
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRICT SUBGOAL EXECUTION:
RELIABLE LONG-HORIZON PLANNING IN
HIERARCHICAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-horizon goal-conditioned tasks pose fundamental challenges for reinforce-
ment learning (RL), particularly when goals are distant and rewards are sparse.
While hierarchical and graph-based methods offer partial solutions, their reliance
on conventional hindsight relabeling often fails to correct subgoal infeasibility,
leading to inefficient high-level planning. To address this, we propose Strict Sub-
goal Execution (SSE), a graph-based hierarchical RL framework that integrates
Frontier Experience Replay (FER) to separate unreachable from admissible sub-
goals and streamline high-level decision making. FER delineates the reachability
frontier using failure and partial-success transitions, which identifies unreliable
subgoals, increases subgoal reliability, and reduces unnecessary high-level deci-
sions. Additionally, SSE employs a decoupled exploration policy to cover under-
explored regions of the goal space and a path refinement that adjusts edge costs us-
ing observed low-level failures. Experimental results across diverse long-horizon
benchmarks show that SSE consistently outperforms existing goal-conditioned
and hierarchical RL methods in both efficiency and success rate.

1 INTRODUCTION

Recent advances in reinforcement learning (RL) have achieved impressive success across various
domains (Mnih et al., 2013; Silver et al., 2016). In many real-world applications, agents must achieve
specific objectives, motivating the development of goal-conditioned RL (GCRL), where agents learn
to reach a designated goal state provided by the environment (Schaul et al., 2015; Levy et al., 2017;
Nasiriany et al., 2019). Unlike conventional RL methods that rely on carefully designed reward
functions, GCRL allows agents to directly pursue target states based on goal specifications. However,
in sparse-reward and long-horizon environments, goals are often distant, making exploration difficult
and hindering effective learning due to a lack of intermediate guidance.

To address this, hierarchical RL (HRL) decomposes the decision process into a high-level policy
that selects subgoals and a low-level policy that executes actions to reach them (Bacon et al., 2017;
Vezhnevets et al., 2017). Since subgoals are typically closer and more attainable than the final goal,
this structure facilitates learning in long-horizon settings. Nevertheless, HRL can still fail when
the selected subgoals are too difficult for the low-level policy to reach reliably. To mitigate this
issue, graph-based HRL methods have been proposed (Zhang et al., 2018; Nachum et al., 2018a;
Huang et al., 2019; Eysenbach et al., 2019; Kim et al., 2021; Zhang et al., 2021). These approaches
construct a graph over the goal space, where nodes represent states or regions and edges denote
feasible transitions. Subgoal selection is guided by shortest paths on the graph, improving success
rates in complex tasks. However, even graph-based HRL remains limited in performance when the
final goal lies far from the current state, as the high-level policy may require too many steps, resulting
in unstable training and poor scalability.

While recent approaches have explored graph-based GCRL without hierarchical structures to miti-
gate the limitations of high-level policies, such methods often lack the flexibility to handle environ-
ments involving multiple goals or diverse reward signals because they omit high-level reasoning (Lee
et al., 2023; Yoon et al., 2024). To address these limitations, we propose a graph-based HRL frame-
work, Strict Subgoal Execution (SSE), which retains the advantages of high-level planning and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

improves long-horizon goal reaching by combining a new replay scheme with targeted exploration
and path refinement. Our contributions are summarized as follows:

1. Frontier Experience Replay (FER) for SSE: We introduce FER, which delineates the reacha-
bility frontier using two high-level samples: failure transitions and partial-success transitions. By
precisely localizing where attempts fail and how far progress extends, FER identifies unreliable
subgoals, increases subgoal reliability and reduces unnecessary high-level decisions.

2. Decoupled Exploration for Goal Space Coverage: A dedicated exploration policy is decoupled
from the return-driven high-level policy to traverse underexplored regions of the goal space,
improving coverage and sample efficiency.

3. Failure-Aware Path Refinement: To improve subgoal reliability, we adjust graph edge costs
based on low-level failure statistics, encouraging path planning to avoid unstable transitions and
strengthening subgoal execution.

Through extensive evaluation on diverse long-horizon, goal-conditioned tasks, our method demon-
strates higher success rates and better sample efficiency than prior GCRL and HRL approaches,
validating the effectiveness of the proposed SSE framework.

2 PRELIMINARIES

2.1 UNIVERSAL MDP, GOAL-CONDITIONED RL, AND GOAL RELABELING TECHNIQUES

We consider a universal Markov decision process (UMDP) defined as a tuple (S,G,A, P,R, γ),
where S is the state space, G is the goal space,A is the action space, P is the transition dynamics, R
is the reward function, and γ ∈ (0, 1] is the discount factor (Schaul et al., 2015). At each time step t,
the agent observes a goal g ∈ G and state st, selects an action at ∼ π(·|st, g), and receives a reward
rt = R(st, at, st+1, g) and next state st+1 ∼ P (·|st, at). The goal of GCRL is to learn a goal-
conditioned policy π that maximizes the expected return

∑H
t=0 rt, where H is the episode length.

When S ̸= G, we assume the existence of a mapping ϕ such that ϕ(s) ∈ G, allowing the agent to
infer goal progress from the current state. The goal g can be either fixed or randomly sampled in
each episode. In long-horizon goal-conditioned settings, learning is often inefficient due to the lack
of positive signals. To mitigate this, goal relabeling techniques such as Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) treat states achieved later in a trajectory as substitute goals and
can be applied to improve sample efficiency. HER augments the replay by replacing the intended
goal g with a future achieved goal g′ = ϕ(st′) for some t′ ≥ t and recomputing the reward:

(st, at, rt, st+1, g) 7→ (st, at, R(st, at, st+1, g
′), st+1, g

′).

This converts unsuccessful attempts into useful signals while the original transitions unchanged.

2.2 HRL FRAMEWORKS AND GRAPH-BASED SUBGOAL PLANNING IN GCRL

In goal-conditioned settings, HRL addresses long-horizon challenges by decomposing the policy
into a high-level policy πh and a low-level policy πl (Bacon et al., 2017; Vezhnevets et al., 2017).
Every k steps, πh(· | st, g) selects a subgoal g̃t ∈ G, which πl(· | st, g̃t) attempts to reach using an
auxiliary reward (Zhang et al., 2020; Pateria et al., 2021; Hutsebaut-Buysse et al., 2022). However,
when subgoals are too distant, the low-level policy may fail to reach them within the given horizon,
and distance-based penalties can hinder learning under sparse rewards. To mitigate this, graph-based
approaches construct a goal-space graph G = (V,E), where V is a set of landmark nodes and E
contains edges weighted by the effort to transition between nodes. Landmarks are commonly chosen
via farthest point sampling (FPS) (Kim et al., 2021; Lee et al., 2022; Park et al., 2024) or placed on
a predefined grid over the goal space (Yoon et al., 2024), assuming that the goal space is known to
define the graph and the high-level policy. In general, the edge cost is defined as

d(v1 → v2) := logγ(1 + (1− γ)QG(v1, v2, πl)), (1)

whereQG estimates the feasibility of reaching v2 from v1 under πl, defined as the value functionQl
of the low-level policy or a predefined estimator. Full details on QG are provided in Appendix B.1.
In graph-based HRL, given a subgoal g̃t, the shortest path from the current state’s embedding ϕ(st)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to g̃t is computed via Dijkstra’s algorithm (Dijkstra, 1959), producing a sequence of waypoints
(wp1, . . . ,wpn), where each wpi ∈ V . The low-level policy πl(·|st,wpi) guides the agent through
these waypoints in order: once wpi is reached, the next target for πl is updated to wpi+1, continuing
until g̃t is reached. The high-level policy is trained on transitions (st, g, g̃t,

∑t+k−1
j=t rj , st+k) in

buffer BhF , while the low-level policy πl is trained using (st,wpi, at, r
l
t, st+1) in buffer Bl, where

the low-level reward rlt = −1 if the agent has not reached wpi, and rlt = 0 otherwise (Kim et al.,
2021; Lee et al., 2022; Park et al., 2024). In contrast, certain approaches dispense with high-level
subgoals and directly train the low-level policy to reach the final goal g, under the assumption that
intermediate subgoals are unnecessary (Lee et al., 2023; Yoon et al., 2024).

