam
optimizer and can be easily trained on a single machine.

2https://github.com/NVIDIA/DeepLearningExamples/tree/
master/PyTorch/LanguageModeling/BERT

3https://rajpurkar.github.io/SQuAD-explorer/

6

SLAMB: Accelerated Large Batch Training with Sparse Communication

(a) BERT-L, 1 Gbps (b) BERT-L, 10 Gbps (c) BERT-L, 100 Gbps (d) BERT-XL, 100 Gbps

Figure 4. Throughput scaling performance of BERT pre-training (seqlen128, phase1) using LAMB/1-bit LAMB/SLAMB at various
bandwidth conditions (1/10/100 Gbps). In (a-c), we run BERT-Large on NVIDIA V100 GPU cluster, while in (d) we run BERT-XLarge
on NVIDIA A100 GPU cluster. BERT-XLarge (2.8B params) is about 8× larger than BERT-Large (340M params).

Thus we only compare different methods in the pre-training
stage. For SLAMB, we use the following hyper-parameter
settings: β1 = 0.9, β2 = 0.999, β3 = 0.93, compression
ratio k = 0.1, model synchronization interval H = 100.
Note that we keep β1, β2 identical to LAMB’s setup. For
1-bit LAMB, we follow the setting from (Li et al., 2022):
the warm-up ratio of phase1 and phase2 are set to 16.7%
and 19.1%, respectively. The rest of the parameters, such as
learning rate schedule and training steps, are identical across
LAMB, 1-bit LAMB and SLAMB. We use mixed-precision
training in this experiment, therefore the gradient is in float-
16 format during communication. Detailed hyper-parameter
setting are shown in Appendix G.1.

Convergence analysis. Figure 3a shows the step-wise
convergence results of BERT-Large pre-training task. We
use the largest batch size setting as (You et al., 2020), which
is 64K in phase1 and 32K in phase2. We observe that
in both phases, SLAMB provides comparable step-wise
convergence speed as LAMB baseline. Note that in step 300-
2000, SLAMB converges even faster in terms of training
loss than other methods. This is mainly affected by β3.
We find that larger β3 can speedup the convergence rate;
however, it also makes the training unstable, especially when
the learning rate is large.

After fine-tuning, we obtain the SQuAD F1 score as shown
in Table 2. Our method, SLAMB, achieves the best vali-
dation loss and F1 score, compared to the original LAMB
and 1-bit LAMB. SLAMB also reduces the communica-
tion volume by 9.1× compared to uncompressed LAMB,
and by 2× compared to 1-bit LAMB. Unlike 1-bit LAMB,
which requires a certain number of uncompressed warm-up

steps before entering its compression stage, SLAMB uses
a consistent compression ratio (k = 0.1) throughout the
whole training process. Therefore, SLAMB achieves faster
convergence speed in both phase1 and phase2, as illustrated
in Figure 3b. We also show SLAMB with different com-
pression ratios (k) for BERT-Large pre-training. As we
can see from Table 3, although low compression ratio can
greatly improve the scaling performance, e.g. 97% scaling
efficiency when k = 0.01, the training quality (F1 score)
is severely affected. Therefore, we fix the ratio at 0.1 to
balance the performance and training quality.

Table 3. Training quality and scaling performance of SLAMB at
different compression ratio for BERT-Large pre-training on 512
A100 GPUs. We use SQuAD Max F1 score to validate the training
quality.

Algorithm k β3 H Max F1 score Scaling efficiency

LAMB - - - 90.754 52.0%

0.5 0.93 100 90.797 67.7%
0.2 0.93 100 90.799 82.1%

SLAMB 0.1 0.93 100 90.790 90.9%
0.05 0.93 100 89.884 94.1%
0.01 0.93 100 87.847 97.0%

Performance analysis. To demonstrate the practical ap-
plicability of SLAMB in realistic environment, we measure
the throughput performance of BERT pre-training task by
varying the model size, batch size, network bandwidth, as
well as the number of GPUs. We configure a consistent com-
pression ratio (k = 0.1) for SLAMB and 16.7% warm-up
ratio for 1-bit LAMB. Throughput results are averaged for
400 training steps.

7

SLAMB: Accelerated Large Batch Training with Sparse Communication

Training time (h)

B
at

ch
 s

iz
e

8K

16K

32K

64K

0 5 10 15 20 25 30 35

LAMB 1-bit LAMB SLAMB

Figure 5. Training time of BERT-Large pre-training (seqlen128,
phase1) on 128 V100 GPUs using LAMB/1-bit LAMB/SLAMB
at different batch sizes. The network bandwidth is 10Gbps.

Figure 4 (a-c) shows the strong scaling performance for
BERT-Large pre-training in different bandwidth conditions
(1/10/100 Gbps). We fix the total batch size to 64K, while
increasing the number of GPUs from 4 to 128. Results
show that training BERT-Large with LAMB suffers from
low scalability when the bandwidth is limited (1/10 Gbps).
In contrast, 1-bit LAMB and SLAMB both provide a signif-
icant speedup over LAMB. However, due to non-negligible
uncompressed warm-up stage, 1-bit LAMB can not fully ac-
celerate the training at all training steps. Once the network
bandwidth is increased to 100Gbps, training is no longer
constrained by communication for BERT-Large.

Figure 4 (d) shows the weak scaling performance for BERT-
XLarge pre-training by fixing the batch size as 64 per GPU
and increasing the number of GPUs up to 1,024. Due to
the increased model size, communication now takes longer;
thus, the baseline LAMB is suffering from low scalability
even with high speed network. SLAMB can still achieve
almost linear scaling on up to 512 GPUs and more than 90%
scaling efficiency on 1,024 GPUs.

Furthermore, we study the acceleration of 1-bit LAMB and
SLAMB for BERT-Large pre-training at different bath sizes.
As illustrated in Figure 5, increasing the batch size can
significantly reduce the training time. This is due to the
fact that the total number of steps is halved when the batch
size is doubled. As a result, the number of communication
rounds is also reduced. Larger batch sizes causes longer
computation time in each training step. However, the com-
munication time in each step is not affected by batch size.
Consequently, large batch training can improve the overall
computation efficiency, as it is less affected by communica-
tion. Therefore, one should always use the largest possible
batch size to maximize the computation ratio as well as
minimize the communication rounds.

5.2. Swin Transformer on ImageNet

Setup. We run image classification task on ImageNet
(Deng et al., 2009) dataset by using Swin Transformer Base

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Adam
LAMB
1-bit LAMB
SLAMB

(a)

0 2 4 6 8 10 12
Time (h)

0

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Adam
LAMB
1-bit LAMB
SLAMB

(b)

Figure 6. Top-1 Test Accuracy of Swin Transformer training on
ImageNet Dataset using 128 GPUs and 8K batch size. In (b) we
compare the running time by setting 300 epochs for all methods.

Table 4. Swin-Base Transformer on ImageNet, using 128 V100
GPUs and 8K batch size. The network bandwidth is 10 Gbps. The
original Swin-B is trained with 1024 batch size, which takes more
than 70 hours on a single node with 8 V100 GPUs.

