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Abstract—We propose a novel temporal interpolation scheme
to enable Lyapunov-based convex synthesis of controlled invari-
ant sets, called funnels, around nominal trajectories for a class of
nonlinear systems. The approach scales well to high dimensional
systems, and aims to maximize funnel volume.

I. INTRODUCTION

This paper uses Lyapunov stability theory to design invari-
ant funnels that enable efficient trajectory generation for a
class of nonlinear systems. A byproduct of funnel synthesis
is an exponentially stabilizing time-varying control law that
respects state and input constraints. The goal is to design
funnels that are as large as possible, because this implies that
trajectories can be generated for a large set of initial states.

We use quadratic Lyapunov functions to design synthesis
procedures because they often lead to (convex) linear matrix
inequalities (LMIs) [5]. Similar methods for designing both
controllers and observers have appeared in the literature [1, 2,
3, 4, 18]. Our approach is to use quadratic Lyapunov functions
defined by time-varying matrices, which lead to differential
linear matrix inequalities (DLMIs) [12, 15, 16]. Our contri-
bution is to propose a special temporal parametrization for
which these DLMIs reduce to a finite number of LMIs. The
conversion is intimately related to the convex hull of quadrat-
ics [9, 10], but the key difference is that our parametrization is
temporal, rather than spatial. As a result, the solution approach
differs from either state-based partitioning [8, 11, 14] and sum-
of-squares programming [13].

Notation. The argument of time is omitted wherever possible
for conciseness. A function f ∈ Ck is k-times continuously
differentiable. A positive (semi)definite matrix is denoted by
M(�) � 0. We denote an ellipsoid by EM := {x ∈ Rn :
x>M−1x ≤ 1} for M � 0, and a unit simplex by ∆n :=
{x ∈ Rn+ : 1>x = 1}. Horizontal concatenation is denoted by
hcat{·}.

II. THEORY

Consider controlling a dynamical system ẋ = f(x, u) about
a feasible reference trajectory Γ̄ := {x̄(t), ū(t)}tft=0. Let x ∈
Rn be the state and u ∈ Rm be the control, and restrict f ∈ C1.
With η := x− x̄ and ξ := u− ū, the deviation dynamics are:

η̇ = Aη +Bξ + g(x, u)− g(x̄, ū), (1)

where A = ∇xf(x̄, ū), B = ∇uf(x̄, ū), and g ∈ C1 is a
remainder. The generalized mean value theorem [6] guarantees

the existence of np ≥ 1 matrices Ei ∈ Rn×pi , Θi ∈ Rpi×qi ,
Cq,i ∈ Rqi×n, and Dq,i ∈ Rqi×m such that:

g(x, u)− g(x̄, ū) =
∑np

i=1EiΘi(Cq,iη +Dq,iξ). (2)

The i-th summand in (2) describes the i-th nonlinearity, with
{Cq,i, Dq,i, Ei} acting as input and output channel selectors.
To facilitate a convex control synthesis procedure, relax Θi

from a singleton to any matrix satisfying ‖Θi‖2 ≤ γi. The
parameter γi > 0 is a local Lipschitz constant for g ∈ C1

around Γ̄. Combining (1) with (2) yields a block-diagonal
norm-bounded linear differential inclusion (LDI) [5]:

η̇ = Aη +Bξ +
∑np

i=1Eipi, (3a)
qi = Cq,iη +Dq,iξ, i = 1, . . . , np, (3b)
pi = Θiqi, ‖Θi‖2 ≤ γi, i = 1, . . . , np. (3c)

Let X ⊆ Rn and U ⊆ Rm describe the feasible states and
controls. The goal is to synthesize a control law ξ = K(t)η
that maintains x ∈ X , u ∈ U and maximizes the size of the
invariant set EQ(t) centered around Γ̄. This can be achieved
by showing that V = η>Q(t)−1η is a Lyapunov function.
Sufficient conditions are established by the following theorem.

