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TEARS: Textual Representations for Scrutable Recommendations
Anonymous Author(s)

Abstract
Traditional recommender systems rely on high-dimensional (latent)
embeddings for modeling user-item interactions, often resulting in
opaque representations that lack interpretability. Moreover, these
systems offer limited control to users over their recommendations.
Inspired by recent work, we introduce TExtuAl Representations for
Scrutable recommendations (TEARS) to address these challenges.
Instead of representing a user’s interests through latent embed-
dings, TEARS encodes them in natural text, providing transparency
and allowing users to edit them. To encode such preferences, we
use modern LLMs to generate high-quality user summaries which
we find uniquely capture user preferences. Using these summaries
we take a hybrid approach where we use an optimal transport
procedure to align the summaries’ representations with the repre-
sentation of a standard VAE for collaborative filtering. We find this
approach can surpass the performance of the three popular VAE
models while providing user-controllable recommendations. We
further analyze the controllability of TEARS through three simu-
lated user tasks to evaluate the effectiveness of user edits on their
summaries. Our code and all user-summaries can be seen in an
anonymized repository1.

CCS Concepts
• Information systems→ Retrieval models and ranking.

Keywords
Recommender Systems, Large Language Models
ACM Reference Format:
Anonymous Author(s). 2024. TEARS: Textual Representations for Scrutable
Recommendations . In . ACM, New York, NY, USA, 34 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Recommender systems are a crucial component of the online ecosys-
tem, providing personalized content by modeling user preferences.
Users daily rely on recommender systems that infer their prefer-
ences and surface relevant items rather than parsing through a
large collection of items.

Recommender systems often employ collaborative filtering (CF)
models, such as those discussed in [17, 54, 59], which are particu-
larly effective for users with extensive interaction histories (e.g.,
clicks or ratings). These models derive latent user representations
1https://anonymous.4open.science/r/TEARS-176D/
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Figure 1: General scrutable recommendations framework proposed
by Radlinski et al. [40]. Our work implements this framework while
also addressing its limitations.

from observed preferences to generate recommendations. However,
these representations are encoded using high-dimensional numeric
vectors, which lack interpretability. Further, these CF systems of-
fer limited control to users, who can influence them only through
coarse item-level interactions, such as clicks, without understand-
ing the precise impact of such actions on (future) recommendations.

To address these limitations, we introduce a recommender sys-
tem that represents users with natural text summaries. Such user
representations are easily understandable and directly editable [40].
Previous attempts at designing controllable recommender systems
have generally restricted user profiles to broad tags or rigid tem-
plates [15]. These methods provide limited customization options,
as users might find the available tags too numerous and the tem-
plates overly restrictive. Instead, text-based representations pro-
vide users with a clear view into the model’s interpretation of their
historical behavior (preferences) and allow them to modify these in-
terpretations, thereby directly influencing their recommendations.

Our work draws inspiration from the framework developed by
Radlinski et al. [40], illustrated in Figure 1. This framework, sug-
gests transitioning from black-box user representations to more
interpretable ones using scrutable (natural) language as a bottle-
neck to the system, similar to concept bottleneck models [26, 27, 58].
Where, they define scrutable language as being both short and clear
enough for someone to review and edit directly (to impact the
downstream recommendations). This approach provides several
key benefits. First, it enhances transparency in the recommenda-
tion process by basing recommendations on user summaries and
clarifying the system’s inferred preferences. Additionally, it allows
users to edit their summaries, thus giving them control over their
recommended content. However, this framework assumes that text
summaries can encapsulate all the information typically contained
in rich numerical latents, which we find is generally not the case in
practice, potentially leading to a substantial drop in performance
(see Table 1).

We develop TExtuAl Representations for Scrutable Recommen-
dations (TEARS) to obtain high-quality recommendations from
scrutable user representations. TEARS uses two encoders, a regu-
lar black-box model which processes historical interactions onto
numerical black-box embeddings, and another that takes scrutable,
user-editable text summaries and transforms them into summary-
based embeddings. We then apply an optimal transport (OT) regu-
larizer to align these two embeddings, which are then merged using
a convex combination. Changing the mixing coefficient allows the
system designer or its users to guide their recommendations further.
For example, users can choose recommendations based entirely on

1
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Figure 2: We illustrate the general TEARS. TEARS produces recommendations based on a convex combination of aligned summary and
black-box representations, allowing users to interpolate between transparent text-based recommendations and black-box methods. All figures
in blue indicate frozen weights, while red indicates a trainable procedure.

their user summaries, adhering to the principles of Radlinski et al.
[40], opt for more black-box-based recommendations for optimal
performance, or select a blend of both from text adjustments.

In our empirical evaluations, we explore three key aspects of
TEARS: user summaries, recommendation performance, and con-
trollability. We begin by testing whether modern pre-trained LLMs
can generate distinctive, appropriately sized user summaries. Next,
we demonstrate that aligning black-box and summary-based em-
beddings improves recommendation performance. Due to the lack
of standard metrics for controllability, we introduce new metrics
and benchmark tasks, designed to evaluate how user edits influence
the system. These tasks are built around the principle that there
are two primary types of user edits: large-scope and small-targeted
edits, with additional changes simply being repetitions or a combi-
nation of these. For instance, we assess large changes by instructing
GPT to “flip” user preferences, swapping favorite and least favorite
genres, and measuring the change in the recommendations. Tar-
geted edits are evaluated using GPT to make minor adjustments to
the summary to boost the rank of a poorly ranked movie. Finally,
we test an edit unique to TEARS, whereby using a mix of text and
black-box embeddings, users can use short phrases to guide their
recommendations. Our findings indicate that TEARS is controllable
across all scenarios.

2 Related Work

Scrutable Recommender Systems. Building recommender systems
using latent-variable models [48] is a common practice, but it com-
plicates explaining the system’s behavior. Although there are sev-
eral works focused on explainability, most emphasize feature-based
explanations [10, 37, 46, 49], or on generating posthoc language-
based explanations for recommendations using LLMs [5, 9, 14, 28,
29]. While both approaches provide value to users and practitioners,
they lack actionability, meaning it is not simple for users or practi-
tioners to directly influence produced recommendations through
interactions with the explanations.

Scrutable recommender systems, in contrast, have been limited
in flexibility, largely relying on keyword or tag-based methods
[4, 9, 10, 13, 35, 52], where users can toggle tags on or off. However,
this approach can hinder controllability, as users are burdened with
parsing through numerous keywords or tags, leading to signifi-
cant cognitive load. Few works have explored scrutable systems
through natural language user summaries. Sanner et al. [43] con-
ducted a user study that highlighted the advantages of using user
summaries to generate zero or few-shot recommendations with a
frozen LLM. The study found that under specific conditions, LLMs
leveraging user summaries can compete with black-box models in
cold-start settings. Closest to TEARS, Ramos et al. [42] developed
a scrutable model using natural language profiles for next-item
prediction. However, the approach relies on user reviews, which
are not always available, and only approaches the performance
of black-box models. In contrast, our work does not require user
reviews and employs a hybrid methodology to demonstrate that
TEARS can surpass black-box model performance and maintaining
scrutability.

Large LanguageModels for Recommendations Systems. Enhancing
recommender systems with textual attributes is widely recognized
for improving both performance and robustness [2, 23, 36, 60]. This
integration generally takes one of two approaches: utilizing LLMs as
standalone recommender systems and enhancing existing systems
with LLM-generated text.

Studies have shown that LLM-generated text can improve rec-
ommendation quality by providing item or user-specific content
[1, 50, 56]. Such approaches leverage the descriptive power of LLMs
to enrich the contextual understanding of user preferences and cat-
alog items. Meanwhile, other approaches deploy LLMs directly as
recommender systems. This can be done either in a zero-shot man-
ner, where the model makes recommendations based on general
pre-training [31, 57], or through fine-tuning the model on specific
recommendation tasks [31]. While LLM zero-shot or few-shot meth-
ods might offer scrutability since they rely purely on natural text,
they suffer from inconsistencies and are limited by confabulations

2
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The user has a clear preference for genres
that blend comedy with other elements, such
as sci-fi, horror, and action...

The user also gravitates towards dramas that
are infused with sci-fi and adventure...

Base Summary Augmented Summary

The user has a clear preference for genres
that blend comedy with other elements, such
as sci-fi, horror, and action...

The user enjoys films with Sports agent’s and
redemption through love

Augmented Summary

The user exhibits a profound
appreciation for drama...

Conversely, the user has a marked
disinterest in comedies....

The user finds considerable enjoyment in
comedies often blended with other
genres... 

In contrast, the user tends not to enjoy
pure drama genres... 

Base Summary

Make Targeted Edits

Base VAE
 

Before Change

Jerry
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Jerry
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LLM 

American
Beauty Comedy/Drama
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Alien Action/Horror

Recs with 
American
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Alien Action/Horror
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Figure 3: Controllability experiment visualization: large-scope changes (top), fine-grained edits (middle), and guided recommendations (bottom).
Red indicates edited summaries, green are base summaries and blue are models. Summaries and examples are paraphrased. App. Q includes
more summaries, with examples in App. G for large-scope and App. H for fine-grained.

and incomplete catalogue coverage [33]. We further validate this in
Table 1, where we evaluate GPT-4-turbo’s performance on strong
generalization. On the other hand, fine-tuning can enhance the
quality of recommendations by integrating new item-specific or
user-specific tokens into the LLM’s vocabulary [11, 12, 22]. How-
ever, it may compromise the model’s ability to comprehensively
navigate the full item catalogue due to the added tokens not ap-
pearing during general pre-training. While these approaches show
that one can enhance performance using textual attributes, they do
not focus on the development and evaluation of scrutable systems,
which is the main focus of this work.

3 Methodology
We introduce TEARS, a method with user-interpretable and control-
lable representations. We begin by contrasting TEARS with stan-
dard latent-based CF methods. Then, we introduce the components
of TEARS, starting with a prompting pipeline for summarizing the
user preferences with an LLM. The summaries are then used to
predict recommendations. To achieve this, we use two AE models: a
text representation-based model, which transforms text summaries
into recommendations, and a (black-box) VAE model. We propose
aligning the space of the text representations model with the space
of a standard recommendation VAE using optimal transport (OT).
We find this alignment crucial for obtaining high-quality recom-
mendations while preserving the controllability of the text user
summaries (see App. M.1).

3.1 Motivation
Traditional collaborative-filtering-based recommender systems rely
on a user’s history to provide recommendations. A user wanting to
obtain better recommendations, e.g. if current recommendations do
not appear satisfying, faces a tedious process with unclear outcomes
since they must interact with (e.g., consume or at least rate) items
that better reflect their preferences with the hope of obtaining

better recommendations. This is even more impractical in domains
where users’ preferences evolve rapidly or if users have short-term
preferences in a given context.

In contrast, TEARS allows users to adjust their recommendations
by adapting or even deleting their summary and creating a new
one more aligned with their (current) preferences. This process is
immediate and transparent. It allows users to correct representa-
tional mistakes (e.g. add a missing genre they are interested in) or
adapt them to better suit their evolving preferences and the current
context. Additionally, we introduce an interpolation coefficient, 𝛼 ,
between a user’s summary and black-box representations. Setting
𝛼 = 1 puts all the weight on text representations, while 𝛼 = 0 favors
black-box representations. This gives users extra control over how
their recommendations are influenced (details in Section 3.3).

Background. Autoencoder models have proven highly effective
for collaborative-filtering recommender systems, consistently out-
performing counterparts across various tasks [30, 44, 47]. With this
in mind, we design TEARS to be compatible with existing VAE-
based models and refer to the combination as TEARS VAE models.
We study specific VAEs, and we denote their combinations using
their names, e.g. TEARS RecVAE.

The auto-encoder framework involves representing the user-
item feedback matrix X ∈ N𝑈 ×𝐼 , where each entry represents a
rating given by a user 𝑢 to an item 𝑖 . Our focus is on predicting
users’ implicit preferences Y ∈ {0, 1}𝑈 ×𝐼 (e.g. identifying items that
a user has rated above a specified threshold 𝑟 as positive targets).
Thesemodels prescribe learning an encoding function𝑄 : X → Z to
compress input data into a lower-dimensional latent space, followed
by a decoding function 𝐷 : Z → Y to map it to the target.

3.2 Summary Design
Creating scrutable summaries for controllable recommender sys-
tems presents unique difficulties. Manual summary creation is im-
practical due to scalability and inconsistency, while the quality

3
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of earlier machine-generated summaries was low [8]. However,
LLMs like the recent GPTs have significantly improved capabilities
across natural language tasks [19], offering a tool for generating
high-quality user summaries.

We propose designing user summaries by leveraging LLMs.While
these generative models provide an efficient way to obtain sum-
maries, ensuring their quality and consistency is non-trivial.

We believe each summary should contain enough information
to be decodable into good recommendations but short enough to be
easy to understand and to control by users. In that sense, it should
describe the user’s preferences sufficiently and uniquely. We note
that these design choices may also vary by domain, and in this
work, we focus on the movie and book recommendation domains.

Given the above criteria, we identify preference attributes that
a user may wish to edit and that are essential in providing good
recommendations. For each attribute, we also pinpoint relevant
prompting information:

• Inferred Preferences:What users like and dislike, prompted
with user ratings.

• High-Level Attributes: Preferences for genres, prompted
with item metadata.

• Fine-Grained Details: Specific plots or themes, prompted
with the title.

Recent LLMs encode significant knowledge about movies and
books [18, 20, 53]. We believe they should be able to encode ap-
propriate item information conditioned on titles and genres alone.
To verify this, we conduct preliminary experiments using GPT-3.5,
GPT-4-turbo, and GPT-4 via the OpenAI API, finding that GPT-3.5
generated poor summaries, while there was no significant differ-
ence between GPT-4 and GPT-4-turbo. We select GPT-4-turbo2 to
generate summaries and refer to it as GPT for the remainder of the
text. Additionally, to enhance the reproducibility of our work, we
also generate summaries using LLaMA 3.1-405b3 [7].