3 RELATED WORK

Goal-Conditioned RL and Hierarchical Approaches GCRL refers to RL settings where the
agent is explicitly conditioned on a goal (Kaelbling, 1993; Liu et al., 2022; Colas et al., 2022). Mod-
ern GCRL typically employs Universal Value Function Approximators (UVFA) (Schaul et al., 2015)
to generalize across goals. A central challenge is solving long-horizon tasks with sparse rewards,
where exploration is difficult. To address this, HRL introduces multi-level policies that decompose
complex tasks into temporally abstract subgoals (Vezhnevets et al., 2017), and the effectiveness of
this decomposition has been demonstrated in diverse settings (Barto & Mahadevan, 2003; Kulkarni
et al., 2016; Nachum et al., 2018a; 2019). Beyond hierarchical structures, other methods improve
sample efficiency through structured exploration, such as prioritizing novel states (Warde-Farley
et al., 2018; Pong et al., 2019) or discovering useful goals via unsupervised learning (Mendonca
et al., 2021; Ecoffet et al., 2021; Chane-Sane et al., 2021).

Graph-based Approaches in GCRL Graph-based approaches have been introduced to GCRL
to provide a structured representation of the goal space, enabling planning over discrete landmarks
and improving navigation in sparse-reward environments (Huang et al., 2019; Eysenbach et al.,
2019; Kim et al., 2021). Early work used graph structures to represent the state space and to guide
exploration (Zhang et al., 2018; Nachum et al., 2018a), and this direction has since evolved through
integration with latent modeling (Zhang et al., 2021) and policy-driven graph construction (Kim
et al., 2023). More recent advances focus either on aligning high-level decisions with low-level
execution via graph-based planning (Lee et al., 2022) or on enhancing exploration with strategies
such as frontier-based expansion (Park et al., 2024), curriculum-based goal selection (Lee et al.,
2023), and virtual subgoal generation for broader coverage (Yoon et al., 2024).

Relabeling and Guidance Techniques in GCRL In sparse-reward GCRL, data relabeling is cen-
tral for improving sample efficiency. HER converts failed trajectories into successes by replacing the
intended goal with a future achieved goal (Andrychowicz et al., 2017). Since uniform hindsight-goal
sampling can be suboptimal, subsequent work explores curriculum-based relabeling (Fang et al.,
2019), novelty- or priority-driven goal sampling (Zeng et al., 2023), and hierarchical relabeling that
better matches low-level behavior (Nachum et al., 2018b). Orthogonal guidance approaches dis-
courage infeasible subgoals, for example via learned adjacency constraints (Zhang et al., 2020) or
adversarially generated goals that are challenging yet achievable (Levy et al., 2017).

4 METHODS

4.1 MOTIVATION: RETHINKING SUBGOAL EXECUTION IN GRAPH-BASED HRL

In GCRL, many methods improve goal-reaching performance by adopting hindsight relabeling tech-
niques such as HER (Andrychowicz et al., 2017), which treat intermediate states as virtual goals to
provide additional training signals. Recent graph-based HRL methods typically apply this idea to
both the low level and the high level. While this benefits the low level, it introduces a critical issue at
the high level. Fig. 1(a) illustrates how graph-based HRL with HER operates: the high-level policy
selects a subgoal g̃t given the current state st, and the low-level policy follows a waypoint path to
reach it. If g̃t is unreachable due to limited skill, obstacles, or excessive distance, the agent stops at an
intermediate state, and such subgoals should be avoided. When HER is applied, every visited state
along the failed trajectory is treated as if it were the intended subgoal. This causes the high-level

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Distance between ෥𝒈 and 𝒔

෥𝒈𝒕𝟐

𝝓(𝒔𝟎)

(b)(a) (c)

State location Final goalSubgoalsLandmark nodes Agent trajectory

෥𝒈𝒕𝟔
= 𝒈

෥𝒈𝒕𝟑

𝝓(𝒔𝟎) 𝝓(𝒔𝟎)

෥𝒈𝒕𝟑
= 𝒈 ෥𝒈𝟎= 𝒈

𝝓(𝒔𝒕𝟏
)

෥𝒈𝒕𝟏 ෥𝒈𝒕𝟐

෥𝒈𝒕𝟓

෥𝒈𝒕𝟒

෥𝒈𝟎

𝝓(𝒔𝒕𝟏
)෥𝒈𝟎 ≈ 𝝓(𝒔𝒕𝟐

)෥𝒈𝒕𝟏
≈𝝓(𝒔𝒕𝟐

)

Figure 1: Agent trajectories in goal space G. (a) Conventional HRL with HER relabels interme-
diate states as subgoals without enforcing exact subgoal completion, which lengthens high-level
trajectories. (b) SSE with FER enforces exact subgoal completion, increasing subgoal reliability and
reducing unnecessary high-level decisions, thereby improving learning efficiency. (c) After training,
SSE reaches g with few high-level steps, here in a single step in single-goal settings even from dis-
tant starts. Agent locations are ϕ(st) ∈ G and ti is the i-th high-level step.

policy to repeatedly select ineffective subgoals and to waste many decision steps. In addition, the
resulting transitions can vary widely for the same subgoal, which hinders stable learning. As shown
in Fig. 1(a), this produces unnecessarily long high-level trajectories, and even if the agent reaches
the goal g, credit is spread over too many steps, preventing earlier decisions from being reinforced
and often leading to failure on long-horizon tasks.

To address this issue, we propose the Strict Subgoal Execution (SSE) framework, which updates the
high-level policy with positive returns only when the low level successfully reaches the assigned
subgoal. We instantiate this principle with Frontier Experience Replay (FER). Unlike relabeling
methods such as HER that synthesize additional successes, FER delineates the reachability frontier
by recording two types of high-level samples, failure transitions and partial-success transitions. By
precisely localizing where attempts fail and how far progress extends, FER identifies unreliable
subgoals, provides consistent training signals, and reduces unnecessary high-level decisions. As
shown in Fig. 1(b), this separation of success and failure keeps the resulting state ϕ(st′) closely
aligned with the selected subgoal g̃t, producing consistent high-level transitions and eliminating
wasteful actions. Consequently, as illustrated in Fig. 1(c), the resulting high-level policy solves tasks
with far fewer decisions, often reaching the final goal g in a single step in simple settings and
handling multi-goal or long-horizon environments with only a few well-chosen subgoal selections.

4.2 STRICT SUBGOAL EXECUTION WITH FRONTIER EXPERIENCE REPLAY

In this section, we describe the details of the SSE framework. We first define FER, the key com-
ponent of SSE, which marks the reachability frontier by recording two high-level sample types in
addition to standard successes: failure transitions that stop at the point of failure and partial-success
transitions that record the last reliably reached waypoint. To formalize this, we basically follow the
HRL setup from Section 2: At each time t, the policy selects a subgoal g̃t ∈ G under the common as-
sumption that the goal space G is known. A waypoint path (wp1, . . . ,wpn) on the graphG = (V,E)
is then generated, and the low-level policy πl follows this path until termination at time t′. We regard
the subgoal as reachable if ∥ϕ(st′) − g̃t∥ < λ; otherwise the attempt is treated as a failure. In the
failure case, wpfinal denotes the last waypoint reached within tolerance before failure. Based on this
notion of reachability, we define FER as follows.

Definition 4.1 (Frontier Experience Replay) The high-level replay buffer BhF stores transitions as

BhF =



(st, g, g̃t,

t′−1∑
j=t

rj , st′) (success) if ∥ϕ(st′)− g̃t∥ < λ,

(st, g, g̃t, 0, sT) (stop-on-failure) if ∥ϕ(st′)− g̃t∥ ≥ λ,

(st, g,wpfinal,

twp−1∑
j=t

rj , stwp
) (partial success) if failure occurs and wpfinal exists.

(2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, sT is the terminal state,
∑
j rj is the cumulative reward collected until reaching the subgoal

or waypoint, and twp is the time step at which wpfinal is reached.

In FER, a success transition records the full cumulative return up to t′ and continues the episode,
a stop-on-failure transition assigns zero return and sets the next state to sT , which immediately
truncates the episode so all future returns are forfeited and unreachable or unreliable subgoals are
discouraged, and a partial-success transition records wpfinal with its accumulated return, localiz-
ing how far the attempt progressed and crediting only the reliably executed portion. Together, these
signals delineate the reachability frontier, identify unreliable subgoals, and provide consistent high-
level targets that reduce unnecessary high-level decisions. This setup separates reliable from unre-
liable subgoals and suppresses failure-inducing actions, but it can induce conservatism and reduce
exploratory coverage because the agent learns to avoid regions associated with failure. To counter-
balance this effect, we introduce a decoupled high-level controller comprising a high-level policy
πh for exploitation trained on BhF and a complementary exploration policy πexp that promotes cov-
erage. As in prior graph-based HRL, we assume the goal space G is known for subgoal selection of
both πh and πexp, and SSE introduces no additional assumptions. Detailed formulations follow.