Algorithm Adam LAMB 1-bit LAMB SLAMB

Top-1 Acc. (%) 83.08 83.09 82.91 83.10
Volume Reduction 1.0× 1.0× 4.6 × 9.1 ×
Time (h) 10.82 12.10 7.28 5.35

model (Swin-B) (Liu et al., 2021) (88M parameters). Swin-
B was originally trained with batch size 1024, which takes
more than 70 hours on a single node with 8 V100 GPUs. To
reduce the time, we scale the training to 128 GPUs and in-
crease batch size to 8K in our experiment. For SLAMB, we
use the default parameter setting, i.e., β3 = 0.95, k = 0.1,
H = 100. For 1-bit LAMB, we use 16.7% of total epochs
as its warm-up stage (50 epochs). We use grid search to find
the best learning rate (LR) for Adam and LAMB, respec-
tively, and then keep the LR of SLAMB and 1-bit LAMB the
same as LAMB’s. We use a cosine decay LR scheduler and
the first 20 epochs for linear LR warm-up. More detailed
hyper-parameter tuning results can be found in Appendix
G.2, Table 11.

Results. Table 4 shows the final Top-1 test accuracy of
trained models by four optimizers. Adam and LAMB
achieve similar accuracy, while LAMB is 2 hours slower
than Adam due to the computational overhead in its layer-
wise updating strategy, especially when there are many train-
ing steps (46,800 steps in this task). In our experiment, we
find that Adam is more likely to diverge when we increase
the LR for large batch training. SLAMB also achieves the
same accuracy; however, SLAMB transmits 9.1 × fewer
data than LAMB during communication; therefore the train-
ing time is reduced from 12.1 hours (LAMB) to 5.35 hours
(SLAMB). Our profiling results show that communication
takes up 58% of the total training time in Swin Tranformer
training (see Appendix H, Table 12).

8

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 5. Per-step training time breakdown for LAMB and SLAMB. Experiment settings follow Table 2 and Table 4.

Task Algorithm Computation (s) Communication (s) Total (s) Comm. / Total Total time speedup

BERT-Large LAMB 2.592 1.246 3.846 32% -
SLAMB 2.638 0.172 2.813 - 1.36 ×

Swin-Base LAMB 0.418 0.647 1.101 58% -
SLAMB 0.422 0.075 0.499 - 2.20 ×

1-bit LAMB achieves a slightly lower accuracy than the
rest, mainly because 1-bit LAMB cannot represent exact
zero when compressing values into ±1. It requires a mask
to skip the parameters that have constant exact zeros in
their gradients. Such mask is only configured for BERT
training task and we did not find an easy way to adapt it
for the Swin Transformer. Compared with 1-bit LAMB,
SLAMB requires less effort to set up the parameters and
provides better accuracy and speedup in large-scale Swin
Transformer training. We illustrate the epoch-wise and time-
wise convergence curve in Figure 6.

5.3. Time breakdown and speedup analysis

Here we provide detailed per-step time breakdown com-
parison between LAMB and SLAMB for BERT and Swin
Transformer training tasks. The results are shown in Table
5. The ratio between communication time and total time
denotes the communication overhead of the training task.
Typically, tasks with higher communication overhead will
benefit more from SLAMB acceleration. We can see from
the results that Swin transformer task has larger communi-
cation overhead, thus the end-to-end speedup is also higher.
Note that even for the same training task, the communica-
tion overhead can be also affected by network bandwidth,
GPU numbers, batch size, and many other factors. We have
profiled per-iteration time breakdown of different training
workloads for BERT and Swin transformer tasks, see Ap-
pendix H, Table 12.

5.4. Ablation Study

In this part, we show the ablation study of SLAMB by
removing the adaptive scaling function and model synchro-
nization, respectively. In addition, we try to replace the
adaptive scaling function with another min-max scaling
strategy, i.e. using ϕmax for the synchronized parts and
ϕmin for the unsynchronized parts. The results are shown
is Table 6. We can see that both adaptive scaling and model
synchronization have significant impact on the training qual-
ity, as the accuracy in both tasks have dropped a lot if we
remove either of them. The min-max scaling strategy has
little improvement compared to no adaptive scaling. This
demonstrates that a more fine-grained scaling strategy is
necessary for SLAMB to achieve lossless training quality.

Table 6. SQuAD performance of BERT-Large after pre-training
using different variants of SLAMB

Algorithm Avg. F1 Score

LAMB 90.582
SLAMB 90.622
SLAMB w/o adaptive scaling 89.177
SLAMB w/o model synchronization 90.176
SLAMB w/ min-max scaling 89.442

6. Conclusions
In this paper, we propose SLAMB, a communication effi-
cient large batch optimizer. It is the first work that combines
sparsification-based gradient compression with large batch
training. SLAMB achieves similar convergence character-
istics as LAMB, but with significantly lower communica-
tion overhead. We validate the performance of SLAMB on
BERT language model and Swin Transformer vision model
on up to 1,024 A100 GPUs. Our results show that SLAMB
achieves virtually the same model accuracy as LAMB, while
reducing the actual training time by up to 2.2 times. In ad-
dition, SLAMB achieves more than 90% scaling efficiency
in large-scale distributed training with up to 1,024 GPUs.
Currently SLAMB only supports the Random-k sparsifier.
Other sparsification methods, like Top-k, may provide bet-
ter performance but require algorithm adaptation, which we
leave for future work.

Acknowledgements
We want to thank Yuzhe Wu, TingWen Xie, Jun Huang and
Yuchen Xie for the GPU cluster support. We also want to
thank the reviewers for their helpful suggestions.

9

SLAMB: Accelerated Large Batch Training with Sparse Communication

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,

M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. Advances in neural information
processing systems, 30, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The convergence of sparsi-
fied gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560–569. PMLR, 2018.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2), 2018.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv preprint arXiv:1810.04805,
2018.

Gorbunov, E., Hanzely, F., and Richtárik, P. Local sgd: Uni-
fied theory and new efficient methods. In International
Conference on Artificial Intelligence and Statistics, pp.
3556–3564. PMLR, 2021.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. Advances in neural informa-
tion processing systems, 30, 2017.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. In Inter-
national Conference on Learning Representations, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, 2015.

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Li, C., Awan, A. A., Tang, H., Rajbhandari, S., and He,
Y. 1-bit lamb: communication efficient large-scale large-
batch training with lamb’s convergence speed. In 2022
IEEE 29th International Conference on High Perfor-
mance Computing, Data, and Analytics (HiPC), pp. 272–
281. IEEE, 2022.

Li, M. Scaling distributed machine learning with system
and algorithm co-design. PhD thesis, Intel, 2017.

Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-
batch training for stochastic optimization. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 661–670,
2014.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. Deep
Gradient Compression: Reducing the communication
bandwidth for distributed training. In The International
Conference on Learning Representations, 2018.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10012–10022, 2021.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth annual
conference of the international speech communication
association, 2014.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified sgd
with memory. Advances in Neural Information Process-
ing Systems, 31, 2018.

Strom, N. Scalable distributed DNN training using commod-
ity GPU cloud computing. In 16th Annual Conference
of the International Speech Communication Association,
2015.

