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Abstract

We propose a new framework for Imitation Learning (IL) via density estimation of
the expert’s occupancy measure followed by Maximum Occupancy Entropy Rein-
forcement Learning (RL) using the density as a reward. Our approach maximizes a
non-adversarial model-free RL objective that provably lower bounds reverse Kull-
back–Leibler divergence between occupancy measures of the expert and imitator.
We present a practical IL algorithm, Neural Density Imitation (NDI), which obtains
state-of-the-art demonstration efficiency on benchmark control tasks.

1 Introduction

Imitation Learning (IL) algorithms aim to learn optimal behavior by mimicking expert demonstrations.
Perhaps the simplest IL method is Behavioral Cloning (BC) (Pomerleau, 1991) which ignores the
dynamics of the underlying Markov Decision Process (MDP) that generated the demonstrations, and
treats IL as a supervised learning problem of predicting optimal actions given states. Prior work
showed that if the learned policy incurs a small BC loss, the worst case performance gap between the
expert and imitator grows quadratically with the number of decision steps (Ross & Bagnell, 2010;
Ross et al., 2011a). The crux of their argument is that policies that are "close" as measured by BC loss
can induce disastrously different distributions over states when deployed in the environment. One
family of solutions to mitigating such compounding errors is Interactive IL (Guo et al., 2014; Ross
et al., 2011b, 2013), which involves running the imitator’s policy and collecting corrective actions
from an interactive expert. However, interactive expert queries are expensive and seldom available.

Another family of approaches (Fu et al., 2017; Ho & Ermon, 2016; Ke et al., 2020; Kim & Park,
2018; Kostrikov et al., 2020; Wang et al., 2017) that have gained much traction is to directly minimize
a statistical distance between state-action distributions induced by policies of the expert and imitator,
i.e the occupancy measures ⇢⇡E and ⇢⇡✓ . As ⇢⇡✓ is an implicit distribution induced by the policy and
environment1, distribution matching with ⇢⇡✓ typically requires likelihood-free methods involving
sampling. Sampling from ⇢⇡✓ entails running the imitator policy in the environment, which was
not required by BC. While distribution matching IL requires additional access to an environment
simulator, it has been shown to drastically improve demonstration efficiency, i.e the number of
demonstrations needed to succeed at IL (Ho & Ermon, 2016). A wide suite of distribution matching
IL algorithms use adversarial methods to match ⇢⇡✓ and ⇢⇡E , which requires alternating between
reward (discriminator) and policy (generator) updates (Fu et al., 2017; Ho & Ermon, 2016; Ke et al.,
2020; Kim et al., 2019; Kostrikov et al., 2020). A key drawback to such Adversarial Imitation
Learning (AIL) methods is that they inherit the instability of alternating min-max optimization
(Miyato et al., 2018; Salimans et al., 2016) which is generally not guaranteed to converge (Jin et al.,
2019). Furthermore, this instability is exacerbated in the IL setting where generator updates involve
high-variance policy optimization and leads to sub-optimal demonstration efficiency. To alleviate this
instability, (Brantley et al., 2020; Reddy et al., 2017; Wang et al., 2019) have proposed to do RL with
fixed heuristic rewards. Wang et al. (2019), for example, uses a heuristic reward that estimates the

1we assume only samples can be taken from the environment dynamics and its density is unknown
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support of ⇢⇡E which discourages the imitator from visiting out-of-support states. While having the
merit of simplicity, these approaches have no guarantee of recovering the true expert policy.

In this work, we propose a new framework for IL via obtaining a density estimate q� of the expert’s
occupancy measure ⇢⇡E followed by Maximum Occupancy Entropy Reinforcement Learning (Max-
OccEntRL) (Islam et al., 2019; Lee et al., 2019). In the MaxOccEntRL step, the density estimate q�
is used as a fixed reward for RL and the occupancy entropy H(⇢⇡✓ ) is simultaneously maximized,
leading to the objective max✓ E⇢⇡✓

[log q�(s, a)] +H(⇢⇡✓ ). Intuitively, our approach encourages the
imitator to visit high density state-action pairs under ⇢⇡E while maximally exploring the state-action
space. There are two main challenges to this approach. First, we require accurate density estimation
of ⇢⇡E , which is particularly challenging when the state-action space is high dimensional and the
number of expert demonstrations are limited. Second, in contrast to Maximum Entropy RL (Max-
EntRL), MaxOccEntRL requires maximizing the entropy of an implicit density ⇢⇡✓ . We address
the former challenge leveraging advances in density estimation (Du & Mordatch, 2018; Germain
et al., 2015; Song et al., 2019). For the latter challenge, we derive a non-adversarial model-free
RL objective that provably maximizes a lower bound to occupancy entropy. As a byproduct, we
also obtain a model-free RL objective that lower bounds reverse Kullback-Lieber (KL) divergence
between ⇢⇡✓ and ⇢⇡E . The contribution of our work is introducing a novel family of distribution
matching IL algorithms, named Neural Density Imitation (NDI), that (1) optimizes a principled
lower bound to the additive inverse of reverse KL, thereby avoiding adversarial optimization and (2).
advances state-of-the-art demonstration efficiency in IL.