High-level Policy πh: In prior work, subgoals are typically selected with Gaussian policies with
small noise. Although adequate for those methods, this concentrates exploration near the current
maximum subgoal. As noted above, we aim for a high-level policy that can target any point in the
goal space, thereby broadening exploration. We therefore define an ϵ-greedy πh as

πh(g̃t | st, g) =
{
g̃max,t := argmaxg̃∈G Q

h(st, g̃, g) with probability 1− ϵ,
g̃rand ∼ Uniform(G) with probability ϵ,

(3)

where g̃max,t is the greedy subgoal, in practice generated by the actor network trained to choose the
maximum ofQh, g̃rand is sampled uniformly from G to ensure persistent global exploration, andQh
is trained off-policy using BhF . This formulation allows πh to select diverse points in the goal space
independently of the agent’s current location, which is crucial for broader exploration.

Exploration Policy πexp: To promote exploration, πexp targets low-density, underexplored regions
of the goal space. In the 2D and 3D goal space settings considered here, we indentify the novel
regions with a grid-based estimator for simplicity and computational efficiency. The component is
modular and can be replaced by other density estimators in general higher-dimensional goal spaces,
for example kernel density, k-NN counts, or learned novelty models, without changing key compo-
nents, SSE or FER. Concretely, we partition G into cells CmG of size dG and define πexp as

πexp(g̃t | st, g) =


g with probability 1

3 ,

g̃max,t with probability 1
3 ,

g̃novel ∼ Uniform(Cmnovel

G) with probability 1
3 ,

(4)

where g̃novel is sampled from the least visited cell Cmnovel

G with mnovel = argminmN(CmG) de-
termined by the visit count N(CmG). Both πh and πexp operate under the same SSE mechanism:
episodes continue only upon successful subgoal completion and terminate on failure. To control
exploration, we sample from πexp early in training and then gradually mix it with πh using a ra-
tio η : (1 − η), where η controls exploration strength. This balanced scheme preserves coverage,
accelerates the discovery of reachable subgoals, and improves high-level generalization.

To illustrate the behavior of the proposed method, Fig. 2 shows grid-wise visitation in the goal space
and low-level trajectories toward various initial subgoals at three stages of training: (a) early (10K
steps), (b) intermediate (150K steps), and (c) final (500K steps). The environment is a U-maze
where a MuJoCo (Todorov et al., 2012) Ant agent navigates to the final goal g located at the upper
left of the map. In (a), most of the goal space remains unexplored, and initial subgoals selected by
πexp and πh, including the final goal, random subgoals, and novel regions, result in wide-ranging
trajectories that promote broad exploration. As training progresses in (b), the agent expands its
coverage across the map, and in (c), it consistently reaches the goal g. Notably, SSE enables the
agent to reach any reachable subgoal in a single high-level step, regardless of distance, supporting
reliable execution and efficient long-range planning. This allows the agent to solve complex tasks
using only a few high-level decisions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) (b) (c)
0

5
N(Cm)

Start position Subgoal gnovel Subgoal gmax Subgoal grand Final goal g Grid cell Cm

Figure 2: Initial subgoals at t = 0 selected by πh and πexp, with corresponding Ant agent trajec-
tories at (a) early, (b) intermediate, and (c) final training stages in the U-maze task. The goal space
(agent positions in the map) is partitioned into grid cells CmG . πh selects between g̃max and g̃rand
to encourage broad coverage, while πexp samples from g̃novel, g̃max, and g to visit underexplored
regions and the goal. Over time, unreachable areas are excluded from subgoal candidates via SSE.

4.3 FAILURE-AWARE PATH REFINEMENT

In the SSE framework, reliable subgoal execution is crucial as each subgoal must be reached within
a single high-level step. As described in Section 2, graph-based methods use Dijkstra’s algorithm
to compute waypoint paths from ϕ(st) to g̃t on a graph G = (V,E), with edge distances defined
by d in Eq. equation 1. However, this distance ignores failure cases like collisions or getting stuck,
causing agents to fail even on the shortest path. We observe these failure-prone regions significantly
hinder subgoal success. To address this, we introduce a failure-aware path refinement strategy that
increases edge costs in unreliable regions, steering the planner toward safer alternatives. To imple-
ment this, we identify high-failure regions within the goal space, which is generally achieved via
spatial density estimation of failed trajectories. For consistency with our exploration policy and to
maintain computational efficiency in our domains, we leverage the same grid-based discretization.
We define a cell’s failure count, Nfail(C

m
G), as the number of times an agent, targeting a subgoal

outside the cell (i.e., g̃t ∈ Cm
′

G ,m′ ̸= m), terminates the episode within it. This indicates a failure
to exit the current region. To discourage this, we increase traversal costs by defining the failure ratio
as ratiofail(CmG) = Nfail(C

m
G)/N(CmG), and refine the edge distance from node v1 to v2 as:

d̃(v1 → v2) = d(v1 → v2)×max
(
1, cdist · ratiofail(CmG)

)
, ∀v2 ∈ CmG , ∀m, (5)

where d is the original edge distance from Eq. equation 1, and cdist > 1 is a scaling factor. To ensure
low-level policy competence, a cell’s failure count Nfail(C

m
G) is activated only after λcount success-

ful visits. A higher failure ratio increases the adjusted distance, encouraging Dijkstra’s algorithm to
avoid unreliable regions.

Fig. 3 illustrates the effect of the proposed
path refinement in a bottleneck environment.
In (a), without refinement, the agent repeat-
edly follows the shortest path through a nar-
row corridor near a wall, often resulting in fail-
ure. In (b), with refinement applied, increased
edge costs in high-failure regions steer Dijk-
stra’s algorithm toward safer detours. When no
alternatives exist (e.g., in the bottleneck), the
agent still passes through, preserving reachabil-
ity. This demonstrates that the refinement en-
hances subgoal success while maintaining over-
all reachability, supporting more stable execu-
tion in complex tasks. In summary, the proposed
SSE framework is illustrated in Fig. 4, with a
condensed version of the algorithm provided in
Algorithm 1. The full algorithm and implemen-
tation details, including the graph construction
and training losses, are provided in Appendix B.

(a) (b)
Start position
Shortest path

Goal position
Agent trajectory

Frequently failed region

Figure 3: Comparison of agent trajectories (blue
lines) in a map with a bottleneck: (a) without
path refinement and (b) with the proposed path
refinement. Green lines represent the shortest
waypoint paths computed via Dijkstra’s algo-
rithm, while red areas denote grid cells with
high failure ratios, i.e., ratiofail(C

m
G) > 0.05.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Failure-Aware
Path Refinement

𝑮

Graph with ෩𝒅

= (𝑽, 𝑬)

𝝅𝒆𝒙𝒑
Exploration

𝝅𝒉
High-level

𝝅𝒍
Low-level

𝒔𝒕, 𝒈, ෥𝒈𝒕

Strict Subgoal Execution (SSE)

Refined
Waypoint Path
(𝒘𝒑𝟏, ⋯ , 𝒘𝒑𝒏)

Rollout

Train

𝒔𝒕, 𝒈, ෥𝒈𝒕, 𝟎, 𝒔𝑻

Stop on failure

Success

𝑩𝐅
𝒉

𝒔𝒕, 𝒈, ෥𝒈𝒕, ∑𝒋=𝒕
𝒕′−𝟏𝒓𝒋, 𝒔𝒕′

𝒔𝒕, 𝒈, 𝒘𝒑𝒏, ∑𝒋=𝒕

𝒕𝒘𝒑−𝟏
𝒓𝒋, 𝒔𝒕𝒘𝒑

Partial success

FER

𝑩𝒍
Low-level Replay

Figure 4: The proposed SSE framework.