While LLMs have shown impressive capabilities in text summa-
rization [8], we find that free-style prompting without adherence
to a specific structure can make summaries generic and vary in
quality. On the other hand, LLMs have excelled in instruction-based
tasks [38]. With this in mind, we design a prompt asking for sum-
maries to include the desirable characteristics mentioned to enforce
consistency and quality. Consistent summaries will also likely help
train a decoder and obtain high-quality recommendations. Our
resulting prompting strategy is in Figure 14. We explicitly direct
the model to avoid stating titles and rating information to prevent
over-reliance on such details and encourage summaries to be more
expressive. By design, LLM’s responses are non-deterministic. In
early experiments, we find that summary generation can vary, with
two output summaries being significantly different for the same
user. We observe higher variability in users with longer histories,
leading us to limit the number of items used for each summary
(to a maximum of 50 items in our studies), we further explore this
effect in App N. Note that the number of items used for each sum-
mary,𝑚𝑢 , is user-dependent since some users have shorter histories
that this max. threshold. Finally, our prompt also contains the ex-
pected length of the summaries, which we set to 200 words, as we

2We use gpt-4-1106-preview through the OpenAI API https://platform.openai.com/
3We obtain summaries using the help of https://www.llama-api.com/

find it short enough to not incur heavy cognitive loads, but can
be detailed enough. For future work, we leave such explorations,
including whether the summary length should vary by user.

3.3 TEARS
In this section, we define TEARS and its training process, which is
depicted in Figure 1. With user summaries S and feedback data X,
our goal is to obtain a pair of encoding functions 𝑄𝑠 : S → 𝑍𝑠 and
𝑄𝑟 : X → 𝑍𝑟 which we can constrain to map the representations
𝑧𝑢𝑠 and 𝑧𝑢𝑟 to a common space. We obtain 𝑄𝑟 from a backbone
VAE for recommendations. After that, we aim to decode a convex
combination of the representations 𝑧𝑢𝑐 = 𝛼𝑧𝑢𝑠 + (1 − 𝛼)𝑧𝑢𝑟 onto
recommendations using a shared decoder 𝐷 : 𝑍𝑐 → Y. When 𝛼 =

1, the recommendations are generated solely using the summary
embeddings; this means the downstream recommendations are
controllable through simple text edits. On the other hand, when
𝛼 = 0, the recommendations are based purely on the backbone VAE
and only leverage the user feedback data. Other 𝛼 values lead to
a combination of these, making it such that a user can guide their
recommendations through text edits but still use their historical
data, which may be richer in information, making the changes less
drastic but more personalized. Overall, our training objective is
composed of three components, which are detailed below.

Alignment through Optimal Transport. While the shared decoder
architecture should incentivize both the text (𝑍𝑠 ) and black-box
embeddings (𝑍𝑟 ) to be naturally aligned, in practice we find that
training without additional constraints is not enough (see App.
M.1). Rather, we align these embeddings using optimal transport
techniques which measure the cost of shifting the mass from one
probability measure to another [3]. This is achieved by calculating
a cost function that reflects the underlying geometry of the distri-
butions, known as the Wasserstein distance. Unlike other distance
metrics such as KL-divergence, the Wasserstein distance is sym-
metric, making it particularly suitable as an optimization target for
aligning two distributions. Computing this distance with Gauss-
ian distributions has a closed-form solution [25]. To make use of
these properties, we use encoders 𝑄𝑟 and 𝑄𝑠 that map inputs onto
Gaussian-distributed latent encodings, as is traditional for VAEs
[24, 30, 45], 𝑍𝑟 ∼ 𝑁 (𝜇𝑟 , 𝜎𝑟 I) and 𝑍𝑠 ∼ 𝑁 (𝜇𝑠 , 𝜎𝑠 I). This parameteri-
zation allows for direct computation of the minimal transportation
cost between Gaussian distributions to align the two embeddings:

L𝑂𝑇 = | |𝜇𝑠 − 𝜇𝑟 | |22 + Tr{Σ𝑠 + Σ𝑟 − 2(Σ
1
2
𝑟 Σ𝑆Σ

1
2
𝑟 )

1
2 }. (1)

Other optimal transport techniques, like Sinkhorn’s algorithm [6],
are applicable to non-Gaussian distributions and we reserve these
methods for future exploration. We find in practice, this objective
greatly enhances the system’s controllability (see App. M.5).

Objective for Recommendation For𝑄𝑠 , we use a T5-basemodel [41],
which we fine-tune using low-rank adaptors [21], to obtain an em-
bedding of the text summaries and train an MLP head to obtain
𝜇𝑠 , 𝜎𝑠 , we then use the reparametrization trick to obtain 𝑍𝑠 :

𝜇𝑠 , 𝜎𝑠 = MLP
(
T5-Encoder(𝑆)

)
, (2)

𝑍𝑠 = 𝜇𝑠 + 𝜎𝑠 ◦ 𝜖, 𝜖 ∼ 𝑁 (0, I) . (3)

Thanks to the OT alignment, 𝑍𝑟 , 𝑍𝑠 and 𝑍𝑐 share a common space
and thus a shared decoder, 𝐷 alongside the softmax function Ψ can

4
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be used to produce a distribution over items for each user from
each latent representation (𝑍𝑠 , 𝑍𝑟 ) and their combination (𝑍𝑐 ):

Ŷc = Ψ
(
𝐷 (𝑍𝑐 )

)
, Ŷr = Ψ

(
𝐷 (𝑍𝑟 )

)
, Ŷs = Ψ

(
𝐷 (𝑍𝑠 )

)
. (4)

We use these distributions to optimize the multinomial likelihood
of each representation. During training, we fix 𝛼 = 0.5 to optimize
for performance on the merged representations but note that 𝛼 can
be changed at any time during inference. The model learns using
the binary cross-entropy of trained-autoencoder (r), TEARS (s), and
their combination:

L𝑅 =
∑︁

𝑘∈{𝑐,𝑠,𝑟 }

∑︁
𝑖∈𝐼 ,𝑢∈𝑈

𝑦𝑢𝑖 log(𝑦𝑢𝑖,𝑘 ) . (5)

Constraint of Gaussian Priors Additionally, we impose a standard
Gaussian prior 𝑃 (𝑍 ) ∼ 𝑁 (0, I) on 𝑍𝑠 which has been shown to
help improve performance [30]. Enforcing this constraint can be
expressed as optimizing the KL-divergence between that prior and
its inferred value:

L𝐾𝐿 = 𝐷𝐾𝐿
(
𝑄𝑠 (𝑍 | 𝑆) | |𝑃 (𝑍 )

)
Our overall training objective is a weighted sum of the above

three objectives, formulated as below:

L = L𝑅 + 𝜆1L𝑂𝑇 + 𝜆2L𝐾𝐿, (6)

where 𝜆1 and 𝜆2 are weighing parameters for their respective losses.
In practice, we initialize 𝐷 with the base model’s decoder, update
its weights while training, and freeze 𝑄𝑟 ’s weights (see App. M.3).

3.4 Genre-Based Model (GERS)
In addition to summary-based TEARS VAE models, we instantiate
GERS VAEmodels, which help evaluate whether TEARS summaries
contain information beyond genres. The only difference between
TEARS VAE and GERS VAE is that the text summaries 𝑆 and user
representation 𝑧𝑢𝑠 are replaced with a genre vector 𝐺 and a genre-
based representation 𝑧𝑢𝑔 , defined as the normalized count vector of
the genres linked to the items a user has interacted with positively.
Specifically, we define this representation as:

𝑧𝑢𝑔,𝜌 =
𝐶𝑢 (𝜌)∑

𝜌 ′∈G 𝐶𝑢 (𝜌′)
(7)

where G represents the set of all genres, and 𝐶𝑢 (𝜌) corresponds
to the count of items the user has interacted with in genre 𝜌 , such
that 𝑧𝑢𝑔 ∈ [0, 1] | G | . This modeling framework is similar to those
used in keyword/tag-based systems, as each genre entry in 𝑧𝑢𝑔 can
be scrutinized by the user making it so they can choose how much
of that genre they want to be weighted in their recommendations
(see App. J). We note, that while this modeling framework can be
useful for some applications, it is limited in transparency as user
representations are simple statistics. Moreover, users cannot edit
fine-grained details of their interests such as plots or themes they
may enjoy, limiting the controllability of this system.

4 Datasets
We conduct experiments on subsets of the MovieLens-1M (ML-
1M),4 Netflix,5 and Goodbooks6 datasets. As is common in other
4https://grouplens.org/datasets/movielens/1m/
5https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
6https://github.com/zygmuntz/goodbooks-10k

studies, we filter out cold-start items for all datasets [16, 54]. In
addition, due to the high cost of using LLM APIs, we use a subset of
users with enough ratings for each dataset to provide a comprehen-
sive summary. For the Netflix and Goodbooks datasets, we filter
out users with less than 100 interactions and items with less than
twenty. For the smaller ML-1M dataset, we only filter out users
with less than twenty interactions and items with less than 5. After
filtering, we have 6,037 users and 2,745 items for ML-1M, 9,978
users and 3,081 items for Netflix, and 9,980 users and 8,093 items for
Goodbooks. Descriptive statistics such as sparsity, average ratings,
and number of genres per dataset are reported in App B.

We construct Y using X, with 𝑟 = 4, that is, we train the model
to predict implicit feedback where the rating is positive (𝑦𝑢𝑖 = 1) if
the item is rated four and above and a negative (𝑦𝑢𝑖 = 0) otherwise
[34]. We evaluate under a strong generalization setting where we
reserve 500 users for the validation and testing splits (250 each) for
ML-1M and 2,000 (1,000 each) for Netflix and Goodbooks. We make
all summaries with GPT and LLaMA using the prompt in Figure 14.
We use up to 50 of the oldest ratings to construct the summaries,
while the remaining, more recent ones are used for evaluation. For
users that rate less than fifty items, we retain the most recent two
for evaluation and generate the summary with the remaining.

5 Assessment of User Summaries
We begin by assessing the scrutability and uniqueness of user sum-
maries, using descriptive statistics on their length alongside stan-
dard NLPmetrics. Thereafter, we use recommendation performance
as a proxy for quality, as accurate, information-rich summaries
should yield better recommendations.

5.1 User Summary Properties
We analyze the average summary length to inspect if summaries
can be appropriately scrutinized. For GPT, summaries average
168.67±3.62 words across all datasets, compared to 179.60±2.20
for LlaMA. These lengths suggest that the summaries are concise
enough to be easily editable while still comprehensive enough to
convey detailed user information, as reflected in their positive im-
pact on recommendation performance (see §5.2). To assess unique-
ness, we use pairwise edit distance and BLEU scores [39], the latter
measuring n-gram overlap between two texts (we use 4-grams).
The average edit distance for GPT summaries is 160.17±0.05 words,
while LlaMA summaries average 157.05±1.18. These scores are high
when compared to the average summary length, indicating distinct
summaries across users. Similarly, BLEU scores are low, with GPT
summaries averaging 0.08±0.02 and LlaMA summaries 0.19±0.01,
which suggest minimal n-gram overlap, so diverse phrasing. Further
details and statistics are in App. A and examples in App. Q.

5.2 Recommendation Quality
We assess the quality of information within user summaries using
recommendation performance as a proxy. For this, we benchmark
popular AE-based methods, GPT, and two TEARS and GERS vari-
ants, using recall@k and NDCG@k established top-𝑘 metrics.

Models.We evaluate several AE-based models, including Multi-
VAE [30], RecVAE [45], MacridVAE [32], EASE [47], and Multi-DAE
[30]. To ensure fairness in comparison, we use the same ratings used
to generate the user summaries as input for these models. Unlike

5
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Table 1: Comparison of model performance across the ML-1M, Netflix, and Goodbooks datasets on NDCG and recall at 𝑘 ∈ {20, 50}. We label
LLaMA models with and GPT models with . Each model is evaluated using five different seeds. We report both mean values and standard
deviations. Best results are denoted in bold, and a * indicates statistical significance (𝑝 < 0.05) in a two-way t-test between the TEARS VAE
model and its respective VAE (above in grey).

ML-1M Netflix Goodbooks

Model Recall@20 NDCG@20 Recall@50 NDCG@50 Recall@20 NDCG@20 Recall@50 NDCG@50 Recall@20 NDCG@20 Recall@50 NDCG@50

GPT-4-turbo 0.031 0.033 0.048 0.0390 0.054 0.067 0.065 0.040 0.015 0.012 0.013 0.011
EASE [47] 0.295 0.277 0.320 0.270 0.496 0.518 0.441 0.466 0.173 0.180 0.193 0.182
Multi-DAE [30] 0.290 ± 0.002 0.254 ± 0.001 0.363 ± 0.004 0.266 ± 0.000 0.507 ± 0.001 0.532 ± 0.001 0.450 ± 0.000 0.476 ± 0.001 0.151 ± 0.002 0.155 ± 0.002 0.173 ± 0.001 0.160 ± 0.001

GERS Base 0.276 ± 0.003 0.246 ± 0.001 0.320 ± 0.004 0.248 ± 0.000 0.471 ± 0.001 0.497 ± 0.001 0.413 ± 0.001 0.440 ± 0.001 0.153 ± 0.001 0.161 ± 0.001 0.167 ± 0.001 0.161 ± 0.001

TEARS Base 0.267 ± 0.004 0.253 ± 0.002 0.302 ± 0.014 0.250 ± 0.005 0.465 ± 0.004 0.491 ± 0.004 0.413 ± 0.003 0.439 ± 0.003 0.145 ± 0.001 0.153 ± 0.002 0.158 ± 0.002 0.153 ± 0.002

TEARS Base 0.259 ± 0.010 0.249 ± 0.010 0.292 ± 0.015 0.245 ± 0.010 0.452 ± 0.002 0.479 ± 0.002 0.397 ± 0.001 0.424 ± 0.001 0.143 ± 0.002 0.151 ± 0.003 0.156 ± 0.002 0.151 ± 0.002

TEARS RecVAE 𝛼=1 0.307 ± 0.006 0.272 ± 0.005 0.351 ± 0.007 0.276 ± 0.005 0.483 ± 0.002 0.509 ± 0.001 0.428 ± 0.002 0.455 ± 0.001 0.150 ± 0.002 0.160 ± 0.003 0.163 ± 0.001 0.159 ± 0.001

Multi-VAE [30] 0.295 ± 0.002 0.261 ± 0.001 0.357 ± 0.002∗ 0.270 ± 0.001 0.507 ± 0.001 0.532 ± 0.001 0.450 ± 0.000 0.476 ± 0.001 0.159 ± 0.001 0.163 ± 0.001 0.186 ± 0.001 0.170 ± 0.001

TEARS Multi-VAE𝛼∗ 0.295 ± 0.003 0.267 ± 0.002∗ 0.344 ± 0.010 0.272 ± 0.003 0.512 ± 0.001∗ 0.538 ± 0.001∗ 0.451 ± 0.000∗ 0.480 ± 0.000∗ 0.171 ± 0.002∗ 0.178 ± 0.002∗ 0.187 ± 0.003 0.178 ± 0.002∗

