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Abstract

This paper studies the named entity recognition001
(NER) task under distant supervision. Distant002
supervision from existing resources can be used003
to annotate a training corpus instead of requir-004
ing a fully annotated corpus from domain ex-005
perts, saving time and human effort. The draw-006
back of distant supervision lies in the inferior007
label quality. Errors, including false positives,008
false negatives and positive type errors, are un-009
avoidable. To address the different types of010
noises, we propose a token-level Curriculum-011
based Positive-Unlabeled Learning (CuPUL)012
method. Using the proposed difficulty scoring013
function, the tokens are assigned to different014
curricula, with the easier tokens in the earlier015
curricula and the harder tokens in the latter016
curricula. Then CuPUL trains gradually with017
more curricula using the Conf-MPU loss func-018
tion. Our experiments on seven datasets, in-019
cluding a newly collected dataset in animal sci-020
ence domain, show that the CuPUL can achieve021
superior performances, and extensive studies022
demonstrate the effectiveness of different com-023
ponents of the proposed CuPUL.024

1 Introduction025

Named Entity Recognition (NER) is an important026

task in natural language processing that aims to027

identify and classify named entities in text into028

predefined types, such as person, location, and or-029

ganization. In recent years, supervised learning030

has been successful in NER tasks. However, it031

needs a large number of high-quality annotations032

to train a deep learning model, which can be costly033

and time-consuming to acquire. To address this034

issue, Distantly-Supervised Named Entity Recog-035

nition (DS-NER) has been proposed. This task036

uses existing knowledge bases (KB) or dictionaries037

to provide annotations, greatly reducing the need038

for manual annotations. However, the annotations039

from distant supervision suffer from annotation040

quality issues such as false positives, false nega- 041

tives, and positive type errors. 042

To address the aforementioned issues in DS- 043

NER, various methods are proposed. Some stud- 044

ies focus on false negative issues (Shang et al., 045

2018; Peng et al., 2019; Zhou et al., 2022). These 046

methods adjust loss functions to reduce the im- 047

pact of missing labels. These methods assume 048

that KB or dictionaries are high quality, so false 049

negative issues are the predominant issues. Re- 050

cent studies relax the assumption and propose to 051

tackle general noisy annotations through noise re- 052

moval processes (Meng et al., 2021; Liang et al., 053

2020; Hedderich and Klakow, 2018; Zhang et al., 054

2021b; Liu et al., 2021). Some methods detect 055

noisy annotations using model prediction confi- 056

dence, where the assumption is if a moderately 057

well-trained NER model strongly disagrees with a 058

distant annotation, then this annotation is likely to 059

be noisy. Some methods detect noisy annotations 060

using the loss distribution, where the assumption is 061

that the model converges slower on noisy annota- 062

tions than on clean annotations. 063

The noise removal process faces several chal- 064

lenges. First, a moderately well-trained NER 065

model is necessary to detect noise. However, it 066

is hard to determine a proper threshold for when a 067

NER model is moderately well-trained. Stopping 068

the training too early, the model cannot produce an 069

accurate enough model for noise detection. Stop- 070

ping the training too late, the model will learn the 071

noise and degrade the performance. Second, the 072

moderately well-trained NER model is trained on 073

noisy labels initially, so the noise detection meth- 074

ods may have unknown biases and cause irrepara- 075

ble damage. 076

In this paper, instead of removing noisy la- 077

bels, we propose a token-level Curriculum-based 078

Positive-Unlabeled Learning (CuPUL) method to 079

tackle the challenge of noisy labels in DS-NER 080

tasks. The motivation of curriculum learning is that 081
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deep learning models are non-convex and trained082

