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Abstract

The paradigm of vertical federated learning (VFL), where institutions collabo-
ratively train machine learning models via combining each other’s local feature
or label information, has achieved great success in applications to financial risk
management (FRM). The surging developments of graph representation learning
(GRL) have opened up new opportunities for FRM applications under FL via ef-
ficiently utilizing the graph-structured data generated from underlying transaction
networks. Meanwhile, transaction information is often considered highly sensi-
tive. To prevent data leakage during training, it is critical to develop FL protocols
with formal privacy guarantees. In this paper, we present an end-to-end GRL
framework in the VFL setting called VESPER, which is built upon a general pri-
vatization scheme termed perturbed message passing (PMP) that allows the pri-
vatization of many popular graph neural architectures. Based on PMP, we discuss
the strengths and weaknesses of specific design choices of concrete graph neural
architectures and provide solutions and improvements for both dense and sparse
graphs. Extensive empirical evaluations over both public datasets and an industry
dataset demonstrate that VESPER is capable of training high-performance GNN
models over both sparse and dense graphs under reasonable privacy budgets.

1 Introduction
In recent years, there has been an increasing interest in adopting modern machine learning paradigms
to the area of financial risk management (FRM) [31]. The most crucial task in operational risk sce-
narios like fraud detection is identifying risky identities based on the behavioral data collected from
the operating financial platform [4, 24]. For institutions like commercial banks and online payment
platforms, the most important source of behavior information is the transaction records between
users, making transaction networks (with users as nodes and transactions as edges) a direct and
appropriate data model. To exploit the potential of transaction networks in a machine learning con-
text, recent approaches [26, 47] have been exploring the adoption of graph representation learning
(GRL) [16] as a principled way of incorporating structural information contained in transaction net-
works into the learning process. The family of graph neural networks in the message passing form
[13, 48] offers a powerful yet scalable solution to GRL, and has become the prevailing practice in
industry-scale graph learning [52].

Despite its convincing performance, high-quality network data are not always available for financial
institutions. F It is, therefore, of great interest for institutions to learn GRL models collaboratively
while being coherent to regulatory strictures at the same time. The technique of federated learning
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(FL) [20, 49] provides a recipe for such scenarios, with participating institutions (hereafter abbrevi-
ated as parties) exchanging intermediate results instead of raw data. Depending on the specific form
of collaboration, FL protocols are generally divided into horizontal federated learning (HFL), where
participants aggregate their locally trained models to obtain a strong global model, and vertical feder-
ated learning (VFL) where participants are able to align the identifiers of modeling entities and train
a model that efficiently combines feature or label information that are distributed among different
parties. VFL is particularly useful when training a (supervised) model is not possible based on infor-
mation of a single party, i.e., each party holds only feature or label data, and has attracted significant
attention in applications to FRM [28]. While ordinary FL paradigms avoid the transmission of local
raw data, they typically lack a formal guarantee of privacy [20, Chapter 4]. Moreover, recent studies
have reported successful attacks targeting individual privacy against FL protocols [54, 50, 19, 9, 8].
As transaction records are widely considered extremely sensitive personal information, it is thus
critical to establish FL applications in FRM with rigorous privacy guarantees.

Differential privacy (DP) [11] is the state-of-the-art approach to address information disclosure that
injects algorithm-specific random noise to fuse the participation of any individual. The adoption
of DP as the privacy model for FL is now under active development, with most of the applications
appearing in HFL over independently identically distributed (i.i.d.) data through the lens of opti-
mization [20]. However, discussions on applying DP over VFL remain nascent [3, 53, 39]. The
situation becomes even more complicated in VFL over graph-structured data, since the right notions
of (differential) privacy on graphs are semantically different from that in the i.i.d. case [35, 22].
So far, as we have noticed, the only work that provides meaningful DP guarantee under VFL over
graphs is the GAP model [39], which requires three stages of training. Meanwhile, a notable as-
pect of GRL is that the structure of the underlying graph, i.e., whether the graph is dense or sparse,
might have a significant influence on the performance of the graph neural model especially when
the aggregation process involves noisy perturbations. This phenomenon was overlooked in previous
studies.

In this paper, we discuss private FL over graph-structured data under the task of node classification in
the vertical setup with edge DP [35] chosen as the privacy model. We first develop a general privati-
zation scheme termed perturbed message passing (PMP) that produces message-passing procedures
over graphs that are guaranteed to satisfy edge DP constraints. Next, we discuss the influence of
the underlying graph’s degree profiles on the utility of specific design choices of PMP, using two
representative graph aggregation schemes, namely GIN [48] and GCN [23], and develop further im-
provements of PMP that better handles sparse graphs under the GCN aggregation scheme. Finally,
we integrate the developments of PMP and its variants into a VFL architecture called VESPER based
on the SplitNN framework [14], and conducted extensive empirical evaluations over both public and
industrial datasets covering dense and sparse graphs. We summarize our contributions as follows:

• We propose PMP, a general framework for designing differentially private message-passing pro-
cedures. PMP enables the privatization of many popular graph neural network architectures. The
privacy guarantee of PMP is formally analyzed with new privacy amplification results under uni-
form neighborhood sampling.

• We discuss two representative design choices under the PMP framework, GIN and GCN, and dis-
cover the fact that the utility of the privatized GNN model may be affected by the degree profile
of the input graph. To better accommodate varying graph structures, we develop the truncated
message passing framework under the base model of GCN through properly tuning the hyper-
parameter that reduces noise scale at the cost of learning less structural information, which is
beneficial when the input graph is sparse.

• We derive an end-to-end VFL learning framework operating over graph-structured data called
VESPER, which is efficient in computation and communication. A thorough experimental study
demonstrates that VESPER achieves better privacy-utility trade-off over previously proposed
models and is capable of training high-performance GNN models over both sparse and dense
graphs under reasonable privacy budgets.
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Figure 1: A concise pictorial description of the VESPER framework. We use solid arrows to depict
the dataflow of forward computations and use dashed arrows to depict the dataflow of backward
computations.

2 Methodology
2.1 Priliminaries

We focus on the node classification task over a static, undirected graph G = (V,E) with node size
N = |V |, node feature X = {xv}v∈V and node labels Y = {yv}v∈VT where VT ⊆ V is the set of
training nodes with NT = |VT |. Throughout this article, we will assume the graph of interest to be
degree bounded, i.e.,

max
G

max
v∈G

dv ≤ D (1)

for some D > 1. In this paper, we will be interested in the setup where the graph data G and label
information are distributed over two distinct parties. Specifically, suppose there are two parties, A
(Alice) and B (Bob), where A holds the graph data G as well as the node feature X and B holds the
label collection Y , both indexed by node identifiers that are known to both sides (i.e., VT is known
to both party A and party B). We consider a representative federated learning paradigm that A and B
collaboratively train a graph representation learning model via utilizing the panoply of graph neural
networks [13], which could be regarded as a special case of vertical federated learning (VFL) [49].
Under VFL protocols, party A and party B iteratively exchange intermediate outputs depending on
the specific training algorithm chosen. A main concern in VFL [20, Chapter 4] is, therefore, whether
the exchanging process satisfies formal privacy guarantees. Before elaborating on privacy protection
issues, we first state the threat model in our context.

Threat model We adopt the following threat model in this paper: In the training stage, label party
B is curious about the adjacency information (i.e., the existence of some edges) in the data party
A. The data party A is assumed to be benign, with both parties strictly obeying the chosen VFL
protocol. 1 In other words, the goal of privacy protection is to prevent the semi-honest adversary
(party B) from inferring the edge membership that is only known to party A.

Differential privacy [11] is now the de facto choice of privacy protection paradigm against member-
ship inference adversaries. As an appropriate solution concept in the current setup, we introduce the
edge-level differential privacy model (hereafter abbreviated as Edge DP).

Definition 1 (Edge-level differential privacy(Edge DP)). For a (randomized) graph-input mecha-
nismM that maps graphs to some output space S and two non-negative numbers ε and δ, the mech-
anism is (ε, δ)-Edge DP if for any subset S (or more rigorously defined as Borel measurable sets) of
the output space, the following holds uniformly for any two possible adjacent graphs (G,G′):

P[M(G) ∈ S] ≤ eεP[M(G′) ∈ S] + δ, (2)

where we define two graphs G and G′ as being adjacent if G could be edited into G′ via adding or
removing a single edge.