TEARS Multi-VAE𝛼∗ 0.306 ± 0.003∗ 0.276 ± 0.003∗ 0.347 ± 0.007 0.278 ± 0.003∗ 0.510 ± 0.001∗ 0.536 ± 0.001∗ 0.450 ± 0.001 0.479 ± 0.001∗ 0.169 ± 0.002∗ 0.174 ± 0.002∗ 0.187 ± 0.003 0.176 ± 0.002∗

MacridVAE [32] 0.301 ± 0.007 0.260 ± 0.006 0.370 ± 0.002 0.276 ± 0.005 0.505 ± 0.003 0.529 ± 0.003 0.450 ± 0.002 0.476 ± 0.001 0.168 ± 0.001 0.170 ± 0.001 0.196 ± 0.001 0.178 ± 0.001

TEARS MacridVAE𝛼∗ 0.323 ± 0.004∗ 0.280 ± 0.004∗ 0.381 ± 0.006∗ 0.291 ± 0.003∗ 0.511 ± 0.001∗ 0.535 ± 0.002∗ 0.454 ± 0.002∗ 0.480 ± 0.002∗ 0.171 ± 0.002∗ 0.175 ± 0.002∗ 0.195 ± 0.002 0.180 ± 0.001∗

TEARS MacridVAE𝛼∗ 0.319 ± 0.004∗ 0.280 ± 0.002∗ 0.376 ± 0.003∗ 0.289 ± 0.001∗ 0.510 ± 0.001∗ 0.536 ± 0.001∗ 0.450 ± 0.001 0.479 ± 0.001∗ 0.169 ± 0.001 0.173 ± 0.001∗ 0.194 ± 0.002 0.179 ± 0.001

RecVAE [45] 0.300 ± 0.005 0.264 ± 0.003 0.360 ± 0.003 0.274 ± 0.003 0.515 ± 0.003 0.540 ± 0.003 0.455 ± 0.002 0.482 ± 0.002 0.171 ± 0.001 0.176 ± 0.001 0.191 ± 0.002 0.179 ± 0.001

GERS RecVAE 𝛼∗ 0.304 ± 0.003∗ 0.266 ± 0.003∗ 0.366 ± 0.004∗ 0.279 ± 0.002∗ 0.517 ± 0.001∗ 0.542 ± 0.001∗ 0.458 ± 0.001∗ 0.485 ± 0.002∗ 0.170 ± 0.001 0.176 ± 0.001 0.192 ± 0.001 0.180 ± 0.001

TEARS RecVAE𝛼∗ 0.307 ± 0.002∗ 0.273 ± 0.002∗ 0.374 ± 0.002∗ 0.285 ± 0.001∗ 0.517 ± 0.001∗ 0.543 ± 0.000∗ 0.457 ± 0.001∗ 0.485 ± 0.001∗ 0.175± 0.002∗ 0.181 ± 0.002∗ 0.193 ± 0.000∗ 0.183± 0.001∗

TEARS RecVAE𝛼∗ 0.319 ± 0.005∗ 0.282 ± 0.005∗ 0.363 ± 0.003∗ 0.287 ± 0.002∗ 0.518 ± 0.001 0.544 ± 0.001∗ 0.457 ± 0.001∗ 0.485 ± 0.001∗ 0.173 ± 0.001∗ 0.179 ± 0.001∗ 0.191 ± 0.002 0.181 ± 0.000∗

the typical practice of binarizing inputs, we use the original ratings,
as this better aligns with the user summaries and leads to improved
performance in AEs. Additionally, we benchmark TEARS VAEs
with backbones built from Multi-VAE, RecVAE, and MacridVAE.
For GERS, we only train it using RecVAE as the backbone VAE, as
we found it to be the best-performing AE. Additionally, we evaluate
versions of TEARS and GERS without a backbone VAE—referred to
as TEARS Base and GERS Base. TEARS Base most closely resembles
the framework visualized in Figure 1 [40]. We also evaluate GPT
under strong generalization using few-shot prompting to compare
against a fully LLM-based solution (details are in App. D).

Discussion. Table 1 presents the results, averaged over five seeds
evaluated with the top 𝑘 = 20, 50 items. For TEARS and GERS
VAE models, we report test set metrics using 𝛼∗, being the optimal
value determined using the validation set (see App. K for 𝛼 values).
Additionally, we compare against Base models by including results
for the LLaMA-based TEARS RecVAE using 𝛼 = 1, being the most
performant when only using summary embeddings (see App L).

We find TEARS VAE models consistently outperform their back-
bone AEs across all but a single benchmark. This increase in perfor-
mance is most prevalent in ML-1M where users are generally less
active as well as in a sparser dataset like Goodbooks (see App B).
This suggests summaries have useful information not found in the
black-box embeddings contributing to performance. We find that
TEARS VAEs can consistently improve upon their backbone VAEs.
This is even the case with RecVAE, the best-performing AE, where
TEARS RecVAE outperforms it on all datasets regardless of the back-
bone LLM. Notably, on ML-1M, TEARS RecVAE can outperform
some black-box models using an 𝛼 = 1. It is also encouraging that
TEARS VAE models can offer higher performance while maintain-
ing scrutability (see § 6 for these results). In contrast, TEARS Base
does considerably worse than all AEs, showcasing the importance
of TEARS VAEs’ hybrid setup. GPT performs poorly in this context,
reinforcing the need for model adaptation to this task.

Meanwhile, GERS Base consistently outperforms TEARS Base,
suggesting that simple genre statistics can be more effective than
summaries for initial recommendations. However, TEARS RecVAE

outperforms GERS RecVAE on the ML-1M and Goodbooks datasets,
indicating that user summaries provide valuable information be-
yond black-box or genre representations. On Netflix, however,
TEARS RecVAE and GERS RecVAE perform similarly, implying that
the performance gains are likely explained by genre information.
To improve this, future work could explore more dataset-specific
prompts, but it is noteworthy that even in cases where summaries
have a limited impact, they still offer slight performance improve-
ments and, crucially, do not degrade performance. Furthermore,
TEARS RecVAE with 𝛼 = 1 consistently outperforms TEARS Base,
demonstrating that aligning black-box and summary embeddings
enhances performance when using only user summaries.

Overall, TEARS VAE models show that it is possible to signifi-
cantly enhance scrutability without sacrificing—and even improv-
ing—performance compared to both AE and genre-based models.
We provide additional analysis over components of TEARS, such as
ablation studies in App. M, analysis on user activity levels in App
O, and evaluate GPT-based models using LLaMA summaries and
vice versa in App. P.

6 Controllability Through Text Edits

We now study the controllability of user text representations, which
is the ability of users to edit and readjust their representation to
(better) align the system’s recommendations with their preferences.
Controllability is one of the main advantages of text representations
compared to latent representations. We analyze GPT-based models
and summaries in the main text and provide all results for LLaMA-
based models in App. F. As these changes are specific to textual
summaries, we do not assess the controllability of the genre-based
models in the following experiments but provide analyses in App. J.

Given the lack of evaluation metrics for scrutable recommenda-
tions, we create three tasks to evaluate user controllability. Each
task corresponds to a scenario that would lead users to update their
text summaries. The resulting tasks are easily benchmarked across
methods. First, large-scope changes, for example, to correct signif-
icant inaccuracies in a user profile. Second, finer or small-scope
changes aim to readjust minor discrepancies in a user summary.
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Figure 4: Tradeoff between recommendation performance (y-axis) and large scope controllability (x-axis) for ML-1M (left) and Goodbooks
(middle) using GPT-generated summaries (see Appendix F for LLaMA results). Netflix data is shown in Figure 8. The x-axis represents |Δup/down |
as 𝛼 increases, reflecting its impact on NDCG@20. Notably, most TEARS VAEmodels outperform TEARS BASE in recommendation performance
at 𝛼 = 1, with some also achieving superior controllability. The bar plots (right) illustrate guided recommendation outcomes, where all models
successfully guide black-box embeddings in the intended direction. Results are averaged across five seeds, with standard deviations detailed in
Appendix K.

Other changes can be seen as interpolating between these two cases
where a large change is simply many aggregate small edits. Third,
we test the ability of summaries to guide personalized recommen-
dations. This tests a different type of user interaction where the
summary is used as an instruction (e.g. in a particular context).
This evaluates a model’s capacity to interpolate between historical
behavior and a context. All experiments are visualized in Figure 3.
6.1 Evaluating Large Scope Changes
We first evaluate how well TEARS can react to a large change
in a user’s interest. To simulate such a change, we prompt GPT
to “flip” a user’s interest. We do so by first prompting GPT to
identify a user’s most and least favored genre. Using these genres,
we prompt GPT to make the user’s favorite genre into its least
favorite and vice-versa, effectively inducing a large shift in the
user’s preference. We find that GPT can appropriately induce a shift
in user preference. We provide an example and the full prompting
strategy in App. G. To evaluate TEARS’ effectiveness at modeling
such changes, we design the genre-wise Discounted Cumulative
Gain at 𝑘 (DCG𝑔@𝑘), which measures how favored a genre 𝜌 is
in the user’s top-𝑘 rankings. Items from a newly-favored genre
should rank higher than in the original ranking, and the difference
in DCG𝑔 captures this shift.

Below, we define DCG𝑔@𝑘 , where 𝜔 (𝑖) maps the 𝑖-th item to its
corresponding set of genres (items can have multiple genres):

DCG𝑔@𝑘 (𝜌) =
𝑘∑︁
𝑖=1

I(𝜌 ∈ 𝜔 (𝑖))
log2 (𝑖 + 1) . (8)

We normalize DCG𝑔@𝑘 using the IdealizedDiscountedGains (IDCG)
to obtain the genre-wise NDCG (NDCG𝑔@𝑘). To assess the effec-
tiveness of the changes, we measure the Δ@𝑘 change in NDCG𝑔@𝑘
between the original (denoted with a superscript O) and augmented
summary (denoted with superscript A):

Δ@𝑘 (𝜌) = NDCGO
𝑔@𝑘 (𝜌) − NDCGA

𝑔@𝑘 (𝜌). (9)

We evaluate each summary using two metrics: |Δup@𝑘 |, which
assesses TEARS’ ability to elevate the rankings of the initially least
favored genre (𝜌 = least favorite), and |Δdown@𝑘 |, which gauges its
proficiency in lowering the rankings of the initially favored genre (𝜌
= favorite).Additionally, we explore how the parameter 𝛼 influences
controllability, highlighting the trade-off between recommendation
performance and controllability. We prompt GPT to obtain the al-
tered summaries for all test users and use those to examine shifts in
genre preferences. Figure 4 illustrates the trade-off between recom-
mendation performance (NDCG@20) calculated using the original
summaries compared to controllability (|Δup@20| & |Δdown@20|)
as 𝛼 increases, averaged over five seeds, for ML-1M and Goodbooks
(Netflix in App F.2). We find that controllability increases as 𝛼 does,
with all TEARS variants having meaningful levels of controllabil-
ity at higher 𝛼 values across all datasets, regardless of backbone
LLM (see App. F). Remarkably, TEARS VAEs maintain satisfactory
controllability even at reduced values of 𝛼 . As 𝛼 increases, we find
that NDCG@20 peaks at some intermediate value visually resem-
bling an inverse-U shape, likely due to L𝑅 (Eq. 5) optimizing for
performance over various values of 𝛼 . We find TEARS MacridVAE
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Figure 5: 𝛿rank after fine-grained changes. Target items can gain tens
of positions from small edits in user summaries. Here error bars
represent the standard error 𝜎√

𝑛
.

to be the best model, consistently outperforming TEARS Base in
controllability and AEs in NDCG@20 across multiple values of 𝛼 .

6.2 Fine-Grained Changes
We now evaluate smaller edits to user summaries by simulating a
task where a user wants to increase the rank of a single target item
by making small edits to their summary. While we could do such a
simulation by putting in the item’s name, actors, or description, we
are not interested in such use cases which other systems, such as
search engines, are better suited for. Rather, we simulate summary
changes alluding to higher-level characteristics such as plot points
or themes, that could be linked to many items. To achieve this, we
sample an item from the evaluation set, ranked between positions
100 and 500. This rangewas chosen because it suggests the summary
may omit certain item attributes that could improve its rank. We
make sure the item is within this range for all models within all
values of 𝛼 . With these sampled items, we prompt GPT with two
tasks: first, to “summarize the item in 5 words while only referring
to plot points/themes,” and then to replace an existing sentence
in the summary with one including these plot points and themes.
Using this, we measure the difference in rank 𝛿rank between the
original and the rank after the change. Given the variability of LLMs,
we rerun the procedure three times and report the median 𝛿rank as
an estimator of whether users can have positive interactions with
the system more often than negative ones. We filter out users who
do not have an item that satisfies such criteria, leaving 150 users
for ML-1M, 886 for Netflix, and 690 for Goodbooks.

Figure 5 reports the rank differences between the augmented and
original summaries when 𝛼 = 1. We observe that for all datasets, all
models can increase the rank of the target item by tens of positions
(𝛿rank > 0) with minor changes to the summary. Moreover, we find
TEARS Base and TEARS MacridVAE are the best performing across
datasets, with Multi-VAE being the weakest, a finding consistent
with the results of §6.1. Across all datasets and models, we can
consistently move a target item, even with small changes within
summaries. In-App. Hwe provide a complete overview over varying
values of 𝛼 , examples, and other implementation details.

6.3 Guided Recommendations
We design a task to assess if users can use short instructions as
their summaries to guide/obtain contextual recommendations. This

change is particularly interesting for TEARS VAE models as they
can use an 𝛼 ≠ 1 to guide their black-box embeddings with a small
amount of text, for instance, a user might request that the sys-
tem include “more action movies” in its current recommendations.
To evaluate if TEARS can effectively deliver such targeted recom-
mendations, we design an experiment where we measure Δup/down
where 𝑁𝐷𝐶𝐺@20𝑂𝑔 is measured using the black-box embeddings
(i.e. 𝑍𝛼=0) and 𝑁𝐷𝐶𝐺@20𝐴𝑔 is calculated using 𝑍𝛼=0.5, where the
summary is a simple guidance prompt indicating “More {genre}
{item_type}.” Here using 𝑍𝛼=0.5 suggests that adding a genre pref-
erence should yield personalized recommendations favouring that
genre, as the representation has to adhere to the base black-box
representations. Similarly, we aim to simulate moving target gen-
res down using phrases like, “Less {genre} {item_type}.”, which
initial analysis showed is a much harder task, as merely men-
tioning a genre was sufficient to elevate related items when no
other summary information was provided. To address this, we ad-
just the model by subtracting negative text representations from
black-box representations, 𝑍−𝛼=0.5 = 𝑍𝑟 −𝑍𝑠

2 . For this experiment,
𝑁𝐷𝐶𝐺@20𝐴𝑔 is calculated using the rankings generated by 𝑍−𝛼=0.5.
In practice, this procedure could be implemented using a sentiment
classifier[55] to identify whether the system should use 𝑍−𝛼=0.5 or
𝑍𝛼=0.5. We evaluate these changes for all test users using the ten
genres with the most corresponding items in each dataset.