Algorithm 1 Strict Subgoal Execution (SSE)
Initialize policies πh, πexp, πl, and graph G
for each iteration do

for each episode do
for each high-level selection step do

Sample a subgoal g̃t from πh and πexp

Plan a waypoint path from ϕ(st) to g̃t
Roll out low-level policy πl(st,wpi) ∀i:
if ∥ϕ(st′)− g̃t∥ < λ (success) then

Store the success transition and continue
else

Store the failure and partial-success transi-
tions, then terminate the episode

end
Nfail(C

m
G)+ = 1 if ϕ(st′) ∈ Cm

G
end
N(Cm

G)+ = 1 for all visited grids Cm
G

end
Update Qh, Ql, πh, πl via off-policy RL

end

5 EXPERIMENTS

In this section, we evaluate our SSE framework on 9 challenging long-horizon tasks, includ-
ing 5 AntMaze environments (U-maze, π-maze, AntMazeComplex, AntMazeBottleneck,
and AntMazeDoubleBottleneck). These range from simple layouts (U-maze) to complex
structures with narrow corridors (AntMazeBottleneck). We also assess 2 KeyChest tasks
(AntKeyChest, AntDoubleKeyChest), where the agent must collect 1 or 2 keys before reach-
ing the final goal, even though the keys are not explicitly defined as goals. Additionally, we evaluate
2 Reacher tasks (ReacherWall, ReacherWallDoubleGoal), where a 3D robot must navigate
obstacles to reach one or two goals. KeyChest and DoubleGoal tasks require intermediate objectives,
making them ideal for testing high-level planning. See Fig. 5 for visualizations and Appendix C
for details. While the main experiments focus on fixed-goal settings, additional comparisons for
random-goal setups are included in Appendix D.1.

(a) U-maze (d) AntMazeBottleneck(b) 𝜋𝜋-maze (c) AntMazeComplex (e) AntMazeDoubleBottleneck

(f) AntKeyChest (g) AntDoubleKeyChest (h) ReacherWall (i) ReacherWallDoubleGoal

Figure 5: Considered long-horizon environments: 5 AntMaze, 2 KeyChest, and 2 Reacher tasks

5.1 PERFORMANCE COMPARISON

We compare SSE with a range of hierarchical RL and recent graph-based methods. Specifically, we
evaluate 2 HRL approaches: HIRO (Nachum et al., 2018b), which improves sample efficiency via
hindsight goal relabeling, and HRAC (Zhang et al., 2020), which penalizes subgoal selection based
on reachability. We also include 3 graph-based HRL methods: HIGL (Kim et al., 2021), which
applies intrinsic penalties over a graph, DHRL (Lee et al., 2022), which finds a path and gives
waypoints to low-level as a goal via graph palnning, and NGTE (Park et al., 2024), which expands
graphs using novelty to better address fixed-goal settings. Additionally, we consider 2 graph-based
methods without explicit high-level policies: PIG (Kim et al., 2023), which integrates graph struc-
tures into imitation learning to skip redundant subgoal actions, and BEAG (Yoon et al., 2024), which
uses breadth exploration with imaginary landmarks for goal-reaching. SSE is evaluated with the best

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

(a) U-maze

0 1M 2M 3M 4M 5M
Timestep

0
0.2
0.4
0.6
0.8
1.0

(c) -maze

0 2M 4M 6M 8M 10M
Timestep

0
0.2
0.4
0.6
0.8
1.0

(d) AntMazeComplex

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0
0.2
0.4
0.6
0.8
1.0

Su
cc

es
s R

at
e

(b) AntMazeBottleneck

0 0.5M 1.0M 1.5M 2.0M
Timestep

0

0.2

0.4

0.6

0.8

(e) AntMazeDoubleBottleneck

0 1M 2M 3M 4M 5M
Timestep

0
0.2
0.4
0.6
0.8
1.0

(f) AntKeyChest

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

Su
cc

es
s R

at
e

(g) AntDoubleKeyChest

0 0.1M 0.2M 0.3M 0.4M 0.5M
Timestep

0
0.2
0.4
0.6
0.8
1.0

(h) ReacherWall

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0
0.2
0.4
0.6
0.8
1.0

(i) ReacherWallDoubleGoal
SSE BEAG NGTE DHRL HRAC PIG HIRO HIGL

Figure 6: Performance comparison on various long-horizon environments

hyperparameter settings (cdist, dG , η) from ablation studies, while all baselines use author-provided
implementations. Detailed descriptions of each algorithm, along with the hyperparameter configu-
rations for our proposed method, are provided in Appendix C.

Fig. 6 shows mean success rates over 5 seeds (solid lines) with standard deviations (shaded). SSE
consistently outperforms both graph-based and conventional HRL methods across all benchmarks.
Conventional HRL methods (DHRL, HIRO, PIG, HRAC, and HIGL) rely on random goal sampling
for exploration but often struggle with fixed-goal tasks, while occasionally succeeding in random-
goal setups provided in Appendix D.1, highlighting the increased challenge of fixed goals due to
limited exploration opportunities. In relatively simple environments such as U-maze, π-maze,
and AntMazeComplex, baseline methods like BEAG and NGTE demonstrate reasonable perfor-
mance, but SSE typically converges more quickly. In bottleneck environments, SSE further excels
by using failure-aware path refinement to avoid unstable regions as shown in Fig. 3. In more complex
tasks like KeyChest and ReacherWallDoubleGoal, which require reaching intermediate objec-
tives, baseline methods largely fail. Conventional HRL suffers from long high-level horizons, and
goal-centric methods without high-level decision-making, such as BEAG, cannot reason about in-
termediate targets. In contrast, SSE mitigates these issues by strictly enforcing subgoal completion,
reducing high-level decision steps. These results highlight the versatility, efficiency, and generaliza-
tion of the proposed SSE framework. For practical comparison, we also evaluate the computational
complexity against major baselines in Appendix D.2. The results show that our method achieves
lower complexity per iteration, demonstrating its superiority in terms of computational efficiency.

5.2 FURTHER ANALYSIS AND ABLATION STUDIES

Fig. 7 presents a trajectory analysis of the proposed SSE framework in the AntDoubleKeyChest
environment, illustrating how the agent progressively explores the map and collects both keys and
the final goal. In the early stage (a) (t ≈ 300K), the agent expands map coverage by sampling diverse
subgoals, similar to simpler environments. As training progresses, the agent visits increasingly more
regions, allowing it to reach the first key within a single high-level step, as shown in (b) (t ≈ 1M). In
a more advanced stage (c) (t ≈ 1.5M), it collects both keys in just two high-level steps. Eventually,
as shown in (d) (t ≈ 3M), the agent completes the entire task, including both keys and the goal, in
only three high-level steps. These results demonstrate that SSE allows the agent to reach any location
in the map with a single high-level decision. As a result, it can solve complex multi-goal tasks using
a minimal number of high-level steps, which highlights the effectiveness of SSE in long-horizon
environments that require sequential decision-making for the high-level policy. Notably, SSE solves
this sequential task without an explicit curriculum. The reliability of its high-level policy, learned
via FER, combined with an augmented state including key-possession flags, enables the agent to
autonomously discover the required sequence of sub-objectives.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)
0

5
N(Cm)

Start position Goal position Subgoal gmax Novel region Keys Grid Cm

Figure 7: Trajectory analysis for SSE subgoals g̃max in AntDoubleKeyChest at: (a) early stage,
(b) reaches first key, (c) collects both keys, (d) reaches goal after collecting both keys (task success).

0 1M 2M 3M 4M 5M0

0.2

0.4

0.6

Su
cce

ss
Ra

te

Timestep

SSE (ours)
SSE w/o h

F

SSE w HER
SSE w/o exp

SSE w/o PR

(a) Component evaluation

0 1M 2M 3M 4M 5M0

0.2

0.4

0.6
Su

cce
ss

Ra
te

Timestep

cdist=1
cdist=2
cdist=5
cdist=10
cdist=20

(b) Distance scaling cdist

0 1M 2M 3M 4M 5M0

0.2

0.4

0.6

Su
cce

ss
Ra

te

Timestep

dg=1
dg=2
dg=4

(c) Grid size dG

0 1M 2M 3M 4M 5M0

0.2

0.4

0.6

Su
cce

ss
Ra

te

Timestep

=0.1
=0.2
=0.3
=0.4

(d) Exploration ratio η

Figure 8: Ablation study on AntDoubleKeyChest environment

We conduct an ablation study on AntDoubleKeyChest to evaluate the contribution of each com-
ponent in SSE and to analyze the impact of key hyperparameters, as shown in Fig. 8. For the com-
ponent analysis, we consider four variants: (1) SSE without BhF , which disables FER by using a
standard replay buffer; (2) SSE with HER, which replaces strict subgoal execution with a con-
ventional high-level policy that uses HER; (3) SSE without πexp, which disables the exploration
policy; and (4) SSE without path refinement (PR), which disables the failure-aware adjustment.
All variants exhibit degraded performance. Notably, the settings using HER or disabling FER fail to
learn entirely, emphasizing the importance of strict subgoal execution and the consistent high-level
signals provided by FER. Our hyperparameter analysis shows that setting cdist = 5 achieves an
optimal balance, though performance holds steady across a range of values. Similarly, performance
also holds steady for grid resolution, though overly fine grids (e.g., dG = 1) can slow learning.
For the exploration ratio η, a value of 0.2 proves optimal. While hyperparameter tuning optimizes
performance, SSE consistently outperforms all baselines. Additional analyses in other environments
are presented in Appendix E, further validating these findings.