using batches of samples, so the order of train-083

ing data can significantly impact the model per-084

formance. Curriculum Learning rearranges the085

batches of training samples such that the model086

learns from easy to hard and learns from easy sam-087

ples more times. With the new arrangement, the088

models tend to converge to a better local optimum.089

We follow the philosophy of curriculum learning090

and design a token-level curricula arrangement to091

address the token-level noise for DS-NER tasks,092

where we observe that “easy samples” are usually093

cleaner. Consequentially, learning from easy sam-094

ples first can avoid label noise initially and make095

the model more robust. We further adopt Positive-096

Unlabeled (PU) learning paradigm to address the097

false negative issues.098

Specifically, CuPUL first trains several voters099

to evaluate the difficulty level of each token for100

the NER task. Then, the tokens are assigned to101

different curricula based on their difficulty scores,102

with the easier tokens in the earlier curricula and103

the harder tokens in the latter curricula. CuPUL104

trains gradually with more curricula in each round105

using the Conf-MPU loss function (Zhou et al.,106

2022). We evaluate CuPUL on seven DS-NER107

datasets. Experimental results demonstrate that108

CuPUL consistently achieves better performance109

over existing state-of-the-art approaches. Ablation110

studies illustrate the effectiveness of curriculum111

learning procedures in DS-NER tasks.112

In summary, our main contributions are:113

• We propose CuPUL to tackle the challenge114

of noisy labels in DS-NER tasks following115

the curriculum learning philosophy. As far as116

we know, this is the first time that curriculum117

learning being applied to DS-NER tasks.118

• We propose a token-level curriculum sched-119

uler to tackle the positive type noises and120

adopt a PU loss function to tackle the false121

negative noises.122

• We also provide an expert-labeled NER123

dataset in the animal science domain.124

• We empirically demonstrate that CuPUL can125

significantly alleviate the impact of label noise126

during the model training and outperform the127

state-of-the-art DS-NER methods on bench-128

mark datasets and the newly collected dataset.129

2 Related Work 130

Fully supervised NER using deep neural networks 131

always requires a large number of training data 132

with human annotations, which is very costly. To 133

alleviate the human efforts on annotating, DS-NER 134

has been proposed and received increasing research 135

interest recently, where annotations can be obtained 136

from existing professional dictionaries or knowl- 137

edge bases by some matching or query methods. 138

However, because of the polysemy in language 139

and the limited coverage of distant supervision re- 140

sources, DS-NER often suffers from annotation er- 141

rors like false positive, false negative, and positive 142

type errors. Therefore, handling annotation errors 143

in DS-NER has drawn special attention (Yang et al., 144

2018; Shang et al., 2018; Mayhew et al., 2019; Cao 145

et al., 2019; Peng et al., 2019; Liang et al., 2020; 146

Liu et al., 2021; Zhang et al., 2021a,c; Meng et al., 147

2021). Here we briefly discuss a few representative 148

approaches. 149

One line of work assumes that distant supervi- 150

sion often has high-quality positive labels, there- 151

fore focusing on alleviating the impact of false 152

negative errors. AutoNER (Shang et al., 2018) 153

proposes a new tagging scheme to identify entity 154

candidates and does not count the training loss on 155

those candidates. Mayhew et al. (2019) introduce 156

a constraint-driven iterative algorithm learning to 157

detect false negative errors in the noisy data and 158

down-weigh them, resulting in a weighted train- 159

ing set on which a weighted NER model is trained. 160

More recently, positive and unlabeled learning has 161

been adopted (Peng et al., 2019; Zhou et al., 2022) 162

to tackle false negative errors from the loss function 163

perspective without detection steps. Due to its supe- 164

riority in tolerating false negative errors, we embed 165

Conf-MPU (Zhou et al., 2022) into our proposed 166

method. Top-Neg (Xu et al., 2023) selectively uses 167

negative samples with high similarity to positives 168

of the same entity type, improving performance by 169

effectively distinguishing false negatives. 170

Another line of work simultaneously considers 171

annotation errors of all types. Cao et al. (2019) 172

design a data selection scheme to compute scores 173

for annotation confidence and annotation coverage 174

to distinguish high-quality sentences from noisy 175

ones. BOND (Liang et al., 2020), leveraging the 176

power of the pre-trained language model RoBERTa, 177

first adopts early stopping to prevent overfitting to 178

noisy labels. Liu et al. (2021) propose a calibrated 179

confidence estimation approach for DS-NER and 180
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integrate it in an LSTM-CRF model under a self-181