10

SLAMB: Accelerated Large Batch Training with Sparse Communication

Tang, H., Gan, S., Awan, A. A., Rajbhandari, S., Li, C.,
Lian, X., Liu, J., Zhang, C., and He, Y. 1-bit Adam: Com-
munication Efficient Large-Scale Training with Adam’s
Convergence Speed. In International Conference on Ma-
chine Learning, 2021.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. Advances in Neural Information Processing
Systems, 31, 2018.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communi-
cation in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Grace:
A compressed communication framework for distributed
machine learning. In 2021 IEEE 41st international con-
ference on distributed computing systems (ICDCS), pp.
561–572. IEEE, 2021a.

Xu, H., Kostopoulou, K., Dutta, A., Li, X., Ntoulas, A., and
Kalnis, P. Deepreduce: A sparse-tensor communication
framework for federated deep learning. Advances in Neu-
ral Information Processing Systems, 34:21150–21163,
2021b.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer,
K. Imagenet training in minutes. In Proceedings of the
47th International Conference on Parallel Processing, pp.
1–10, 2018.

You, Y., Li, J., Reddi, S. J., Hseu, J., Kumar, S., Bhojana-
palli, S., Song, X., Demmel, J., Keutzer, K., and Hsieh,
C. Large batch optimization for deep learning: Training
BERT in 76 minutes. In 8th International Conference on
Learning Representations, 2020.

Zheng, S., Lin, H., Zha, S., and Li, M. Accelerated large
batch optimization of bert pretraining in 54 minutes.
arXiv preprint arXiv:2006.13484, 2020.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. Paral-
lelized stochastic gradient descent. Advances in neural
information processing systems, 23, 2010.

11

SLAMB: Accelerated Large Batch Training with Sparse Communication

A. Problem formulation and assumption
A.1. Formulation

In this paper, we study non-convex stochastic optimization problems of the form

min
x∈Rd

{
f(x) :=

1

n

∑
i∈[n]

f (i)(x)
}

, (5)

where f (i) : Rd → R is a smooth non-convex function for all i ∈ [n] := {1, 2, . . . , n} representing the loss function on
each node. d is the dimension of the input model x. Our goal is to find a ϵ-solution of any (random) initial point x1 such that
E
[
∥∇f(xt)∥2

]
is bounded.

In order to simplify our notations, we follow (Gorbunov et al., 2021) to use virtual iterates xt defined as a mean of the local
iterates xt =

1
n

∑
i∈[n] x

(i)
t . Note that only when the local parameters x(i)

t are synchronized, virtual iterates are physically
computed.

g
(i)
t is the stochastic gradient computed batch-wise on each node with non-synchronized parameters x(i)

t satisfying E[g(i)t] =

∇f (i)(x
(i)
t).

We further define g̃t = 1
n

∑
i∈[n] g̃

(i)
t , where g̃

(i)
t is computed on each node with synchronized parameters. For the

non-synchronized steps, g̃(i)t is virtually computed. It follows that E[g̃t] = ∇f(xt).

Since LAMB is a layer-wise optimization algorithm, we write x(i) =
∑

ℓ x
(i,ℓ), which is the summation of the layer-wise

parameters x(ℓ) ∈ Rdℓ , where d =
∑

ℓ∈[h] dℓ

A.2. Notation

The notations in the appendix are used as follows,

• Upper-scripted index denotes layer-wise vector on a specific node. For example, x(i,ℓ) denotes ℓ-th layer model
parameters on node i.

• Sub-scripted index denotes the update step t.

• [x]j is j-th element of a vector x .

• All the operations are element-wised.

A.3. Assumption

Assumptions adopted from (You et al., 2020)

1. Smoothness.We assume coordinate-wise L-smoothness for every f (i) with respect to [x
(i)
t]j , where j ∈ [d]. That is

|∇jf
(i)(x)−∇jf

(i)(y)| ≤ L
(i)
j

∣∣[x]j − [y]j
∣∣

We use L to denote maxj∈[d],i∈[n] L
(i)
j .

2. Bounded variance. For any stochastic gradient g(i)t , we assume it coordinate-wise bounded. That is, there exists σ(i)
j

for j ∈ [d], i ∈ [n]

E
∥∥[g(i)t]j − [∇jf

(i)(xt)]
∥∥2 ≤ [σ

(i)
j]2 .

We use σ(i) to denote maxj∈[d] σ
(i)
j .

3. Bounded gradients. We assume coordinate-wisely bounded stochastic gradient ∥g(i)t ∥∞ ≤ G

12

SLAMB: Accelerated Large Batch Training with Sparse Communication

4. For every H non-synchronize steps with k synchronize bits, we assume that the virtual gradient g̃t and averaged local
gradients are element-wise bounded, i.e.,

E
∥∥ 1
n

∑
i∈[n]

[g
(i)
t]j − [g̃t]j∥2 ≤ ϵ2H,k .

5. Bounded rescaling factor. We assume that 0 < αl ≤ ϕ(v) ≤ αu for all v ∈ R+∪{0}. It follows that < αl ≤ ϕ̃(v) ≤ αu

for all v ∈ R+ ∪ {0}.

6. Existence of global minimum. We assume there exists at least one global minimum x∗, where f(x) ≤ f(x∗) for all
x ∈ Rd

7. Unbiased local gradient. For all i ∈ [n] we have

1

n

∑
i∈[n]

E[g(i)t] = ∇f(xt)

Prove guideline 1. Develop new bounds for pt,i for assumption 2,3. 2. Assemble all the f (i) and use f(x∗) =∑
i∈[n] f

(i)(x∗). Note that x∗ is not necessarily to be the optimal for f (i)(x)

B. Proof
Similar as (You et al., 2020), we focus on the setting where β1 = 0, λ = 0, and η̃t = η for all t and all layers.

We rewrite our update scheme here

p
(i)
t =

1

n

(∑
m∈[n]

C(g(m)
t)

)
+ g

(i)
t − C(g(i)t) (6)

v
(i)
t =

β2v
(i)
t−1 + (1− β2)p

(i)
t

2

1− βt
2

(7)

u
(i)
t =

p
(i)
t√
v
(i)
t

(8)

x
(ℓ)
t+1 = x

(ℓ)
t − η

(1
n

∑
m∈[n]

ϕ̃ · u
(m,ℓ)
t

∥u(m,ℓ)
t ∥

)
(9)

x
(ℓ)
t+1, x

(ℓ)
t in (9) are the virtual iterates. In non-synchronize steps, it is physically computed as x(i,ℓ)

t+1 = x
(i,ℓ)
t − ηϕ̃

u
(i,ℓ)
t

∥u(i,ℓ)
t ∥

for any i ∈ [n].

Proposition B.1 (Facts related to the algorithm). 1. f is a linear summation of f (i), then f is L-smoothness.

Proof. ∣∣[∇ℓf(x)−∇ℓf(y)]j
∣∣ = ∣∣ 1

n

∑
i

[∇ℓf
(i)(x)−∇ℓf

(i)(y)]j
∣∣

≤ 1

n

∑
i

∣∣[∇ℓf
(i)(x)−∇ℓf

(i)(y)]j
∣∣

≤ L
∣∣[x]j − [y]j

∣∣
The first inequality is by the inequality of the absolute value, and the second inequality is by the smoothness of each
f (i).