2 Imitation Learning via density estimation

We model an agent’s decision making process as a discounted infinite-horizon Markov Decision
Process (MDP) M = (S,A, P, P0, r, �). Here S,A are state-action spaces, P : S ⇥ A ! ⌦(S)
is a transition dynamics where ⌦(S) is the set of probability measures on S, P0 : S ! R is an
initial state distribution, r : S ⇥ A ! R is a reward function, and � 2 [0, 1) is a discount factor.
A parameterized policy ⇡✓ : S ! ⌦(A) distills the agent’s decision making rule and {st, at}

1
t=0

is the stochastic process realized by sampling an initial state from s0 ⇠ P0(s) then running ⇡✓ in
the environment, i.e at ⇠ ⇡✓(·|st), st+1 ⇠ P (·|st, at). We denote by p✓,t:t+k the joint distribution
of states {st, st+1, ..., st+k}, where setting p✓,t recovers the marginal of st. The (unnormalized)
occupancy measure of ⇡✓ is defined as ⇢⇡✓ (s, a) =

P1
t=0 �

t
p✓,t(s)⇡✓(a|s). Intuitively, ⇢⇡✓ (s, a)

quantifies the frequency of visiting the state-action pair (s, a) when running ⇡✓ for a long time, with
more emphasis on earlier states.

We denote policy performance as J(⇡✓, r̄) = E⇡✓ [
P1

t=0 �
t
r̄(st, at)] = E(s,a)⇠⇢⇡✓

[r̄(s, a)] where
r̄ is a (potentially) augmented reward function and E denotes the generalized expectation oper-
ator extended to non-normalized densities p̂ : X ! R+ and functions f : X ! Y so that
Ep̂[f(x)] =

P
x p̂(x)f(x). The choice of r̄ depends on the RL framework. In standard RL,

we simply have r̄ = r, while in Maximum Entropy RL (MaxEntRL) (Haarnoja et al., 2017),
we have r̄(s, a) = r(s, a) � log ⇡✓(a|s). We denote the entropy of ⇢⇡✓ (s, a) as H(⇢⇡✓ ) =
E⇢⇡✓

[� log ⇢⇡✓ (s, a)] and overload notation to denote the �-discounted causal entropy of policy
⇡✓ as H(⇡✓) = E⇡✓ [

P1
t=0 ��

t log ⇡✓(at|st)] = E⇢⇡✓
[� log ⇡✓(a|s)]. Note that we use a general-

ized notion of entropy where the domain is extended to non-normalized densities. We can then define
the Maximum Occupancy Entropy RL (MaxOccEntRL) (Islam et al., 2019; Lee et al., 2019) objective
as J(⇡✓, r̄ = r) +H(⇢⇡✓ ). Note the key difference between MaxOccEntRL and MaxEntRL: entropy
regularization is on the occupancy measure instead of the policy, i.e seeks state diversity instead of
action diversity. We will later show in section 2.2, that a lower bound on this objective reduces to a
complete model-free RL objective with an augmented reward r̄.

Let ⇡E ,⇡✓ denote an expert and imitator policy, respectively. Given only demonstrations D =
{(s, a)i}ki=1 ⇠ ⇡E of state-action pairs sampled from the expert, Imitation Learning (IL) aims to
learn a policy ⇡✓ which matches the expert, i.e ⇡✓ = ⇡E . Formally, IL can be recast as a distribution
matching problem (Ho & Ermon, 2016; Ke et al., 2020) between occupancy measures ⇢⇡✓ and ⇢⇡E :

maximize✓ � d(⇢⇡✓ , ⇢⇡E ) (1)

where d(p̂, q̂) is a generalized statistical distance defined on the extended domain of (potentially)
non-normalized probability densities p̂(x), q̂(x) with the same normalization factor Z > 0, i.eR
x p̂(x)/Z =

R
x q̂(x)/Z = 1. For ⇢⇡ and ⇢⇡E , we have Z = 1

1�� . As we are only able to take
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samples from the transition kernel and its density is unknown, ⇢⇡✓ is an implicit distribution2. Thus,
optimizing Eq. 1 typically requires likelihood-free approaches leveraging samples from ⇢⇡✓ , i.e
running ⇡✓ in the environment. Current state-of-the-art IL approaches use likelihood-free adversarial
methods to approximately optimize Eq. 1 for various choices of d such as reverse Kullback-Liebler
(KL) divergence (Fu et al., 2017; Kostrikov et al., 2020) and Jensen-Shannon (JS) divergence (Ho
& Ermon, 2016). However, adversarial methods are known to suffer from optimization instability
which is exacerbated in the IL setting where one step in the alternating optimization involves RL.