training framework to reduce the impact of noise.182

Zhang et al. (2021a) study the noise in DS-NER183

from the perspective of dictionary bias. SCDL184

(Zhang et al., 2021c) takes two teacher-student net-185

works and a co-training paradigm to cope with186

noise and take full advantage of mislabeled sam-187

ples. ATSEN (Qu et al., 2023) further develops the188

teacher-student networks and achieves better per-189

formance. RoSTER (Meng et al., 2021) proposes a190

noise-robust learning scheme consisting of a new191

loss function and a noisy label removal step to bet-192

ter model training with noisy data. SANTA (Si193

et al., 2023) deals with explicit and implicit errors194

separately. CLIM (Li et al., 2023) addresses the195

imbalance problem in different classes with high-196

quality candidate selection and label generation.197

3 Preliminary198

In this section, we briefly introduce the DS-NER199

task and curriculum learning.200

3.1 NER Classifier and DS-NER Formulation201

NER is the process of locating and classifying202

named entities in a corpus into predefined cate-203

gories. We denote an input sentence with M to-204

kens as x = [x1, x2, · · · , xM ] and denote corre-205

sponding annotations as y = [y1, y2, · · · , yM ],206

yi ∈ {0, 1, · · · , k}, where 0 denotes non-entity207

and 1, · · · , k denote k entity types. In this paper,208

we consider token-level NER formulation, where209

an NER classifier predicts token labels. Formally,210

the contextual token representations of an input211

sentence x are represented as212

[h1,h2, · · · ,hM ] = Linear(Encoder(x)), (1)213

where the encoder can be a pre-trained language214

model (e.g., BERT). The final prediction is215

f(x, θ) = Softmax([h1,h2, · · · ,hM ]), (2)216

ŷ = Argmax(f(x,θ)), (3)217

where θ denotes the parameters of the encoder and218

the linear layers, and ŷ is the prediction.219

To construct distantly annotated training data,220

the corpus can be annotated with dictionaries by221

string matching (Ren et al., 2015; Giannakopoulos222

et al., 2017; Peng et al., 2019), or with knowledge223

bases by their provided APIs. However, the anno-224

tation process will introduce three types of noises,225

namely, false positives, false negatives, and positive226

type errors, where false positives refer to the noise 227

where non-entity tokens are erroneously labeled 228

as entities of a certain type, false negatives refer 229

to the noises where entity tokens are mistakenly 230

labeled as non-entity, and positive type errors refer 231

to misclassifications of entity tokens (for instance, 232

when a token of type PER is erroneously marked 233

as type ORG). 234

3.2 Curriculum Learning 235

Curriculum learning was first proposed by Ben- 236

gio et al. (2009) under the assumption that learn- 237

ing with reordering from “easy” samples to “hard” 238

samples would boost performance. It has been 239

applied in various applications, including neural 240

machine translation (Zhou et al., 2020; Platanios 241

et al., 2019; Zhou et al., 2020; Wang et al., 2018), 242

relation extraction (Huang and Du, 2019), reading 243

comprehension (Tay et al., 2019), natural language 244

understanding (Xu et al., 2020) and named entity 245

recognition (Jafarpour et al., 2021; Lobov et al., 246

2022; Wenjing et al., 2021). 247

Curriculum learning has two main steps: diffi- 248

culty estimation and curriculum scheduler (Kocmi 249

and Bojar, 2017). For a dataset Z = {zi}Ti=1, the 250

goal of difficulty estimation is to design a difficulty 251

scoring function and compute a score for each sam- 252

ple zi. Mathematically, the difficulty score of each 253

sample is 254

Hi = D(zi), 1 ≤ i ≤ T, (4) 255

where D(·) is the difficulty scoring function. A 256

higher Hi indicates that the sample zi is more diffi- 257

cult to learn. 258

Curriculum scheduler includes creating curric- 259

ula C1, C2, · · · , Cη based on difficulty scores and 260

scheduling learning stages S1, S2, · · · , Sσ. Each 261

stage consists of some curricula. 262

Several studies aim to adopt curriculum learning 263

philosophy for textual data and propose various 264

difficulty-scoring functions and curriculum sched- 265

ulers. Some methods measure sample difficulty 266

with features derived from lexical statistics, e.g., 267

sentence length and word rarity (Platanios et al., 268

2019; Jafarpour et al., 2021), where longer sen- 269

tences and rarer words are considered “hard”. Oth- 270

ers use features from pre-trained language models 271

(Zhou et al., 2020; Wang et al., 2018; Liu et al., 272

2020). Most schedulers select samples with dif- 273

ficulty scores lower than a threshold (Platanios 274

et al., 2019). While Zhou et al. (2020) design a 275
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Figure 1: The CuPUL Framework