Regarding the capability of the adversary adopted in this paper, a VFL protocol satisfying Edge DP
with a reasonable ε level implies that based on all the exchanged intermediate outputs between party
A and party B, any membership inference algorithm may not be able to make any sophisticated
guess about the existence of some specific edge in a probabilistic sense, thereby offering strong
privacy protection. Most contemporary differentially private machine learning algorithms involve
sequentially applying DP procedures to intermediate learning steps [1], with the privacy level of

1The assumption of a harmless party A might be relaxed to a curious onlooker that tries to infer party B’s
label information. We discuss related extensions in section D.
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the entire training procedure obtained via composition theorems [11, 21]. In this paper, we choose
the composition framework of analytical moment accountant (AMA) [44] that exploits the idea of
Rényi DP [33], which we introduce below in our graph learning context:
Definition 2 (Edge-level Rényi -differential privacy(Edge RDP)). Sharing notations with definition
1, the mechanism M is (α, ε(α))-Rényi differentially private with some α > 1 and ε(α) ≥ 0, if
for any two possible adjacent graphs (G,G′), the α-Rényi divergence of the induced probability
distribution of random variablesM(G) andM(G′) is bounded by ε(α):

Dα (M(G)||M(G′)) ≤ ε(α), (3)
with the definition of α-Rényi divergence Dα (·||·) presented in appendix A.

To develop privacy-preserving learning algorithms under the AMA framework, we first design
mechanisms that satisfy RDP guarantee in each step, then use standard composition results of RDP
[33] to obtain the privacy level of the learning procedure. Finally, we apply the conversion rule in
[2] to convert it back to (ε, δ)-DP for reporting.
Message passing GNNs with stochastic training The backbone of our privacy-preserving training
framework is the graph neural network model in the message passing form [13]. We define the GNN
of interest to be a map from the space of graphs to a node embedding matrix with embedding di-
mension d: f : G 7→ RN×d, or H := {hv}v∈V = f(G). For an L-layer GNN, let h(0)v = g(xv) be
the input encoding of node v, which could be either xv or some encoding based on xv . We assume
the following recursive update rule for 1 ≤ l ≤ L and v ∈ V :

h(l)v = σ
(
h̃(l)v

)
, h̃(l)v = ωvW

(l)
1 h(l−1)v +

∑
u∈N(v)

βuvW
(l)
2 h(l−1)u , (4)

with ω := {ωv}v∈V ∈ RN and β := {βuv}u,v∈V×V ∈ RN×N be model-dependent coefficients,
σ a parameter-free nonlinear function, and W = (W

(1)
1 , . . . ,W

(L)
1 ,W

(1)
2 , . . . ,W

(L)
2 ) be the col-

lection of learnable parameters. For any matrix W , we denote ‖W‖op as the operator norm of the
matrix (i.e., its largest singular value). In this paper, we assess two representative instantiations
of the protocol (4) which are the GIN model [48] with with ωv ≡ βuv ≡ 1,∀u, v ∈ V and the
GCN model [23] with ωv = 1

dv+1 and βuv = 1√
du+1

√
dv+1

. For simplicity we additionally let the

nonlinearity be the ReLU function and set W (l)
1 = W

(l)
2 = W (l), 1 ≤ l ≤ L.

Applying message passing updates (4) may become computationally prohibitive for large input
graphs, which are frequently encountered in industrial scenarios. To enable scalable GRL, the pre-
vailing practice is to use graph sampling methods [15] and adopt stochastic training of graph
neural networks. In this paper, we investigate the simple and effective sampling scheme of uni-
form neighborhood sampling [15, 7], with the maximum number of neighbors sampled in each layer
to be the maximum degreeD. Asides from their computational benefits, it has been observed [1, 32]
that stochastic training with a low sampling ratio over large datasets is crucial to training high-utility
differentially private machine learning models with reasonably small privacy budgets, which has
also been recently verified in the case of differentially private graph learning [7, 39].

2.2 Perturbed message passing

A notable fact about the message-passing protocol (4) is that it uses the aggregation strategy of
weighted summation, thereby allowing standard additive perturbation mechanisms like the Laplace
mechanism or Gaussian mechanism that are prevailing in the design of differentially private algo-
rithms [11]. Motivated by this fact, we propose a straightforward solution to privatize message-
passing GNNs in a layer-wise fashion named perturbed message passing (PMP), which adds layer-
wide Gaussian noise with an additional normalization step that controls sensitivity. We present the
pseudo-code of PMP with neighborhood sampling in algorithm 1. Next we discuss the privacy guar-
antee of algorithm 1. To state our main result, we first define the right notion of sensitivity in our
context:
Definition 3 (Edge sensitivity). Denote G′ as the adjacent graph via removing the edge (u∗, v∗)

from G, and let h̃v and h̃′v be the outputs of node v generated via some 1-layer GNN protocol under
graph G and G′ without nonlinearity, then we define the (`2-) edge sensitivity as:

S = max
G,G′

√∑
v∈V
‖h̃v − h̃′v‖22. (5)
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Algorithm 1 PMP with neighborhood sampling

Require: Graph G = (V,E), input encodings {h(0)v }v∈V , number of message passing rounds L,
GNN spec (ω,β, σ), noise scale θ, GNN parameter W, batch size B, maximum degree D.

1: Sample a random batch of root nodes v1, . . . , vB .
2: Apply an L-layer neighborhood sampler with each layer sampling at most D nodes with roots
v1, . . . , vB , obtaining a batch of B subgraphs (G

(L)
v1 , . . . , G

(L)
vB ).

3: Combine (G
(L)
v1 , . . . , G

(L)
vB ) into a subgraph G(L)

B . Additionally, overload the notation N(v) for
the neighborhood of node v with respect to G(L)

vB .
4: Set h(0)v =

h(0)
v∥∥∥h(0)
v

∥∥∥
2

for ∀v ∈ G(L)
vB )

5: for l ∈ {1, . . . , L} do
6: for v ∈ G(L)

vB do
7: Compute the linear update h̃(l)v = ωvW

(l)
1 h

(l−1)
v +

∑
u∈N(v) βuvW

(l)
2 h

(l−1)
u .

8: Do additive perturbation, h(l)v = σ(h̃
(l)
v +N(0, θ2))

9: Normalize h(lv =
h(l)
v∥∥∥h(l
v

∥∥∥
2

return A list of all layers’ embedding matrices HL = (H(1), . . . ,H(L)), with H(l) =

{h(l)v }v∈G(L)
vB

, 1 ≤ l ≤ L.

The following theorem quantifies the privacy guarantee of algorithm 1:

Theorem 2.1 (RDP guarantee). Let HL be the released outputs with input a minitach of B sub-
graphs produced by uniform neighborhood sampling for L layers with a maximum number of D
neighbors sampled in each layer. Define ε(α) :=

α
∑L
l=1 S

2
l

2θ2 , then HL is (α, εγ(α)-RDP for any

α > 1, where γ = 1− (
NT−

2(DL−1)
D−1
B

)
(NTB )

and

εγ(α) ≤ 1

α− 1
log

(
1 + γ2

(
α

2

)
min

(
4
(
eε(2) − 1

)
, ε(2) min

(
2,
(
eε(∞)−1

)2))

+

∞∑
j=3

γj
(
α

j

)
e(j−1)ε(j) min

(
2,
(
eε(∞)−1

)j) (6)

Theorem 2.1 provides a principled way of analyzing the privacy of privatized GNN models using
algorithm 1, which boils down to computing the edge sensitivity of the underlying message passing
protocol. However, sensitivity computations are usually conducted in a worst-case manner, resulting
in unnecessarily large noise levels and significant utility loss. Therefore, it is valuable to explore the
utility of concrete PMP models and their relationships with the underlying input graph. To begin
our expositions, we analyze the GIN model in the following section.

2.3 Analysis of GIN and the challenge of sparse graphs

We start with the following proposition:

Proposition 1. Under the GIN model, the edge sensitivity is bounded from above by SGIN
l ≤√

2‖W (l)‖op for each 1 ≤ l ≤ L.

Advantage of layer-wise perturbations According to proposition 1, the edge sensitivity of GIN
is independent of the input graph’s maximum degree upper bound D, which is essentially a direct
consequence of the fact that for a 1 layer message passing procedure, adding or removing one edge
would affect up to two nodes’ output embeddings. As a consequence, the privacy cost scales linearly
with the number of message-passing layers in the Rényi DP framework, thereby offering a better
privacy-utility trade-off than algorithms that do the do the perturbation only in the final layer [53],
whose privacy cost may scale exponentially with D.
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Effectiveness and challenges of summation pooling It has been observed in previous works [39]
that aggregation perturbation with sum pooling works well on graphs with a large average degree.
Intuitively, this phenomenon could be understood as keeping a high ”signal-to-noise ratio (SNR)”
during the aggregation process: For nodes with large degrees, the noise scale becomes relatively
small with respect to the summation of incoming messages. Therefore if high-degree nodes are
prevalent in the underlying graph, the utility loss during aggregation is reasonably controlled for
most nodes. However, realistic graph data might not have large average degrees. For example, trans-
action networks in FRM scenarios are usually sparse, including many nodes with degrees smaller
than 5 or even being singular (i.e., of degree 0). Consequently, the SNR of sparse networks makes it
harder for summation pooling to maintain decent utility, which will be further verified in section 3.