We instead derive a non-adversarial objective for IL. In this work, we choose d to be (generalized)
reverse-KL divergence and leave derivations for alternate choices of d to future work.

�DKL(⇢⇡✓ ||⇢⇡E ) = E⇢⇡✓
[log ⇢⇡E (s, a)� log ⇢⇡✓ (s, a)]

= J(⇡✓, r̄ = log ⇢⇡E ) +H(⇢⇡✓ ) (2)

We see that maximizing negative reverse-KL with respect to ⇡✓ is equivalent to Maximum Occupancy
Entropy RL (MaxOccEntRL) with log ⇢⇡E as the fixed reward. Intuitively, this objective drives ⇡✓ to
visit states that are most likely under ⇢⇡E while maximally spreading out probability mass so that
if two state-action pairs are equally likely, the policy visits both. There are two main challenges
associated with this approach which we address in the following sections.

1. log ⇢⇡E is unknown and must be estimated from the demonstrations D. Density estimation remains
a challenging problem, especially when there are a limited number of samples and the data is
high dimensional (Liu et al., 2007). Note that simply extracting the conditional ⇡(a|s) from an
estimate of the joint ⇢⇡E (s, a) is an alternate way to do BC and does not resolve the compounding
error problem (Ross et al., 2011a).

2. H(⇢⇡✓ ) is hard to maximize as ⇢⇡✓ is an implicit density. This challenge is similar to the
difficulty of entropy regularizing generators (Belghazi et al., 2018; Dieng et al., 2019; Mohamed &
Lakshminarayanan, 2016) for Generative Adversarial Networks (GANs) (Goodfellow et al., 2014),
and most existing approaches (Dieng et al., 2019; Lee et al., 2019) use adversarial optimization.

2.1 Estimating the expert occupancy measure

We seek to learn a parameterized density model q�(s, a) of ⇢⇡E from samples. We consider two
canonical families of density models: Autoregressive models and Energy-based models (EBMs).

Autoregressive Models (Germain et al., 2015; Papamakarios et al., 2017): An autoregressive model
q�(x) for x = (s, a) learns a factorized distribution of the form: q�(x) = ⇧iq�i(xi|x<i). For
instance, each factor q�i could be a mapping from x<i to a Gaussian density over xi. When given a
prior over the true dependency structure of {xi}, this can be incorporated by refactoring the model.
Autoregressive models are typically trained via Maximum Likelihood Estimation (MLE).

Energy-based Models (EBM) (Du & Mordatch, 2018; Song et al., 2019): Let E� : S ⇥ A ! R
be an energy function. An energy based model is a parameterized Boltzman distribution of the
form q�(s, a) =

1
Z(�)e

�E�(s,a), where Z(�) =
R
S⇥A e

�E�(s,a)dsda denotes the partition function.
Energy-based models are desirable for high dimensional density estimation due to their expressivity,
but are typically difficult to train due to the intractability of computing the partition function. However,
our IL objective in Eq. 1 conveniently only requires a non-normalized density estimate as policy
optimality is invariant to constant shifts in the reward. Thus, we opted to perform non-normalized
density estimation with EBMs using score matching which allows us to directly learn E� without
having to estimate Z(�).

2.2 Maximum Occupancy Entropy Reinforcement Learning

In general maximizing the entropy of implicit distributions is challenging due to the fact that there
is no analytic form for the density function. Prior works have proposed using adversarial methods
involving noise injection (Dieng et al., 2019) and fictitious play (Brown, 1951; Lee et al., 2019). We
instead propose to maximize a novel lower bound to the additive inverse of an occupancy divergence
which we prove is equivalent to maximizing a non-adversarial model-free RL objective. We first
make clear the assumptions on the MDPs considered henceforth.

2probability models that have potentially intractable density functions, but can be sampled from to estimate
expectations and gradients of expectations with respect to model parameters (Huszár, 2017).
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Assumption 1 All considered MDPs have deterministic dynamics governed by a transition function

P : S ⇥ A ! S. Furthermore, P is injective with respect to a 2 A, i.e 8s, a, a
0

it holds that

a 6= a
0
) P (s, a) 6= P (s, a0).

We note that Assumption 1 holds for most continuous robotics and physics environments as they
are deterministic and inverse dynamics functions P

�1 : S ⇥ S ! A have been successfully
used in benchmark RL environments such as Mujoco (Todorov, 2014; Todorov et al., 2012) and
Atari (Pathak et al., 2017). Next we introduce a crucial ingredient in deriving our occupancy
entropy lower bound, which is a tractable lower bound to Mutual Information (MI) first proposed
by Nguyen, Wainright, and Jordan (Nguyen et al., 2010), also known as the f -GAN KL (Nowozin
et al., 2016) and MINE-f (Belghazi et al., 2018). For random variables X,Y distributed according to
p✓xy (x, y), p✓x(x), p✓y (y) where ✓ = (✓xy, ✓x, ✓y), and any critic function f : X ⇥ Y ! R, it holds
that I(X;Y |✓) � I

f
NWJ(X;Y |✓) where,

I
f
NWJ(X;Y |✓) := Ep✓xy

[f(x, y)]� e
�1Ep✓x

[Ep✓y
[ef(x,y)]] (3)

This bound is tight when f is chosen to be the optimal critic f⇤(x, y) = log
p✓xy (x,y)

p✓x (x)p✓y (y)
+ 1. We are

now ready to state a lower bound to the occupancy entropy.