6 LIMITATION

Our framework introduces new hyperparameters, such as the exploration ratio η and path refinement
factor cdist, which require tuning. However, we find their effective ranges to be stable across diverse
environments, and our ablation studies confirm that the framework maintains strong performance
across a wide range of values, minimizing the overall tuning cost. While SSE also adds computa-
tional steps, its principle of early termination on subgoal failure yields significant efficiency gains.
This prevents long, unproductive trajectories and results in a faster computation time compared to
other recent methods, as quantitatively analyzed in Appendix D.2.

7 CONCLUSION

In this paper, We proposed SSE, a graph-based HRL framework designed to improve reliability
and efficiency in long-horizon, goal-conditioned tasks. By enforcing single-step subgoal reacha-
bility, SSE enables more direct and reliable high-level planning and significantly reduces decision
horizons. The introduction of failure-aware path refinement and a decoupled exploration policy fur-
ther enhances subgoal reliability and map coverage. Extensive experiments demonstrate that SSE
consistently outperforms existing HRL and graph-based methods across a range of complex tasks.
These results highlight the framework’s effectiveness in enabling stable and generalizable behavior,
making it a promising approach for scalable hierarchical control in various long-horizon tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper introduces a foundational algorithm, Strict Subgoal Execution (SSE), designed to im-
prove the long-horizon planning capabilities of reinforcement learning agents. All experiments were
conducted in standard, simulated robotics environments. As such, our research does not involve
human subjects, sensitive or personally identifiable data, nor does it directly address systems that
interact with people. Therefore, issues of data privacy, dataset bias, and fairness are not directly
applicable to this work.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our research. The complete source code for our proposed
framework, Strict Subgoal Execution (SSE), and all experiments is included as an anonymized zip
file in the supplementary materials. A detailed breakdown of the implementation, including network
architectures and training procedures, can be found in Appendix B. All hyperparameters required
to reproduce our results are provided in Appendix C.3, with common settings listed in Table 2 and
environment-specific configurations in Table 3. Furthermore, Appendix C details the full experi-
mental setup, including descriptions of the baseline algorithms, specifications for all environments
(Table 1), and the hardware and software configurations on which the experiments were conducted.
We believe these resources will enable the reproduction of our findings.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International conference on machine learning, pp. 1430–1440.
PMLR, 2021.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with intrin-
sically motivated goal-conditioned reinforcement learning: a short survey. Journal of Artificial
Intelligence Research, 74:1159–1199, 2022.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in neural information processing systems, 32,
2019.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. Advances in neural information processing systems, 32, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A
survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–
221, 2022.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–1098. Citeseer,
1993.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H Jin Kim. Dhrl: a graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:13668–13678, 2022.

Seungjae Lee, Daesol Cho, Jonghae Park, and H Jin Kim. Cqm: Curriculum reinforcement learning
with a quantized world model. Advances in Neural Information Processing Systems, 36:78824–
78845, 2023.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34:24379–24391, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018b.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in neural information processing systems, 32, 2019.

Jongchan Park, Seungjun Oh, and Yusung Kim. Novelty-aware graph traversal and expansion for
hierarchical reinforcement learning. In Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, pp. 1846–1855, 2024.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, and Jungseul Ok. Breadth-first exploration on adaptive
grid for reinforcement learning. In Forty-first International Conference on Machine Learning,
2024.

Hongliang Zeng, Ping Zhang, Fang Li, Chubin Lin, and Junkang Zhou. Ahegc: Adaptive hindsight
experience replay with goal-amended curiosity module for robot control. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable plan-
ning with attributes. In International Conference on Machine Learning, pp. 5842–5851. Pmlr,
2018.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International conference on machine learning, pp. 12611–12620. PMLR, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. Advances in neural information
processing systems, 33:21579–21590, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We utilized a large language model (LLM) as an assistive tool during the preparation of this
manuscript. The LLM’s role was strictly limited to polishing the text, which includes improving
clarity, conciseness, and correcting grammatical errors. The LLM was not used for research ideation.
The authors have carefully reviewed and edited all content and take full responsibility for the scien-
tific accuracy and integrity of this work. The LLM is not credited as an author.

B IMPLEMENTATION DETAILS

This section presents additional implementation details of the proposed SSE framework. The graph
construction method for the proposed SSE is detailed in Appendix B.1, while the training dynamics
and implementation specifics of the framework are described in Appendix B.2. Each subsection
highlights the design motivations and practical considerations for each module or mechanism.

B.1 GRAPH CONSTRUCTION OF SSE

In this section, we describe how existing methods define the graph G = (V,E),which consists of a
landmark node set V and the edge set E with edge distances d. We then explain how the proposed
SSE framework constructs this graph.

Landmark Node Set V Construction

Existing HRL methods such as DHRL (Lee et al., 2022) and NGTE (Park et al., 2024) construct
the landmark node set V by selecting visited states during exploration. They employ the Farthest
Point Sampling (FPS) algorithm to identify landmark nodes that are far apart from each other. This
approach ensures that frequently visited regions are well-represented, as it builds V based on actual
agent trajectories. However, it is limited to visited states, meaning unexplored or infrequently vis-
ited areas cannot be selected as landmarks, slowing exploration in those regions. In contrast, BEAG
(Yoon et al., 2024) accelerates exploration by partitioning the goal space into a grid structure, cre-
ating landmark nodes at each grid intersection. This method allows for faster exploration by using
virtual goal positions as landmarks, independent of visitation frequency. The structured grid layout
enables more systematic and efficient exploration. To leverage this advantage and ensure a struc-
tured, reproducible setup, SSE adopts a grid-based landmark selection strategy inspired by BEAG.
Given a 2D goal space of size x × y and a grid size of dG , the landmark set V is constructed as
follows:

V = {(i · dG , j · dG) ∈ G | i = 0, · · · , x
dG
− 1, j = 0, · · · , y

dG
− 1}. (6)

For a 3D goal space, the landmark node set is defined as V = {(i · dG , j · dG , k · dG) ∈ G | i =
0, · · · , xdG − 1, j = 0, · · · , ydG − 1, k = 0, · · · , zdG − 1}. By constructing landmark nodes in
this grid-based manner, SSE achieves faster and more structured exploration compared to visitation-
based methods, ensuring efficient path planning and reliable subgoal execution.

Definition of Edge Distance

Given the landmark node set V , the edge set E is defined as the collection of distances d(v1 → v2)
between any two nodes v1, v2 ∈ V . For previous graph-based RL methods, the edge distance d is
computed as d(v1 → v2) := logγl

(
1 + (1− γl)QG(v1, v2, πl)

)
,where γl is the low-level discount

factor used for training the low-level policy πl, and QG is the value function estimating the traversal
cost from v1 to v2, as described in Section 2. Existing HRL methods like DHRL (Lee et al., 2022) and
NGTE (Park et al., 2024) directly use the low-level value function Ql, which is trained with a step-
based reward of−1, to define the distance as the expected number of steps required for the low-level
policy to navigate from v1 to v2. Although this method reflects actual navigation costs, it is sensitive
to instability during Ql training, resulting in fluctuating edge distances. In contrast, BEAG (Yoon
et al., 2024) measures the distance using the Euclidean norm dE = ||v1 − v2||, providing a stable
but less accurate representation of traversal costs. To leverage the strengths of both approaches, SSE
defines the edge distance d(v1 → v2) by combining Ql and dE as follows:

d(v1 → v2) =
1

2

[
logγl

(
1 + (1− γl)Ql(v1, v2, πl)

)
+ logγl

(
1 + (1− γl)dE(v1, v2)

)]
. (7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

This hybrid formulation allows SSE to benefit from the stability of Euclidean distances when Ql is
not fully converged, while still capturing the true traversal cost as Ql improves. As a result, the edge
set E is constructed as E = {d(v1 → v2) | v1, v2 ∈ V }. Here, d represents the raw edge distance
before failure-aware path refinement is applied, ensuring both stability and adaptive accuracy in path
estimation.