13

SLAMB: Accelerated Large Batch Training with Sparse Communication

2. Triangle inequality for norms. For any feasible norm ∥ · ∥ and any ai, . . . , an ∈ Rd

∥
∑
i∈[n]

ai∥ ≤
∑
i∈[n]

∥ai∥ (10)

3. Inequality for L-smoothness function. If f is L-smoothness, for any x, y ∈ Rd we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2 (11)

Proposition B.2. Several properties for the variables xt

1. ∥x(ℓ)
t+1 − x

(ℓ)
t ∥ ≤ αuη

2. ∥u(i,ℓ)
t ∥ ≤

√
dℓ

1−β2

3. 1
n

∑
i∈[n] p

(i)
t = 1

n

∑
i∈[n] g

(i)
t

4. [p
(i)
t]j ≤ G

5.
√
v
(i)
t ≤ G

Proof. 1. We bound the term as following,

∥x(ℓ)
t+1 − x

(ℓ)
t ∥ =

∥∥∥η(1
n

∑
m∈[n]

ϕ̃ · u
(m,ℓ)
t

∥u(m,ℓ)
t ∥

)∥∥∥
≤ αuη

∥∥∥ 1
n

∑
m∈[n]

u
(m,ℓ)
t

∥u(m,ℓ)
t ∥

∥∥∥
≤ αuη ,

where the first inequality holds by Assumption 4, and the second inequality holds by the triangle inequality (10).

2. We bound the term as the following

∥u(i,ℓ)
t ∥ =

∥∥∥ √
1− βt

2 p
(i,ℓ)
t√

β2v
(i,ℓ)
t−1 + (1− β2)p

(i,ℓ)
t

2

∥∥∥
≤
∥∥∥ p

(i,ℓ)
t√

(1− β2)p
(i,ℓ)
t

2

∥∥∥
≤

√
dℓ

1− β2

3.
1

n

∑
i∈[n]

p
(i)
t =

1

n

∑
i∈[n]

(
1

n

(∑
m∈[n]

C(g(m)
t)

)
+ g

(i)
t − C(g(i)t)

)
=

1

n

∑
i∈[n]

g
(i)
t

4. For the non-synchronized elements in p
(i)
t , [p(i)t]j = [g

(i)
t]j ≤ G. For the synchronized elements in p

(i)
t ,

[p
(i)
t]j =

1

n

∑
i∈[n]

[g
(i)
t]j ≤ G

14

SLAMB: Accelerated Large Batch Training with Sparse Communication

5. This can be easily seen by the induction method with v
(i)
0 ≤ G

Lemma B.3. The probability that the sign of [∇f(xt)]j and [1n
∑

m∈[n] p
(m)
t]j is different is bounded, that is

P
(
sign([∇ℓf(xt)]j) ̸= sign([

1

n

∑
m∈[n]

p
(m,ℓ)
t]j

)
≤

ϵH,k√
b
+ 1

n

∑
m∈[n]

[σ(m)]j√
b∣∣[∇ℓf(xt)]j

∣∣
Proof. We develop this lemma mainly following the Equation † in Theorem 2 in (Bernstein et al., 2018). By the Markov’s
inequality and Jensen’s inequality, we have

P
(
sign([∇ℓf(xt)]j) ̸= sign([

1

n

∑
m∈[n]

p
(m,ℓ)
t]j

)

≤ P
(∣∣[∇ℓf(xt)]j − [

1

n

∑
m∈[n]

p
(m,ℓ)
t]j

∣∣ ≥ ∣∣[∇ℓf(xt)]j
∣∣)

≤
E
∣∣[∇ℓf(xt)]j − [1n

∑
m∈[n] p

(m,ℓ)
t]j

∣∣∣∣[∇ℓf(xt)]j
∣∣

≤
E
∣∣[∇ℓf(xt)]j − [1n

∑
m∈[n] g

(m,ℓ)
t]j

∣∣∣∣[∇ℓf(xt)]j
∣∣

≤
E
∣∣[∇ℓf(xt)]j − 1

n

∑
m∈[n] ∇ℓf(x

(i)
t)
∣∣+ 1

n

∑
m∈[n] E

∣∣[∇ℓfm(x
(i)
t)]j − [g

(m,ℓ)
t]j

∣∣∣∣[∇ℓf(xt)]j
∣∣

≤
E
∣∣[g̃t]j − 1

n

∑
m∈[n] ∇ℓg

(i)
t

∣∣+ 1
n

∑
m∈[n] E

∣∣[∇ℓfm(x
(i)
t)]j − [g

(m,ℓ)
t]j

∣∣∣∣[∇ℓf(xt)]j
∣∣

≤

√
E
∣∣[g̃t]j − 1

n

∑
m∈[n] ∇ℓg

(i)
t

∣∣2 + 1
n

∑
m∈[n]

√
E
∣∣[∇ℓfm(xt)]j − [g

(m,ℓ)
t]j

∣∣2∣∣[∇ℓf(xt)]j
∣∣

≤
ϵH,k + 1

n

∑
m∈[n][σ

(m)]j∣∣[∇ℓf(xt)]j
∣∣

In practice, the upper bound of the σ, ϵ is computed by a mini-batch with size b. Then by assumption 2, we have

P
(
sign([∇ℓf(xt)]j) ̸= sign([

1

n

∑
m∈[n]

p
(m,ℓ)
t]j

)
≤

ϵH,k√
b
+ 1

n

∑
m∈[n]

[σ(m)]j√
b∣∣[∇ℓf(xt)]j

∣∣ (12)

Theorem B.4. After T iterations for our algorithm with the general gradient estimator p(i)t with [p
(i)
t]j ≤ V , we have the

following error bound

E∥∇f(xt)∥2 ≤ O
(√ G2d

h(1− β2)

[√2(f(x1)− f(x∗))∥L∥1
T

+
1

n

∑
i∈[n]

∥σ(i)∥1
2
√
T

+ d
ϵH,k

2
√
T

])
. (13)

15

SLAMB: Accelerated Large Batch Training with Sparse Communication

Proof. Using the L-smoothness inequality, we first have the following

f(xt+1) ≤ f(xt) +
∑
ℓ∈[h]

⟨∇ℓf(xt), x
(ℓ)
t+1 − x

(ℓ)
t ⟩+

∑
ℓ∈[h]

L

2
∥x(ℓ)

t+1 − x
(ℓ)
t ∥2

≤ f(xt)− η
∑
ℓ∈[h]

∑
j∈[dℓ]

([
∇ℓf(xt)

]
j
·
(1
n

∑
m∈[n]

ϕ̃

[
u
(m,ℓ)
t

]
j

∥u(m,ℓ)
t ∥

))
+
∑
ℓ∈[h]

Lα2
uη

2

2

= f(xt)−η
∑
ℓ∈[h]

∑
j∈[dℓ]

(
1

n

∑
m∈[n]

ϕ̃ ·
[
∇ℓf(xt)

]
j
·

[
u
(m,ℓ)
t

]
j

∥u(m,ℓ)
t ∥︸ ︷︷ ︸

T2

)

︸ ︷︷ ︸
T1

+
∑
ℓ∈[h]

Lα2
uη

2

2
,

(14)

where the first inequality holds by the L-smoothness of f in Fact 1 and Equation (11), and the second inequality holds by
the Proposition B.2.1.