The rightmost plots of Figure 4 display the results for the guided
recommendation experiment over the three datasets. We note that
the |Δ| changes (i.e the increase in the contextualized genre) we
see are expected to be smaller as we use an 𝛼 = 0.5 for this setting.
Nonetheless, we see that even with summaries composed of simple
phrases, we can guide recommendations in the desired direction.
Moreover, these changes in recommendations are more personal-
ized as they are a combination of the base black-box embeddings
and the altered summary. This procedure, and the latents of the
black-box embeddings, are further visualized in Appendix I.

7 Conclusion and Discussion

We present TEARS, a method for constructing controllable recom-
mender systems using natural-text user representations. By aligning
user-summary and black-box embeddings through OT techniques,
we demonstrate that the system provides higher-quality recom-
mendations and is controllable. For the latter, we identify three
types of changes users can make to their summaries to impact their
downstream recommendations: large-scope changes, fine-grained
edits and guided recommendations. To evaluate the controllability of
TEARS under these changes, we design evaluation metrics and sim-
ulated tasks. The results show that TEARS models are controllable
in each task. These tasks are reproducible and can be benchmarked
in future work. While creating a user interface for TEARS and
designing experiments to enable user studies is out of scope, it
presents opportunities for future work. Overall, this work shows
that scrutability can contribute to performance and leads to a new
class of recommender systems that are more transparent and con-
trollable. This work also opens new ways for users to interact with
recommender systems, which we hope future work will develop.
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A Summary Characteristics
Table 2 displays various qualities of the generated summaries. Overall we find that the average summary length is under 200 words,
demonstrating the conciseness of the generated content. However, despite GPT’s general adherence to instructions, we observe that the
variance in summary lengths is greater than ideal, with some summaries exceeding the expected 200-word limit. For future work, we
recommend more refined prompt engineering and potentially fine-tuning the LLM for summary construction to enhance consistency in
summary length and adherence to target constraints.

Table 2: Summary length statistics. We compute average statistics for each dataset. We find GPT on average adheres to instructions, but has
high variance in its output. We observe that the BLEU scores are quite low, and edit distances are comparable to the average summary length.
Both these findings suggest the summaries are distinct between users, enhancing personalization.

ML-1M Netflix Goodbooks

GPT-4-preview LLaMA 3.1 GPT-4-preview LLaMA 3.1 GPT-4-preview LLaMA 3.1

Max Length 268 266 268 257 246 257
Minimum Length 83 70 43 71 79 71
90th Percentile Length 205 219 203 220 197 220
10th Percentile Length 141 136 140 140 125 140
Average Length 171.27 ±26.47 176.49 ±31.96 170.20 ±26.38 181.15 ±30.62 164.52 ±27.60 181.15 ±30.62
Edit Distances 160.25 ±23.06 156.21 ±18.58 172.45 ±21.18 156.21 ±18.58 160.13 ±18.89 156.21 ±18.58
BLEU Scores 0.07 ±0.02 0.20 ±0.06 0.041 ±0.03 0.20 ±0.06 0.069 ±0.02 0.20 ±0.06

B Dataset Statistics

Table 3: Dataset Statistics.
Number of Train users Validation Users Test users Number of Items Average rating Sparsity Number of Genres

ML-1M 5,537 250 250 2,745 3.63 0.943 11
Netflix 7,978 1,000 1,000 3,081 3.60 0.904 15

Goodbooks 7,980 1,000 1,000 8,093 3.97 0.988 35

C Training Details
For our proposed models, we use the ADAMW optimizer while for AE models we use ADAM. For simplicity, we only refer to TEARS
configurations, but note all configurations are the exact same for GERS. For TEARS models we train for 200 epochs using a batch size of
32, we do not use early stopping, but choose the best checkpoint across the 100 epochs. For TEARS Base the best checkpoint is chosen on
NDCG@50 while for TEARS-VAEs we use the average NDCG@50 evaluated at 𝛼 = {0, 0.5, 1}. For AE models we train for 200 epochs with a
batch size of 500. We choose the best checkpoint based on NDCG@50. TEARS models were trained using two Nvidia RTX-8000 GPU, with
an average runtime of about 5 hours to complete, although we observe TEARS converges with much less than 200 epochs depending on the
learning rate. AE models are trained using a single GPU and took on average 10-20 minutes (depending on the model) to complete.

• TEARS: For TEARS-VAEs and TEARS-Base, we tune dropout ∈ {0.1, 0.2, 0.4} the learning rate (LR) ∈ {0.001, 0.0001}. Aditionally, For
TEARS-VAEs we tune 𝜆1 ∈ {0.1, 0.5, 1}. We choose to not tune 𝜆2 and use an annealing schedule up to 𝜆2 = 0.5

• Multi-VAE : We tune dropout ∈ {0.1, 0.2, 0.4}, the learning rate ∈ {0.001, 0.0001, 0.00001}, 𝛽 ∈ {0.1, 0.3, 0.5} with a standard annealing
schedule found in [30], and weight decay ∈ {0, 0.00001}.

• Multi-DAE We tune dropout ∈ {0.1, 0.2, 0.4} and the learning rate ∈ {0.001, 0.0001, 0.00001}.
• RecVAE We tune dropout ∈ {0.1, 0.2, 0.4}, LR ∈ {0.001, 0.0001, 0.00001}, 𝛾 ∈ {.0035, .004, .005} and a weight decay ∈ {0, 0.00001}. We

additionally use the loss function provided by the authors [45], only for this model specifically .
• MacridVAE We tune dropout ∈ {0.1, 0.2, 0.4}, LR ∈ {0.001, 0.0001, 0.00001}, the number of concepts 𝑘 ∈ {2, 4, 8, 16} and a weight

decay ∈ {0, 0.00001}.
• EASE We tune 𝜆 over 50 values ranging between [1, 10, 000] spread evenly. An additional detail is that only for this model, normalize

ratings 𝑟 ∈ [0, 1], which yielded better results.

C.1 TEARS-MacridVAE
MacridVAE decomposes the user representation into multiple disentangled concept representations which are normalized across the concept
dimensions, thus, to be able to properly interpolate between the black-box and summary embeddings we do the same procedure for

12
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TEARS-MacridVAE such that:

𝑧𝑢,𝑟 =
[
𝑧
(1)
𝑢,𝑟 , 𝑧

(2)
𝑢,𝑟 , ..., 𝑧

(𝐾 )
𝑢,𝑟

]
(10)

𝜇
(𝑘 )
normalized,𝑢,𝑟 =

𝜇
(𝑘 )
𝑢,𝑟

| |𝜇 (𝑘 )𝑢,𝑟 | |2
(11)

𝑧𝑢,𝑠 =
[
𝑧
(1)
𝑢,𝑠 , 𝑧

(2)
𝑢,𝑠 , ..., 𝑧

(𝐾 )
𝑢,𝑠

]
(12)

𝜇
(𝑘 )
normalized,𝑢,𝑠 =

𝜇
(𝑘 )
𝑢,𝑠

| |𝜇 (𝑘 )𝑢,𝑠 | |2
(13)

(14)

Additionally, MacridVAE’s first layer representations, often thought of as analogous to the item representations in AE recommender
models, are shared with the last layer’s representations. Since we freeze the encoder model at the beginning of training, we found that
making a copy of MacridVAE’s input representations, freezing them, and then allowing the final layers representations to be trained led to
the best results and highest consistency in logic with other models.

D Few-Shot Prompting GPT for Recommendations
Table 5 displays the prompting strategy used to obtain GPT-4Turbo recommendation metrics in Table 1. We post-process the GPT output it
is successfully in the requested format. If there is a failure we file the request again, for up to 10 times, after which we declare it as a failure
and record the respective metrics as 0. We overall have 78 failures for the Netflix dataset and 24 failures for ML-1M. We do not include
failures when calculating the metrics in 5, which is favorable for GPT.

Table 4: Prompting strategy for few-shot recommendations.

Aspect Value

Input Prompt User summary:
{user summary}
Here are the available {item_type}:
{All {item_type} in the catalog in ID: Title format}
Important, do not recommend the following movies as they have already been seen by the user:
{Seen {item_type} by user}
Please only output the top 100 {item_type}. Simply print their id do not use the title output the movies in the format: id1,
id2, ... idn}

E GPT Netflix Results
We visualize the large-scope changes for the Netflix dataset in this appendix. Figure 12 shows the details. Our findings are consistent with
those of §6.1 where we find TEARS-MacridVAE can consistently outperform TEARS-Base and TEARS-Multi-Vae performs poorest on
controllability tasks.
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Figure 6: Tradeoff between recommendation and controllability for the Netflix dataset. The x-axis represents |Δup/down | as 𝛼 decreases. We see
consistent results for both LLMs with those observed in ML-1M and Goodbooks.
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F LLaMA 3.1 results

We report the controllability results for models trained using LLaMA-3.1 405b generated summaries. Importantly all textual edits for
controllability are made by LLaMA-3.1 405b, we specifically set the seed and set the temperature to 0, this allows our results to be fully
reproducible with an open weights model. As the edits are all made using LLaMA, we do not compare controllability results with GPT-based
models, since results may be impacted by how good the editing LLM is at making edits, thus we cannot identify which model is better.

F.1 Large Scope Changes & Guided Recommenations

Figure 7 illustrates the tradeoff between recommendation performance and controllability as 𝛼 increases for ML-1M and Goodbooks datasets,
with Figure E showing similar results for Netflix. These findings are consistent with those observed in GPT models, demonstrating that all
models exhibit controllability. Notably, the TEARS VAE models consistently outperform TEARS Base at 𝛼 = 1 while maintaining comparable
controllability, underscoring the advantages of our hybrid approach combined with the OT procedure.

In the guided recommendations experiment, we observe performance similar to that of GPT-based models, where short guiding phrases
effectively steer user black-box embeddings, enabling users to contextualize their experience. This further validates the effectiveness of our
approach across different model architectures and datasets.
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Figure 7: Tradeoff between recommendation performance and large scope controllability for ML-1M and Goodbooks.
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F.2 Netflix Results
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Figure 8: Tradeoff between recommendation and controllability for the Netflix dataset. The x-axis represents |Δup/down | as 𝛼 decreases. We see
consistent results for both LLMs with those observed in ML-1M and Goodbooks. We specifically observe how LLaMA models achieve better
recommendation performance at higher values of 𝛼 .

F.3 Small Scale Experiments
In this section, we replicate the fine-grained experiments using LLaMA-3.1 405b. To ensure full reproducibility, we set a specific random
seed and adjust the model’s temperature to 0. It’s worth noting that we observed setting the temperature generally diminished the model’s
performance on the editing task, this is due to the model often returning the same response over multiple repetitions hindering the diversity
of edits. Although we empirically found better results without temperature adjustment, we present here the most reproducible results. We
found that TEARS MacridVAE in the Goodbooks dataset, performed significantly poorly with an average of 𝛿rank = −33.22. We observed
this was due to a low percentage of outliers that significantly lowered the mean to negative proportions. This is because our target items lie
in the range of 100-500, making it so that items can go down a lot more than they can go up. Thus, only for this model in this one dataset, we
report values that exclude the 0.075th smallest quantile which gives a less skewed representation of results. Overall, we observe that results
are mostly consistent with those observed with GPT, being able to consistently increase the rank for all models (after adjusting for outliers)
in all datasets.
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Figure 9: Maximum rank changes in target item rank after fine-grained changes. Here the Y-axis represents 𝛿rank = original rank - rank after
change.
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G Large-Scope Changes Example

Aspect Value

MovieLens ID 929

Input prompt Summary: The user enjoys a blend of drama, romance, and inspirational true stories, often
favoring narrative depth and emotional arcs that showcase personal growth, complex rela-
tionships, or historical significance. Plots that revolve around overcoming adversity, exploring
human connections, or facing moral dilemmas tend to resonate well. The user also has a
strong appreciation for action and war dramas where the stakes are high, and characters must
showcase heroism or make profound sacrifices. However, the user does not enjoy certain
horror and animated films, particularly those with a darker, more disturbing premise or themes
that might be deemed as too intense or mature, and animated features that perhaps skew
towards a younger audience or do not present as complex or emotionally engaging stories.
Plots that incorporate extreme violence or psychological terror, as well as those that lack the
depth of character development found in dramas, are generally less appreciated, despite their
popularity among other audiences who may enjoy the thrill and suspense they provide.

Genre Identification Prompt You are a professional editor. Please identify the user-preferred genres from the following:
{genre_set}

Favourite Genre Drama

Least Favourite Genre Horror

User Prompt Please identify the user’s most favorite genre from the following summary and the least
favorite genre in the format Favorite: [genre]

Least Favorite: [genre] {user_summary}.

Editing Prompt Now using this setup, write a new summary in the same style that reflects that {favorite_genre}
is your least favorite and {least_favorite_genre} is your favorite. Only output the full summary,
keep the format and length the same.

Output The user has a profound affinity for the suspenseful and chilling narratives that horror films
provide, often seeking out stories that delve into the supernatural, psychological terror, or
the macabre. They appreciate the adrenaline rush and the exploration of darker themes that
challenge their fears and push the boundaries of comfort. The user is particularly drawn
to horror films that cleverly twist reality and offer innovative scares or thought-provoking
premises. They also enjoy the high stakes and intense scenarios found in action-packed horror
where survival is a key element. Conversely, the user finds little interest in drama, as they
tend to avoid films that focus heavily on emotional arcs, personal growth, and the intricacies
of human relationships. They perceive these narratives as lacking the excitement and visceral
engagement they crave. Dramas that emphasize historical significance or moral dilemmas do
not captivate their attention in the same way that a thrilling, heart-pounding horror story does.
The user is less moved by stories of overcoming adversity or exploring complex relationships
unless they are framed within the context of a horror setting.