B.2 DETAILED LOSS FUNCTIONS AND IMPLEMENTATION OF THE SSE FRAMEWORK

As described in Section 4, the proposed SSE framework is an HRL structure that employs a high-
level policy πh, an exploration policy πexp, and a low-level policy πl. The exploration policy does
not require separate parameterization for high-level actions, whereas πh and πl are parameterized by
θh and θl, respectively, and are represented as πhθh and πlθl . To evaluate these policies, SSE defines
the parameterized high-level value function Qhψh and the low-level value function Qlψl , where ψh

and ψl are the respective parameters. As mentioned in Section 2, the high-level policy and value
function are trained to maximize external rewards, while the low-level policy and value function
are optimized to reach designated waypoints incrementally. To facilitate this, the low-level policy
receives the reward rlt at each time step, defined as follows:

rlt =

{
0 if ∥ϕ(st+1)− wpi∥ < 0.5, (agent reaches the current waypoint)
−1 otherwise,

(8)

where wpi is the target waypoint at the current timestep t, and (wp1, · · · ,wpn) represent the shortest
path from ϕ(st) to the subgoal g̃t. The high-level and low-level policies, along with their value
functions, are trained using the transitions stored in the FER BhF and the low-level buffer Bl through
the TD3 algorithm (Fujimoto et al., 2018), a standard off-policy RL method. The value function
losses for high-level and low-level policies are defined as follows:

LQh(ψh) = EBh
F

[(
Qh(st, g̃t)−

(
rht + γh min

i=1,2
Qhψ̄h

i
(st′ , π

h
θh(st′ , g))

))2
]

LQl(ψl) = EBl

[(
Ql(st, at)−

(
rlt + γl min

i=1,2
Qlψ̄l

i
(st+1, π

l
θl(st+1,wpi))

))2
]
, (9)

where t′ denotes the termination time of the low-level path execution, which is variable as the step
concludes only upon success or failure. In the case of a partial success, twp (used to store transitions
in FER) indicates the time step when the agent reached the last successful waypoint wpfinal. The
high-level reward is then defined as rht =

∑t′−1
j=t rj for a successful trajectory and rht = 0 for a

failed one. The terms ψ̄h and ψ̄l are target network parameters updated via exponential moving
average (EMA), and γh and γl are the discount factors for training the high-level and low-level
policies, respectively. The actor losses for optimizing the policies are defined as follows:

Lπh(θh) = −EBh
F

[
Qhψh(st, π

h
θh(st, g))

]
, Lπl(θl) = −EBl

[
Qlψl(st, π

l
θl(st,wpi))

]
. (10)

The parameters are optimized using the Adam optimizer (Kingma, 2014) to minimize the respective
loss functions. SSE distinguishes between the high-level discount factor γh and the low-level dis-
count factor γl, setting γl = 0.99 as typical in RL, and γh = 0.4 to limit return propagation across
high-level steps, encouraging shorter path optimization. In the initial stages of training, rewards are
sparse. To address this, the FERBhF is divided evenly, with half storing successful trajectories and the
other half storing trajectories with zero reward. This design improves learning signals from success-
ful experiences. The exploration ratio, which controls the balance between the exploration policy
and the high-level policy, starts at 1:0 and decays by 0.05 per iteration until it reaches η:(1−η), as
outlined in Section 4. This scheduling promotes exploration initially and shifts the focus to high-
level learning as training progresses. If the low-level agent fails to reach the high-level subgoal g̃t,
the trajectory is marked as failed. In cases where the agent becomes stuck, such as flipping over
or hitting obstacles, its position may remain unchanged for long periods. To improve sample effi-
ciency, if no movement is detected for 500 steps, the trajectory is classified as failed and the episode
is terminated. The complete SSE algorithm is provided in Algorithm 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Strict Subgoal Execution (SSE)
Input: Graph G = (V,E), goal g, mapping function ϕ, threshold λ, exploration ratio η
Initialize: Policies πh, πexp, πl, buffers BhF , Bl, grid cells CG
for each iteration do

for each episode do
Select the behavior policy: π ← πexp with probability η, otherwise π ← πh;
for each high-level selection step do

Sample a subgoal g̃t ∼ π(st, g)
Plan the waypoint path wp1:n from ϕ(st) to g̃t using Dijkstra’s algorithm over G with d̃
for i = 1, · · · , n do

Roll out the low-level policy πl(st,wpi) to reach the waypoint wpi
Store the t′ − t transitions (st,wpi, at, rt, st+1) into the low-level buffer Bl

Compute the reward sum: rht =
∑t′−1
j=t rj

Construct the FER:
if ∥ϕ(st+1)− g̃t∥ < λ then

Success: Store the success transition (s, g, g̃t, rsum, st′) into FER BhF
else

Failure: Store the stop-on-failure transition (s, g, g̃t, 0, sT) into FER BhF
Store the partial success transition (s, g,wpfinal,

∑twp−1
j=t rj , stwp) into FER BhF

Nfail(C
m
G)+ = 1 for m s.t. ϕ(st′) ∈ CmG

Terminate the episode
end

end
end
N(CmG)+ = 1 for all visited cells CmG

end
Update ψh, θh using samples from FER BhF to minimize LQh(ψh),Lπh(θh)

Update ψl, θl using samples from Bl to minimize LQl(ψl),Lπl(θl)
end

C EXPERIMENTAL SETUP

Our proposed framework is designed to be modular and general, enabling integration with a wide
range of baseline methods. For comparison, we employ the official codebases provided by the orig-
inal authors for HIRO, HRAC, HIGL, DHRL, NGTE, and BEAG. All baselines are run using the
hyperparameters specified in their respective publications, and conducted on an NVIDIA RTX 3090
GPU with an Intel Xeon Gold 6348 CPU (Ubuntu 20.04). Appendix C.1 provides descriptions of
the baseline algorithms along with links to their official code repositories. Appendix C.2 provides
the specifications for the nine environments shown in Fig.9, including their action and observation
spaces, goal configurations, and episode horizons. The SSE-specific hyperparameter configurations
for each environment are summarized in AppendixC.3.

C.1 DETAILS OF OTHER BASELINES

• HIRO (Nachum et al., 2018b) introduces a hierarchical architecture with relabeling
of high-level transitions to account for changing low-level policies, thereby improving
off-policy sample efficiency and stability. Open-source code of HIRO is available at
https://github.com/watakandai/hiro_pytorch

• HRAC (Zhang et al., 2020) adds a learned adjacency constraint to ensure subgoal feasibility. It
penalizes high-level selections that attempt transitions deemed unreachable within a limited hori-
zon, thereby guiding the agent to learn feasible subgoal structures. Open-source code of HRAC is
available at https://github.com/trzhang0116/HRAC

• HIGL (Kim et al., 2021) incorporates a coverage-driven and novelty-driven landmark selec-
tion strategy. It performs graph-based planning via shortest paths and uses adjacency rewards

15

https://github.com/watakandai/hiro_pytorch
https://github.com/trzhang0116/HRAC

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

to guide learning toward under-explored regions. Open-source code of HIGL is available at
https://github.com/junsu-kim97/HIGL

• DHRL (Lee et al., 2022) constructs a goal graph using Farthest Point Sampling and learns
high-level behavior by planning over the graph. It emphasizes temporal abstraction and long-
horizon planning via graph traversal and Q-learning. Open-source code of DHRL is available at
https://github.com/jayLEE0301/dhrl_official

• BEAG (Yoon et al., 2024) employs value-function-driven imaginary landmarks to facilitate ex-
ploration of unvisited areas. It estimates landmark distances from a learned value function without
relying solely on previously visited states, enabling efficient generalization. Open-source code of
BEAG is available at https://github.com/ml-postech/BEAG

• NGTE (Park et al., 2024) drives novelty-based exploration by identifying frontier nodes
(outposts) and prioritizing expansion toward less-visited regions of the goal graph, en-
couraging broad and diverse exploration. Open-source code of NGTE is available at
https://github.com/ihatebroccoli/NGTE

C.2 ENVIRONMENTAL DETAILS

We follow standard benchmarks and configurations widely adopted in prior hierarchical rein-
forcement learning studies (Lee et al., 2022; Park et al., 2024; Yoon et al., 2024), and introduce
several new environments designed to evaluate high-level decision-making capabilities such as
AntKeyChest or AntDoubleKeyChest. The environments used in our experiments are vi-
sualized in Fig. 9, and their characteristics are described in Table 1.

(a) U-maze (d) AntMazeBottleneck(b) 𝜋𝜋-maze (c) AntMazeComplex (e) AntMazeDoubleBottleneck

(f) AntKeyChest (g) AntDoubleKeyChest (h) ReacherWall (i) ReacherWallDoubleGoal

Figure 9: Considered long-horizon environments: 5 AntMaze, 2 KeyChest, and 2 Reacher tasks

AntKeyChest and AntDoubleKeyChest include key flags that are toggled from 0 to 1
when the agent successfully reaches the corresponding key location under a predefined condition.
ReacherWallDoubleGoal contains two distinct goal positions, and two goal vectors are pro-
vided along with corresponding success flags, which are set to 1 upon reaching each goal. The
success threshold for determining whether a target is reached is 5 in the AntMaze environments and
0.25 in the Reacher environments.