T2 can be bounded by

T2 =
1

n

∑
m∈[n]

ϕ̃ ·
[
∇ℓf(xt)

]
j
·

[
u
(m,ℓ)
t

]
j

∥u(m,ℓ)
t ∥

=
[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p
(m,ℓ)
t√

v
(m,ℓ)
t ∥u(m,ℓ)

t ∥

]
j
· 1{sign([∇ℓf(xt)]j)=sign([1n

∑
m∈[n] p

(m,ℓ)
t]j)}

+
[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p
(m,ℓ)
t√

v
(m,ℓ)
t ∥u(m,ℓ)

t ∥

]
j
· 1{sign([∇ℓf(xt)]j) ̸=sign([1n

∑
m∈[n] p

(m,ℓ)
t]j)}

≥
∣∣∣[∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[
ϕ̃p

(m,ℓ)
t

]
j
·
√

1− β2

G2dℓ

∣∣∣
+ 2
[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p
(m,ℓ)
t√

v
(m,ℓ)
t ∥u(m,ℓ)

t ∥

]
j
· 1{sign([∇ℓf(xt)]j)̸=sign([1n

∑
m∈[n] p

(m,ℓ)
t]j)}

(15)

The inequality holds by Proposition B.2.2 ∥u(i,ℓ)
t ∥ ≤

√
dℓ

1−β2
and

[√
v
(i)
t

]
j
≤ G

Taking the expectation of T1 over p(i)t , we have

E
[
T1

]
≤ −η

∑
ℓ∈[h]

∑
j∈[dℓ]

√
1− β2

G2dℓ
E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

ϕ̃ ·
[
p
(m,ℓ)
t

]
j

]

− η
∑
ℓ∈[h]

∑
j∈[dℓ]

E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p
(m,ℓ)
t√

v
(m,ℓ)
t ∥u(m,ℓ)

t ∥

]
j
· 1{sign([∇ℓf(xt)]j)̸=sign([1n

∑
m∈[n] p

(m,ℓ)
t]j)}

]
(16)

16

SLAMB: Accelerated Large Batch Training with Sparse Communication

Taking the absolute value of the internal part of the second expectation of Equation (16), we have

(16) ≤− η
∑
ℓ∈[h]

∑
j∈[dℓ]

√
1− β2

G2dℓ
E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

ϕ̃ ·
[
p
(m,ℓ)
t

]
j

]

+ η
∑
ℓ∈[h]

∑
j∈[dℓ]

E
[∣∣[∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p
(m,ℓ)
t√

v
(m,ℓ)
t ∥u(m,ℓ)

t ∥

]
j

∣∣ · 1{sign([∇ℓf(xt)]j)̸=sign([1n
∑

m∈[n] p
(m,ℓ)
t]j)}

]

≤− η
∑
ℓ∈[h]

∑
j∈[dℓ]

√
1− β2

G2dℓ
E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

ϕ̃ ·
[
p
(m,ℓ)
t

]
j

]
+ η

∑
ℓ∈[h]

∑
j∈[dℓ]

E
[1
n

∑
m∈[n]

αu

∣∣[∇ℓf(xt)
]
j

∣∣ · 1{sign([∇ℓf(xt)]j)̸=sign([1n
∑

m∈[n] p
(m,ℓ)
t]j)}

]
=− η

∑
ℓ∈[h]

∑
j∈[dℓ]

√
1− β2

G2dℓ
E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

ϕ̃ ·
[
p
(m,ℓ)
t

]
j

]
+ η

∑
ℓ∈[h]

∑
j∈[dℓ]

[1
n

∑
m∈[n]

αu

∣∣[∇ℓf(xt)
]
j

∣∣ · P(sign([∇ℓf(xt)]j) ̸= sign([
1

n

∑
m∈[n]

p
(m,ℓ)
t]j)

)]

(17)

where the second inequality is by
∣∣∣∣
[
u
(m,ℓ)
t

]
j

∥u(m,ℓ)
t ∥

∣∣∣∣ ≤ 1 and ϕ̃ ≤ αu

For the first part of the equation (17), we have

E
[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

ϕ̃ ·
[
p
(m,ℓ)
t

]
j

]
≥ αlE

[[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[
p
(m,ℓ)
t

]
j

]
= αl

[
∇ℓf(xt)

]
j
E
[1
n

∑
m∈[n]

[
p
(m,ℓ)
t

]
j

]
= αl

[
∇ℓf(xt)

]
j
E
[1
n

∑
m∈[n]

[
g
(m,ℓ)
t

]
j

]
= αl

[
∇ℓf(xt)

]
j

(
E[g̃t]j − E

(
[g̃t]j −

1

n

∑
m∈[n]

[
g
(m,ℓ)
t

]
j

))
= αl

([
∇ℓf(xt)

]2
j
− E[g̃t]jE

(
[g̃t]j −

1

n

∑
m∈[n]

[
g
(m,ℓ)
t

]
j

))

≥ αl

([
∇ℓf(xt)

]2
j
−

(E[g̃t]j)2 +
(
E
[
[g̃t]j − 1

n

∑
m∈[n]

[
g
(m,ℓ)
t

]
j

])2
)

2

)
≥ αl

([
∇ℓf(xt)

]2
j
−

(E[g̃t]j)2 + E
[
[g̃t]j − 1

n

∑
m∈[n]

[
g
(m,ℓ)
t

]
j

]2
)

2

)
≥ αl(

1

2

[
∇ℓf(xt)

]2
j
−

ϵ2H,k

2b
) ,

(18)

where the equality in the third line is from Proposition B.2.3.

17

SLAMB: Accelerated Large Batch Training with Sparse Communication

For the second part of the equation (17), we have

1

n

∑
m∈[n]

αu

∣∣[∇ℓf(xt)
]
j

∣∣ · P(sign([∇ℓf(xt)]j) ̸= sign([
1

n

∑
m∈[n]

p
(m,ℓ)
t]j)

)
≤ 1

n

∑
m∈[n]

αu

(1
n

∑
i∈[n]

[σ(i)]j√
b

+
ϵH,k√

b

)
= αu

(1
n

∑
i∈[n]

[σ(i)]j√
b

+
ϵH,k√

b

)
(19)

Combining Equation (17), (18), (19), we have

E[T1] ≤ −η

√
1− β2

G2dℓ

∑
ℓ∈[h]

∑
j∈[dℓ]

αl(
1

2

[
∇ℓf(xt)

]2
j
+

ϵ2H,k

2b
) + η

∑
ℓ∈[h]

∑
j∈[dℓ]

αu

(1
n

∑
i∈[n]

[σ(i)]j√
b

+
ϵH,k√

b

)
= −ηαl

√
h(1− β2)

G2dℓ
(
1

2
∥∇f(xt)∥2 +

dϵ2H,k

2b
) + ηdαu

ϵH,k√
b

+
ηαu

n

∑
i∈[n]

∥σ(i)∥1√
b

(20)