ΔDown@50 0.461

ΔUp@50 -0.730
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H Fine Grained Experiments Supplemental

H.1 Prompting Procedure for Fine-Grained Controllability

Table 5: Prompting Scheme for fine-grained experiment. We note we specifically ask for the identified words to be inserted into the summary
together, but explicitly ask to replace a sentence in the summary.

First Prompt You are a professional editor. Please summarize the {item_type} into 5 words only, referring to plot points/themes:
{item}.

Second Prompt Now, using this, edit those 5 words into this summary. Replace a sentence where it makes sense. Only output the
summary. {summary} only output the new summary, making sure the 5 new comma-separated words are in a new
sentence, replacing an old one somewhere together in the new summary.

H.2 Breakdown by value of 𝛼
Figure 10 visualizes the relationship between the fine grained changes and the value of 𝛼 . We generally observe that higher levels of alpha
lead to higher levels of controllability, with some exceptions. Importantly we see that for all models in all datasets at all 𝛼s we observe a
positive 𝛿rank. The procedure for producing these for LLaMA is discussed in App. 10b in detail.
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Figure 10: 𝛿rank broken down by 𝛼 for each dataset with error bars representing the standard error. We observe for all models there is a value of
𝛼 for which we are able to increase the rank of the target item.
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H.3 ML-1M Examples

Dataset ML-1M

Original Summary Summary: The user enjoys a variety of genres with a strong preference for comedy, often blended with elements of romance,
drama, and action. Bent towards comedies that deliver a mix of witty dialogue, quirky characters, and situations that lead
to both heartwarming and humorous outcomes is evident. The user appreciates horror when it is juxtaposed with humor,
and thrillers that contain supernatural or fantastical elements are particularly enjoyable. Storylines involving personal
growth, unconventional relationships, and comedic misadventures also resonate well.
Conversely, the user does not enjoy certain actions and science fiction films as much, especially if they lack a comedic
element or deeper narrative. Plots that focus heavily on conventional action sequences, with less emphasis on character
development or innovative storytelling, are less favorable. The user might be less interested in sci-fi adventures that are more
serious and lacking the playful or satirical tone found in more favored titles. While tension and suspense are appreciated in
certain contexts, straightforward action-driven thrillers without substantial plot twists or character complexity may not
capture the user’s interest.

Augmented Summary The user enjoys a variety of genres with a strong preference for comedy, often blended with elements of romance, drama,
and action. Bent towards comedies that deliver a mix of witty dialogue, quirky characters, and situations that lead to both
heartwarming and humorous outcomes is evident. The user appreciates horror when it is juxtaposed with humor, and
thrillers that contain supernatural or fantastical elements are particularly enjoyable. Self-worth, community, sacrifice,
redemption, family resonate well.
Conversely, the user does not enjoy certain actions and science fiction films as much, especially if they lack a comedic
element or deeper narrative. Plots that focus heavily on conventional action sequences, with less emphasis on character
development or innovative storytelling, are less favorable. The user might be less interested in sci-fi adventures that are more
serious and lacking the playful or satirical tone found in more favored titles. While tension and suspense are appreciated in
certain contexts, straightforward action-driven thrillers without substantial plot twists or character complexity may not
capture the user’s interest.

Target Item It’s a Wonderful Life (1946)

Original Rank 259

New Rank 235

𝛿rank 24

Dataset ML-1M

Original Summary Summary: The user has a clear preference for genres that blend comedy with other elements, such as sci-fi, horror, and
action. They particularly enjoy comedic films that explore the dynamic interplay between humor and speculative fiction,
most likely appreciating how these genres can satirize or comment on society and our relationship with technology. The
user also gravitates towards dramas that are infused with sci-fi and adventure, often valuing intricate plots
that weave in elements of thrill and suspense, and possibly favoring storylines that involve exploration, the
supernatural, and high stakes situations.
Conversely, the user does not enjoy animations as much, especially those targeted primarily at children. This suggests a
lesser interest in stories that are perceived as being too simplistic or juvenile. Furthermore, the user seems disinterested in
musicals and fantastical adventures that prioritize whimsy over mature humor or complex storytelling. While other users
might appreciate the innocence and escapism offered by these genres, this user shows a predilection for more sophisticated
narratives found in films that provide a mix of laughter with thought-provoking or action-driven content.

Augmented Summary Summary: The user has a clear preference for genres that blend comedy with other elements, such as sci-fi, horror, and
action. They particularly enjoy comedic films that explore the dynamic interplay between humor and speculative fiction,
most likely appreciating how these genres can satirize or comment on society and our relationship with technology. Sports
agent’s redemption through love.
Conversely, the user does not enjoy animations as much, especially those targeted primarily at children. This suggests a
lesser interest in stories that are perceived as being too simplistic or juvenile. Furthermore, the user seems disinterested in
musicals and fantastical adventures that prioritize whimsy over mature humor or complex storytelling. While other users
might appreciate the innocence and escapism offered by these genres, this user shows a predilection for more sophisticated
narratives found in films that provide a mix of laughter with thought-provoking or action-driven content.

Target Item Jerry Maguire (1996)

Original Rank 136

New Rank 108

𝛿rank 28
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I Guided Recommendation
We further visualize the process of generating guided recommendations for three different genres in the ML-1M dataset using TEARS
RecVAE. To accomplish this, we employ t-SNE [51] to visualize two types of embeddings: the mean latent of the black-box embeddings
(displayed in red) and the mean latent for the text embeddings (displayed with a color gradient). Our observations reveal that guiding the
recommendations has a personalized effect for each user. Individual user representations move towards the genre representation in unique
ways. This personalization can be attributed to changes in recommendations that suggest items belonging to the target genre while still
aligning with the individual user’s preferences.
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Figure 11: Rank changes in target item rank after fine grained changes. Y-axis represents 𝛿rank = New rank - Old Rank.

J Genre Based Controllability
Since GERS represents users through a combination of black-box embeddings and a genre-based vector representation, a direct comparison
with TEARS becomes challenging. The controllability experiments we propose focus on text-based modifications, not genre vectors as used
in GERS. However, we outline an approach to analyze GERS’s controllability and compare it with TEARS.

We aim to replicate the large-scale experiments described in §6.1, where user interests are drastically shifted. To do this with GERS,
we simulate a similar scenario by assigning the proportion of the user’s least favorite genre to that of their original favorite genre, and
vice-versa. This adjustment mimics the interest flip applied in TEARS. However, unlike TEARS, this approach is less coarse-grained, as
the summaries may reflect varying levels of interest after the change. Since the shift is not perfectly mirrored, we expect GERS to be at a
disadvantage compared to TEARS, as the summaries in GERS are not tied to a single metric but can express a broad spectrum of genre
preferences. Despite this limitation, we compare this setup to the original TEARS results, measuring performance using Δ@𝑘 .

While the described setting may disadvantage GERS, we can also construct a scenario where it acts as an upper bound for controllability
performance. For example, when flipping user interests, we could zero out all genres except for the least favorite, assigning it full relevance
in the user profile. This simulation acts like a genre-specific filter while still accounting for popularity biases in the dataset. In contrast,
we do not expect TEARS to achieve this level of control, as its summaries express a mix of interests, even after edits. We also note one
would not want TEARS to reach this level of controllability, as the purpose of the summaries is to pose an accurate textual representation of
the user’s interests not as a filtering mechanism simple heuristics may be more suitable for. We consider this scenario an upper-bound for
controllability, and refer to this measure as Δ@𝑘upper.

In Table 6, we present the values of Δ@𝑘 and Δ@𝑘upper averaged over five seeds for all datasets. We observe that TEARS models generally
perform better on Δ@𝑘 because they can more accurately describe shifts in user interests across different genres, while GERS models are
more constrained in this specific setting. Additionally, we find that Δ@𝑘↑ is often two to three times higher than Δ@𝑘 for TEARS models,
indicating that TEARS does not simply flip the user’s interest toward one genre, but also accounts for related genres, themes, and plot points.
This suggests that TEARS can properly adjust user preferences and influence the ranking outcomes, while still maintaining a balance by
considering other relevant interests. In contrast, GERS, with its genre-specific focus, may lack the flexibility TEARS offers in representing
the complexity of user preferences, especially when the user has to adjust a large number of genres to properly portray their preferences (i.e
Goodbooks with 39 genres).
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Table 6: Controllability Analysis of TEARS and GERS models on ML-1M, Netflix, and Goodbooks datasets. For TEARS, we report Δ@𝑘 , as
described in §6.1, with some adjustments made to accommodate GERS. We also report Δ@𝑘↑, representing the case of flipping a user’s interest
and assigning full weight to a single genre in GERS. TEARS strikes a balance between the two approaches, indicating its ability to adjust user
preferences without overly relying on a single genre.

Dataset Model Δ@20up,𝛼=1 Δ@20down,𝛼=1 Δ@20up,𝛼=0.5 Δ@20down,𝛼=0.5 Δ@20up,↑,𝛼=1 Δ@20down,↑,𝛼=1 Δ@20up,↑,𝛼=0.5 Δ@20down,↑,𝛼=0.5

ML-1M

TEARS Base 0.564 ± 0.088 0.344 ± 0.049 N/A N/A N/A N/A N/A N/A
GERS Base 0.220 ± 0.007 0.168 ± 0.005 N/A N/A 0.696 ± 0.020 0.319 ± 0.012 0.696 ± 0.020 0.319 ± 0.012

TEARS RecVAE 0.417 ± 0.043 0.243 ± 0.026 0.175 ± 0.011 0.115 ± 0.010 N/A N/A N/A N/A
GERS RecVAE 0.271 ± 0.017 0.261 ± 0.018 0.113 ± 0.010 0.112 ± 0.010 0.770 ± 0.004 0.399 ± 0.004 0.747 ± 0.005 0.340 ± 0.003

Netflix

TEARS Base 0.564 ± 0.088 0.344 ± 0.049 N/A N/A N/A N/A N/A N/A
GERS Base 0.220 ± 0.007 0.168 ± 0.005 N/A N/A 0.696 ± 0.020 0.319 ± 0.012 0.696 ± 0.020 0.319 ± 0.012

TEARS RecVAE 0.417 ± 0.043 0.243 ± 0.026 0.175 ± 0.011 0.115 ± 0.010 N/A N/A N/A N/A
GERS RecVAE 0.271 ± 0.017 0.261 ± 0.018 0.113 ± 0.010 0.112 ± 0.010 0.770 ± 0.004 0.399 ± 0.004 0.747 ± 0.005 0.340 ± 0.003

Goodbooks

TEARS Base 0.564 ± 0.088 0.344 ± 0.049 N/A N/A N/A N/A N/A N/A
GERS Base 0.220 ± 0.007 0.168 ± 0.005 N/A N/A 0.696 ± 0.020 0.319 ± 0.012 0.696 ± 0.020 0.319 ± 0.012

TEARS RecVAE 0.417 ± 0.043 0.243 ± 0.026 0.175 ± 0.011 0.115 ± 0.010 N/A N/A N/A N/A
GERS RecVAE 0.271 ± 0.017 0.261 ± 0.018 0.113 ± 0.010 0.112 ± 0.010 0.770 ± 0.004 0.399 ± 0.004 0.747 ± 0.005 0.340 ± 0.003

K Controllability Breakdown
Table 7 shows the controllability results for the large-scope and guided recommendation experiments averaged over five different seeds.
Overall, we observe TEARS MacridVAE consistently outperforms other models and even TEARS BASE when it comes to controllability at an
𝛼 = 1. Overall, we find TEARS MacridVAE to be the best-performing model, having better recommendation performance than baselines for
some value of 𝛼 in all datasets while also excelling in the controllability tasks.

Table 7: Comparison of controllability performance across different datasets and models. Each model is evaluated using five different seeds.
Dataset Model Type Model Best 𝛼 Large Scope |Δup,𝛼=1 | Large Scope |Δup,𝛼=0.5 | Large Scope |Δdown,𝛼=1 | Large Scope |Δdown,𝛼=0.5 | Genre |Δup,𝛼=0.5 | Genre |Δdown,𝛼=0.5 |

ML-1M

GPT

TEARS Multi-VAE 0.425 0.201 ± 0.008 0.072 ± 0.015 0.193 ± 0.005 0.085 ± 0.015 -0.068 ± 0.004 0.051 ± 0.008
TEARS MacridVAE 0.500 0.690 ± 0.052 0.357 ± 0.036 0.453 ± 0.029 0.250 ± 0.021 -0.272 ± 0.019 0.074 ± 0.023
TEARS RecVAE 0.425 0.391 ± 0.013 0.150 ± 0.021 0.346 ± 0.012 0.165 ± 0.003 -0.213 ± 0.013 0.101 ± 0.013
TEARS Base N/A 0.387 ± 0.104 0.387 ± 0.104 0.294 ± 0.044 0.294 ± 0.044 N/A N/A

LLaMA

TEARS MacridVAE 0.50 0.561 ± 0.058 0.288 ± 0.032 0.458 ± 0.038 0.291 ± 0.014 -0.142 ± 0.016 0.083 ± 0.025
TEARS Multi-VAE 0.48 0.450 ± 0.097 0.130 ± 0.025 0.352 ± 0.068 0.158 ± 0.028 -0.086 ± 0.008 0.048 ± 0.037
TEARS RecVAE 0.54 0.614 ± 0.029 0.222 ± 0.011 0.450 ± 0.018 0.231 ± 0.009 -0.182 ± 0.017 0.105 ± 0.021
TEARS Base N/A 0.352 ± 0.155 0.352 ± 0.155 0.280 ± 0.074 0.280 ± 0.074 N/A N/A

Netflix

GPT

TEARS Multi-VAE 0.140 0.064 ± 0.013 0.026 ± 0.005 0.045 ± 0.013 0.026 ± 0.006 -0.039 ± 0.004 0.024 ± 0.007
TEARS MacridVAE 0.520 0.329 ± 0.060 0.093 ± 0.009 0.071 ± 0.026 0.032 ± 0.018 -0.073 ± 0.028 0.085 ± 0.062
TEARS RecVAE 0.160 0.094 ± 0.023 0.034 ± 0.009 0.070 ± 0.011 0.038 ± 0.006 -0.044 ± 0.010 0.064 ± 0.031
TEARS Base N/A 0.219 ± 0.031 0.219 ± 0.031 0.119 ± 0.015 0.119 ± 0.015 N/A N/A