sample selecting function based on model uncer-276

tainty. Our approach, unique in applying token-277

level curriculum learning to DS-NER tasks, di-278

verges from common sentence-level methods by279

utilizing Transformer-based models like BERT for280

context-aware token-specific predictions and gradi-281

ent learning.282

4 Methodology283

This section introduces the proposed framework284

named CuPUL (Figure 1). The process starts by dis-285

tantly labeling the corpus using knowledge bases,286

and then several voters are trained (Section 4.1)287

using this data to calculate token difficulty scores288

(Section 4.2). Finally, CuPUL trains a NER clas-289

sifier following the curriculum scheduler using290

confidence-based positive-unlabeled learning (Sec-291

tion 4.3).292

4.1 Difficulty Estimation293

Motivated by the token-level noises in DS-NER294

tasks, we design the difficulty estimator and the295

curriculum scheduler at the token level as well. It296

allows the model to learn from one sentence by297

ignoring the noisy tokens. For example, in the sen-298

tence “Peter(PER) lives(O) in(O) America(ORG)”,299

“Peter”, “lives”, and “in” are clean samples, and300

“America” is a noise sample. The model can learn301

from “Peter lives in X” by ignoring the noise in the302

sentence. The token’s difficulty score reflects its303

inherent learnability. These scores are estimated us-304

ing the disagreements between basic NER models305

or voters.306

4.1.1 Voters307

The design of the voters demands simplicity and308

variability. To balance efficiency and diversity, sev-309

eral voters are trained to increase prediction results 310

variability. Label imbalance in NER tasks is miti- 311

gated by sampling from negative samples, introduc- 312

ing randomness to voters. Randomness is further 313

enhanced with different random processes, such as 314

shuffling and initialization. 315

For training the voters, a neural network for NER 316

classification is used, as defined in Section 3.1. 317

The voters are trained using a regular multi-class 318

classification risk function. The risk of a classifier 319

f is given by: 320

R(f) =
k∑

i=1

πiR
+
Pi
(f)+ (1−

k∑
i=1

πi)R
−
N(f), (5) 321

where R+
Pi
(f) = Ex∼p(x|y=i) [ℓ(f(x,θ), i)] and 322

πi = p(y = i) are the classification risk and the 323

prior of the i-th positive class, respectively, and 324

R−
N(f) = Ex∼p(x|y=0) [ℓ(f(x,θ), 0)] is the classi- 325

fication risk of the negative class. 326

4.1.2 Difficulty Scores 327

After training V voters, each token x receives V 328

predicted class probabilities f(x,θ1), ..., f(x,θV ), 329

where θ1...θV are the voters’ parameters. The pre- 330

diction f(x,θi) is a vector that represents the class 331

distribution of each token x denoted as Pri(x). 332

The difficulty of the token is assessed based on the 333

disagreement among these distributions. Specifi- 334

cally, we use Kullback-Leibler (KL) divergence, a 335

measurement for dissimilarities of two distributions 336

Pri(x) and Prj(x), to calculate the disagreement 337

level of two voters. Mathematically, it is: 338

Hij =
1

2
{DKL(Pri(x)||Prj(x)))+ 339

DKL(Prj(x))||Pri(x))}, (6) 340

where DKL(·) denotes the KL divergence. KL 341

divergence is asymmetric. By taking the average 342

of Hij and Hji, we derive a symmetric difficulty 343

score H{ij}. 344

Given that there are V voters, the final difficulty 345

score for each token x is defined as the average of 346

the non-identical pairs among all voters as: 347

H =

∑V
i=1

∑V
j=i+1H{ij}

V · (V − 1)/2
. (7) 348

Eq.(7) defines the token difficulty scores as an arith- 349

metic mean of disagreements between pair-wise 350

voters. Consequently, a token’s difficulty score is 351

low when all voters agree, and it increases with 352

greater disagreement. 353
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4.2 Curriculum Design354

Since the prevalence of false negatives in distant la-355

bels can cause a Positive-Negative learning model356

to overfit, we set the model learning process as357

Positive-Unlabeled (PU) learning, where data la-358

beled with 0 is considered unlabeled rather than359

non-entity. PU learning assumes that 1) labeled360

positive samples have the same distribution as the361

positive samples in the data, and 2) the unlabeled362

data follows the distribution of the entire dataset363

(Zhou et al., 2022). To fulfill the second assump-364

tion, we directly incorporate all unlabeled data into365

the curriculum to prevent too less unlabeled tokens366

in curricula. Different curriculum partitions are367

executed solely on the labeled positive data.368

The curriculum design is based on token diffi-369

culty scores H . Empirical studies have shown that370

these scores follow a long-tail distribution (Figure371

3), indicating that most tokens are relatively “easy”.372

Previous work (Platanios et al., 2019; Gnana Sheela373

and Deepa, 2013) suggests that a curriculum with374

uniformly ranged difficulty scores might lead to375

most tokens belonging to the first curriculum, mak-376

ing curriculum learning ineffective. Hence, we377

propose using a power-law selector to construct a378

more effective curriculum scheduler.379

For a corpus of Tp labeled positive tokens and380

Tu unlabeled tokens, we initially index the labeled381

positive tokens from the easiest to the hardest and382

put unlabeled tokens in front of them. The first cur-383

riculum is then populated with the first τTp labeled384

positive tokens and all unlabeled tokens, where τ385

(0 < τ < 1) is a selective factor that indicates the386

proportion of tokens selected from the corpus. We387

then select the first τ2T tokens from the remaining388

(1 − τ)Tp tokens as the second curriculum. This389

selection process continues until the penultimate390

curriculum. The remaining tokens are placed in the391

final curriculum. The token index of final curricula392

is denoted as C1, C2, ..., Cη.393

C1 : 1 ∼ Tu + τTp

C2 : Tu + τTp + 1 ∼ Tu + (τ + τ2)Tp

· · ·
Cη : Tu + (τη−1 + · · ·+ τ)Tp + 1 ∼ Tu + Tp.