Theorem 1 Let MDP M satisfy assumption 1 (App. A). For any critic f : S ⇥ S ! R, it holds that

H(⇢⇡✓ ) � H
f (⇢⇡✓ ) (4)

where

H
f (⇢⇡✓ ) := H(s0) + (1 + �)H(⇡✓) + �

1X

t=0

�
t
I
f
NWJ(st+1; st|✓) (5)

See Appendix A.1 for the proof and a discussion of the bound tightness. Here onwards, we refer
to H

f (⇢⇡✓ ) from Theorem 1 as the State-Action Entropy Lower Bound (SAELBO). The SAELBO
mainly decomposes into policy entropy H(⇡✓) and Mutual Information (MI) between consecutive
states IfNWJ(st+1; st|✓). When Assumption 1 does not hold, we may still obtain a SAELBO with
only the policy entropy term, i.e H

f (⇢⇡✓ ) := H(⇡✓)  H(⇢⇡✓ ), but this bound has more slack
and is limited to discrete state-spaces. (see Appendix A for details) Since occupancy entropy
maximization is also a desirable exploration strategy in sparse environments (Hazan et al., 2019; Lee
et al., 2019), another interpretation of the SAELBO is as a surrogate objective for state-action level
exploration. Furthermore, we posit that maximizing the SAELBO is more effective for state-action
level exploration, i.e occupancy entropy maximization, than solely maximizing policy entropy. This
is because, in discrete state-spaces, the SAELBO is a tighter lower bound to occupancy entropy than
policy entropy, i.e H(⇡✓)  H

f (⇢⇡✓ )  H(⇢⇡✓ ), and in continuous state-spaces, where Assumption
1 holds, the SAELBO is still a lower bound while policy entropy alone is neither a lower nor upper
bound to occupancy entropy. Please see Appendix C.1 for experiments that show how SAELBO
maximization can improve state-action level exploration over just policy entropy maximization. Next,
we show that the gradient of the SAELBO is equivalent to the gradient of a model-free RL objective.

Theorem 2 Let q⇡(a|s) and {qt(s)}t�0 be probability densities such that 8s, a 2 S ⇥ A satisfy

q⇡(a|s) = ⇡✓(a|s) and qt(s) = p✓,t(s). Then for all f : S ⇥ S ! R,

r✓H
f (⇢⇡✓ ) = r✓J(⇡✓, r̄ = r⇡ + rf ) (6)

where

r⇡(st, at) = �(1 + �) log q⇡(at|st) (7)

rf (st, at, st+1) = �f(st, st+1)�
�

e
Es̃t⇠qt,s̃t+1⇠qt+1 [e

f(s̃t,st+1) + e
f(st,s̃t+1)] (8)

See Appendix A.2 for the proof. Theorem 2 shows that maximizing the SAELBO is equivalent to
maximizing a discounted model-free RL objective with the reward r⇡ + rf , where r⇡ contributes to
maximizing H(⇡✓) and rf contributes to maximizing

P1
t=0 �

t
I
f
NWJ(st+1; st|✓). Note that evaluating

rf entails estimating expectations with respect to qt, qt+1. This can be accomplished by rolling
out multiple trajectories with the current policy and collecting the states from time-step t, t + 1.
Alternatively, if we assume that the policy is changing slowly, we can simply take samples of states
from time-step t, t+ 1 from the replay buffer. Combining the results of Theorem 1, 2, we end the
section with a lower bound on the original distribution matching objective from Eq. 1 and show that
maximizing this lower bound is again, equivalent to maximizing a model-free RL objective.
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Algorithm 1: Neural Density Imitation (NDI)
1 Require: Demonstrations D ⇠ ⇡E , Reward weights �⇡,�f , Fixed critic f

2 Phase 1. Density estimation:
3 Learn q�(s, a) from D using MADE or EBMs

4 Phase 2. MaxOccEntRL:
5 for k = 1, 2, ... do

6 Collect (st, at, st+1, r̄) ⇠ ⇡✓ and add to replay buffer B, where
r̄ = log q� + �⇡r⇡ + �frf ,

r⇡(st, at) = �(1 + �) log ⇡✓(at|st)

rf (st, at, st+1) = �f(st, st+1)�
�

e
Es̃t⇠Bt,s̃t+1⇠Bt+1 [e

f(st+1,s̃t) + e
f(s̃t+1,st)]

and the critic is computed by

f(st+1, st) = log
e
�kst+1�stk2

2

EBt,Bt+1 [e
�kst+1�stk2

2 ]
+ 1

Update ⇡✓ using Soft Actor-Critic (SAC) (Haarnoja et al., 2018):
7 end

Corollary 1 Let MDP M satisfy assumption 1 (App. A). For any critic f : S⇥S ! R, it holds that