2.4 Improvements of PMP in the GCN model

As discussed in the previous section, the degree profile of the input graph may affect the utility of
PMP-privatized GNNs when the underlying aggregation follows the summation pooling scheme.
It is therefore of interest to explore aggregation schemes that are more appropriate when the input
graph is sparse. On first thought, we may expect aggregation schemes like mean pooling or GCN
pooling to have smaller sensitivities. However, such sensitivity reduction does NOT hold in a worst-
case analysis: Just think of nodes with degree 1, then it is not hard to check that mean pooling or
GCN pooling behaves similarly to summation pooling. The primary issue with worst-case analysis
is that the resulting sensitivity is determined by extremely low-degree nodes. Inspired by this phe-
nomenon, we seek improvements by first deriving lower sensitivity with an extra requirement on a
degree lower bound, and then relax the requirement via introducing a modified protocol. We start
with the following observation:
Proposition 2. Assume all the possible input graphs have a minimum degree larger or equal to
Dmin, or

min
G

min
v∈G

dv ≥ Dmin > 1. (7)

Then for the GCN model, the edge sensitivity of the l-th layer SGCN
l is bounded from above by a

function ηl(Dmin), defined as:

ηl(Dmin) =
√

2

(
1− 1/Dmin

2Dmin
+

1

Dmin(Dmin + 1)
+

1

Dmin + 1

)
‖W (l)‖op. (8)

Proposition 2 implies that the edge sensitivity of the GCN model shrinks significantly if the under-
lying graph has a reasonably large minimum degree, which will result in a significantly reduced
noise scale that improves utility. However, the minimum degree assumption (7) is impractical since
most of the realistic graph data have a large number of nodes with small degrees. To circumvent the
impracticality of assumption (7) while still being able to reduce the noise scale in the GCN model,
we propose a modification to the basic message passing algorithm 1 called truncated message pass-
ing. The idea of truncated message passing is to block all the incoming messages unless the receiver
node’s neighborhood is large than or equal to Dmin, which is treated as a hyperparameter. For nodes
with degrees lower than Dmin, the output embedding is instead produced by an MLP with pertur-
bation that does not involve any edge information. A detailed version is provided in algorithm 2 in
appendix F. Consequently, it is straightforward to show that the differential privacy guarantee of the
resulting algorithm operating on any graph matches the privacy level of perturbed GCN (produced
by algorithm 1) operating only on graphs with minimum degree assumption.
How to choose Dmin? To maintain the same privacy level under the truncated message passing al-
gorithm, one may reduce the noise scale θ at the cost of raising the minimum degree hyperparameter
Dmin. On the one hand, reducing the noise scale significantly improves the utility of the message-
passing procedure. On the other hand, raising Dmin might prevent a non-ignorable proportion of
nodes from learning structural information. Therefore, properly adjusting Dmin may help achieve a
better privacy-utility trade-off in the GCN model. In practice, one may choose Dmin based on prior
knowledge about the degree distribution of the underlying graph or via inspecting a private release
of its degree distribution, which could be done efficiently using the Laplace mechanism [11].

2.5 VESPER: an end-to-end learning framework

In previous sections, we have established the PMP framework for differentially private graph rep-
resentation learning. Now under the vertically federated learning setup described in section 2.1,
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we propose an end-to-end architecture inspired by the SplitNN paradigm [14] based on the PMP
framework, named VErtically private Split GNN with PERturbed message passing(VESPER). The
VESPER architecture contains three main components: Encoder, Private representation extractor
(PRE), and Decoder.

Encoder The encoder module maps input node features into a d-dimensional representation vector,
with an ad-hoc choice being an MLP. Note that for node features with additional structural patterns
(i.e., sequence data), we may use a more tailored encoder architecture as long as it does not involve
edge information. The encoder model is physically stored in party A.
Private representation extractor The PRE module takes its input the node embeddings produced
by the encoder and a batch of B subgraphs produced by a neighborhood sampler. The output rep-
resentation of PRE is computed using some specific type of PMP mechanism such as PMP-GIN or
PMP-GCN. The PRE module is physically stored in party A. The output of PRE is a tensor of shape
B × d × L, with d and L being the dimension of graph representation and the number of message
passing layers respectively. The outputs will be transmitted from party A to party B.
Decoder The decoder module is physically stored in party B, which decodes the received node em-
beddings produced by PRE into the final prediction of VESPER with its structure depending on
the downstream tasks (i.e., classification, regression, ranking, etc.). We test two types of decoder
architectures in our implementation of VESPER. The first one proceeds via concatenating the node
embeddings of all layers followed by an MLP, which we call the CONCAT decoder. The second
one treats the node embeddings as a sequence of L node embeddings and uses a GRU network to
combine them, similar to the idea used in GNN architectures like GaAN [25] and GeniePath [30]
which we term the GRU decoder.
The VFL training protocol closely resembles the SplitNN protocol [14], where in each step, forward
computation results (i.e., the outputs of the PRE module) are transmitted from party A to party B.
After party B finishes the forward computation using the decoded outputs and label information,
party B first update its local decoder module via back-propagation, and then sends (partial) gradi-
ents that are intermediate results of the backward computation to party A for updating party A’s local
parameters (i.e., parameters of the encoder module and PRE module). A pictorial illustration of the
VESPER architecture is presented in figure 1. We will discuss some practical issues in implementing
VESPER in appendix E.1.

3 Experiments
In this section we present empirical evaluations of the VESPER framework via investigate its
privacy-utility trade-off and resistance to empirical membership inference attacks. Due to limited
space, a complete report will be postponed to appendix C.

3.1 Datasets

We use three large-scale graph datasets, with their summary statistics listed in table 2. Specifically,
we use two public datasets ogbn-products and Reddit, with their detailed descriptions postponed to
appendix C.1. We additionally used an industrial dataset called the Finance dataset which is gen-
erated from transaction records collected from one of the world’s leading online payment systems.
The underlying graph is generated by treating users as nodes, and two nodes are connected if at
least one transaction occurred between corresponding users within a predefined time period. The
business goal is to identify risky users which is cast into an algorithmic problem of node classifica-
tion with a binary label. The node features are obtained via statistical summaries of corresponding
users’ behavior on the platform during a specific time period. The training and testing datasets are
constructed under two distinct time windows with no overlap.

A differentially private analysis of degree profiles While all three datasets are large in scale (i.e.,
with the number of nodes exceeding 100, 000), they differ significantly in their degree distributions.
For a better illustration, we conduct a differentially private analysis of degree distribution (with
(0.1, 0)-differential privacy) detailed in appendix C.2. According to the analysis, we find that both
the ogbn-products and the Reddit contain a large portion of high-degree nodes (as illustrated by the
spiking bar at the ≥ 50 category), while the Finance dataset exhibits a concentration on the lower-
degree nodes. As discussed in section 2.2, it is expected that the Finance dataset is more challenging
for (private) message passing under sum pooling.
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Figure 2: (a)-(c): Evaluation of privacy-utility trade-off regarding the VESPER framework, with
mean ± std plotted according to 10 trials. The result of MLP is plotted as a reference line. Results
below this line are practically problematic as it fails to exploit the graph information. (d)-(f): AUC
(mean± std over 10 trials) of membership inference attacks.

Table 1: Experimental results over three benchmark datasets using both non-private and private ap-
proaches, reported with format mean±std, with mean and std (abbreviation for standard deviation)
computed under 10 trials for each setting.

Non-private approaches

Model ogbn-products Reddit Finance

MLP 61.06±0.08 71.07±0.25 71.30±0.17
GIN 76.84±0.94 94.85±0.15 79.78±0.52
GCN 78.26±0.36 94.56±0.10 80.13±0.41

Private approaches

Model ogbn-products Reddit Finance

ε = 4 ε = 8 ε = 16 ε = 32 ε = 4 ε = 8 ε = 16 ε = 32 ε = 4 ε = 8 ε = 16 ε = 32

VFGNN 26.94±0.00 40.96±1.74 56.27±1.35 69.57±0.26 19.40±2.56 31.20±1.75 43.67±1.18 86.72±0.33 53.87±6.86 56.17±5.31 54.62±4.09 52.12±4.78
GAP 59.20±2.13 65.02±0.82 66.20±2.34 67.14±0.34 76.84±1.71 86.59±0.48 88.57±1.69 89.65±0.30 52.02±9.39 48.66±7.14 59.04±7.95 67.54±4.41

VESPER (GIN) 71.27±0.70 74.46±0.45 75.36±0.49 75.82±0.92 82.34±1.57 91.52±0.22 93.34±0.20 93.77±0.23 67.03±1.88 67.87±1.56 68.08±1.12 68.64±0.91
VESPER (GCN) 67.60±0.40 68.68±0.67 70.13±0.55 70.62±0.33 89.85±0.27 91.28±0.17 92.11±0.20 92.57±0.14 73.57±0.73 73.96±0.81 73.90±0.52 74.62±0.35

3.2 Baselines

We compare the proposed VESPER framework with three types of baselines, with each one being
able to implement in the vertically federated setting. MLP without edge information we use MLP
over node features directly is the most trivial solution to the learning task as it totally ignores edge
information. Non-private GNN counterparts we compare with ordinary GCN and GIN models
without privacy guarantees, or equivalently set the ε parameter in the VESPER framework to be
infinity. GNN models with privacy guarantees we consider two alternative approaches to private
GRL, namely the VFGNN model [53] and the GAP model [39]. We found the privacy analysis in
the corresponding papers to be somewhat incoherent with the privacy model in our paper and we
conducted new analysis of their privacy properties, detailed in appendix C.3.