394

Note that the first curriculum C1 starts at index 1,395

and the ending position of the last curriculum Cη396

is defined to be at index Tu + Tp.397

For example, suppose Tp = 20, Tu = 80 and398

τ = 0.5. A three-split containing positive curricu-399

lum would be (1 to 90), (91 to 95), and (96 to 100). 400

Thus, the curricula cover the entire corpus. 401

4.3 Curriculum-based PU Learning 402

To train the NER classifier with η curricula, we 403

employ the common discrete training scheduler, 404

“Baby Step” (Spitkovsky et al., 2010; Cirik et al., 405

2017). Training begins with the first curriculum C1, 406

and the next curriculum is added after a set number 407

of epochs. This process continues until all curricula 408

are included and trained, terminating the training 409

process. The training stages ({Si, 1 < i ≤ η}) cor- 410

respond to the number of curricula, with the model 411

trained over multiple epochs in each stage. Conse- 412

quently, the tokens in easier curricula are learned 413

more times. Each training stage Si can be regarded 414

as a standalone training process with the training 415

subset C1, · · · , Ci. Therefore all unlabeled data 416

and the majority of labeled positive data are used 417

in each each training stage. Under these conditions, 418

the two PU assumptions are maintained, allowing 419

PU learning to be applied directly. Thus, CuPUL 420

provides a more robust and effective curriculum 421

learning framework. 422

Specifically, we adopt the Conf-MPU loss func- 423

tion, proposed by Zhou et al. (2022), as the back- 424

bone PU loss function in the curriculum-based 425

training. Conf-MPU loss function has been shown 426

to be more robust to PU assumption violation in 427

practice. The risk function is 428

R(f) =

k∑
i=1

πi

(
R+

Pi
(f) + R−

P̃i
(f)− R−

Pi
(f)

)
+R−

Ũ
(f),

(8) 429

where R−
P̃i
(f) = Ex∼p(x|y=i,λ(x)>ϵ)

[
ℓ(f(x), 0) 1

λ(x)

]
, 430

R−
Pi
(f) = Ex∼p(x|y=i) [ℓ(f(x), 0)], and R−

Ũ
(f) = 431

Ex∼p(x|λ(x)≤ϵ) [ℓ(f(x), 0)]. λ(x) = p(y > 0 | x) defines 432

the confidence score of a token being an entity to- 433

ken. ϵ is a confidence score threshold in the range 434

of (0, 1]. Due to the introduction of λ(x) and ϵ, R(f) 435

can be estimated by labeled positive data and un- 436

labeled data in each stage with less bias compared 437

with the traditional PU learning. 438

For stage S∗, the number of token selected for 439

class i is TS∗
i . For simplification, we denote it as 440

T ∗
i . The empirical estimator of Eq.(8) is 441

R̂Conf−MPU(f) =

k∑
i=1

πi

T ∗
i

T∗
i∑

j=1

max

{
0, ℓ(f(x

T∗
i

j ,θ), i) 442

+ 1
λ̂(x

T∗
i

j )>ϵ
ℓ(f(x

T∗
i

j ,θ), 0)
1

λ̂(x
T∗
i

j )
− ℓ(f(x

T∗
i

j ,θ), 0)

}
443

+
1

T ∗
0

T∗
0∑

j=1

[
1
λ̂(x

T∗
0

j )≤ϵ
ℓ(f(x

T∗
0

j ,θ), 0)

]
, (9) 444
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with a non-negative constraint inspired by Kiryo445

et al. (2017) ensuring the risk on the negative class.446

We follow Zhou et al. (2022) and set ϵ to 0.5 by447

default. But different from having λ(x) estimated448

by another binary PU model, we reuse the voters449

trained in Section 4.1 to ensemble the confidence450

score for each token x. We use the soft-label en-451

semble as452

Pr(x) =

∑V
j=1 f(x,θj)