LLaMA

TEARS MacridVAE 0.54 0.273 ± 0.064 0.090 ± 0.011 0.292 ± 0.035 0.155 ± 0.010 -0.075 ± 0.011 0.076 ± 0.030
TEARS Multi-VAE 0.14 0.163 ± 0.005 0.065 ± 0.001 0.195 ± 0.008 0.105 ± 0.005 -0.033 ± 0.004 0.045 ± 0.009
TEARS RecVAE 0.32 0.232 ± 0.022 0.086 ± 0.002 0.236 ± 0.014 0.128 ± 0.009 -0.087 ± 0.008 0.080 ± 0.005
TEARS Base N/A 0.241 ± 0.022 0.241 ± 0.022 0.211 ± 0.010 0.211 ± 0.010 N/A N/A

Goodbooks

GPT

TEARS Multi-VAE 0.380 0.394 ± 0.054 0.122 ± 0.015 0.237 ± 0.024 0.074 ± 0.006 -0.070 ± 0.006 0.050 ± 0.016
TEARS MacridVAE 0.380 0.597 ± 0.024 0.328 ± 0.014 0.318 ± 0.023 0.156 ± 0.015 -0.166 ± 0.015 0.122 ± 0.005
TEARS RecVAE 0.160 0.417 ± 0.043 0.175 ± 0.011 0.243 ± 0.026 0.115 ± 0.010 -0.211 ± 0.009 0.137 ± 0.015
TEARS Base N/A 0.564 ± 0.088 0.564 ± 0.088 0.344 ± 0.049 0.344 ± 0.049 N/A N/A

LLaMA

TEARS MacridVAE 0.32 0.320 ± 0.046 0.180 ± 0.019 0.270 ± 0.032 0.160 ± 0.016 -0.136 ± 0.017 0.082 ± 0.025
TEARS Multi-VAE 0.50 0.313 ± 0.033 0.082 ± 0.003 0.265 ± 0.020 0.067 ± 0.003 -0.081 ± 0.005 0.071 ± 0.019
TEARS RecVAE 0.22 0.275 ± 0.047 0.119 ± 0.011 0.239 ± 0.023 0.121 ± 0.007 -0.152 ± 0.024 0.097 ± 0.015
TEARS Base N/A 0.396 ± 0.027 0.396 ± 0.027 0.306 ± 0.025 0.306 ± 0.025 N/A N/A
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L Analysis Using 𝛼 = 1
We analyze the performance of TEARS and GERS variants using 𝛼 = 1 across all assessed recommendation metrics. Table 8 shows the
recommendation performance for all LLaMA- and GPT-based models. We find TEARS RecVAE to consistently be the best-performing TEARS
variant, outperforming other TEARS models. Notably, the performance boost with 𝛼 = 1 is not exclusive to TEARS; GERS RecVAE also
demonstrates improved performance compared to GERS Base. We observe that that wether TEARS RecVAE or GERS RecVAE performs
better largely on the dataset. GERS RecVAE performs better on Goodbooks, likely due to the higher number of genres that allow for more
fine-grained specifications, while TEARS RecVAE performs best on ML-1M, which has fewer genres where user summaries being able to
give more coarse-grained descriptions of preferences is more effective. Both models perform similarly on Netflix, a result consistent with
§5.2, likely because the summaries are predominantly genre-based.

Table 8: Performance comparison of different TEARS models across ML-1M, Netflix, and Goodbooks datasets, separated by LLM (GPT and
LLaMA).

Dataset Model Recall@20 NDCG@20 Recall@50 NDCG@50

ML-1M

TEARS Base 0.267 ± 0.004 0.253 ± 0.002 0.302 ± 0.014 0.250 ± 0.005

TEARS Base 0.259 ± 0.010 0.249 ± 0.010 0.292 ± 0.015 0.245 ± 0.010

TEARS Multi-VAE𝛼=1 0.268 ± 0.007 0.253 ± 0.006 0.290 ± 0.005 0.247 ± 0.004

TEARS Multi-VAE 𝛼=1 0.285 ± 0.006 0.267 ± 0.004 0.317 ± 0.004 0.264 ± 0.003

TEARS Macrid VAE 𝛼=1 0.296 ± 0.004 0.264 ± 0.004 0.343 ± 0.003 0.268 ± 0.003

TEARS Macrid VAE𝛼=1 0.294 ± 0.003 0.264 ± 0.003 0.344 ± 0.005 0.269 ± 0.004

TEARS RecVAE 𝛼=1 0.293 ± 0.005 0.262 ± 0.002 0.336 ± 0.008 0.266 ± 0.003

TEARS RecVAE 𝛼=1 0.307 ± 0.006 0.272 ± 0.005 0.351 ± 0.007 0.276 ± 0.005

GERS RecVAE 𝛼=1 0.282 ± 0.004 0.258 ± 0.003 0.336 ± 0.006 0.262 ± 0.002

Netflix

TEARS Base 0.465 ± 0.004 0.491 ± 0.004 0.413 ± 0.003 0.439 ± 0.003

TEARS Base 0.452 ± 0.002 0.479 ± 0.002 0.397 ± 0.001 0.424 ± 0.001

TEARS Multi-VAE 𝛼=1 0.468 ± 0.001 0.494 ± 0.001 0.414 ± 0.002 0.441 ± 0.001

TEARS Multi-VAE 𝛼=1 0.477 ± 0.002 0.504 ± 0.002 0.422 ± 0.001 0.449 ± 0.001

TEARS Macrid VAE 𝛼=1 0.470 ± 0.002 0.494 ± 0.001 0.415 ± 0.002 0.441 ± 0.001

TEARS Macrid VAE𝛼=1 0.475 ± 0.004 0.498 ± 0.004 0.421 ± 0.003 0.446 ± 0.003

TEARS RecVAE 𝛼=1 0.471 ± 0.002 0.496 ± 0.002 0.418 ± 0.002 0.444 ± 0.002

TEARS RecVAE 𝛼=1 0.483 ± 0.002 0.509 ± 0.001 0.428 ± 0.002 0.455 ± 0.001

GERS RecVAE 𝛼=1 0.485 ± 0.001 0.509 ± 0.001 0.428 ± 0.001 0.454 ± 0.001

Goodbooks

TEARS Base 0.143 ± 0.002 0.151 ± 0.003 0.157 ± 0.004 0.151 ± 0.004

TEARS Base 0.143 ± 0.002 0.151 ± 0.003 0.156 ± 0.002 0.151 ± 0.002

TEARS Multi-VAE 𝛼=1 0.151 ± 0.002 0.160 ± 0.001 0.160 ± 0.003 0.157 ± 0.002

TEARS Multi-VAE 𝛼=1 0.147 ± 0.002 0.157 ± 0.002 0.158 ± 0.003 0.155 ± 0.002

TEARS Macrid-VAE 𝛼=1 0.152 ± 0.003 0.159 ± 0.002 0.164 ± 0.001 0.158 ± 0.001

TEARS Macrid-VAE 𝛼=1 0.147 ± 0.001 0.155 ± 0.001 0.161 ± 0.001 0.155 ± 0.001

TEARS RecVAE 𝛼=1 0.152 ± 0.002 0.161 ± 0.002 0.166 ± 0.001 0.161 ± 0.001

TEARS RecVAE 𝛼=1 0.150 ± 0.002 0.160 ± 0.003 0.163 ± 0.001 0.159 ± 0.001

GERS RecVAE 𝛼=1 0.156 ± 0.002 0.165 ± 0.001 0.169 ± 0.001 0.163 ± 0.001

M Ablations
We perform a variety of ablations on the ML-1M dataset to assess the efficacy of the proposed method. All methods are assessed using
the same random seed and the hyperparameters from the best-performing TEARS MacridVAE model, using the GPT-4-turbo generated
summaries.

M.1 Pooling and Optimal Transport
We compare mean-pooling with concatenation, another popular pooling method [56]. We assess NDCG𝑠 , based on text embeddings,
and NDCG𝑐 , where mean-pooling uses 𝛼 = 0.5, while concatenation applies an MLP to map embeddings to the correct dimensions for
recommendations. For controllability, we measure Δup@20 and Δdown@20 with recommendations generated purely from 𝑍𝑠 (yielding the
best controllability). Additionally, we evaluate whether the OT objective is beneficial. Table 9 shows mean pooling without OT underperforms
and is less controllable. We also find that concatenation performs poorly overall, with OT harming its performance but improving text-based
results. Furthermore, concatenation without OT significantly reduces controllability. These results highlight that combining black-box and
text embeddings improves both controllability and performance, with OT being crucial for enhancing controllability.
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Table 9: Ablation on different pooling and optimization strategies. We find the mean w OT is the most optimal in both recommendation
performance and controllability.

NDCG@50𝑐 NDCG@50𝑠 |Δdown@20| |Δup@20|

Mean w OT 0.296 0.273 0.470 0.740
Mean w.o OT 0.291 0.251 0.261 0.410
Concat w OT 0.259 0.269 0.425 0.610
Concat w.o OT 0.278 0.230 0.185 0.063

M.2 Loss Function Configurations
Table 10 presents various configurations for optimizing L𝑅 . In practice, we define L𝑅 = L𝑟 + L𝑐 + L𝑠 , optimizing for recommendations
based on black-box representations, summary representations, and a combination of both. Our goal is to evaluate the impact of these
components on performance and controllability.

We observe that L𝑠 plays a crucial role in enhancing the system’s controllability, while L𝑐 emerges as the key factor for performance,
with performance dropping significantly in its absence. Notably, the model trained without L𝑠 achieves the best performance when 𝛼 = 0,
although it shows the lowest controllability. Interestingly, all configurations maintain some level of controllability, but the combination of all
three losses provides the best balance between recommendation performance and controllability.

Table 10: Comparison of metrics across different configurations.

L𝑟 L𝑐 L𝑠 NDCG@50𝑟 NDCG@50𝑐 NDCG@50𝑠 |Δup@20|
x x x 0.266 0.296 0.273 0.740
x x 0.270 0.294 0.273 0.523

x x 0.265 0.292 0.267 0.739
x x 0.266 0.288 0.269 0.609

M.3 What Weights to Train
We run ablations on what weights one should and should not update when training TEARS. Table 11 showcases different combinations of
training regimens. An x here indicates that the model encoder weights are trained, for all methods we train decoder weights. Interestingly
we find that when training both models, instabilities seem to arise not allowing the model to converge properly and yielding both
worse recommendations and no controllability. Furthermore we observe that keeping the text encoder frozen but training the AE yields
improved recommendations and some controllability, we imagine in this case, the AE is learning to more closely align to the text-encoders
representations. Finally, our proposed training regimen of only updating the text-encoder’s weights outperforms the prior two methods.

Table 11: Performance metrics based on training components.

Train AE-encoder Train text-encoder NDCG@50 |Δup@20|
x x 0.274 0.027
x 0.260 0.001

x 0.296 0.740

M.4 Using TEARS Base to Initialize the Text-Encoder
We aim to investigate if pre-initializing the backbone text-encoder as a trained TEARS model is a viable strategy when training aligned
models. Table 12 showcases the results of this experiment. Interestingly, we find that pre-initializing the text-encoder does not yield benefits.
We hypothesize that the model has learned to map the summary embeddings far away from the black-box embeddings, adding complexity to
the optimization process. In comparison, directly training the text-encoder to directly align to the black-box embeddings seems stabilize the
training procedure.

Table 12: Performance metrics of different model configurations.

Model NDCG@50𝑐 |Δup@20|
TEARSpre-initialized-MacridVAE 0.275 0.0331
TEARS-MacridVAE 0.296 0.740
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M.5 Effect of 𝜆1 on Controllability and Recommendation Performance
We analyze the impact of 𝜆1, the scaling parameter for the optimal transport loss, has on overall performance and controllability. We take a
similar approach to visualizing controllability and display the recommendation performance and controllability of models trained with
varying values of 𝜆1 over varying 𝛼 .
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Figure 12: Visualization of controllability (x-axis) and recommendation performance (y-axis) for varying 𝛼 (increasing left to right) with
models trained with different values of 𝜆1.

We observe that the reported value of 𝛼 = 0.1 achieves the best controllability and recommendation performance. Furthermore, when
𝜆1 = 0, which is equivalent to not applying the OT procedure, we see the worst performance, highlighting the importance of the OT
procedure. Interestingly, for 𝜆1 > 0.1, the performance remains similar, suggesting that fine-tuning this parameter is not crucial, thereby
simplifying and making the training of TEARS models more efficient.

N Stochasticity in GPT Generated Summaries
As mentioned in §3.2, GPT’s output is non-determinstic by design. As such, we analyze the effect this has on the performance of TEARS. We
generate five summaries using five different seeds and measure the variation on NDCG@20 for the ML-1M and Netflix datasets.

Table 13: Averaged performance and standard deviations of TEARS models over five different summaries. We observe when 𝛼 = 1 the variation
is higher and observe smaller variances when 𝛼 = 0.5.

ML-1M
𝛼 = 1 𝛼 = 0.5

TEARS RecVAE 0.262 ± 0.004 0.287 ± 0.002
TEARS MacridVAE 0.260 ± 0.003 0.286 ± 0.002
TEARS Multi-VAE 0.245 ± 0.002 0.269 ± 0.002
TEARS Base 0.247 ± 0.004 N/A

Table 13 displays the averaged values and standard deviations of NDCG@20 over the five generated summaries. As can be seen, this has
the largest variation when 𝛼 = 1 where TEARS only uses the summary embeddings. Additionally, we observe when 𝛼 = 0.5 we observe
much less variation, indicating TEARS can consistently extract important information from the summaries.

O Cold Start Experiment
We analyze the impact of using varying amounts of input items to determine which users may benefit most from TEARS. To do this, we
select users with more than 100 items and generate summaries with different input sizes—10, 25, 50, 75, and 100 items—for each user. We
then evaluate performance using NDCG@20 on the items that remain after the initial 100-item selection. This ensures that the evaluation is
consistent across all scenarios, with the only variable being the number of input items. Figure 13 illustrates how different input amounts
affect NDCG@20. We generally observe that as the number of items increases, so does the recommendation performance for both MacridVAE
and TEARS MacridVAE, with both models showing similar results across item counts. In contrast, TEARS Base shows a performance decline
as item counts increase. This could be due to the LLM’s attention being spread across more items, resulting in vaguer summaries, although
further experimentation is needed to confirm this.
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Figure 13: Plots showcasing the impact of different numbers of input items NDCG@20 for the 78 users in the Netflix dataset. We observe that
the information provided by the summaries is specifically important within colder users, while the RecVAE seems to get better the more items
that are used. All results for TEARS RecVAE are using the best 𝛼 according to the validation set.