3.3 Experimental setup

Due to limited space, we postpone the description of our training configurations to appendix C.4
and elaborate more on the privacy configurations: All the privacy reports are based on the (ε, δ)-
differential privacy model, with δ being the reciprocal of the number of edges. To adequately inspect
the privacy-utility trade-off, we aim to evaluate all the models with differential privacy guarantees
under the total privacy costs (privacy budgets) ε ∈ {1, 2, 4, 8, 16, 32}, with the privacy costs ac-
counted during the entire training period. We treat the setting where ε ∈ {1, 2} as of high privacy,
ε ∈ {4, 8} as of moderate privacy, and the rest as of low privacy. For VESPER and VFGNN, we add
spectral normalization to each GNN layer. For the privacy accountant, we base our implementation
upon AMA implementation available in the dp-accounting library and use an adjusted sampling
probability according to theorem 2.1. For each required privacy level, we compute the minimum
scale of Gaussian noise via conducting a binary search over the adjusted AMA, with associating
spectral norms of weight matrices fixed at one in all layers.

Evaluation metrics We adopt classification accuracy (ACC) as the evaluation metric for the ogbn-
products and Reddit datasets, and ROC-AUC score (AUC) as the evaluation metric for the Finance
dataset.
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3.4 Performance and privacy-utility trade-off

According to our empirical experience, obtaining reasonable performance in the high privacy regime
is difficult, especially for baseline algorithms. Therefore, we report two sets of results: Firstly, we
thoroughly investigate the privacy-utility trade-off regarding the proposed VESPER framework un-
der both GIN and GCN aggregation schemes and plot the results in figure 2. Secondly, we report
comparisons of VESPER against private and non-private baselines with only moderate to large pri-
vacy budgets and summarize the results in table 1. The results demonstrate that the proposed VES-
PER framework exhibits competitive privacy-utility trade-off under both GIN and GCN aggregators.
Moreover, a comparison of GIN and GCN aggregator suggests that summation pooling excels when
the underlying graph is dense (i.e., ogbn-products and Reddit), while introducing the truncated mes-
sage passing mechanism helps achieving better results over sparse graphs (i.e., Finance). Finally,
VESPER demonstrates a better privacy-utility trade-off compared to other private GNN baselines.

3.5 Protection against membership inference attacks

We launch a membership inference attack (MIA) [37] to empirically investigate the resilience of
VESPER against practical privacy risks that targets the membership of nodes instead of edges, which
is regarded as a stronger attack than edge MIA. We provide a detailed description of the attack
setup in appendix C.7. The attack is conducted over trained models under privacy budgets ε ∈
{1, 2, 4, 8, 16, 32,∞}, where ε = ∞ indicated no privacy protection is adopted. We use ROC-
AUC (AUC) to evaluate the attack performance. We report the attack performances in Figure 4.
From the results, we observe that when privacy protection is disabled (ε = ∞), the attacks show
non-negligible effectiveness, especially on obgn-products and Reddit datasets. Generally, with the
privacy budget getting smaller (privacy getting stronger), the attack performances sharply decline.
With an appropriate privacy budget, the attacks on all three datasets are successfully defended with
AUC reduced to around 0.5 (random guess baseline).

Additional experiments We will report a series of ablation studies that assess the effect of maximum
degree D, minimum degree Dmin for PMP-GCN and batch size in appendix C.8.

4 Related Works
4.1 Graph representation learning in the federated setting

The majority of GRL research in the federated setting is based on the horizontal setup, with each
party holding its own local graph data [45, 17, 38]. The adoption of VFL paradigms to GRL is
relatively few, VFGNN [53] uses additive secret sharing to combine feature information held by
different parties, followed by a straightforward adaptation of the SplitNN framework [14] with the
underlying neural model being graph neural networks. In [5, 46], the authors discussed VFL setups
where node features and graph topology belong to different parties. We refer to the recent survey
[27] for a more detailed overview.

4.2 Graph representation learning with differential privacy guarantees

The most straightforward way to integrate DP techniques into GRL is via adopting private optimiza-
tion algorithms like DP-SGD[1]. However, meaningful notions of differential privacy over graph
data (i.e., the edge model [35] and node model [22]) are semantically different from that of i.i.d.
data, and require refined privacy analysis which is sometimes ignored in the privacy analysis in pre-
vious works [53, 45, 36]. In [7], the authors analyzed the DP-SGD algorithm in the node DP model.
The GAP model [39] proposed a three-stage training procedure and analyzed its privacy guarantee
in both edge DP and node DP models. However, we noticed that the privacy analysis in [39] did
not properly address the effect of sampling, resulting in an overly optimistic performance. Consid-
ering only edge DP, randomized response (RR) [46] that flips each entry of the underlying graph’s
adjacent matrix guarantees privacy (in a stronger local sense), but makes reasonable privacy-utility
trade-off extremely hard to obtain in practice.

5 Conclusion and discussions
We present the VESPER framework as a differentially private solution to node classification in
the VFL setup using graph representation learning techniques. The core algorithmic component
of VESPER is the PMP scheme that allows efficient learning under both dense and sparse graph
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data. We demonstrate the practicality and effectiveness of the proposed framework by establishing
theoretical DP guarantees as well as investigating its ability for privacy protection and privacy-utility
trade-off empirically. We will discuss possible extensions and future directions of the VESPER
framework in appendix D.
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A Some standard tools for Rényi differential privacy
Rényi divergence the Rényi divergence between distributions of random variables X and Y given
by

Dα (X||Y ) =
1

α− 1
logEy∼PY

[(
dPX
dPY

(y)

)α]
. (9)

Here we use dPX
dPY (·) to denote the density ratio between X and Y (or more formally the Radon-

Nikodym derivative of the induced probability measure PX with respect to PY ). We state here a
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couple of useful results in implementing and proving algorithms with Rényi differential privacy.
The results will be stated under the context of graph algorithms in the edge DP model. The first
lemma is the composition theorem of RDP:
Lemma 1 (Composition of Rényi DP [33]). Let M1 be a graph-input mechanism that satisfies
(α, ε1)-RDP, andM2 be a graph-input mechanism that is allowed to further depend on the output
ofM1 satisfying (α, ε2)-RDP, then the composed mechanism (M1 ◦M2)(G) =M2(M1(G), G)
satisfies (α, ε1 + ε2)-RDP.

The second lemma is the conversion rule of RDP to the approximate (ε, δ)-DP:
Lemma 2 (Conversion of RDP to (ε, δ)-DP, [2]). Let mechanismM satisfy (α, ε)-RDP, then it is
(ε′, δ)-DP for

ε′ = ε− log(δα)

α− 1
+ log(1− 1

α
) (10)

with any δ > 0.

B Missing proofs
Proof of theorem 2.1. The proof contains two steps: In the first step, we prove that without neighbor-
hood sampling, the algorithm is (α, ε(α))-RDP. Then in the second step, we construct an algorithm
that is less or equally private than the procedure 1 and could be directly analyzed by [44, Theorem
9] such that the privacy guarantee of the algorithm is the one stated in the theorem.
Step 1: We ignore neighborhood sampling and consider the first layer. By [33, proposition 3], the

collection of perturbed embeddings {ȟ(1)v }v∈V , with ȟ(1)v = h̃
(1)
v +N(0, θ2Id), is

(
α,
αS21
2θ2

)
-Rényi

differentially private for any α > 1. Since the nonlinear transform does not involve edge informa-
tion and is therefore treated as a post-processing mechanism [11], it follows that the collection of

transformed embeddings {h(1)v }v∈V , with h(1)v = σ
(
ȟ
(1)
v

)
, is also

(
α,
αS21
2θ2

)
-Rényi differentially

private for any α > 1. Now we view the operation in a single layer as a base mechanism, an L-layer
perturbed message passing procedure could thus be viewed as composing the base mechanism for
L times. Then it follows by the composition theorem of Rényi differential privacy [33, Proposition
1] that the non-sampling version is (α, ε(α))-RDP.
Step 2: First we introduce some additional notations: Denote G(L)

v as the L-layer rooted subgraph
with root node v ∈ V produced by a neighborhood sampler. Then each training batch consists of B
randomly chosen subgraphs (G

(L)
v1 , . . . , G

(L)
vB ) with root nodes (v1, . . . , vB), further denote G(L)

B as
the graph generated via combining (G

(L)
v1 , . . . , G

(L)
vB ) with node set V (L)

B and edge set E(L)
B . Let Ne

be the maximum number of possible subgraphs that any specific edge might affect after an L-layer
message passing procedure, then we may bound the probability of the event that any specific edge
e ∈ E is contained in G(L)

B

max
e∈E

P
[
e ∈ E(L)

B

]
≤ 1−

(
NT−Ne

B

)(
NT
B

) (11)

Since the maximum degree is bounded from above by D, we further bound the above probability by
bounding Ne

Ne ≤ 2

L−1∑
l=0

Dl =
2(DL − 1)

D − 1
,

yielding

max
e∈E

P
[
e ∈ E(L)

B

]
≤ γ := 1−

(NT− 2(DL−1)
D−1

B

)(
NT
B

)
Next, we construct an algorithm A as follows: For a batch of size B, the algorithm first randomly
samples B nodes, then independently samples bγ|E|c edges to form a subgraph GAB . Then it returns
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the result via running a non-sampled version of algorithm 1 over GAB . Here note the fact that for
any edge e, the probability that e is contained in G(L)

B is no greater than the probability that it is
contained in GAB . Therefore, algorithm A is less or equally private than the procedure 1.