Here b is the batch size. Substituting the above bound on T1 in Equation (14), we have the following bound

E[f(xt+1)] ≤

E[f(xt)]− ηαl

√
h(1− β2)

G2d
(
1

2
∥∇f(xt)∥2 +

dϵ2H,k

2b
) +

ηαu

n

∑
i∈[n]

∥σ(i)∥1√
b

+ ηdαu
ϵH,k√

b
+
∑
ℓ∈[h]

Lα2
uη

2

2
(21)

Summing the above inequality for t = 1 to T and using telescoping sum, we have the following inequality

E[f(xT+1)] ≤ E[f(x1)]−
1

2
ηαl

√
h(1− β2)

G2d

T∑
t=1

∥∇f(xt)∥2 − ηTαl

√
h(1− β2)

G2d

dϵ2H,k

2b

+
Tηαu

n

∑
i∈[n]

∥σ(i)∥1√
b

+
∑
ℓ∈[h]

TLα2
uη

2

2
+ ηTdαu

ϵH,k√
b

. (22)

Rearranging the terms of the above inequality, and dividing by 1
2ηTαl. In practice, ϵH,k is computed by a mini-batch with

size b. Then we have√
h(1− β2)

G2d

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ E[f(x1)]− E[f(xT+1)]
1
2ηTαl

−
√

h(1− β2)

G2d

dϵ2H,k

b

+
2αu

αln

∑
i∈[n]

∥σ(i)∥1√
b

+
∑
ℓ∈[h]

Lα2
uη

αl
+ d

2αu

αl

ϵH,k√
b

. (23)

Combining with the fact that E[f(x1)]− E[f(xT+1)] ≤ f(x1)− f(x∗) where x∗ is the optimal parameter, we have

√
h(1− β2)

G2d

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ f(x1)− f(x∗)
1
2ηTαl

−
√

h(1− β2)

G2d

dϵ2H,k

b

+
2αu

αln

∑
i∈[n]

∥σ(i)∥1√
b

+
∑
ℓ∈[h]

Lα2
uη

αl
+ d

2αu

αl

ϵH,k√
b

. (24)

Here b is the batch size, and H is the synchronization interval.

18

SLAMB: Accelerated Large Batch Training with Sparse Communication

Finally, let η =
√

2(f(x1)−f(x∗))
α2

u∥L∥1T
, b = T we have

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ O
(√ G2d

h(1− β2)

[√8(f(x1)− f(x∗))∥L∥1
T

+
1

n

∑
i∈[n]

2∥σ(i)∥1√
T

+ d
2ϵH,k√

T

])
. (25)

C. Convergence analysis of SLAMB without gradient synchronization.
In practice, we have the following two minor changes due to the efficiency issue.

1. We skip the synchronization of g(i)t . In this case, Equation 8 should be modified as

v
(i)
t =

β2v
(i)
t−1 + (1− β2)g

(i)
t

2

1− βt
2

(26)

2. As mentioned in Appendix E, we simply the scaling function into ϕmax = ϕ(
∥x(ℓ,i)

t ⊙M
(ℓ)
t ∥

∥u(ℓ,i)
t ⊙M

(ℓ)
t ∥

) and ϕmin =

ϕ(
∥x(ℓ,i)

t ⊙¬M
(ℓ)
t ∥

∥u(ℓ,i)
t ⊙¬M

(ℓ)
t ∥

) and update the model by x
(ℓ,i)
t+1 = x

(ℓ,i)
t − η̃tϕ̃u

(ℓ,i)
t .

Under this update scheme, Equation 14 becomes

f(xt+1) ≤ f(xt)−η
∑
ℓ∈[h]

∑
j∈[dℓ]

(
1

n

∑
m∈[n]

ϕ̃ ·
[
∇ℓf(xt)

]
j
·
[
u
(m,ℓ)
t

]
j︸ ︷︷ ︸

T2

)

︸ ︷︷ ︸
T1

+
∑
ℓ∈[h]

Lα2
uη

2

2
, (27)

we rewrite the bound of T2 by

T2 =
1

n

∑
m∈[n]

ϕ̃ ·
[
∇ℓf(xt)

]
j
·
[
u
(m,ℓ)
t

]
j

=
∣∣∣[∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[ϕ̃p(m,ℓ)
t√
v
(m,ℓ)
t

]
j

∣∣∣
+ 2

1

n

∑
m∈[n]

[
∇ℓf(xt)

]
j
·
[ϕ̃p(m,ℓ)

t√
v
(m,ℓ)
t

]
j
· 1{sign([∇ℓf(xt)]j)̸=sign(1

n

∑
m∈[n][p

(m,ℓ)
t]j)}

≥
∣∣∣ 1
G

[
∇ℓf(xt)

]
j
· 1
n

∑
m∈[n]

[
ϕ̃p

(m,ℓ)
t

]
j

∣∣∣
+ 2

1

n

∑
m∈[n]

[
∇ℓf(xt)

]
j
·
[ϕ̃p(m,ℓ)

t√
v
(m,ℓ)
t

]
j
· 1{sign([∇ℓf(xt)]j)̸=sign([1n

∑
m∈[n] p

(m,ℓ)
t]j)}

(28)

The difference between the above equation and Equation 15 is that the coefficient
√

1−β2

G2dℓ
is changed to 1

G since we do
not have a ∥u∥ in denominator. To follow the remaining proof pipeline, we only need to discuss the second inequality in

19

SLAMB: Accelerated Large Batch Training with Sparse Communication

Equation 17, that is, give an upper bound for
∣∣ 1
n

∑
m∈[n]

[
u
(m,ℓ)
t

]
j

∣∣
∣∣ 1
n

∑
m∈[n]

[
u
(m,ℓ)
t

]
j

∣∣ = ∣∣ 1
n

∑
m∈[n]

[p
(m,ℓ)
t√

v
(m,ℓ)
t + ϵ

]
j

∣∣
≤ 1

n

∑
m∈[n]

∣∣[p
(m,ℓ)
t√

v
(m,ℓ)
t + ϵ

]
j

∣∣
≤ G

Vmin + ϵ

(29)

Then Equation 19 becomes

1

n

∑
m∈[n]

αu

∣∣[∇ℓf(xt)
]
j

∣∣ · P(sign([∇ℓf(xt)]j) ̸= sign([
1

n

∑
m∈[n]

p
(m,ℓ)
t]j)

)
≤ αu

G

Vmin + ϵ

(1
n

∑
i∈[n]

[σ(i)]j√
b

+
ϵH,k√

b

) (30)

Then Equation 20 becomes

E[T1] ≤ −η
1

G

∑
ℓ∈[h]

∑
j∈[dℓ]

αl(
1

2

[
∇ℓf(xt)

]2
j
+

ϵ2H,k

2b
) + η

∑
ℓ∈[h]

∑
j∈[dℓ]

αu
G

Vmin + ϵ

(1
n

∑
i∈[n]

[σ(i)]j√
b

+
ϵH,k

d
√
b

)
= −ηαl

d

G
(
1

2
∥∇f(xt)∥2 +

dϵ2H,k

2b
) + ηαu

dG

Vmin + ϵ
(
ϵH,k√

b
+

1

n

∑
i∈[n]