�DKL(⇢⇡✓ ||⇢⇡E ) � J(⇡✓, r̄ = log ⇢⇡E ) +H
f (⇢⇡✓ ) (9)

Furthermore, let r⇡, rf be defined as in Theorem 2. Then,

r✓

�
J(⇡✓, r̄ = log ⇢⇡E ) +H

f (⇢⇡✓ )
�
= r✓J(⇡✓, r̄ = log ⇢⇡E + r⇡ + rf ) (10)

In the following section we derive a practical distribution matching IL algorithm combining all the
ingredients from this section.

3 Neural Density Imitation (NDI)

From previous section’s results, we propose Neural Density Imitation (NDI) that works in two phases:

Phase 1: Density estimation: We leverage Autoregressive models and EBMs for density estimation
of the expert’s occupancy measure ⇢⇡E from samples. As in (Fu et al., 2017; Ho & Ermon, 2016),
we take the state-action pairs in the demonstration set D = {(s, a)i}Ni=1 ⇠ ⇡E to approximate
samples from ⇢⇡E and fit q� on D. For Autoregressive models, we use Masked Autoencoders for
Density Estimation (MADE) (Germain et al., 2015) where the entire collection of conditional density
models {q�i} is parameterized by a single masked autoencoder network. Specifically, we use a
gaussian mixture variant (Papamakarios et al., 2017) of MADE where each of the conditionals q�i

map inputs x<i to the mean and covariance of a gaussian mixture distribution over xi. The MADE
model is trained via Maximum Likelihood Estimation. With EBMs, we perform non-normalized log
density estimation and thus directly parameterize the energy function E� with neural networks since
log q� = E� + logZ(�). We use Sliced Score Matching (Song et al., 2019) to train the EBM.

Phase 2: MaxOccEntRL After we’ve acquired a log density estimate log q� from the previous
phase, we perform RL with entropy regularization on the occupancy measure. Inspired by Corollary
1, we propose the following RL objective

max
✓

J(⇡✓, r̄ = log q� + �⇡r⇡ + �frf ) (11)

where �⇡,�f > 0 are weights introduced to control the influence of the occupancy entropy regular-
ization. In practice, Eq. 11 can be maximized using any RL algorithm by simply setting the reward
function to be r̄ from Eq. 11. In this work, we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018).
Note that SAC already includes a policy entropy bonus, so we do not separately include one. For our
critic f , we fix it to be a normalized RBF kernel for simplicity,

f(st+1, st) = log
e
�kst+1�stk2

2

Eqt,qt+1 [e
�kst+1�stk2

2 ]
+ 1 (12)
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Table 1: Comparison between different families of distribution matching IL algorithms

IL method Learned Models Relation between -divergence
and optimized objective

Objective Type

Support policy ⇡✓ , support estimator f Neither Upper nor Lower Bound max

Adversarial policy ⇡✓ , discriminator D Tight Upper Bound minmax

NDI (ours) policy ⇡✓ , critic f , density q� Loose Lower Bound maxmax

but future works could explore learning the critic to match the optimal critic. While simple, our
choice of f emulates two important properties of the optimal critic f

⇤(x, y) = log p(x|y)
p(x) + 1: (1).

it follows the same "form" of a log-density ratio plus a constant (2). consecutively sampled states
from the joint, i.e st, st+1 ⇠ p✓,t:t+1 have high value under our f since they are likely to be close to
each other under smooth dynamics, while samples from the marginals st, st+1 ⇠ qt, qt+1 are likely
to have lower value under f since they can be arbitrarily different states. To estimate the expectations
with respect to qt, qt+1 in Eq. 8, we simply take samples of previously visited states at time t, t+ 1
from the replay buffer.

4 Trade-offs between Distribution Matching IL algorithms

Adversarial Imitation Learning (AIL) methods find a policy that maximizes an upperbound to the
additive inverse of an f -divergence between the expert and imitator occupancies (Ghasemipour et al.,
2019; Ke et al., 2020). For example, if the f -divergence is reverse KL, then for any D : S ⇥A ! R,

max
⇡✓

�DKL(⇢⇡✓ ||⇢⇡E ) 

max
⇡✓

log
�
E⇡E [e

D(s,a)]
�
� E⇡✓ [D(s, a)]

where the bound is tight at D(s, a) = log
⇢⇡✓

(s,a)

⇢⇡E
(s,a) + C for any constant C. AIL alternates between,

min
D

log
�
E⇡E [e

D(s,a)]
�
� E⇡✓ [D(s, a)],

max
⇡✓

�E⇡✓ [D(s, a)]

The discriminator update step in AIL minimizes the upper bound with respect to D, tightening the
estimate of reverse KL, and the policy update step maximizes the tightened bound. We thus see that
by using an upper bound, AIL innevitably ends up with alternating min-max optimization where
policy and discriminator updates act in opposing directions. The key issue with such adversarial
optimization lies not in coordinate descent itself, but in its application to a min-max objective which
is widely known to gives rise to optimization instability (Salimans et al., 2016).