V
, (10)453

where Pr(x) is the ensemble probability distribu-454

tion over all classes.455

The confidence score of a token x being an entity456

token is then calculated as457

λ(x) =

k∑
j=1

Prj(x). (11)458

For the neural network of the NER classifier, we459

choose the same structure with voters, which is460

defined in Section 3.1.461

4.4 Loss Function462

Two loss functions are popularly used for the DS-463

NER tasks. The first loss function is cross entropy464

(CE) loss:465

ℓCE = log fi,yi(x;θ), (12)466

where fi,yi(x;θ) is the prediction of token xi on467

class j.468

Another commonly used loss function is mean469

absolute error (MAE):470

ℓMAE = |yi − fi,yi(x;θ)|, (13)471

where | · | is L-1 norm of the vector and yi denotes472

the one hot vector of yi. We leave the discussion of473

these two loss functions in the Appendix A.474

4.5 Self-Training475

Several studies (Liang et al., 2020; Peng et al.,476

2019; Meng et al., 2021) have shown that self-477

training can effectively upgrade the performance478

of a trained DS-NER model. We apply the self-479

training method in Meng et al. (2021), which480

uses soft labels to conduct self-training and uses481

a masked language model to conduct contextual482

data augmentation simultaneously. Self-training is483

used directly after CuPUL, and we call the final484

classifier after self-training CuPUL+ST.485

5 Experimental Study 486

5.1 Baseline Methods 487

Two groups of baseline methods are shown below. 488

Fully supervised methods. We include a fully su- 489

pervised NER method based on the RoBERTa-base 490

model (Liu et al., 2019) as an upper-bound perfor- 491

mance reference. 492

Distantly-supervised methods. First, we report dis- 493

tant supervision results as KB-Matching. We clas- 494

sify DS-NER methods into three groups. 1) DS- 495

NER without Self-training consists of AutoNER(Shang 496

et al., 2018), Conf-MPU (Zhou et al., 2022), and 497

RoBERTa-ES (Liang et al., 2020). CuPUL is directly 498

comparable with these methods. 2) DS-NER with Self- 499

training includes BOND (Liang et al., 2020), RoSTER 500

(Meng et al., 2021), SCDL (Zhang et al., 2021c) 501

and ATSEN (Qu et al., 2023). These methods ap- 502

ply teach-student or training augmentation steps to 503

further boost the DS-NER performance. The meth- 504

ods in these two groups are sequence-based mod- 505

els. 3) Span-based DS-NER models, including CLIM 506

(Li et al., 2023) , SANTA (Si et al., 2023) , and Top- 507

Neg (Xu et al., 2023) . Previous work (Li et al., 508

2023) shows that span-based NER models often 509

outperform sequence-based NER methods in terms 510

of effectiveness, albeit at the cost of increased al- 511

gorithmic complexity. 512

We also include an ablation version of CuPUL 513

(labeled as CuPUL-curr), which removes Curricu- 514

lum Learning, as a baseline. More details of base- 515

lines can be found in Appendix C. 516

5.2 Datasets and Metrics 517

Datasets: We conduct experiments on seven DS- 518

NER datasets. Six of them are benchmark datasets 519

including CoNLL03 (Liang et al., 2020), Twitter 520

(Liang et al., 2020), OntoNotes5.0 (Liang et al., 521

2020), Wikigold (Liang et al., 2020), Webpage 522

(Liang et al., 2020), and BC5CDR (Shang et al., 523

2018). The first five datasets are open-domain 524

datasets, and BC5CDR is in bio-medical domain. 525

We also collected a new dataset from the animal 526

science domain named “QTL”. The NER goal is 527

to detect Trait Entities in animal science publica- 528

tions, an important task in building a comprehen- 529

sive database for livestock trait research and animal 530

breeding practice. For the corpus, domain experts 531

gathered 1,716 PubMed abstracts from quantitative 532

trait locus (QTL) studies for 6 species. For the 533

distant annotation, we collected a dictionary with 534

3,884 curated trait names from four domain on- 535
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Dataset Train Valid Test Types

CoNLL03
Sentence 14041 20 3453

4
Token 203621 475 46435

Twitter
Sentence 2393 50 3844

10
Token 44076 719 58064

OntoNotes5.0
Sentence 115812 50 12217

18
Token 2200865 1090 230118

Wikigold
Sentence 1142 20 274

4
Token 25819 579 6538

Webpage
Sentence 385 20 135

4
Token 5293 120 1131

BC5CDR
Sentence 4560 20 4797

2
Token 118170 533 124750

QTL
Sentence 18706 21 1044

1
Token 514176 952 32251

Table 1: The statistics of involved DS-NER datasets,
the valid set comprises a small subset from the original
dataset, whereas trainset and testset utilize the entire
original dataset.

tologies1. For validation and testing, we randomly536

selected 107 abstracts and acquired ground truth537

annotations from a domain expert curator. We split538

the annotated sentences to form validation and test-539

ing sets with 21 and 1,044 sentences, respectively.540

The statistics of seven datasets are summarized in541

Table 1. More details can be found in Appendix B.542

Metrics: We use span-level Precision (P), Recall543

(R), and F1 score as the evaluation metrics. These544

metrics require exact matches between predicted545

and actual entities. A continuous span with the546

same label is considered a single entity during in-547

ference.548

In the QTL application, according to the cura-549

tor’s practical needs, identifying potential entities550

is more important than identifying precise bound-551

aries. Therefore, we also introduce relaxed Preci-552

sion (P), Recall (R), and F1 score to evaluate the553

performance of DS-NER methods for practical us-554

age. For relaxed metrics, it deems a predict span555

correct if there is at least one overlapping word556

with the ground truth annotation.557

5.3 Experiment Settings558

We use the pre-trained RoBERTa as the backbone559

model for both the Voter and NER classifier2. For560

open-domain datasets, we use roberta-base3. For bio-561

domain datasets, we use biomed-reberta-base4. We562

1Vertebrate Trait (VT) Ontology, Livestock Product Trait
(LPT) Ontology, Livestock Breed Ontology (LBO), Clinical
Measurement Ontology (CMO).