∥σ(i)∥1
d
√
b

)

(31)

Then the Equation 24 is rewritten as

d

G

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ f(x1)− f(x∗)
1
2ηTαl

− d

G

dϵ2H,k

b

+
2αu

αln

G

Vmin + ϵ

∑
i∈[n]

∥σ(i)∥1√
b

+
∑
ℓ∈[h]

Lα2
uη

αl
+

dG

Vmin + ϵ

2αu

αl

ϵH,k√
b

. (32)

And the final convergence is

1

T

T∑
t=1

∥∇f(xt)∥2 ≤ O
(G
d

[√8(f(x1)− f(x∗))∥L∥1
T

+
G

Vmin + ϵ

1

n

∑
i∈[n]

2∥σ(i)∥1√
T

+
dG

Vmin + ϵ

2ϵH,k√
T

])
. (33)

The differences lie on the two coefficients, G
d ,

dG
Vmin+ϵ . Non-synchronized gradient causes a change of coefficient dG

Vmin+ϵ ,

and the simplified implementation changes the first coefficient to G
d . Here Vmin is the minimum value of

√
v
(m,ℓ)
t for all

t,m, ℓ. For experiments validation, please refer to Table 13 in Appendix H.

20

SLAMB: Accelerated Large Batch Training with Sparse Communication

D. Comparison of SLAMB and SGD

0 50 100 150 200
epoch

10 4

10 3

10 2

10 1

100

101

tra
in

in
g

lo
ss

LAMB
SLAMB
SGD-M

(a)

0 50 100 150 200
epoch

40

50

60

70

80

90

te
st

 a
cc

@
1

LAMB
SLAMB
SGD-M

(b)

Figure 7. ResNet110 on CIFAR10

Table 7. Top-1 test accuracy of training ResNet110 on CIFAR10.

batch size learning rate acc@top-1

SGD-M 1024 0.03 91.70%
LAMB 1024 0.01 93.15%
SLAMB (k=0.1) 1024 0.01 93.21%

SGD-M 128 0.01 92.92%
LAMB 128 0.003 93.42%
SLAMB (k=0.01) 128 0.003 93.50%

To further demonstrate the wide applicability of SLAMB on different models and datasets, we report the convergence result
of training ResNet110 on CIFAR-10. ResNet110 is a relatively small model that can be easily trained on a single machine.
We use 4 GPUs and 1024 total batch size to run this experiment. SLAMB is configured as: β3 = 0.99, k = 0.1, H = 50.
Here we use a smaller H because CIFAR-10 is a relatively small dataset and using 1024 batch size makes the number of
steps per epoch down to 50. Unlike BERT, ResNet110 training is more stable w.r.t large β3. We gradually decrease the
compression ratio k in the first the 3 epochs to stabilize the training. The result is shown in Figure 7. We can see that
SLAMB converges similarly to LAMB, and both of them achieve higher test accuracy than the basic Momentum SGD. Note
that, if the batch size is smaller, SLAMB can reach 1% compression ratio without losing accuracy.

E. Implementation details.
There are two synchronization steps in Algorithm 1, gradient and momentum. As we explained in section 4.1, we skip
the synchronization of gt in all our experiments. The staleness vector ct is implemented as a optimizer state variable
for each layer’s parameter. Note that like other optimizer states such as mt and vt, ct also consumes additional memory
depending on the model size. To further improve SLAMB’s convergence speed, we average the local gradients among the
GPUs within each node before compressing them for inter-node communication. The overhead of such local averaging is
negligible since the GPUs are connected via high-speed NVLink within the same node. We simply the scaling function

into ϕmax = ϕ(
∥x(ℓ,i)

t ⊙M
(ℓ)
t ∥

∥u(ℓ,i)
t ⊙M

(ℓ)
t ∥

) and ϕmin = ϕ(
∥x(ℓ,i)

t ⊙¬M
(ℓ)
t ∥

∥u(ℓ,i)
t ⊙¬M

(ℓ)
t ∥

) and update the model by x
(ℓ,i)
t+1 = x

(ℓ,i)
t − η̃tϕ̃u

(ℓ,i)
t . As in

practice, we find that ratio ∥x(ℓ,i)
t ∥

∥u(ℓ,i)
t ∥

is more stable among different layers in BERT. The scaling function is implemented as a

clipping function: ϕ(z) = min{max{z, a}, b}.

21

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 8. Configuration of BERT models
BERT-base BERT-Large BERT-XLarge

hidden layer size 768 1024 3072
intermediate layer size 3072 4096 12288
num of attention heads 12 16 16
num of hidden layers 12 24 24
Total number of params 110M 340M 2.8B

F. Memory consumption profiling.
We have profiled the GPU memory consumption and execution time of different optimizers with BERT-Large on a Nvidia
V100 GPU. The results are displayed in Table 9. BERT-Large has 336M parameters and it takes around 1.3GB memory
to store the model parameters or the gradients. After initialization, the GPU memory consumption is 2.5GB. We can see
that SLAMB consumes 2.3GB more memory than LAMB, and the computation overhead is around 20 milliseconds. The
additional memory is used for storing the new optimizer state (i.e. ct) and the intermediate results during computation.
Therefore, when using SLAMB to training super large models, one may need to split the input into several micro-batches to
decrease the memory consumption and accumulate the gradients from all micro-batches. Note that SLAMB is more memory
efficient than the state-of-the-art, 1-bit LAMB. We conjecture that it is because 1-bit LAMB requires additional memory
to support its custom communication backend, while SLAMB uses the same NCCL AllReduce primitive as LAMB. All
optimizers tested here use the same level of implementation (native PyTorch API).

Table 9. GPU memory consumption and execution time profiling
Momentum-SGD Adam LAMB 1-bit LAMB SLAMB

Time (ms) 20.1 46.8 142.3 168.9 162.7
GPU Mem. Consumption(GB) 3.9 5.5 5.6 10.9 7.9

G. Hyper-parameter tuning.
G.1. BERT

There are several hyper-parameters in SLAMB, including β1, β2, β3, learning rate η, compression ratio k, synchronization
interval H , scaling function ϕ. β1, β2 are originated from LAMB and we keep them as default β1 = 0.9, β2 = 0.999.
Learning rate η and learning rate scheduler often need to be tuned on specific tasks. We can always use the same learning rate
setting for LAMB and SLAMB. β3 is the only parameter that needs careful tuning. The value range of β3 should be (β1, 1),
and we use 0.95 as the default value. If β3 is too small then convergence is slow. If it is too large, training may become
unstable and diverge. The compression ratio k and synchronization interval H are fixed in most cases. We use k = 0.1
and H = 100 as default settings. The lower bound and upper bound of the scaling function ϕ(z) = min{max{z, a}, b} is
specifically configured as a = 0.01, b = 0.4 for all layers’ updates in BERT training tasks. We find that a, b are not sensitive
in other training tasks such as ImageNet training and CIFAR-10 training. We provide the results of hyper-parameter tuning
of SLAMB on BERT-Large pre-training task in Table 10.