P Generalization to Different LLMs
We aim to explore whether TEARS models can generalize to slightly different writing styles or content than those found in the summaries
they were trained on. To assess this, we evaluate the model’s recommendation performance using summaries it was not trained on (e.g.,
evaluating a TEARS model trained on LLaMA summaries with GPT-generated summaries). This will help determine whether there is a
significant performance drop when the distribution that generates user summaries is slightly altered. Table 14 presents the results of models
trained on GPT and LLaMA summaries and evaluated using various combinations. In general, the models perform best when evaluated with
summaries from the same language model they were trained on. However, for the Netflix dataset, interestingly, we observe that the model
trained on LLaMA summaries but evaluated with GPT summaries achieves the best performance in both recall@20 and recall@50. Overall,
the results suggest that TEARS models demonstrate a strong ability to adapt to different writing styles, as seen in the consistent performance
across the datasets. While models tend to perform best when tested with summaries from their training distribution, the performance does
not drastically decline when using summaries from other models, indicating flexibility in handling diverse styles and content.

Table 14: Performance of TEARS models trained on GPT and LLaMA summaries, evaluated across various combinations of training and
evaluation datasets. Models perform best when using the summaries of the LLM they were trained on, though the LLaMA-trained model
achieves the highest recall@20/50 on GPT-generated summaries for the Netflix dataset. These results highlight TEARS’ ability to generalize
across different writing styles with minimal performance decline.

Model Trained & Summaries Used Recall@20 NDCG@20 Recall@50 NDCG@50

ML-1M

LLaMA (LLaMA summaries) 0.319 ± 0.005 0.282 ± 0.005 0.363 ± 0.003 0.287 ± 0.002

LLaMA (GPT summaries) 0.307 ± 0.004 0.271 ± 0.005 0.371 ± 0.007 0.282 ± 0.004

GPT (GPT summaries) 0.307 ± 0.002 0.273 ± 0.002 0.374 ± 0.002 0.285 ± 0.001

GPT (LLaMA summaries) 0.312 ± 0.003 0.277 ± 0.002 0.369 ± 0.003 0.286 ± 0.002

RecVAE 0.300 ± 0.005 0.264 ± 0.003 0.360 ± 0.003 0.274 ± 0.003

Netflix

LLaMA (LLaMA summaries) 0.518 ± 0.001 0.544 ± 0.001 0.457 ± 0.001 0.485 ± 0.001

LLaMA (GPT summaries) 0.519 ± 0.001 0.544 ± 0.001 0.458 ± 0.001 0.485 ± 0.001

GPT (GPT summaries) 0.517 ± 0.001 0.543 ± 0.000 0.457 ± 0.001 0.485 ± 0.001

GPT (LLaMA summaries) 0.516 ± 0.001 0.542 ± 0.001 0.457 ± 0.001 0.484 ± 0.001

RecVAE 0.515 ± 0.003 0.540 ± 0.003 0.455 ± 0.002 0.482 ± 0.002

Goodbooks

LLaMA (LLaMA summaries) 0.173 ± 0.001 0.179 ± 0.001 0.191 ±0.002 0.181 ±0.000
LLaMA (GPT summaries) 0.171 ± 0.001 0.177 ± 0.001 0.193 ± 0.001 0.181 ± 0.001

GPT (GPT summaries) 0.175± 0.002 0.181 ± 0.002 0.193 ± 0.000 0.183± 0.001

GPT (LLaMA summaries) 0.172 ± 0.001 0.178 ± 0.001 0.191 ± 0.002 0.180 ± 0.001

RecVAE 0.171 ± 0.001 0.176 ± 0.001 0.191 ± 0.002 0.179 ± 0.001
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Q GPT-4-preview Example Summaries

Q.1 ML-1M

User ID Summary

2,528 Summary: The user has a strong preference for crime dramas, often enjoying those that incorporate elements of thrillers and
mysteries. They are particularly drawn to complex narratives that involve intricate plots, moral ambiguity, and character-driven
stories. The user appreciates the tension and intellectual engagement that comes with unraveling a mystery or following the
maneuvers of a criminal mastermind. They also show a high regard for films that blend crime with dramatic depth, exploring
the human condition and the consequences of criminal activity. On the other hand, the user does not enjoy crime movies
that incorporate excessive comedy or romance, suggesting a preference for more serious and gritty narratives over those that
might dilute tension with humor or love stories. While other viewers may find the lighter moments in action-comedy crime
films entertaining, this user tends to steer clear of those plot points, favoring a more straightforward and intense viewing
experience.

709 Summary: The user shows a clear preference for horror films that often blend with other genres such as thriller, drama, and
romance. They seem to particularly enjoy horror movies that incorporate elements of romance or have a dramatic depth,
suggesting a taste for character development and emotional engagement within the horror context. The user also appreciates
when horror is mixed with comedy, indicating a fondness for films that balance scares with humor, possibly to lighten the
mood or add a satirical edge to the horror genre. In terms of plot points, the user appears to enjoy classic horror tropes and
narratives that involve supernatural or monstrous entities, as well as storylines that may include a romantic subplot or a
dramatic twist. The user seems to appreciate when horror films explore complex characters or present a unique take on the
genre. Conversely, the user does not enjoy certain horror sub-genres, particularly those that may lean heavily into action or
sci-fi without substantial horror elements. They also seem to have a distaste for horror films that are perceived as lower quality
or that may rely excessively on clichés without offering new or engaging content. Other users may enjoy the adrenaline rush
and spectacle of action-packed horror or the imaginative aspects of sci-fi horror, even if these elements are not as appealing to
this particular user. They might also find charm in campy or less critically acclaimed horror movies, appreciating them for
their cult status or nostalgic value.

3,212 Summary: The user enjoys comedies that often blend with drama, appreciating films that offer a mix of humor and more
serious undertones. They also show a preference for dramas that provide deep, character-driven narratives. The user seems to
enjoy plot points that revolve around personal growth, human relationships, and perhaps satirical takes on life and society. On
the other hand, the user does not enjoy action-heavy genres, particularly those that involve war themes or are set in science
fiction universes. They also seem to have a lower appreciation for romance when it is the central theme of the comedy. Plot
points involving high-stakes conflicts, extensive use of special effects, or those that focus on fantastical elements are less
appealing to the user. However, these elements may be appreciated by other viewers who enjoy escapism and the thrill of
action-packed sequences or the imaginative aspects of science fiction and fantasy.

2,701 Summary: The user shows a strong preference for action-packed narratives with elements of thriller, drama, and science fiction.
They enjoy complex storylines that involve crime-solving, high-stakes scenarios, and intense character-driven plots, often
with a psychological or noir twist. The user appreciates when action is blended with deeper themes and when the plot includes
unexpected twists or sophisticated narratives that challenge the protagonist both physically and mentally. On the other hand,
the user does not favor comedies, particularly those that rely on slapstick humor or light-hearted romantic storylines. They
also seem to have less interest in war dramas, despite their appreciation for action and drama in other contexts. Plot points
involving straightforward comedy without a substantial or thrilling storyline, or those that lean towards overly sentimental
romance, are less enjoyable for the user. However, these elements may be appreciated by other viewers who prefer lighthearted
entertainment or are fans of romantic narratives.
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Q.2 Netflix Summaries

Netflix ID Summary

2,306,956 Summary: The user enjoys a diverse range of genres, showing a particular affinity for films that blend action with other
elements such as sci-fi, thriller, and crime. They appreciate complex narratives that include mystery and unexpected twists,
as well as biographical dramas that offer deep character studies and emotional depth. The user also has a taste for comedies
that incorporate elements of drama, romance, and music, suggesting a preference for stories with a rich emotional palette
and a balance between humor and heartfelt moments. Additionally, the user is drawn to sports-themed films that likely
combine personal growth with the excitement of competition. Conversely, the user does not enjoy certain genres as much,
such as pure horror films, which may be due to their often suspenseful and sometimes unsettling nature. Plot points involving
supernatural scares or slasher elements are less appealing to the user. While other viewers might find the adrenaline rush
and tension of horror thrilling, these aspects do not resonate as strongly with the user’s preferences.

1,161,915 Summary: The user enjoys a blend of genres, with a particular fondness for comedies that intertwine with other genres
like crime, romance, and fantasy. They appreciate plot points that involve humorous situations, unexpected romantic
developments, and fantastical elements that add a whimsical twist to the narrative. The user also shows a preference for
action-packed thrillers, especially those that incorporate elements of adventure, mystery, and science fiction, suggesting
a taste for high-stakes scenarios and intricate plotlines. Conversely, the user does not enjoy certain types of comedies,
particularly those that may be perceived as lowbrow or lacking in substance. They also seem to steer clear of horror films
that lean heavily into the fantasy genre, indicating a disinterest in plot points that combine supernatural elements with
horror tropes. While other users may find appeal in the unique blend of comedy and horror or the slapstick nature of certain
comedies, these elements do not resonate with the user’s preferences.

2,261,374 Summary: The user enjoys a variety of genres with a strong preference for Crime, Drama, and Documentary films. They
appreciate complex narratives that delve into the intricacies of human behavior, moral dilemmas, and social issues. Plot points
involving mystery, psychological tension, and character-driven stories seem to resonate well with the user. They also show
an interest in films that incorporate historical and biographical elements, suggesting a preference for stories that offer a sense
of realism or are grounded in real-world events. Conversely, the user does not enjoy genres that lean heavily on Action and
Horror. They seem to be less interested in plot points that prioritize high-octane sequences, gore, or supernatural elements
over character development and narrative depth. While other users may find excitement in adrenaline-fueled action scenes
or the thrill of horror tropes, these aspects do not align with the user’s cinematic tastes, which favor more intellectually
stimulating and emotionally rich experiences.

807,353 Summary: The user enjoys a variety of genres, with a particular affinity for action, drama, and thriller films that often
incorporate elements of adventure, crime, history, and war. They appreciate complex narratives that involve high-stakes
situations, such as battles, espionage, and survival against overwhelming odds. The user also shows a strong preference for
films that delve into historical contexts or speculative futures, often enjoying the interplay between reality and science fiction.
Comedies, especially those blended with action or crime, also resonate well, suggesting a taste for humor amidst tension.
Conversely, the user does not enjoy certain comedies, particularly those that lean heavily on romance without the balance
of another engaging genre. Plot points that revolve solely around romantic entanglements or slapstick humor without a
deeper narrative or thematic substance seem to be less appealing. Additionally, dramas that focus primarily on romance or
personal turmoil without a broader social or historical context do not capture the user’s interest as much. While other users
may find these elements relatable or emotionally resonant, they do not align with this user’s preferences for complexity and
action-oriented storytelling.

769,356 Summary: The user enjoys a variety of genres, with a particular affinity for action, adventure, thriller, and comedy. They
appreciate plot points that involve high-stakes scenarios, such as crime-solving, espionage, and intense physical challenges,
often with a blend of humor or romance to balance the tension. The user also shows interest in biographical dramas that
tell the stories of remarkable individuals, as well as fantasy elements that add a unique twist to the narrative. Conversely,
the user does not enjoy certain romantic comedies and dramas, particularly those that may be perceived as formulaic or
lacking in depth. Plot points involving mundane romantic entanglements or overly sentimental narratives are less appealing
to the user. While other viewers may find charm and relatability in these stories, the user prefers more dynamic and complex
storytelling. Additionally, the user is not fond of certain fantastical musicals or animation that might not align with their
taste for more grounded or action-oriented entertainment.
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Q.3 Goodbooks Summaries

Goodbooks ID Summary

5,055 Summary: The user enjoys genres like fantasy, historical fiction, dystopian, and complex emotional narratives. Stories
involving time travel, intricate plots with political intrigue, survival against the odds, and magical worlds in which
characters undergo significant growth are highly appealing. The user favors narratives with deep character development
and rich settings, especially those that combine adventure with moral complexities. The user gravitates towards plot
points that feature epic quests, battle between good and evil, elaborate world-building, and cohesive series with consistent
character arcs. They appreciate tales of personal sacrifice, love across time, sociopolitical undercurrents, and the fight for
justice. The user does not enjoy genres such as romance with superficial or cliched elements, straightforward memoirs,
and classic literature with dense language or outdated societal norms. Plot points focusing heavily on melodrama,
predictable love triangles, existential navel-gazing, or prolonged internal monologues do not resonate as well with the
user compared to tales of adventure and moral conflict.

8,454 Summary: The user enjoys genres such as classic literature, gothic horror, and fantasy, with a particular fondness for
iconic series and novels with rich, atmospheric settings. They appreciate compelling character studies, dark themes,
psychological horror, and the use of poetic language. They also seem to enjoy classic sci-fi and dystopian futures, as
well as humor and satire presented in graphic novel formats, especially when they exhibit a sharp, witty edge. The
user enjoys plot points that delve into the complexity of human nature, transformations or dualities within characters,
and epic quests filled with detailed world-building. They favor narratives that are introspective and explore themes
of morality, identity, and existentialism, often against a richly described backdrop. Complex and flawed protagonists
who evolve through personal conflicts are key elements they appreciate. The user does not seem to enjoy genres like
romance or young adult fantasy unless it’s integral to a familiar and larger frame, showcased by lukewarm responses to
certain popular young adult fantasy books. They also aren’t particularly drawn to manga series unless they are critically
acclaimed or unique. Heavy reliance on teenage romance, predictable tropes, or overly simplistic narratives particularly
deter them. Plot points centered on romantic entanglements or conventional coming-of-age themes do not seem to
resonate as well with their tastes.

543 Summary: The user enjoys genres that blend science fiction, dystopian themes, and intricate horror elements, evident
from their high ratings for books involving societal collapse, supernatural occurrences, and deep psychological thrills.
Detailed world-building, complex character development, and thought-provoking themes about humanity’s survival and
moral choices captivate the user. These preferences show in their consistent appreciation for narratives that intertwine
existential threats with personal struggles, lush with symbolic and figurative language. The user does not enjoy genres
that heavily focus on surreal, darkly comedic or critically nihilistic perspectives, often feeling unsatisfied with their
bizarre plot developments and fragmented narrative styles. Books with overly grotesque, chaotic plot lines, and where
shock value overshadows substantive storytelling elements, tend to receive lower ratings from the user. Additionally,
tales driven by nonsensical or overly convoluted story arcs, without cohesive progression, fail to maintain the user’s
interest.