C.3 HYPERPARAMETER SETUP

Table 2 summarizes the common hyperparameters used across all environments. These configura-
tions are based on a combination of parameter tuning and default settings from baseline implemen-
tations. In particular, the buffer size, batch size, and network architecture follow the original baseline
code. Learning rates for each policy level, as well as the discount factors, were determined through
a structured parameter search.

Table 3 presents environment-specific hyperparameters, including the minimum epsilon threshold
ϵmin, the path refinement scaling factor cdist, the subgoal success threshold λ, and the grid resolution

16

https://github.com/junsu-kim97/HIGL
https://github.com/jayLEE0301/dhrl_official
https://github.com/ml-postech/BEAG
https://github.com/ihatebroccoli/NGTE

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: Summary of environment specifications.

Environment Spaces (Obs /
Action)

Goal
space

Reward Start / Goal Po-
sition

Episode
length

U-Maze Obs: 29-Dof
Action: 8-Dof

[-4,20]×
[-4,20]

1 if goal reached
else 0

Start: (0,0)
Goal: (0,16)

600

π-Maze Obs: 29-Dof
Action: 8-Dof

[-4,36]×
[-4,36]

1 if goal reached
else 0

Start: (8,0)
Goal: (24,0)

1000

AntMazeComplex Obs: 29-Dof
Action: 8-Dof

[-4,52]×
[-4,52]

1 if goal reached
else 0

Start: (0,0)
Goal: (40,0)

2000

AntMazeBottle-
neck

Obs: 29-Dof
Action: 8-Dof

[-4,20]×
[-4,20]

1 if goal reached
else 0

Start: (0,0)
Goal: (0,16)

600

AntMazeDouble-
Bottleneck

Obs: 29-Dof
Action: 8-Dof

[-4,20]×
[-4,36]

1 if goal reached
else 0

Start: (0,0)
Goal: (16,32)

1200

AntKeyChest Obs: 30-Dof
Action: 8-Dof

[-4,36]×
[-4,36]

1 if key reached
5 if goal reached
with key

Start: (0,0)
Key: (0,16)
Goal: (0,32)

2000

AntDouble-
KeyChest

Obs: 31-Dof
Action: 8-Dof

[-4,36]×
[-4,36]

1 if key1
reached
1 if key2
reached
with key1
5 if goal reached
with two keys

Start: (0,0)
Key1: (16, 32)
Key2: (16, 0)
Goal: (32, 0)

3000

ReacherWall Obs: 17-Dof
Action: 7-Dof

[-1,1]×
[-1,1]×
[-1,1]

1 if goal reached Start:
(0.99, −0.19, 0)
Goal:
(0.6, 0.6, −0.1)

100

ReacherWall-
DoubleGoal

Obs: 22-Dof
Action: 7-Dof

[-1,1]×
[-1,1]×
[-1,1]

1 if goal reached
5 if both goals
reached

Start:
(0.99, −0.19, 0)
Goal1:
(0.4, 0.4, −0.1)
Goal2:
(0.4, −0.8, −0.1)

200

dG . These values were selected based on targeted parameter searches conducted for each environ-
ment.

In the case of AntDoubleKeyChest, a higher value of ϵmin is required compared to other en-
vironments. This is because the task involves discovering multiple intermediate objectives, which
increases the need for broad exploration. Other parameters such as the exploration ratio η and the
refinement scaling factor cdist were also selected through environment-specific tuning, with further
analyses reported in Appendix E.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Common hyperparameter settings used in SSE.

Hyperparameter Value
Optimizer Adam
Replay buffer size 2,500,000
Batch size 1024
High-level actor learning rate αhactor 0.000005
High-level critic learning rate αhcritic 0.00005
Low-level actor learning rate αlactor 0.0001
Low-level critic learning rate αlcritic 0.001
High-level discount factor γh 0.4
Low-level discount factor γl 0.99
Target update rate τ 0.005

Table 3: Scenario-specific hyperparameters for SSE.

Scenario ϵmin cdist λ dG η

AntMaze
U-maze 0.1 5.0 2.0 2 0.1
AntMazeBottleneck 0.1 5.0 2.0 2 0.1
π-maze 0.1 5.0 2.0 2 0.2
AntMazeComplex 0.1 5.0 2.0 2 0.2
AntMazeDoubleBottleneck 0.1 10.0 2.0 2 0.1
AntKeyChest 0.1 5.0 2.0 2 0.2
AntDoubleKeyChest 0.2 5.0 2.0 2 0.2

Reacher
ReacherWall 0.1 5.0 0.15 1 0.2
ReacherWallDoubleGoal 0.1 5.0 0.15 1 0.2

D ADDITIONAL COMPARATIVE EXPERIMENTS

This section presents additional comparative experiments to further assess the generality and com-
putational efficiency of the proposed SSE framework. We evaluate performance in a random-goal
training setup in Appendix D.1, where goals are sampled uniformly from the entire reachable state
space. Appendix D.2 evaluates computational characteristics, including convergence speed and per-
episode compute time.

D.1 PERFORMANCE COMPARISON UNDER RANDOM GOAL SETUPS

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(a) U-maze
0 0.2M 0.4M 0.6M 0.8M 1.0M

Timestep
0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) AntMazeBottleneck
0 1M 2M 3M 4M 5M

Timestep
0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(c) AntMazeComplex
0 1M 2M 3M 4M 5M

Timestep
0

0.2

0.4

0.6

0.8

1.0

(d) AntKeyChest
SSE BEAG NGTE DHRL HRAC PIG HIRO HIGL

Figure 10: Performance comparison in random goal setting

In Fig. 10, we compare experimental results under a random goal setting, where the goal is sampled
uniformly from the entire valid state space during training, unlike the fixed-goal scenarios discussed
in the main text. The reward signal remains sparse, posing a significant challenge for goal discov-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ery and policy optimization. Graph-based methods such as BEAG, NGTE, and SSE, which can
autonomously expand their subgoal graph during exploration, maintain strong performance even
under random goal sampling, achieving success rates comparable to those in the fixed-goal setting.
DHRL also benefits from the randomized goal distribution, particularly in simpler environments
like U-maze and AntMazeBottleneck, where the training signal is more frequently encoun-
tered. On the other hand, methods such as HIRO, HIGL, and HRAC exhibit limited progress in
most environments under random-goal conditions, due to their reliance on fixed-frequency subgoal
selection, sparse reward setting, and lack of structured exploration mechanisms. In environments
requiring multi-stage reasoning such as AntKeyChest, SSE is the only method that consistently
discovers the key and solves the full task. NGTE, while hierarchical and exploration-driven, occa-
sionally learns to acquire the key, but overall exhibits a very low success rate under this random goal
configuration.

D.2 COMPUTATIONAL COMPLEXITY COMPARISON

Table 4 reports the average per-episode computation time and the number of episodes required to
reach a 60% success rate with NGTE and BEAG. We compare against NGTE and BEAG because
they are the only baselines that succeed in at least one of the considered fixed-goal settings, making
them the most relevant references for evaluating performance and sample efficiency in sparse reward
environments. SSE achieves faster convergence across tasks due to its early termination of episodes
upon subgoal failure and a reduced number of transitions per episode, which minimizes unnecessary
computation and accelerates learning.

This advantage is particularly evident in long-horizon tasks such as AntKeyChest, where
conventional HRL methods consume many timesteps even during failed attempts and require
extended horizons for high-level planning. In contrast, in shorter-horizon scenarios such as
AntMazeBottleneck, the computational benefits of SSE are less significant since subgoal tran-
sitions and failure terminations occur less frequently. The operations introduced by SSE, including
the evaluation of subgoal completion and uniform sampling, are lightweight and have linear time
complexity. As a result, SSE imposes minimal computational overhead while maintaining stable
training dynamics.

Table 4: Average per-episode computation time (in seconds) and the number of episodes required to
reach 60% success rate.

Scenario SSE BEAG NGTE

AntMazeBottleneck
5.94s 6.46s 12.65s
432 episodes 425.2 episodes 725.6 episodes

AntKeyChest
18.13s 57.29s 119.07s
1658 episodes fail fail

E EXTENDED ANALYSES OF THE PROPOSED SSE FRAMEWORK

To further validate the design and generality of SSE, this section presents extended analyses across
several dimensions. Appendix E.1 provides qualitative trajectory visualizations that illustrate how
SSE dynamically adapts its subgoal planning over time. Appendix E.2 presents ablation and sensi-
tivity analyses to isolate the contribution of individual components and hyperparameters, including
the path refinement scale cdist, grid resolution dG , and exploration ratio η.