The key insight of NDI is to instead derive an objective that lower bounds the additive inverse of
reverse KL. Recall from Eq. 9 that NDI maximizes the lower bound with the SAELBO H

f (⇢⇡✓ ):

max
⇡✓

�DKL(⇢⇡✓ ||⇢⇡E ) � max
⇡✓

J(⇡✓, r̄ = log ⇢⇡E ) +H
f (⇢⇡✓ )

Unlike the AIL upper bound, this lower bound is not tight. With critic f updates, NDI alternates

max
f

�

1X

t=0

�
t
I
f
NWJ(st+1; st|✓),

max
⇡✓

J(⇡✓, r̄ = log ⇢⇡E ) + (1 + �)H(⇡✓) + �

1X

t=0

�
t
I
f
NWJ(st+1; st|✓)

The critic update step in NDI maximizes the lower bound with respect to f , tightening the estimate
of reverse KL, and the policy update step maximizes the tightened bound. In other words, for AIL,
the policy ⇡✓ and discriminator D seek to push the upper bound in opposing directions while in NDI

the policy ⇡✓ and critic f push the lower bound in the same direction. Unlike AIL, NDI does not
perform alternating min-max but instead alternating max-max!
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While NDI enjoys non-adversarial optimization, it comes at the cost of having to use a non-tight
lower bound to the occupancy divergence. On the otherhand, AIL optimizes a tight upper bound at
the cost of unstable alternating min-max optimization. Support matching IL algorithms also avoid
min-max but their objective is neither an upper nor lower bound to the occupancy divergence. Table 1
summarizes the trade-offs between different families of algorithms for distribution matching IL.

5 Related Works

Prior literature on Imitation learning (IL) in the absence of an interactive expert revolves around
Behavioral Cloning (BC) (Pomerleau, 1991; Wu et al., 2019), distribution matching IL (Ghasemipour
et al., 2019; Ho & Ermon, 2016; Ke et al., 2020; Kim et al., 2019; Kostrikov et al., 2020; Song
et al., 2018), and Inverse Reinforcement Learning (Brown et al., 2019; Fu et al., 2017; Uchibe, 2018).
Many approaches in the latter category minimize statistical divergences using adversarial methods
to solve a min-max optimization problem, alternating between reward (discriminator) and policy
(generator) updates. ValueDICE, a more recently proposed adversarial IL approach, formulates
reverse KL divergence into a completely off-policy objective thereby greatly reducing the number of
environment interactions. A key issue with such Adversarial Imitation Learning (AIL) approaches is
optimization instability (Jin et al., 2019; Miyato et al., 2018). Recent works have sought to avoid
adversarial optimization by instead performing RL with a heuristic reward function that estimates the
support of the expert occupancy measure. Random Expert Distillation (RED) (Wang et al., 2019)
and Disagreement-regularized IL (Brantley et al., 2020) are two representative approaches in this
family. A key limitation of these approaches is that support estimation is insufficient to recover the
expert policy and thus they require an additional behavioral cloning step. Unlike AIL, we maximize a
non-adversarial RL objective and unlike heuristic reward approaches, our objective provably lower
bounds reverse KL between occupancy measures of the expert and imitator. Density estimation with
deep neural networks is an active research area, and much progress has been made towards modeling
high-dimensional structured data like images and audio. Most successful approaches parameterize
a normalized probability model and estimate it with maximum likelihood, e.g., autoregressive
models (Germain et al., 2015; Uria et al., 2013, 2016; van den Oord et al., 2016) and normalizing flow
models (Dinh et al., 2014, 2016; Kingma & Dhariwal, 2018). Some other methods explore estimating
non-normalized probability models with MCMC (Du & Mordatch, 2019; Yu et al., 2020) or training
with alternative statistical divergences such as score matching (Hyvärinen, 2005; Song & Ermon,
2019; Song et al., 2019) and noise contrastive estimation (Gao et al., 2019; Gutmann & Hyvärinen,
2010). Related to MaxOccEntRL, recent works (Hazan et al., 2019; Islam et al., 2019; Lee et al.,
2019) on exploration in RL have investigated state-marginal occupancy entropy maximization. To
do so, (Hazan et al., 2019) requires access to a robust planning oracle, while (Lee et al., 2019) uses
fictitious play, an alternative adversarial algorithm that is guaranteed to converge. Unlike these works,
our approach maximizes the SAELBO which requires no planning oracle nor min-max optimization,
and is trivial to implement with existing RL algorithms.