Since the privacy guarantee of algorithm A can be directly analyzed by [44, Theorem 9], yielding
a Rényi differential privacy guarantee of (α, εγ(α)) with εγ(α) defined in (6). The result of the
theorem follows.

In the proofs of propotision 1 and 2, we will prove for an arbitrary weight matrix W and the
result trivially applies to the weight matrices in each layer of the message passing procedure.

Proof of proposition 1. We inherit the notation from definition 3 that G′ is the adjacent graph via
removing the edge (u∗, v∗) from G. Write the summation pooling update rule as

h̃v ←
∑

u∈N(v)

Whu, ∀v ∈ V (12)

Note that the only two node embeddings that get affected by the removal is hv∗ and hu∗ . For node
v∗, it follows that ∥∥∥h̃v∗ − h̃′v∗∥∥∥ = ‖Whu∗‖ ≤ ‖W‖op ‖hu∗‖ = ‖W‖op. (13)

Where the last equality follows since the input representations are `2-normalized. The same argu-
ment leads to ∥∥∥h̃u∗ − h̃′u∗∥∥∥ ≤ ‖W‖op. (14)

Then we arrive at √∑
v∈V
‖h̃v − h̃′v‖22

=

√∥∥∥h̃u∗ − h̃′u∗∥∥∥2 +
∥∥∥h̃v∗ − h̃′v∗∥∥∥2

≤
√

2‖W‖op.

(15)

Proof of proposition 2. Recall the update rule of GCN [23]

h̃v ←
Whv
dv + 1

+
∑

u∈N(v)

Whu√
dv + 1

√
du + 1

(16)

Following similar arguments in the proof of proposition 1, we first bound the difference between
h̃v∗ and h̃′v∗ in `2 norm. First we inspect

h̃v∗ − h̃′v∗

=− Whv∗

dv∗(dv∗ + 1)
+

Whu∗√
du∗ + 1

√
dv∗ + 1

+
∑

u∈N(v∗)\{u∗}

(
Whu√

dv + 1
√
du + 1

− Whu√
dv
√
du + 1

)
:=T1 + T2 + T3

(17)

Bounding T1 and T2 are straightforward

T1 ≤
‖W‖op

Dmin(Dmin + 1)
(18)

T2 ≤
‖W‖op

Dmin + 1
(19)
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Where we use the minimum degree assumption (7). To bound T3, we use the inequality

∀x > 0,
1

x
− 1

x+ 1
≤ 1

2x3/2
(20)

Now we proceed as follows:

‖T3‖ (21)

≤
∑

u∈N(v∗)\{u∗}

∥∥∥∥ Whu√
dv + 1

√
du + 1

− Whu√
dv
√
du + 1

∥∥∥∥ (22)

≤
∑

u∈N(v∗)\{u∗}

‖W‖op√
du + 1

(
1√
dv
− 1√

dv + 1

)
(23)

≤
∑

u∈N(v∗)\{u∗}

‖W‖op

2
√
du + 1d

3/2
v

By inequality (20)

≤
∑

u∈N(v∗)\{u∗}

‖W‖op

2
√
Dmin + 1d

3/2
v

By assumption (7)

=
‖W‖op(dv − 1)

2
√
Dmin + 1d

3/2
v

(24)

To further bound (24), observe that the function

f(x) =
x− 1

x3/2
, x > 1 (25)

attains its maximum at x = 3, and becomes monotonically decreasing as x ≥ 3. Since dv ≥ Dmin,
it suffices to check the case for Dmin = 2 and Dmin ≥ 3 separately. For Dmin = 2, we have

‖T3‖ ≤
‖W‖op(3− 1)

2
√

2 + 133/2
<
‖W‖op(2− 1)

2
√

223/2
=
‖W‖op(Dmin − 1)

2
√
DminD

3/2
min

(26)

For Dmin ≥ 3, we have

‖T3‖ ≤
‖W‖op(Dmin − 1)

2
√
Dmin + 1D

3/2
min

<
‖W‖op(Dmin − 1)

2
√
DminD

3/2
min

(27)

Combining (26) and (27) we get

‖T3‖ ≤
‖W‖op(1− 1/Dmin)

2Dmin
. (28)

Finally, combine (18), (19) and (28), and then use the argument in (15) yield the result.

C A complete report of empirical evaluations
C.1 Datasets

The ogbn-products dataset is an undirected and unweighted graph that represents an Amazon
product co-purchasing network [18]. Nodes represent products sold on Amazon, and edges between
two products indicate that the products are purchased together. The node features are generated as
dimensionality-reduced bag-of-words of the product descriptions. The learning task is to predict the
category of a product in a multi-class classification setup with 47 classes. We took the dataset and
train/validation/test splitting from the official implementation available in the ogb library.

The Reddit dataset is a graph dataset from Reddit posts made in September, 2014. Nodes represent
Reddit posts; two posts are connected if the same user comments on both. The node features are
generated by combining the word embeddings of the corresponding post’s metadata, as described
in [15]. The learning task is to predict which community different Reddit posts belong to, with 41
classes. We use the training/validation/testing splitting from [15].

The Finance dataset This dataset is generated from transaction records collected from one of the
world’s leading online payment systems. The underlying graph is generated by treating users as
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Table 2: Summary statistics of the evaluation datasets
ogbn-products Reddit Alipay

# Nodes 2449029 232965 1132511
# Edges 123718280 114615892 2447370
# Training nodes 196615 153431 848963
# Node features 100 602 155
# Classes 47 41 2

nodes, and two nodes are connected if at least one transaction occurred between corresponding
users within a predefined time period. The business goal is to identify risky users which is cast into
an algorithmic problem of node classification with a binary label. The node features are obtained via
statistical summaries of corresponding users’ behavior on the platform during a specific time period.
The training and testing datasets are constructed under two distinct time windows with no overlap.

We list the summary statistics in table 2

C.2 A differentially private analysis of degree distributions

While all three datasets are large in scale (i.e., with the number of nodes exceeding 100, 000), they
differ significantly in their degree distributions. Specifically, the average node degree is much higher
in the ogbn-products (≈ 50) and Reddit dataset (≈ 490) than that in the Finance dataset (≈ 2.2).
Following literature in random graph theory [6], we might consider ogbn-products and Reddit as
dense graphs (with average degree� log(N)) and Finance as a sparse graph (with average degree
� log(N)). For a better illustration, we conduct a differentially private analysis of degree distri-
bution (with (0.1, 0)-differential privacy). Since we are basically interested in graphs with bounded
degrees (and enforcing the property using neighborhood sampling), during the computation of de-
gree distributions, we group all nodes with degrees over 50 to a single category (i.e., with degrees
greater than or equal to 50). As a result, the final histogram represents counts of nodes under degree
{0, 1, . . . , 49,≥ 50}. The analysis is based on the trivial fact that the addition and removal of any
single edge would change the degree of 2 nodes by exactly 1, therefore, the `1 sensitivity [11] of
the degree distribution histogram query is exactly 2. By standard Laplacian mechanism [10, 11],
we add to each count an independent Laplacian noise with scale 2

ε with ε = 0.1. The resulting
private histograms are shown in figure 3 with counts reported at a logarithmic scale. According
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Figure 3: (0.1, 0)-differentially private histograms of three benchmark datasets

to the histograms, we find that both the ogbn-products and the Reddit contain a large portion of
high-degree nodes (as illustrated by the spiking bar at the ≥ 50 category), while the Finance dataset
exhibits a concentration on the lower-degree nodes. In particular, around half of the nodes in the
Finance dataset are singular nodes without any neighbors. According to the discussion in section
2.2, it is expected that the Finance dataset is more challenging for (private) message passing under
sum pooling.
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C.3 Baselines

MLP without edge information Using an MLP over node features directly is the most trivial so-
lution to the learning task as it totally ignores edge information. Equivalently, this corresponds to
removing the PRE module in the VESPER framework. This baseline is of critical importance in
evaluating the privacy-utility trade-off since in practice we require the model trained with graph
information to significantly outperform MLPs.
Non-private GNN counterparts We compare with ordinary GCN and GIN models without privacy
guarantees, or equivalently set the ε parameter in the VESPER framework to be infinity. Ideally, the
performance of these models should serve as performance upper bounds for corresponding VESPER
models.
GNN models with privacy guarantees We consider two alternative approaches to private GRL,
namely the VFGNN model [53] and the GAP model [39]. Both models add Gaussian noise to node
embeddings and are implementable in the vertically federated setting. The privacy guarantees stated
in [53] are not directly applicable to the edge privacy setup. Thus we provide an independent privacy
analysis in the edge privacy model, similar to theorem 2.1. For the GAP model [39], the effect of
sampling was not properly addressed in the original paper, and we instead use a corrected version
by noting that the aggregation perturbation mechanism is equivalent to PMP-GIN without learnable
parameters and use theorem 2.1 to analyze it.