2We will release code upon paper acceptance.
3https://huggingface.co/roberta-base
4https://huggingface.co/allenai/biomed_

roberta_base

employ PyTorch5 and conduct all experiments on a 563

server with a Tesla A100 GPU (32G). 564

For the benchmark dataset, we use the small sub- 565

set of validation to adjust the learning rate. Other 566

hyper-parameters are set according to data statistics. 567

For QTL dataset, baselines are reproduced using 568

their published codes. Baselines CLIM, SANTA, 569

and Top-Neg are excluded due to reproduction ob- 570

stacles. Hyperparameters of baseline methods and 571

CuPUL are tuned on the validation set. Details can 572

be found in Appendix D. 573

5.4 Main Results 574

Table 2 presents the overall span-level precision, 575

recall, and F1 scores for all methods on benchmark 576

datasets. Note that RoSTER was tested on a dif- 577

ferent version of the OntoNotes5.0 dataset (Meng 578

et al., 2021). Therefore we exclude its reported 579

results in Table 2 for a fair comparison. We have 580

the following observations. 581

The KB-Matching results show that distant la- 582

bels are often of low recall, and on four of the 583

benchmark datasets, of low precision as well. The 584

noise-aware DS-NER models significantly outper- 585

form the KB-Matching. Span-based DS-NER mod- 586

els tend to perform better than sequence-based mod- 587

els, which aligns with previous findings (Li et al., 588

2023). However, span-based NER models require 589

innumerating all spans in the sentences, having 590

higher complexity and longer training and infer- 591

ence time than sequence-based models. 592

The proposed methods CuPUL and CuPUL+ST 593

achieve the best F1 scores on five out of six 594

datasets compared with all DS-NER models and 595

comparable results on OntoNotes5.0 dataset. For 596

OntoNotes5.0 dataset, almost all noise-aware DS- 597

NER models have similar performance, implying 598

that the distant annotations may contain certain bi- 599

ases that is hard for the model to address. Except 600

for OntoNotes5.0 dataset, compared with DS-NER 601

Baselines without Self-training, CuPUL shows sig- 602

nificant improvement on all metrics. Even com- 603

pared with DS-NER Baselines with Self-training, 604

CuPUL outperforms on four datasets. With the self- 605

training step, CuPUL+ST in general can further im- 606

prove the performance. Surprisingly, CuPUL and 607

CuPUL+ST achieve higher F1 scores than the su- 608

pervised baseline (RoBERTa) on Twitter and Web- 609

page. We suspect that the distributions of the train- 610

ing and test data are inconsistent for these datasets, 611

5https://pytorch.org/
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
Fully Supervised

RoBERTa# 90.11 (89.14/91.10) 52.19 (51.76/52.63) 86.20 (84.59/87.88) 86.43 (85.33/87.66) 72.39 (66.29/79.73) 90.99 (-/-)†

DS-NER Baselines without Self-training
KB-Matching# 71.40 (81.13/63.75) 35.83 (40.34/32.22) 59.51 (63.86/55.71) 47.76 (47.90/47.63) 52.45 (62.59/45.14) 64.32 (86.39/51.24)†

AutoNER# 67.00 (75.21/60.40) 26.10 (43.26/18.69) 67.18 (64.63/69.95) 47.54 (43.54/52.35) 51.39 (48.82/54.23) 79.99 (82.63/77.52)†

RoBERTa-ES# 75.61 (83.76/68.90) 46.61 (53.11/41.52) 68.11 (66.71/69.56) 51.55 (49.17/54.50) 59.11 (60.14/58.11) 73.66 (80.43/67.94)†

Conf-MPU† 79.16 (78.58/79.75) - - - - 77.22 (69.79/86.42)†

Span-based DS-NER models
CLIM3 85.4 (-/-) 53.8 (-/-) 69.6 (-/-) 70 (-/-) 67.9 (-/-) -

SANTA3 86.59 (86.25/86.95) - 69.72 (69.24/70.21) - 71.79 (78.40/66.72) 79.23 (81.74/76.88)
Top-Neg3 80.55 (81.07/80.23) 52.86 (52.30/53.55) - - - 80.39 (82.09/78.90)

DS-NER Baselines with Self-training
BOND# 81.15 (82.00/80.92) 48.01 (53.16/43.76) 68.35 (67.14/69.61) 60.07 (53.44/68.58) 65.74 (67.37/64.19) -

RoSTER¶ 85.40 (85.90/84.90) - - 67.80 (64.90/71.00) - -
SCDL‡ 83.69 (87.96/79.82) 51.10 (59.87/44.57) 68.61 (67.49/69.77) 64.13 (62.25/66.12) 68.47 (68.71/68.24) -