6 Experiments

Environment: Following prior work, we run experiments on benchmark Mujoco (Brockman et al.,
2016; Todorov et al., 2012) tasks: Hopper (11, 3), HalfCheetah (17, 6), Walker (17, 6), Ant (111, 8),
and Humanoid (376, 17), where the (observation, action) dimensions are noted parentheses.

Pipeline: We train expert policies using SAC (Haarnoja et al., 2018). All of our results are averaged
across five random seeds where for each seed we randomly sample a trajectory from an expert,
perform density estimation, and then MaxOccEntRL. Performance for each seed is averaged across
50 trajectories. For each seed we save the best imitator as measured by our augmented reward r̄ from
Eq. 11 and report its performance with respect to the ground truth reward. We don’t perform sparse
subsampling on the data as in (Ho & Ermon, 2016) since real world demonstration data typically
aren’t subsampled to such an extent and using full trajectories was sufficient to compare performance.

Architecture: We experiment with two variants of our method, NDI+MADE and NDI+EBM, where
the only difference lies in the density model. Across all experiments, our density model q� is a
two-layer MLP with 256 hidden units. For hyperparameters related to the MaxOccEntRL step,
�⇡ = 0.2 is fixed and for �f see Section 6.3. For full details on architecture see Appendix B.

Baselines: We compare our method against the following baselines: (1). Behavioral Cloning

(BC) (Pomerleau, 1991): learns a policy via direct supervised learning on D. (2). Random Expert

Distillation (RED) (Wang et al., 2019): estimates the support of the expert policy using a predictor
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Table 2: Task Performance when provided with one demonstration. NDI (orange rows) outperforms
all baselines on all tasks. See Appendix C.2 for results with varying demonstrations.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

RANDOM 14± 8 �282± 80 1± 5 �70± 111 123± 35

BC 1432± 382 2674± 633 1691± 1008 1425± 812 353± 171
RED 448± 516 383± 819 309± 193 910± 175 242± 67
GAIL 3261± 533 3017± 531 3957± 253 2299± 519 204± 67
VALUEDICE 2749± 571 3456± 401 3342± 1514 1016± 313 364± 50
NDI+MADE 3288± 94 4119± 71 4518± 127 555± 311 6088± 689
NDI+EBM 3458± 210 4511± 569 5061± 135 4293± 431 5305± 555

EXPERT 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

and target network (Burda et al., 2018), followed by RL using this heuristic reward. (3). Generative

Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016): on-policy adversarial IL method which
alternates reward and policy updates. (4). ValueDICE (Kostrikov et al., 2020): current state-of-the-art
adversarial IL method that works off-policy. See Appendix B for baseline implementation details.

6.1 Task Performance

Table 2 compares the ground truth reward acquired by agents trained with various IL algorithms
when one demonstration is provided by the expert. (See Appendix C.2 for performance comparisons
with varying demonstrations) NDI+EBM achieves expert level performance on all mujoco bench-

marks when provided one demonstration and outperforms all baselines on all mujoco benchmarks.
NDI+MADE achieves expert level performance on 4/5 tasks but fails on Ant. We found spurious
modes in the density learned by MADE for Ant, and the RL algorithm was converging to these local
maxima. We found that baselines are commonly unable to solve Humanoid with one demonstration
(the most difficult task considered). RED is unable to perform well on all tasks without pretraining
with BC as done in (Wang et al., 2019). For fair comparisons with methods that do not use pretraining,
we also do not use pretraining for RED. See Appendix C.4 for results with a BC pretraining step added
to all algorithms. GAIL and ValueDICE perform comparably with each other, both outperforming
behavioral cloning. We note that these results are somewhat unsurprising given that ValueDICE
(Kostrikov et al., 2020) did not claim to improve demonstration efficiency over GAIL (Ho & Ermon,
2016), but rather focused on reducing the number of environment interactions. Both methods notably
under-perform the expert on Ant-v3 and Humanoid-v3 which have the largest state-action spaces.
Although minimizing the number of environment interactions was not a targeted goal of this work,
we found that NDI roughly requires an order of magnitude less environment interactions than GAIL.
Please see Appendix C.5 for full environment sample complexity comparisons.

6.2 Density Evaluation

In this section, we examine the learned density model q� for NDI+EBM and show that it highly
correlates with the true mujoco rewards which are linear functions of forward velocity. We randomly
sample test states s and multiple test actions as per test state, both from a uniform distribution
with boundaries at the minimum/maximum state-action values in the demonstration set. We then
visualize the log marginal log q�(s) = log

P
as

q�(s, as) projected on to two state dimensions: one
corresponding to the forward velocity of the robot and the other a random selection, e.g the knee
joint angle. Each point in Figure 1 corresponds to a projection of a sampled test state s, and the
colors scale with the value of log q�(s). For all environments besides Humanoid, we found that the
density estimate positively correlates with velocity even on uniformly drawn state-actions which were
not contained in the demonstrations. We found similar correlations for Humanoid on states in the
demonstration set. Intuitively, a good density estimate should indeed have such correlations, since
the true expert occupancy measure should positively correlate with forward velocity due to the expert
attempting to consistently maintain high velocity.