C.4 Experimental setup

Training configurations Across all models (i.e., MLP or GNN-related baselines), we used a hidden
dimension of d = 128 for the ogbn-products dataset, d = 512 for the Reddit dataset and d = 256
for the Finance dataset. We use the Adam optimizer with a learning rate 0.001 across all the tasks.
We trained each model for 5 epochs under the ogbn-products and Reddit dataset and 2 epochs under
the Finance dataset. For the GNN-related approaches, according to the private degree histogram
analysis, we tune the maximum degree with range {20, 50} for ogbn-products and Reddit datasets
and {10, 20} for the Finance dataset. For VESPER, we tested different decoder architectures as
described in section 2.5. For VESPER using the GCN aggregator, we tune the minimum degree
hyperparameter over {10, 20, 40} for ogbn-products and Reddit and {3, 5} for Finance. We tested
the number of message passing rounds with L ∈ {1, 2, 3}. We found that L = 2 works best in
general across all datasets for VESPER and GAP, and L = 1 works best for VFGNN. We use the
DGL framework [43] for the implementation of GNN algorithms.

privacy configurations: All the privacy reports are based on the (ε, δ)-differential privacy model,
with δ being the reciprocal of the number of edges. To adequately inspect the privacy-utility trade-
off, we aim to evaluate all the models with differential privacy guarantees under the total privacy
costs (privacy budgets) ε ∈ {1, 2, 4, 8, 16, 32}, with the privacy costs accounted during the entire
training period. We treat the setting where ε ∈ {1, 2} as of high privacy, ε ∈ {4, 8} as of moderate
privacy, and the rest as of low privacy. For VESPER and VFGNN, we add spectral normalization
to each GNN layer. For the privacy accountant, we base our implementation upon AMA implemen-
tation available in the dp-accounting library and use an adjusted sampling probability according
to theorem 2.1. For each required privacy level, we compute the minimum scale of Gaussian noise
via conducting a binary search over the adjusted AMA, with associating spectral norms of weight
matrices fixed at one in all layers.

Evaluation metrics We adopt classification accuracy (ACC) as the evaluation metric for the ogbn-
products and Reddit datasets, and ROC-AUC score (AUC) as the evaluation metric for the Finance
dataset.

C.5 A privacy analysis for VFGNN [53]

The VFGNN model [53] adds Gaussian noise to the normalized output of an L layer message pass-
ing. It is trivial to check that under the edge differential privacy model with noise scale θ, VFGNN is(
α,
αS2L
2θ2

)
-Rényi differentially private for any α > 1, with edge sensitivity SL slightly generalized

(c.f. definition 3) with h and h′ being the output of an L-layer message passing procedure. Without
loss of generality, we assume the norm of node embeddings before perturbation to beC. To compute
SL, first note that the change of any node embedding under an edge addition or removal operation
is bounded by 2C, it remains to bound the number of node embeddings that may get affected upon
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an edge addition or removal operation. Through similar arguments in the proof of theorem 2.1, we
bound this count from above by 2

∑L−1
l=0 Dl. We conclude the analysis in the following proposition:

Proposition 3 (Rényi DP guarantee for VFGNN). The output of anL-layer VFGNN model with nor-

malization constant C satisfies

α, 4αC2
(∑L−1

l=0 Dl
)

θ2

-Rényi differential privacy for any α > 1.

C.6 A complete report of performance comparisons

In this section, we present a complete report of empirical performance containing both the concate-
nation decoder (denote via using the ”-C” postfix) and the GRU decoder (denote via using the ”-G”
postfix) listed in table 3. We summarize our experimental findings as follows:

Table 3: Experimental results over three benchmark datasets using both non-private and private ap-
proaches, reported with format mean±std, with mean and std (abbreviation for standard deviation)
computed under 10 trials for each setting.

Non-private approaches

Model ogbn-products Reddit Finance

MLP 61.06±0.08 71.07±0.25 71.30±0.17
GIN-C 76.84±0.94 94.85±0.15 79.76±0.59
GIN-G 76.10±0.67 94.38±0.16 79.78±0.52
GCN-C 78.26±0.36 94.56±0.10 79.70±0.60
GCN-G 75.80±0.65 94.37±0.13 80.13±0.41

Private approaches

Model ogbn-products Reddit Finance

ε = 4 ε = 8 ε = 16 ε = 32 ε = 4 ε = 8 ε = 16 ε = 32 ε = 4 ε = 8 ε = 16 ε = 32

VFGNN 26.94±0.00 40.96±1.74 56.27±1.35 69.57±0.26 19.40±2.56 31.20±1.75 43.67±1.18 86.72±0.33 53.87±6.86 56.17±5.31 54.62±4.09 52.12±4.78
GAP 59.20±2.13 65.02±0.82 66.20±2.34 67.14±0.34 76.84±1.71 86.59±0.48 88.57±1.69 89.65±0.30 52.02±9.39 48.66±7.14 59.04±7.95 67.54±4.41

VESPER (GIN-C) 71.27±0.70 74.46±0.45 75.18±0.52 75.82±0.92 82.34±1.57 91.52±0.22 93.34±0.20 93.77±0.23 67.03±1.88 67.87±1.56 68.08±1.12 68.64±0.91
VESPER (GIN-G) 69.55±0.61 73.45±0.30 75.36±0.49 75.60±0.51 75.48±2.61 89.60±0.44 92.01±0.48 92.95±0.41 58.90±0.67 64.43±0.23 66.05±0.17 67.10±2.15
VESPER (GCN-C) 66.73±0.40 67.53±0.79 70.13±0.55 70.47±0.41 89.85±0.27 91.28±0.17 92.11±0.20 92.57±0.14 70.44±0.89 71.39±0.91 72.56±0.57 72.72±1.11
VESPER (GCN-G) 67.60±0.40 68.68±0.67 70.02±0.48 70.62±0.33 89.54±0.11 91.02±0.31 91.47±0.20 92.41±0.19 73.57±0.73 73.96±0.81 73.90±0.52 74.62±0.35

Privacy-utility trade-off Overall, the VESPER framework exhibits competitive privacy-utility
trade-off under both GIN and GCN aggregators. Specifically, VESPER using GCN aggregator
achieves better performance than the non-private MLP baseline across all three datasets under a
decent privacy protection level with ε = 4.. The results suggest that the model has the capability of
privately learning the structural information brought by the underlying graph. Moreover, if we are
allowed to relax the privacy requirement via adopting bigger privacy budgets (i.e., ε ∈ {16, 32}),
VESPER might obtain high-performance models that closely match the performance of non-private
versions. This phenomenon is particularly evident when using the GIN aggregator under ogbn-
products and Reddit datasets, where the utility loss is cut to be around 1 percent or fewer in the
low-privacy regime.
Sparse v.s. dense graphs On one hand, VESPER using the GIN aggregator performs better than
the GCN counterpart in terms of privacy-utility trade-off in moderate to high-privacy regime when
the underlying graph is dense, i.e., on ogbn-products and Reddit datasets, which is likely due to the
fact that GIN aggregates from the full neighborhood (with high SNR when the underlying graph is
dense as discussed in section 2.2), while GCN requires truncating a significant fraction of neighbor-
hood to control the noise level. On the other hand, for sparse graphs like the Finance dataset, the
performance of the GIN aggregator deteriorates significantly (i.e., failing to match the non-private
MLP baseline) due to the lower SNR in the underlying graph. In contrast, using a GCN aggregator
equipped with truncated message passing allows finer noise level control, leading to much better
results on sparse graphs. Meanwhile, the reduced noise level when applying GCN with truncated
message passing demonstrates a significant advantage when the privacy requirements are more strin-
gent. In particular, the performance of the GCN aggregator surpasses GIN in the high-privacy regime
across all three datasets. On the Reddit dataset, GCN with truncated message passing achieves much
better performance than MLP with ε = 2, with GIN totally losing its performance at the same pri-
vacy level.
Comparison against baselines VESPER demonstrates a better privacy-utility trade-off compared
to other private GNN baselines. The advantage over GAP is attributed to the end-to-end nature
of the VESPER framework and better handling of message-passing mechanisms. The advantage
over VFGNN is attributed to the tighter sensitivity control provided by the layer-wise perturbation
strategy, as shown in the relative advantage of GAP to VFGNN.
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Figure 4: AUC (mean± std over 10 trials) of membership inference attacks.