We summarize other hyper-parameters for BERT training here. For phase1 with seqlen 128, we set learning rate (LR) to
6e-3, and use linear warm-up and polynomial decay (degree=0.5) LR scheduler. The LR warm up steps and total steps are
2000 and 7038, respectively. For phase2 with seqlen 512, we set LR to 4e-3, and use the same scheduler as phase1. The LR
warm up steps and total steps are 200 and 1563, respectively. For SQuAD fine-tuning task, we use Adam optimizer with
3e-5 LR and 32 total batch size for 2 epochs.

G.2. Swin Transformer

Table 11 shows the learning rate fine-tuning results of Swin-Base Transformer on ImageNet. We found that as we increase
the batch size from 1K to 32K, LAMB scales fairly well when using square root scaling rule to adjust the learning rate,
while Adam is unstable with large learning rate. We observe a slight accuracy drop by increasing the batch size. (You
et al., 2020) also reports similar accuracy drop when increasing the batch size from 1K to 32K for ImageNet training using

22

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 10. Hyper-parameter tuning of SLAMB on BERT-Large pre-training task.

Algorithm k β3 H Max F1 score

LAMB - - - 90.754

SLAMB 0.5 0.93 100 90.797
SLAMB 0.2 0.93 100 90.799
SLAMB 0.1 0.93 100 90.790
SLAMB 0.05 0.93 100 89.884
SLAMB 0.01 0.93 100 87.847

SLAMB 0.1 0.9 100 90.516
SLAMB 0.1 0.93 100 90.790
SLAMB 0.1 0.95 100 90.623
SLAMB 0.1 0.97 100 diverge
SLAMB 0.1 1 100 diverge

SLAMB 0.1 0.93 10 90.798
SLAMB 0.1 0.93 100 90.790
SLAMB 0.1 0.93 200 90.776
SLAMB 0.1 0.93 500 90.756
SLAMB 0.1 0.93 1000 90.201

ResNet50 (77.06% for 1K vs. 76.42% for 32K).

H. Additional results

Algorithm 2 Distributed LAMB with naive gradient compression and error feedback

Input: x1 ∈ Rd, learning rate {ηt}Tt=1, parameters 0 < β1, β2 < 1, ϵ > 0, scaling function ϕ, compression operator C, number of
nodes n
(On each node i)
Set m(i)

0 = 0, v(i)0 = 0, δ(i)0 = 0
for t = 1 to T do

Compute local mini-batch stochastic gradient g(i)t

g
(i)
t = g

(i)
t + δ

(i)
t−1 {Compensate current gradient with the compression error from last step}

δ
(i)
t = g

(i)
t − C(g

(i)
t) {Compute new compression error in current step}

gt =
1
n

∑n
i=1 C(g

(i)
t)

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g

2
t

mt = mt/(1− βt
1)

vt = vt/(1− βt
2)

Compute ratio rt =
mt√
vt+ϵ

Compute update ut = rt + λxt

for each layer ℓ do

x
(ℓ)
t+1 = x

(ℓ)
t − ηt

ϕ(∥x(ℓ)
t ∥)

∥u(ℓ)
t ∥

u
(ℓ)
t

end for
end for
Output: x

23

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 11. Learning rate fine-tuning of Swin Transformer pre-training task at different batch sizes.

Algorithm batch size learning rate warm-up epochs acc@top-1

Adam 1K 0.001 20 83.20%

Adam 8K 0.001*1 20 82.75%
Adam 8K 0.001*2 20 83.08%
Adam 8K 0.001*3 20 diverge
Adam 8K 0.001*4 20 diverge

Adam 32K 0.001*1 20 80.99%
Adam 32K 0.001*2 20 81.86%
Adam 32K 0.001*3 20 diverge
Adam 32K 0.001*4 20 diverge

LAMB 1K 0.001 20 82.57%

LAMB 8K 0.001*2 20 81.49%
LAMB 8K 0.001*2.8 20 82.54%
LAMB 8K 0.001*3.5 20 82.75%
LAMB 8K 0.001*4 20 83.09%
LAMB 8K 0.001*6 20 diverge
LAMB 8K 0.001*8 20 diverge

LAMB 32K 0.001*6 20 81.98%
LAMB 32K 0.001*8 20 82.46%
LAMB 32K 0.001*10 20 82.74%
LAMB 32K 0.001*12 20 82.74%
LAMB 32K 0.001*14 20 diverge
LAMB 32K 0.001*16 20 diverge

LAMB 32K 0.001*10 5 82.62%
LAMB 32K 0.001*10 20 82.74%
LAMB 32K 0.001*10 40 82.21%

Table 12. Per-step training time breakdown for BERT pre-training (seqlen 128) and Swin-Base transformer training. We profile the
computation time (forward and backward), communication time, and the ratio of communication time to total time per step.

Model GPU Bandwidth
(Gbps) #node #GPU batch size

per GPU
Grad.
accum. batch size Comp.(s) Comm.(s) Total (s) Comm. / Total

BERT-Large V100 1 32 128 64 8 64K 2.584 12.690 15.290 83%
10 32 128 64 8 64K 2.592 1.246 3.846 32%

100 32 128 64 8 64K 2.588 0.238 2.838 8%
BERT-Large V100 10 32 128 64 4 32K 1.292 1.218 2.518 48%

10 32 128 64 2 16K 0.644 1.238 1.888 65%
10 32 128 64 1 8K 0.318 1.255 1.580 79%

BERT-XLarge A100 100 128 1024 64 1 64K 1.165 1.047 2.220 47%
100 64 512 64 1 32K 1.147 1.043 2.201 47%
100 32 256 64 1 16K 1.113 0.894 2.019 42%

Swin-Base V100 10 32 128 64 4 32K 1.401 0.524 1.933 27%
10 32 128 64 2 16K 0.779 0.533 1.325 40%
10 32 128 64 1 8K 0.412 0.587 1.012 58%

24

SLAMB: Accelerated Large Batch Training with Sparse Communication

Table 13. Accuracy validation for SLAMB with and without gradient synchronization. We can see that skipping gradient synchronization
in SLAMB does not affect the training quality of various tasks.

Task LAMB SLAMB (Algorithm 1) SLAMB w/o gradient synchronization
Top-1 acc % (ResNet110 on Cifar10) 93.15 93.14 93.21

Top-1 acc % (Swin Transformer on ImageNet) 83.09 83.02 83.10
SQuAD Avg. F1 Score (BERT-Large Pre-training) 90.582 90.680 90.646

Table 14. SLAMB scaling performance at different compression ratio (k) in BERT-XL Pre-training task. We use 512 A100 GPUs in this
experiment. Warmup is a critical step for 1-bit LAMB to achieve good convergence in practice, however, it significantly affects the scaling
performance.

Algorithm k Volume Reduction (× 100%) Throughput - samples / s Scaling efficiency %

LAMB - - 14813 52.0
SLAMB 0.5 2.0 19300 67.7
SLAMB 0.25 3.8 22951 80.5
SLAMB 0.1 9.1 25915 90.9
SLAMB 0.05 16.6 26845 94.1
SLAMB 0.01 50.0 27660 97.0
SLAMB 0.001 90.9 27798 97.5
1-bit LAMB - 4.6 22930 80.4
1-bit LAMB w/o warmup - 16.0 26552 93.1

25