Theorem 1. Assume that ∃ Q̄(t) � 0 and R(t) � 0 such
that x̄+ EQ̄ ∈ X and ū+ ER ∈ U . The control gain K(t) =
Y (t)Q(t)−1 quadratically stabilizes (3) with decay rate α/2 if
there exist Q(t) � 0, Y (t) ∈ Rm×n and λ(t) ∈ Rnp

+ such that

max
Q,Y,λ

log detQ(0), (4a)

s.t. κI � Q � Q̄, λ ≥ 0, (4b)F − Q̇ N1 N2

? D1 0
? ? D2

 � 0,

[
Q Y >

Y R

]
� 0. (4c)

where κ > 0 is a small constant, and

F = QA> +AQ+B>Y > + Y B + αQ, (5a)
N1 = hcat{λiEi}

np

i=1, (5b)

N2 = hcat{γi(QC>q,i + Y >D>q,i)}
np

i=1, (5c)

D1 = diag{−λiIpi}
np

i=1, D2 = diag{−λiIqi}
np

i=1. (5d)

Proof: The core step is to write V̇ ≤ −αV subject to (3c),
viewed as ‖pi‖22 ≤ γ2

i ‖qi‖22, via the S-procedure [5].
Problem (4) is challenging to solve due to the DLMI

(4c). To make the synthesis tractable, we derive a finite
parameterization by assuming:

�(t) =
∑nT

i=1 σi(t)�i, (6)
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Fig. 1: Block diagram of the funnel synthesis procedure.

where placeholder � stands for {Q,Y,A,B, Q̄, R} and σ ∈
∆nT

interpolates within a convex hull of matrices. Let ti ∈
[0, tf ] denote the i-th time node. We assume a zeroth-order
hold structure γi(t) = γij ∀t ∈ [tj , tj+1]. The following
theorem establishes an SDP that ensures Theorem 1 holds.

Theorem 2. Theorem 1 holds given the structure (6) if the
following SDP admits a solution:

max
Q,Y,λ

log detQ(0), (7a)

s.t. λ ≥ 0, κI ≺ Qi � Q̄, i = 1, . . . , nT (7b)Fii − Q̇ N1 N2,i

? D1 0
? ? D2

 � 0, i = 1, . . . , nT , (7c)

Hij − 2Q̇ 2N1 Lij
? 2D1 0
? ? 2D2

 � 0,
i = 1, . . . , nT − 1,
j = i+ 1, . . . , nT ,

(7d)

[
Qi Y >i
Yi Ri

]
� 0, i = 1, . . . , nT , (7e)

where:

Fij = QiA
>
j +AjQi + Y >i B

>
j +BjYi + αQi, (8a)

N2,i = hcat{γi(QiC>q,j + Y >i D
>
q,j)}

np

j=1, (8b)

Hij = Fij + Fji, Lij = N2,i +N2,j . (8c)

Proof: To ensure M(t)N(t) � 0 for matrices M , N given
by (6), it is sufficient that MiNi � 0, i = 1, . . . , nT , and
MiNj +MjNi � 0, i = 1, . . . , nT − 1, j = i+ 1, . . . , nT .

For certain classes of σi(t), (7c) and (7d) become LMIs. In
addition, γ depends on K through (2) because u = ū + Kη.
Fig. 1 therefore provides a fixed-point procedure to compute
a pair Q,K that induce a piecewise constant γ not larger than
that for which they were designed.

III. NUMERICAL EXAMPLE

This section demonstrates funnel synthesis via Theorem 2
with an example1. Consider a planar quadrotor model:

ṙI = vI , v̇I = m−1F (θ)uB+ge2, θ̇ = ω, ω̇ = `>uB/J, (9)

where,

F (θ) =

[
−sθ −sθ −sθ
cθ cθ cθ

]
, ` =

[
0 −l l

]
. (10)

1Our code is available at https://github.com/tpreynolds/RSS 2020.

Fig. 2: The synthesized funnel (grey) with 2n test cases started
from the furthest point along each principle semi-axis (red).

(a) (b)

Fig. 3: (a) Synthesized funnel in position alongside the obsta-
cle. (b) The value of the Lyapunov function V (t) along each
test case, along with the theoretical bound dictated by α.

Parameter m is mass, J is inertia, and l is arm length. The
input uB ∈ [u, u] and the state has similar box constraints. We
allow for a single ellipsoidal obstacle defined by:

‖H (x− xc) ‖2 ≥ 1. (11)

A nominal trajectory is obtained by sequential convex
programming [17] and minimizes the integral of ‖u(t)‖1. A
funnel is synthesized via Theorem 2 with nT = 2. Geomet-
rically, the funnel in this case is a convex combination of
two ellipsoids during each time segment, the projection of
which is shown in Figs. 2 and 3a. To verify invariance, several
test trajectories are simulated using the actual dynamics (9).
The first 2n initial conditions were selected as the furthest
points from the center of EQ(0) along the principal semi-axes,
intended to represent a challenging set of initial conditions.
Subsequent initial conditions were sampled uniformly from
EQ(0). Fig. 3b shows the value of V = η>Q−1η along the
closed-loop trajectories in order to show that invariance was
achieved for all test cases, as expected.