7,584 Summary: The user enjoys genres that span classic literature, fantasy, and magical realism. They have a particular interest
in character-driven plots with strong developmental arcs, intricate world-building, and themes of moral complexity.
Books like epic fantasies, coming-of-age tales, and those with heavy social commentary resonate well with the user, often
featuring a blend of adventure, personal growth, and complex societal interactions. The user appreciates works where
characters face profound internal and external conflicts, often set against richly detailed and immersive backdrops. They
tend to favor narratives with elements of heroism, complex world settings, and stories that interweave mythological or
fantastical elements with deep, layered character dynamics. Conversely, the user does not enjoy genres with straight-
forward, linear adventure plots or those that heavily focus on satire and political allegory without deeper character
engagement. They seem less interested in books where the primary focus is on procedural elements or those centered
around detailed explorations of dystopian themes without accompanying rich character development. Additionally,
historical fiction and adventures centered in more straightforward and less nuanced narrative structures are generally
less appealing to the user.
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R LLaMA 3.1 Example Summaries

R.1 ML-1M

User ID Summary

2,528 Summary: The user seems to enjoy crime and thriller movies, particularly those with complex plots and morally ambiguous
characters. They appreciate films that explore the darker aspects of human nature, such as violence, corruption, and redemption.
The user also enjoys movies with unexpected twists and turns, keeping them engaged and guessing until the end. In terms of
specific plot points, the user seems to enjoy stories about heists, gangsters, and law enforcement, as well as films that explore
themes of loyalty, betrayal, and revenge. They also appreciate movies with strong, complex characters, particularly those with
troubled pasts or conflicted motivations. On the other hand, the user does not seem to enjoy movies that are overly formulaic
or predictable, particularly those that rely on tired tropes or cliches. They also tend to dislike films that are overly sentimental
or emotionally manipulative, preferring instead movies that are gritty, realistic, and unflinching in their portrayal of the world.
In terms of genres, the user does not seem to enjoy horror movies, particularly those that rely on cheap jump scares or gore.
They also tend to dislike sci-fi movies that are overly reliant on special effects or convoluted plot twists. However, they do seem
to appreciate sci-fi movies that explore complex themes and ideas, particularly those that are grounded in realistic science and
technology.

709 Summary: The user enjoys horror movies with a mix of thriller, comedy, and sci-fi elements. They seem to appreciate classic
horror franchises such as Friday the 13th, A Nightmare on Elm Street, and Halloween, as well as more comedic takes on the
genre like Ghostbusters and Fright Night. The user also enjoys horror movies with a strong romantic element, such as Bram
Stoker’s Dracula and Interview with the Vampire. On the other hand, the user does not enjoy horror movies that are too campy
or cheesy, such as the Toxic Avenger series or Class of Nuke ’Em High. They also seem to dislike horror movies that rely too
heavily on gore or cheap jump scares, such as the Saw or Hostel franchises (although these are not explicitly mentioned in the
provided data). The user may also not enjoy horror movies that are too slow-paced or atmospheric, such as The Blair Witch
Project.

3,212 Summary: The user enjoys comedy and drama genres, particularly when they are combined. They seem to appreciate witty
dialogue, quirky characters, and offbeat humor, as seen in films with complex, character-driven plots. The user also enjoys
romance and comedy when they are intertwined, often with a touch of satire or social commentary. In terms of plot points, the
user seems to enjoy stories that explore themes of personal growth, redemption, and self-discovery. They appreciate complex
characters with flaws and relatable struggles, as well as narratives that balance humor and pathos. The user also enjoys films
with strong ensemble casts and character-driven storytelling. On the other hand, the user does not enjoy action-oriented
genres, such as action, thriller, and war films. They seem to find these genres too intense or formulaic, and may not appreciate
the emphasis on spectacle over character development. The user also does not enjoy sci-fi and fantasy films, possibly due to
their often complex world-building and reliance on special effects. In terms of specific plot points, the user may not enjoy
films with overly simplistic or predictable storylines, or those that rely too heavily on convenient plot devices or cliches. They
may also not appreciate films with weak character development or those that prioritize style over substance.

2701 Summary: The user enjoys action-packed movies with thrilling plots, particularly those that combine elements of crime,
mystery, and sci-fi. They seem to appreciate films with complex storylines, unexpected twists, and a sense of urgency. Movies
with a strong sense of tension and suspense, such as those found in the thriller and film-noir genres, also appeal to the user. On
the other hand, the user does not enjoy movies that are overly comedic or lighthearted, particularly those that rely on slapstick
humor or clichéd romantic plotlines. They also seem to be less interested in movies that focus on character development or
emotional drama, instead preferring films that prioritize plot and action. In terms of specific plot points, the user seems to
enjoy movies that feature high-stakes action sequences, intricate heists, and cat-and-mouse chases. They also appreciate films
that explore themes of deception, betrayal, and redemption. However, they may not enjoy movies that focus on sentimental
relationships, personal growth, or social commentary.
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R.2 Netflix

User ID Summary

2,306,956 Summary: The user enjoys a wide range of genres, including action, comedy, drama, romance, and thriller. They seem to
appreciate films with complex plots, unexpected twists, and strong character development. Movies with a mix of humor,
adventure, and heartwarming moments also appeal to them. The user has a soft spot for films based on true stories, biographies,
and sports dramas. In terms of specific plot points, the user enjoys stories with redemption arcs, underdog tales, and explorations
of social issues. They also appreciate films with clever dialogue, witty banter, and memorable characters. The user is drawn to
movies with a strong sense of nostalgia, as well as those that explore themes of love, family, and friendship. On the other
hand, the user does not enjoy films that are overly formulaic, predictable, or lacking in depth. They tend to avoid movies with
excessive violence, gore, or gratuitous content. The user is also not a fan of films that rely too heavily on slapstick humor or
crude comedy. While they appreciate a good horror movie, they tend to prefer those with a more psychological or suspenseful
approach rather than outright gore. Overall, the user’s tastes are quite eclectic, and they are open to exploring a wide range of
genres and themes. However, they tend to prioritize films with strong storytelling, memorable characters, and a mix of humor,
heart, and adventure.

1,161,915 Summary:The user enjoys a wide range of genres, including action, adventure, comedy, crime, drama, fantasy, horror, mystery,
romance, sci-fi, and thriller. They seem to appreciate complex plots with unexpected twists and turns, as well as stories that
combine elements of multiple genres. The user also enjoys films with strong characters, witty dialogue, and a mix of humor
and suspense. In terms of specific plot points, the user seems to enjoy stories that involve adventure, danger, and excitement,
such as heists, chases, and battles. They also appreciate films that explore themes of identity, morality, and social commentary,
as well as stories that feature clever plot twists and surprises. On the other hand, the user does not enjoy films that are overly
simplistic, predictable, or formulaic. They seem to dislike movies that rely too heavily on cliches, stereotypes, or tired genre
conventions. The user also appears to be less interested in films that focus primarily on slapstick comedy, gross-out humor,
or mindless action. Other users may enjoy films that the user does not, such as those that prioritize style over substance,
feature excessive violence or gore, or rely too heavily on special effects. However, the user’s tastes suggest that they value
intelligence, creativity, and originality in their films, and are willing to explore a wide range of genres and styles in search of
something that truly engages and entertains them.

2,261,374 Summary: The user enjoys crime and drama genres, particularly those with complex plots andmoral ambiguity. They appreciate
films that explore themes of justice, morality, and the human condition. Movies with intricate storylines, unexpected twists,
and strong character development tend to captivate their attention. The user also has a fondness for documentaries, especially
those that delve into historical events, social issues, and personal stories. In contrast, the user does not enjoy action-oriented
films with simplistic plots and lacking in depth. They tend to dislike movies that prioritize special effects over storytelling and
character development. The user is also not fond of romantic comedies or horror movies, finding them to be formulaic and
predictable. Furthermore, they are not drawn to films with overtly sentimental or melodramatic tone, instead preferring more
nuanced and thought-provoking cinema.

807,353 Summary: The user enjoys action-packed movies with thrilling plotlines, often featuring crime, adventure, and sci-fi elements.
They appreciate films with complex characters, intricate mysteries, and unexpected twists, as seen in genres like mystery,
thriller, and crime. The user also has a soft spot for romantic comedies, sports dramas, and historical epics, indicating a
appreciation for diverse storytelling. On the other hand, the user does not enjoy movies that are overly reliant on slapstick
humor, absurdity, or formulaic rom-com tropes. They tend to dislike films that lack depth, nuance, or originality, often giving
lower ratings to movies that feel predictable, shallow, or clichéd. While they may appreciate some animated films, they seem
to prefer live-action movies with more mature themes and complex storytelling. Overall, the user values engaging narratives,
memorable characters, and cinematic craftsmanship.

769,356 Summary: The user enjoys action-packed movies with thrilling sequences, often with a mix of adventure, crime, and sci-fi
elements. They seem to appreciate films with a strong narrative drive, memorable characters, and impressive stunts. Comedies
with a touch of adventure, fantasy, or romance also appeal to them, particularly if they have a unique tone or quirky humor.
On the other hand, the user does not enjoy romantic comedies or dramas with overly sentimental or clichéd storylines.
They seem to dislike movies that focus too much on relationships or character development at the expense of plot or action.
Additionally, they may not appreciate films with a slow pace, convoluted narratives, or an overemphasis on drama or romance.
Other users may enjoy these types of movies, but they do not resonate with this particular user.
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R.3 Goodbooks

User ID Summary

5,055 Summary: The user enjoys fiction books that have a strong narrative, well-developed characters, and a mix of romance, drama,
and adventure. They seem to appreciate books that explore complex themes, such as love, loss, and self-discovery, and that
have a strong emotional resonance. The user also enjoys books that are part of a series, as they allow for a deeper exploration
of the characters and their world. In terms of specific genres, the user seems to enjoy young adult fiction, historical fiction, and
contemporary fiction. They also appear to have a soft spot for books that are set in the past, particularly in the medieval and
Renaissance periods. On the other hand, the user does not enjoy books that are overly simplistic or lack depth. They seem to
be turned off by books that are too focused on romance or that have underdeveloped characters. The user also does not enjoy
books that are part of the fantasy or science fiction genres, as they seem to prefer more realistic and grounded stories. Overall,
the user appears to be a discerning reader who values well-written, engaging stories that explore complex themes and have a
strong emotional resonance.

8,454 Summary: The user enjoys Gothic and horror themes, as well as classic literature and poetry. They seem to appreciate complex,
atmospheric storytelling and are drawn to works that explore the human condition, morality, and the supernatural. The user
also enjoys science fiction and fantasy, particularly when it involves imaginative world-building and philosophical themes. In
terms of plot points, the user seems to enjoy stories that feature mysterious, suspenseful, and introspective narratives, often
with a sense of impending doom or catastrophe. They also appreciate stories that explore the nature of good and evil, as well
as the consequences of human actions. On the other hand, the user does not enjoy stories that are overly simplistic, clichéd, or
lacking in depth. They seem to be turned off by works that rely too heavily on formulaic plot devices or shallow character
development. The user also appears to be less interested in stories that are overly focused on action, adventure, or romance,
unless these elements are balanced with more substantial themes and character exploration. Overall, the user’s tastes suggest a
preference for literature that is thought-provoking, emotionally resonant, and intellectually stimulating.

543 Summary: The user enjoys dystopian and apocalyptic themes, as well as stories that explore the human condition, social
commentary, and psychological insights. They seem to appreciate complex, thought-provoking narratives that often feature
morally ambiguous characters and blurred lines between good and evil. The user also likes stories that incorporate elements of
science fiction, fantasy, and horror, particularly those that involve supernatural or paranormal elements. On the other hand, the
user does not enjoy stories that are overly simplistic, predictable, or lacking in depth. They seem to be less interested in tales
that focus on straightforward good vs. evil conflicts or those that rely on convenient plot devices. The user also appears to be
less enthusiastic about stories that prioritize action and adventure over character development and introspection. Additionally,
they may not enjoy narratives that are overly sentimental, clichéd, or reliant on tired tropes.

7,548 Summary: The user enjoys reading memoirs and biographies, particularly those that focus on overcoming adversity, personal
struggles, and inspirational stories. They also appreciate fiction novels that explore complex relationships, family dynamics,
and social issues. The user seems to enjoy books that evoke strong emotions, whether it’s joy, sadness, or empathy. In terms of
plot points, the user likes stories that involve personal growth, transformation, and redemption. They also enjoy narratives that
explore themes of love, loss, and self-discovery. The user appears to appreciate books that tackle tough subjects, such as mental
health, trauma, and social justice. On the other hand, the user does not enjoy books that are overly simplistic, predictable, or
lacking in depth. They seem to prefer stories that are character-driven, nuanced, and thought-provoking. The user may not
enjoy books that are too focused on action, adventure, or fantasy, instead preferring more realistic and relatable narratives.
Overall, the user’s reading preferences suggest a desire for stories that are emotionally resonant, intellectually stimulating,
and authentic. They value books that offer a unique perspective, challenge their assumptions, and leave a lasting impact.
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Figure 14: Illustration of the prompting strategy used to generate user summaries. .
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R.4 Summary Generation Prompts

Aspect Value

Prompt for Movies Task: You will now help me generate a highly detailed summary based on the broad common elements of movies.
Do not comment on the year of production. Do not mention any specific movie titles or actors. Do not comment on
the ratings but use qualitative speech such as the user likes, or the user does not enjoy. Remember you are an expert
crafter of these summaries so any other expert should be able to craft a similar summary to yours given this task.
Keep the summary short at about 200 words. The summary should have the following format:
Summary:
{Specific details about genres the user enjoys}.
{Specific details of plot points the user seems to enjoy}.
{Specific details about genres the user does not enjoy}.
{Specific details of plot points the user does not enjoy but other users may}.
{title1}, {rating1}, {genre1} ... {title𝑛 }, {rating 𝑛 }, {genre 𝑛 }
Do not comment on the ratings or specific titles but use qualitative speech such as the user likes, or the user does
not enjoy
Do not comment mention any actor names

Prompt for Books Task: You will now help me generate a highly detailed summary based on the broad common elements of books. Do
not comment on the year of release. Do not mention any specific book titles or authors. Do not comment on the
ratings but use qualitative speech such as the user likes, or the user does not enjoy. Remember you are an expert
crafter of these summaries so any other expert should be able to craft a similar summary to yours given this task.
Keep the summary short at about 200 words. The summary should have the following format:
Summary:
{Specific details about genres the user enjoys}.
{Specific details of plot points the user seems to enjoy}.
{Specific details about genres the user does not enjoy}.
{Specific details of plot points the user does not enjoy but other users may}.
{title1}, {rating1}, {genre1} ... {title𝑛 }, {rating 𝑛 }, {genre 𝑛 }
Do not comment on the ratings or specific titles but use qualitative speech such as the user likes, or the user does
not enjoy
Do not comment or mention any author names
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