Comparison of decoders The result shows that concatenation decoder performs better over ogbn-
products and Reddit datasets, while the GRU decoder performs better over Alipay.

C.7 Protection against membership inference attacks

We conduct membership inference attacks (MIAs) to empirically assess the resilience of our model
against practical privacy risks. Note that although our method provides edge-privacy protection,
we adopted the node MIA [37] in this experiment due to two considerations. First, no generic and
appropriate edge MIA is relevant to the GNN application in this paper. Therefore, the node MIA is
a more realistic threat in our scenarios. Second, the node MIA can be considered as a strengthened
variant of edge MIA where the adversary obtains extra node information. Therefore, the model with
certain node-membership privacy will guarantee stronger edge-membership privacy.

Attack settings Following [37, 39], we adopted the TFTS (train on subgraph, test on the full graph)
setting of node MIA. Namely, the GNN model is trained on a subgraph, and the attack is reduced
to a binary classification problem that distinguishes between nodes inside and outside the training
subgraph. We consider an attacker with the following knowledge:

• API access to the trained model, which returns a posterior distribution of node classes.
• A shadow dataset consists of 1000 nodes per class sampled randomly from the full graph.
• Architecture, hyperparameters of the target model.

For ogbn-products and Reddit datasets, we followed the attack procedures in [37]. We first train a
shadow model with the same architecture and hyperparameters as the target model using the shadow
dataset. Then, we construct the attack training dataset by querying the shadow model. Finally,
we train a 3-layer MLP as the attack model. For Finance dataset, since there are only two node
classes, we adopted the entropy-based MIA as suggested in [40] instead of shadow model training.
Specifically, we computed the Shannon entropy of the node class distribution output by the target
model. The nodes with smaller entropy (larger classification confidence) tend to be in the training
subgraph.

We respectively set the privacy budget ε ∈ {1, 2, 4, 8, 16, 32,∞}, where ε =∞ indicated no privacy
protection is adopted. We use ROC-AUC (AUC) to evaluate the attack performance.

Results We report the attack performances in Figure 4. From the results, we observe that when
privacy protection is disabled (ε = ∞), the attacks show non-negligible effectiveness, especially
on obgn-products and Reddit datasets. Generally, with the privacy budget getting smaller (privacy
getting stronger), the attack performances sharply decline. With an appropriate privacy budget, the
attacks on all three datasets are successfully defended with AUC reduced to around 0.5 (random
guess baseline). In conclusion, the above observations demonstrate that our method effectively
mitigates the risks of privacy attacks with reasonable privacy budgets.

C.8 A complete report of ablation study

In this section, we investigate the effects of several critical hyperparameters in the VESPER frame-
work via assessing their corresponding privacy-utility trade-off. All the results reported in this
section will be based on a VESPER instantiation with GCN aggregator and concatenation decoder.

On the effect of maximum degree D In GNN training with neighborhood sampling, a larger D
might retain more structural information of the underlying graphs, at the same time weakening the
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Figure 5: Performance (mean± std over 10 trials) of VESPER under varying max degree D, using
GIN aggregator and CONCAT decoder.
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Figure 6: Performance (mean± std over 10 trials) of VESPER under varying max degree D, using
GCN aggregator and CONCAT decoder.

privacy amplification effect, resulting in a higher noise level. We evaluate the effect of D under
the range {20, 50} for ogbn-products and Reddit dataset and {10, 20} for the Finance dataset. We
plot privacy-utility trade-off curves in figure 5, 6, 8, 7. The results imply the trade-off that larger D
may not always be beneficial in private GRL, especially for sparse graphs, where efficient control of
noise level becomes more important than retaining structural information.

On the effect of minimum degree Dmin for PMP-GCN As discussed in section 2.4, the Dmin
parameter trades off the amount of structural information involved during message passing and the
noise scale during perturbation. We evaluate the effect of Dmin under the range {10, 20, 40} for
ogbn-products and Reddit datasets and {3, 5} for the Finance dataset and plot the resulting curves
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Figure 7: Performance (mean± std over 10 trials) of VESPER under varying max degree D, using
GCN aggregator and GRU decoder.
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Figure 9: Performance (mean ± std over 10 trials) of VESPER under varying minmimum degree
Dmin, using GCN aggregator and CONCAT decoder.

in figure 9, 10. We observe two interesting phenomena. First, adopting larger Dmin makes the noise
scale less sensitive with respect to privacy constraints, resulting in a flatter privacy-utility curve.
On the two dense graph datasets, this shows the potential benefits of using a larger Dmin when the
required privacy level is more stringent. Second, an crossing effect is observed on ogbn-products
and Reddit datasets, suggesting that a lower Dmin is beneficial in the low-privacy regime, where the
noise scale is efficiently controlled and the incorporation of more structural information becomes
effective.

On the effect of batch size Finally, we assess the effect of varying batch sizes. According to
composition results [1, 33, 44], consider running a fixed amount of epochs under a given sample and
privacy constraint, choosing a smaller batch size in general leads to a smaller per-step noise scale.
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Figure 10: Performance (mean ± std over 10 trials) of VESPER under varying minmimum degree
Dmin, using GCN aggregator and GRU decoder.
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Figure 11: Performance (mean ± std over 10 trials) of VESPER under varying batch size B, using
GIN aggregator and CONCAT decoder.
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Figure 12: Performance (mean ± std over 10 trials) of VESPER under varying batch size B, using
GCN aggregator and CONCAT decoder.

However, an overly small batch size may cause the stochastic gradients to be too noisy for good
performance. We evaluate the effect of batch size under the range {32, 64, 128, 256, 512} across all
three datasets and plot the resulting curves in figure 11, 12, 13, 14. According to the results, we
find that the reduction in noise scale caused by choosing smaller batch sizes may produces better
performance on ogbn-products and Reddit dataset, while on the Finance dataset changing batch size
does not produce a statistically significant difference in privacy-utility trade-offs, as indicated by the
overlapping region in the figure.
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Figure 13: Performance (mean ± std over 10 trials) of VESPER under varying batch size B, using
GIN aggregator and GRU decoder.
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Figure 14: Performance (mean ± std over 10 trials) of VESPER under varying batch size B, using
GCN aggregator and GRU decoder.

D Discussions
In this section, we discuss two extensions of the proposed framework regarding the threat model and
the privacy model.

D.1 Beyond one-sided adversary

In this paper, we are mainly interested in the threat model with only one malicious party B which
possesses only label data. Such a one-sided threat model might be further extended to a more com-
plicated setup where party B owns not only label data, but also its own node features and graph
structure and allows party A to be a semi-honest adversary to infer party B’s label information and
graph structure. We provide a straightforward solution to this extended scenario. Specifically, party
B needs to protect the edge privacy of its local graph as well as the precise label data from being re-
constructed by Party A. For the former privacy requirement, party B may apply the PMP framework
to its local graph representation learning procedure. For protecting label data, we can simply adopt
the randomized response technique for label differential privacy [12] during the loss computation
step, and deploy three accountants with one accounts with the privacy budget corresponding to party
A that is identical to the one used in this paper, and the other two accountant tracking the cumulative
privacy cost incurred by PMP and randomized response mechanisms conducted by party B, which
is trivial to analyze [11]. Moreover, extending the above scenario to more than two parties is also
technically feasible using similar algorithmic procedures. In this paper, we did not examine such
kinds of scenarios empirically since there are no publicly available graph VFL datasets that provide
natural feature/graph splits between multiple parties.

D.2 On extensions to node-level DP

The node-level differential privacy (node DP) model [22] is a strictly stronger notion of privacy
than the edge-level DP model regarding graph-input queries. In particular, node DP is analogously
defined as in definition 1 under the approximate (ε, δ)-DP model with the adjacency relation mod-
ified in the sense that two graphs G,G′ are node-level adjacent if G could be edited into G′ via
adding or removing one node as well as its adjacent edges. According to its original proposal, node
DP targets the protection of node memberships, which is somewhat subtle under the VFL context
since both party A and party B know the participating nodes’ identities throughout the VFL process.
Nevertheless, it is still possible to use additive noise perturbation to guarantee that the node embed-
dings are probabilistically similar with or without the participation of some specific nodes during
the message-passing procedure. Formally, we establish the node DP guarantee of PMP without
neighborhood sampling in the following theorem:

Theorem D.1 (RDP guarantee of PMP under node DP, non-sampling version). For graphs with
bounded maximum degree D, the released output of the entire graph HL in algorithm 1 without

neighborhood sampling is
(
α,

α
∑L
l=1(1+

√
DSl)2

2θ2

)
-Rényi differentially private for any α > 1.
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Proof. From the proof of theorem 2.1, it suffices to show that the node sensitivity defined as

Sn = max
G,G′

√ ∑
v∈V \{u∗}

‖hv − h′v‖22 + ‖hu∗‖22 (29)

is bounded from above by 1 +
√
DSl in the l-th layer. Note that removing a node v∗ and all its

adjacent edges affects two parts of node embeddings: hv∗ and {hu, u ∈ N(v∗)‖, leaving the rest
embeddings untouched. Therefore we bound both using corresponding upper bounds:

Sn ≤
√

max
G,G′

∑
v∈N(v∗)

‖hv − h′v‖22 + max
G
‖hu∗‖22

≤
√ ∑
v∈N(v∗)

max
G,G′
‖hv − h′v‖22 + 1

≤ 1 +
√
DSl

Theorem D.1 implies that, under general PMP mechanisms, the node-level privacy guarantee be-
comes much weaker than that of edge-level by a factor of the orderO(

√
D). Moreover, in stochastic

training paradigms, the sampling amplification phenomenon is also weaker than theorem 1 [7, The-
orem 1]. In our experiments, we find node DP guarantee to be overly stringent which produces
meaningless results under moderate privacy budgets. Therefore we report only edge DP results in
this paper. However, as illustrated in section we empirically investigated the protection of applying
edge-level private mechanisms against node-level membership inference adversaries and the results
are confirmatory, this serves as empirical evidence that edge-level privacy might be adequate for
reasonable privacy protection rather than sticking to node-level DP definitions.