E.1 TRAJECTORY ANALYSIS IN OTHER ENVIRONMENTS

To gain deeper insight into the behavior of SSE, we present trajectory analyses across representative
environments.

Fig. 11 illustrates learning progression in AntMazeBottleneck. In the early stage (a), the agent
has not yet discovered feasible subgoals, causing the high-level policy πh selects subgoals largely
at random. During this phase, the exploration policy promotes coverage by gradually expanding

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) (b) (c)
0

5
N(Cm)

Start position Goal position Subgoal gmax Novel region Grid Cm

Figure 11: Trajectory analysis of SSE subgoals g̃max in AntMazeBottleneck across: (a) early
stage, (b) mid training, and (c) task success.

into novel regions. In the mid stage (b), the agent fails to traverse the narrow bottleneck, primarily
because the low-level policy πl lacks sufficient experience in that region and the associated failure
statistics ratiofail remain underrepresented. By the final stage (c), SSE successfully leverages failure-
aware refinement and subgoal selection, allowing πh to navigate through the bottleneck and reach
the goal reliably.

(a) (b) (c)
0

5
N(Cm)

Start position Goal position Subgoal gmax Novel region Grid Cm

Figure 12: Trajectory analysis of SSE subgoals g̃max in AntMazeDoubleBottleneck across:
(a) early stage, (b) mid training, and (c) task success.

A similar trend is observed in AntMazeDoubleBottleneck as Fig. 12. Initially (a), most re-
gions are unexplored, and subgoal selection remains uninformed. In the intermediate phase (b), the
agent again struggles with the second bottleneck due to insufficient failure feedback. As training pro-
gresses (c), subgoals selected by πh become more effective, and the updated path refinement guides
the agent through safer routes, enabling successful traversal of both bottlenecks and completion of
the long-horizon task.

In Fig. 13, the agent in AntKeyChest begins by exploring the environment without a clear objec-
tive (a). Upon discovering the key (b), πh increasingly selects subgoals leading to the key location.
In the final stage (c), the agent demonstrates the ability to sequentially reason over subtasks, first
reaching the key and then navigating to the final goal with the required flag active, completing the
task successfully.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) (b) (c)
0

5
N(Cm)

Start position Goal position Subgoal gmax Novel region Keys Grid Cm

Figure 13: Trajectory analysis of SSE subgoals g̃max in AntKeyChest across: (a) early stage, (b)
after reaching the key, and (c) reaching the goal with the key (task success).

E.2 ADDITIONAL ABLATION STUDIES

Component Evaluation

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(a) AntMazeBottleneck
0 1M 2M 3M 4M 5M

Timestep
0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) AntKeyChest
0 1M 2M 3M 4M 5M

Timestep
0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(c) AntDoubleKeyChest
SSE (ours) SSE w/o h

F SSE w HER SSE w/o exp SSE w/o PR

Figure 14: Component evaluation results in various maps

Fig. 14 presents the performance of SSE variants with key components ablated. Specifically, we
evaluate four variants: (1) a version that disables FER by replacing its buffer with a conventional
replay buffer (SSE w/o BhF); (2) a version that replaces our strict execution with a conventional
fixed-step HRL policy that uses HER (SSE with HER); (3) SSE without the decoupled exploration
policy (SSE w/o πexp); and (4) SSE without path refinement (SSE w/o PR). The results highlight
the importance of each component. Removing path refinement (w/o PR) degrades performance,
particularly in long-horizon settings where mitigating unreliable transitions is crucial. Disabling the
exploration policy (w/o πexp) consistently harms performance across all environments, confirming
the importance of structured exploration for goal-space coverage. Finally, the variants that alter the
core learning signal, SSE with HER and SSE w/o BhF , exhibit a similar pattern. Both manage to
achieve some success in the simpler AntMazeBottleneck environment but largely fail to solve
complex, multi-stage tasks like AntDoubleKeyChest. The failure of the HER variant shows that
conventional hindsight relabeling provides an insufficient signal for subgoal feasibility. Likewise,
disabling FER removes the partial-success and stop-on-failure transitions, which are critical for
teaching the high-level policy to avoid unreliable subgoals. Together, these results underscore that
our strict execution approach, through all its components, provides the clear and decisive signals
necessary for effective long-horizon planning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Effect of Path Refinement Scaling Factor cdist

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

(a) AntMazeBottleneck

cdist=1
cdist=2
cdist=5
cdist=10
cdist=20

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) AntKeyChest

cdist=1
cdist=2
cdist=5
cdist=10
cdist=20

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(c) AntDoubleKeyChest

cdist=1
cdist=2
cdist=5
cdist=10
cdist=20

Figure 15: Distance scail cdist analysis in various maps

Fig. 15 shows how the scaling factor cdist affects performance. This parameter controls the trade-
off between path efficiency and safety. In simpler tasks like AntMazeBottleneck, its impact
is minimal. In more complex, long-horizon tasks, its role becomes more pronounced. A moderate
value, such as cdist = 5, provides an effective balance, guiding the planner away from failure-prone
regions without being overly conservative. In contrast, excessively high values (e.g., 10 or 20) can
lead to inefficient detours, while a value of 1 may not sufficiently penalize risky paths. Overall, the
performance remains high for values between 2 and 10, indicating a wide effective range.

Effect of Grid Size dG

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(a) AntMazeBottleneck

dg=1
dg=2
dg=4

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) AntKeyChest

dg=1
dg=2
dg=4

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

(c) AntDoubleKeyChest

dg=1
dg=2
dg=4

Figure 16: Grid size dG analysis in various maps

Fig. 16 illustrates the effect of grid resolution dG . This parameter balances the granularity of novelty
detection with the stability of failure statistics. The analysis shows that performance is not highly
sensitive to this parameter within the tested range. For instance, in AntMaze environments, there is
little significant difference in performance for dG values of 1, 2, and 4. A coarse grid (dG = 4) may
merge distinct regions, while an overly fine grid (dG = 1) can make failure statistics less reliable.
Thus, we find that a moderate resolution (dG = 2 for AntMaze) provides a suitable balance. The
optimal choice is dependent on the environment’s scale, with smaller, structured spaces like Reacher
benefiting from a finer grid (dG = 1).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Effect of Exploration Ratio η

0 0.2M 0.4M 0.6M 0.8M 1.0M
Timestep

0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

(a) AntMazeBottleneck

=0.1
=0.2
=0.3
=0.4

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(b) AntKeyChest

=0.1
=0.2
=0.3
=0.4

0 1M 2M 3M 4M 5M
Timestep

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

(c) AntDoubleKeyChest

=0.1
=0.2
=0.3
=0.4

Figure 17: Exploration ratio η analysis in various maps

Fig. 17 shows how performance varies with the exploration ratio η, which controls the clas-
sic exploration-exploitation trade-off. In simple environments like AntMazeBottleneck,
performance is consistent across a wide range of η values. In long-horizon tasks like
AntDoubleKeyChest that require discovering intermediate objectives, the influence of η is natu-
rally greater, but effective performance can be achieved with straightforward tuning. As shown in our
experiments, setting the exploration ratio within a small range of 0.1 to 0.2 is sufficient to achieve
strong performance across all tasks. This indicates that while the balance is important, extensive
tuning of this hyperparameter is not required.

23

	Introduction
	Preliminaries
	Universal MDP, Goal-Conditioned RL, and Goal Relabeling Techniques
	HRL Frameworks and Graph-Based Subgoal Planning in GCRL

	Related work
	Methods
	Motivation: Rethinking Subgoal Execution in Graph-Based HRL
	Strict Subgoal Execution with Frontier Experience Replay
	Failure-Aware Path Refinement

	Experiments
	Performance Comparison
	Further Analysis and Ablation Studies

	Limitation
	Conclusion
	The Use of Large Language Models
	Implementation Details
	Graph Construction of SSE
	Detailed Loss Functions and Implementation of the SSE Framework

	Experimental Setup
	Details of Other Baselines
	Environmental Details
	Hyperparameter Setup

	Additional Comparative Experiments
	Performance Comparison under Random Goal Setups
	Computational Complexity Comparison

	Extended Analyses of the Proposed SSE Framework
	Trajectory Analysis in Other Environments
	Additional Ablation Studies