IV. CONCLUSION

Experience has shown Theorem 2 to scale to systems with
n ≥ 12 states and m ≥ 10 inputs. Future research will aim
to generalize the class of nonlinear systems used for funnel
synthesis, and to enlarge the computable funnel volume.

https://github.com/tpreynolds/RSS_2020


APPENDIX

In this appendix, we briefly outline two methods that can
be used to estimate the γi in (3) if it is not known a
priori. For toy problems, it is often possible to compute
γi analytically, perhaps as an upper bound on the Lipschitz
constant of some nonlinear or uncertain terms. However, for
more complex systems, this is not tractable in general, and
estimation procedures become necessary. For simplicity, we
assume in this Appendix that np = 1, and fix the temporal
interval to be t ∈ [t1, t2].

Sampling-Based Approach

The simplest method to estimate γ is to use a spatiotemporal
sampling-based approach. Let T ∈ RN be a set of N
uniformly sampled points in the interval [t1, t2]. For each
sampled time ts ∈ T , s = 1, . . . , N , we sample a state
uniformly from the funnel EQ(ts), and label this sampled
point ηs. After closing the loop with a controller K(t), the
dynamics (3a) can be recast as

η̇s = (Acl + EΘCcl) η
s, (12)

and the matrix Θ can be computed as the solution of the
following optimization problem:

ϑ∗(ηs) = arg min
Θ

‖Θ‖2 (13a)

s.t. η̇s = (Acl + EΘCcl) η
s. (13b)

The value of γ is then estimated by

γ = max
s=1,...,N

‖ϑ∗(ηs)‖2. (14)

Note that the estimation accuracy (i.e., the number of samples
N required to achieve a prescribed accuracy on |γ − γtrue|)
increases exponentially in the dimension of η. However, for
simple problems (and even some complex ones), sampling
with a reasonable O(100) number of points has been em-
pirically observed to be sufficiently accurate. In general, this
process may underestimate the true value γtrue.

Nonlinear Programming Approach

The idea behind solving (13) at each sample point is to find
the smallest matrix (in the chosen norm) that is consistent
with the model, in the sense that (12) is satisfied (this is
equivalent to satisfying (2)). Minimizing the matrix’s norm
yields the least conservative bound for each sample point,
and in turn (14) selects the largest such bound. Sampling an
infinite number of points ηs for each time t ∈ [t1, t2] would
by construction yield the least conservative bound over that
interval that is consistent with (3c).

This intuitive max-min description of γ can be formalized
in the following nonlinear program. Let vecM denote the
vectorization operator that maps a matrix M ∈ Rn×m to a
vector vecM ∈ Rmn. For a given t ∈ [t1, t2], by solving

δ∗ = max
η

1

2
‖vecϑ∗(η)‖22 (15a)

s.t. η>Q(t)−1η ≤ 1, (15b)

and performing a line search over t, we can compute the value
of γ using

γ =
√

2δ∗. (16)

To render the NLP (15) solvable in practice, note that the cost
function in (13) can be altered so that the solution of

vecϑ∗(η) = arg min
vec Θ

‖ vec Θ‖2 (17a)

s.t. y(η) = M(η) vec Θ (17b)

upper bounds the cost (13a), for y(η) = η̇ − Aclη and
the unique matrix M(η) such that the equality EΘCclη =
M(η) vec Θ holds. This notation exposes ϑ∗(η) as the solution
of a minimum norm least squares problem, whose solution is

vecϑ∗(η) = M(η)†y(η). (18)

Equation (18) facilitates computation of the gradient of the
cost function (15a) [7].

Since no a priori knowledge of the system dynamics
has been assumed to formulate (15), it is likely the most
general approach to computing γ, and simultaneously the
most practically challenging. For simple systems, we have
observed the NLP formulation to work quite well; and even
for more challenging real-world systems, it remains a viable
strategy. The NLP (15) should be solved using a number of
initial guesses to reduce the likelihood of falling into a local
maximum.
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[2] Behçet Açıkmeşe and Martin Corless. Observers for sys-
tems with nonlinearities satisfying incremental quadratic
constraints. Automatica, 47(7):1339–1348, 2011.
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