6.3 Ablation studies

As intuited in Section 2.2, maximizing the SAELBO can be more effective for occupancy entropy
maximization, than solely maximizing policy entropy. (see Appendix C.1 for experiments that
support this) This is because in discrete state-spaces the SAELBO H

f (⇢⇡✓ ) is a tighter lower bound
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Figure 1: Learned density visualization. We randomly sample test states s and multiple test actions
as per test state, both from a uniform distribution, then visualize the log marginal log q�(s) =
log

P
as

q�(s, as) projected onto two state dimensions: one corresponding to forward velocity and
the other a random selection. Much like true reward function in Mujoco environments, we found that
the log marginal positively correlates with forward velocity on 4/5 tasks.

Table 3: Effect of varying MI reward weight �f on (1). Task performance of NDI-EBM
(top row) and (2). Imitation performance of NDI-EBM (bottom row) measured as the average
KL divergence between ⇡,⇡E on states s sampled by running ⇡ in the true environment, i.e
Es⇠⇡[DKL(⇡(·|s)||⇡E(·|s))], normalized by the average DKL between the random and expert poli-
cies. DKL(⇡||⇡E) can be computed analytically since ⇡,⇡E are conditional gaussians. Density
model q� is trained with one demonstration. Setting �f too large hurts task performance while setting
it too small is suboptimal for matching the expert occupancy. A middle point of �f = 0.005 achieves
a balance between the two metrics.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

�f = 0 REWARD 3576± 154 5658± 698 5231± 122 4214± 444 5809± 591
KL 0.13± 0.09 0.35± 0.12 0.31± 0.08 0.58± 0.09 0.55± 0.21

�f = 0.0001 REWARD 3506± 188 5697± 805 5171± 157 4158± 523 5752± 632
KL 0.15± 0.05 0.32± 0.15 0.25± 0.04 0.51± 0.05 0.41± 0.18

REWARD 3458± 210 4511± 569 5061± 135 4293± 431 5305± 555�f = 0.005 KL 0.11± 0.02 0.17± 0.09 0.22± 0.14 0.32± 0.12 0.12± 0.14

�f = 0.1 REWARD 1057± 29 103± 59 2710± 501 �1021± 21 142± 50
KL 0.78± 0.13 1.41± 0.51 0.41± 0.11 2.41± 1.41 0.89± 0.21

EXPERT REWARD 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

to occupancy entropy H(⇢⇡✓ ) than policy entropy H(⇡✓), i.e H(⇡✓)  H
f (⇢⇡✓ )  H(⇢⇡✓ ), and in

continuous state-spaces, where Assumption 1 holds, the SAELBO is still a lower bound while policy
entropy alone is neither a lower nor upper bound to occupancy entropy. As an artifact, we found that
SAELBO maximization (�f > 0) leads to better occupancy distribution matching than sole policy
entropy maximization (�f = 0). Table 3 shows the effect of the varying �f on task (reward) and
imitation performance (KL), i.e similarities between ⇡,⇡E measured as Es⇠⇡[DKL(⇡(·|s)||⇡E(·|s))].
Setting �f too large (� 0.1) hurts both task and imitation performance as the MI reward rf dominates
the RL objective. Setting it too small ( 0.0001), i.e only maximizing policy entropy H(⇡✓), turns out
to benefit task performance, sometimes enabling the imitator to outperform the expert by concentrating
most of it’s trajectory probability mass to the mode of the expert’s trajectory distribution. However,
the boosted task performance comes at the cost of suboptimal imitation performance, e.g imitator
cheetah running faster than the expert. We found that a middle point of �f = 0.005 simultaneously
achieves expert level task performance and good imitation performance. In summary, these results
show that SAELBO H

f maximization (�f > 0) improves distribution matching between ⇡,⇡E
over policy entropy H(⇡✓) maximization (�f = 0), but distribution matching may not be ideal for
task performance maximization, e.g in apprenticeship learning settings. See Appendix C.1, C.3 for
extended ablation studies.

7 Discussion and Outlook

This work’s main contribution is a new principled framework for IL and an algorithm that obtains
state-of-the-art demonstration efficiency. One future direction is to apply NDI to harder visual IL tasks
for which AIL is known perform poorly. While the focus of this work is to improve on demonstration
efficiency, another important IL performance metric is environment sample complexity. Future works
could explore combining off-policy RL or model-based RL with NDI to improve on this end. Finally,
there is a rich space of questions to answer regarding the effectiveness of the SAELBO reward rf . We
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posit that, for example, in video game environments rf may be crucial for success since state-action
entropy maximization has been shown to be far more effective than policy entropy maximization
(Burda et al., 2018). Furthermore, one could improve on the tightness of SAELBO by incorporating
negative samples (Van Den Oord et al., 2018) and learning the critic function f so that it is close to
the optimal critic.
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