D.3 Beyond GIN and GCN aggregators

In this section, we discuss possible extensions of the PMP framework into other aggregation
schemes. Throughout the discussion, we adopt the ReLU function as the default nonlinearity and
focus mainly on the aggregation step.

D.3.1 On max-pooling aggregation of SAGE [15]

Technically, the case of max-pooling does not directly fit into the message passing form in (4), due
to the fact that the max-pooling operation is applied along each coordinate, or:[

h̃(l)v

]
i

= max

([
W

(l)
1 h(l−1)v

]
i
,
{[
W

(l)
2 h(l−1)u

]
i

}
u∈N(v)

)
, (30)

where we use the notation [a]i to denote the i-th coordinate of some vector a. Nonetheless, we may
still analyze the associating edge sensitivity directly, i.e. via carefully inspecting the geometry of
the max-pooling operation in high-dimensional spaces. However, it is straightforward to check that
max-pooling causes high edge sensitivity, which is no smaller than that of summation pooling in
the worse case, resulting in relatively large noise scales. Meanwhile, the ”signal” brought by the
aggregation does not scale with neighborhood size. Therefore it is intuitively clear that using the
global sensitivity framework to privatize SAGE in this max-pooling form would lead to poor privacy-
utility trade-offs. It is worth mentioning that chances are that adopting more elegant techniques
like the smooth sensitivity paradigm [35] may allow meaningful privatization of the max-pooling
aggregator, which is beyond the scope of the current paper and delegated to futrue explorations.

D.3.2 On attentive pooling of GAT [42]

Next we consider the renowned GAT model [42] with updating rule:

h̃v ←
∑

u∈N(v)∪{v}

βuvWhu, (31)
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with the attention coefficients defined as

βuv =
ekφ(u,v)∑

u′∈N(v)∪{v} e
kφ(u′,v)

. (32)

under the attention kernel kφ. In the original implementation of GAT, the authors used additive atten-
tion kernels. Later extensions use alternatives such as the multiplicative kernel in graph transformer
architectures[51]. The protocol of attentive aggregation is also a special case of (4), which may be
understood as an interpolation between mean-pooling (where all the attention coefficients are equal)
and max-pooling (where one of the attention kernels being extremely large in value that dominates
the rest). As a consequence, the noise scale required under the edge sensitivity calculation paradigm
(i.e., theorem ??) will be between that obtained by mean-pooling and max-pooling, depending on
the range of the attention kernel. In particular, if the attention kernel has an unbounded range, i.e.
the entire real line. Then the resulting edge sensitivty is almost the same as the one obtained by
max-pooling and is thus impractical. Hence, to reduce the noise scale required for privatization, we
need to use bounded attention via effectively controlling the output range of the attention kernel, i.e.,
via applying bounded range nonlinearities like Tanh. The analysis could be done in the same man-
ner as that of GCN with extra hyperparameters controlling the upper and lower bounds of attention
coefficients. We leave related developments to future works.

E Some further remarks
E.1 Practical considerations in implementing VESPER

According to proposition 1 and 2, precise tracking of privacy budgets under PMP requires com-
puting the operator norm of each layer’s weight matrix {‖W (l)‖op}1≤l≤L which is computationally
demanding. In practice, we instead add a spectral normalization operation [34] to each layer’s weight
matrix so that we may approximately control all the operator norms throughout the training process
to be around 1. 2

E.2 Complexity analysis of VESPER

The computational complexity of vesper is of the same order as that in a standard GRL pipeline
with neighborhood sampling. The communication complexity of VESPER is dominated by the data
volume of (forward) embedding and (backward) gradients that get transmitted during each VFL step,
which are both of the order O(BLdK), with B being the batch size and K being the number of bits
required to represent a scalar number. Note that the communication complexity may be further
optimized via quantization techniques [41] or asynchronous optimization tricks [29]. We leave such
explorations to future research.

F Omitted algorithm descriptions
In this section we present detailed descriptions of two algorithmic procedures, the first one is the
truncated message passing algorithm for PMP-GCN, which for simplicity we present in a non-
sampling fashion in algorithm 2. The second one is a fully-detailed description of the training
procedure of the VESPER framework, illustrated pictorially in figure 1. We use different colors to
differentiate (local) computations that are performed by different parties. Additionally, we abbre-
viate the forward computation of three algorithmic components of VESPER by Encode, PRE and
Decode respectively.

2Technically, most of the current spectral normalization algorithms do not offer strict control over spectral
norms but are instead carried out using approximations like power iteration. We observe in our experiments
that the approximation error brought by inexact normalization is pretty benign, i.e., the total privacy budget
accounted using exact normalization and using a single power iteration differs in their absolute value by less
than 0.1.
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Algorithm 2 PMP-GCN with truncated message passing

Require: Graph G = (V,E), input encodings {h(0)v }v∈V , number of message passing rounds L,
minimum degree Dmin, GNN parameter W, MLP parameter {W (l)

tr , b
(l)
tr }1≤l≤L

1: Normalize each h(0)v into unit `2 norm.
2: for l ∈ {1, . . . , L} do
3: for v ∈ V do
4: Compute the linear update

h̃(l)v =
W (l)h

(l−1)
v

dv + 1
+

∑
u∈N(v)

W (l)h
(l−1)
u√

dv + 1
√
du + 1

. (33)

5: if dv ≥ Dmin then let ĥ(l)v = h̃
(l)
v .

6: else let ĥ(l)v = W
(l)
tr h

(l−1)
v + b

(l)
tr .

7: Add Gaussian noise and apply nonlinearity

h(l)v = σ(h̃(l)v + zv), zv ∼ N(0, θ2Id). (34)

8: Normalize h(l)v =
h(l)
v∥∥∥h(l)
v

∥∥∥
2

.

return A list of all layers’ embedding matrices HL = (H(1), . . . ,H(L)), with H(l) =

{h(l)v }v∈V , 1 ≤ l ≤ L.
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Algorithm 3 Algorithmic description of VESPER

Require: GraphG = (V,E), node featuresX , node label Y , batch sizeB, number of training steps
T . Architectural specifics {Encoder, PRE, Decoder}, with the parameters of Encoder and PRE
grouped together with notation WA and the parameters of Decoder denoted as WB . Number
of message passing layers L, max degree D.

1: Initialize parameters W(0)
A ,W

(0)
B

2: for t = 1, . . . , T do
3: Sample a random batch of root nodes Bt = {vt1, . . . , vtB}.
4: /*Computations by party A*/
5: Use neighborhood sampler as stated in algorithm 1 to obtain
6: the combined subgraph G(L)

Bt = (V
(L)
Bt , E

(L)
Bt ).

7: Encode node features

hv = Encode(Xv), v ∈ V (L)
Bt (35)

8: Do message passing using the selected PRE mechanism

H = PRE(G
(L)
Bt , H) (36)

9: Pick the node embeddings to transmit HBt = {Hv}v∈Bt
10: and send to party B
11: /*Computations by party B*/
12: Decode node embeddings and compute learning objective

L =
1

B

∑
v∈Bt

` (yv,Decode(Hv)) (37)

13: Compute gradients w.r.t. decoder
∂L

∂W
(t)
B

and

14: update into W
(t+1)
B using selected optimizer.

15: Send individual gradients w.r.t. node embedding collections

∂L
∂Hv

, v ∈ Bt (38)

16: back to party A.
17: /*Computations by party A*/
18: Party A compute gradients w.r.t. all its local parameters
19: (encoder and PRE)

∂L
∂W

(t)
A

=
1

B

∑
v∈Bt

∂L
∂Hv

∂Hv

∂W
(t)
A

(39)

20: and use the selected optimizer to update W
(t)
A into W

(t+1)
A

return The parameters at the final iteration W
(T )
A ,W

(T )
B
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