ATSEN‡ 85.59 (86.14/85.05) 52.46 (62.32/45.30) 68.95 (66.97/71.05) - 70.55 (71.08/70.55) -
Proposed Methods

CuPUL-curr 83.18 (83.69/82.68) 50.12 (47.48/53.07) 67.76 (65.66/70.00) 66.43 (58.89/76.18) 65.15 (62.89/67.57) 79.91 (75.07/85.43 )
CuPUL 85.09 (84.64/85.53) 54.34 (54.47/54.20) 68.06 (66.31/69.91) 70.53 (67.06/74.39) 73.10 (74.65/71.62) 81.57 (77.02/86.70)

CuPUL+ST 86.64 (86.02/87.27) 54.78 (57.32/52.46) 68.20 (66.57/69.11) 70.19 (66.96/73.74) 74.48 (76.06/72.97) 80.92 (75.45/87.26)

Table 2: Performance on benchmark datasets: F1 Score (Precision/Recall) (in %). # marks the row of results
reported by Liang et al. (2020). ¶ marks the row of results reported by Meng et al. (2021), where results for Twitter,
OntoNote5.0 and Webpage are not reported in Meng et al. (2021). ‡ marks the row of results reported by Zhang
et al. (2021c). 3 marks the row of results from the method proposed paper respectively. † marks the results from
Zhou et al. (2022). Best results are in bold.

Method QTL-strict QTL-relax
DS-NER Baselines without Self-training
KB-Matching 37.15 (82.95/23.93) 41.86 (93.46/26.97)

AutoNER 41.67 (69.07/29.83) 55.49 (83.17/41.64)
RoBERTa-ES 38.07 (76.30/25.37) 46.58 (91.15/31.28)
DS-NER Baselines with Self-training

BOND 53.08 (60.89/47.04) 65.57 (77.97/56.57)
RoSTER 47.80 (73.12/35.51) 55.43 (91.35/39.79)

SCDL 43.62 (79.57/30.05) 50.18 (89.85/34.81)
ATSEN 46.23 (66.98/35.30) 51.64 (86.21/36.86)

Proposed Methods
CuPUL-curr 54.75 (75.40/42.99) 62.94 (86.76/49.38)

CuPUL 58.02 (65.73/51.93) 70.24 (79.75/62.76)
CuPUL+ST 61.83 (58.65/65.38) 75.82 (72.96/78.91)

Table 3: Performance on QTL dataset: F1 Score (Preci-
sion/Recall) (in %). The best results are in bold.

and the supervised learning may have overfitted the612

training set due to the limited size.613

Compared to CuPUL-curr, the ablation ver-614

sion of CuPUL by removing curriculum learning,615

CuPUL outperforms it across datasets, showing616

the efficacy of curriculum learning in boosting per-617

formance. Delving into precision and recall, we618

observe that CuPUL consistently achieves better619

precision than CuPUL-curr, indicating that curricu-620

lum learning does improve the model’s robustness621

to false positives in training data.622

Table 3 presents strict and relaxed precision, re-623

call, and F1 scores for all methods on the QTL624

dataset. KB matching reveals that QTL annotations625

suffer from low recall but have relatively high pre-626

cision, creating a notable imbalance between these 627

metrics. We observe that DS-NER baselines with- 628

out self-training have limited recall improvement, 629

resulting in weak performance. DS-NER baselines 630

with self-training improve recall, but CuPUL and 631

CuPUL+ST can further boost the recall, signifi- 632

cantly outperforming all baseline methods. Specifi- 633

cally, strict F1 and relaxed F1 of CuPUL+ST out- 634

perform the runner-up by 8.75% and 10.25%, re- 635

spectively. 636

More experimental studies including Difficulty 637

Score Estimation Efficiency Analysis, and Parame- 638

ter Studies can be found in Appendix E H G. 639

6 Conclusion and Future Work 640

In this paper, we propose a token-level curriculum- 641

based PU learning (CuPUL) method to improve 642

distantly supervised named entity recognition tasks. 643

We propose a difficulty scoring function that esti- 644

mates the token difficulty based on disagreements 645

between pair-wised voters. The tokens are then 646

arranged into different curricula according to their 647

difficulty scores. Finally, we propose a novel 648

curriculum-based PU learning procedure and train 649

CuPUL from easy to hard curricula. Experiments 650

demonstrate the effectiveness of CuPUL on six 651

benchmark datasets and the newly collected QTL 652

dataset, and CuPUL outperforms state-of-the-art 653

DS-NER models. Further studies illustrate the effi- 654

cacy of each component in CuPUL. 655
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Limitations656

The "Baby Step" strategy in curriculum learning657

involves multiple repetitions of the first curriculum.658

Coupled with our power-law selector and curricu-659

lum scheduler, which tends to choose a larger initial660

curriculum, this may negatively impact efficiency661

if many curricula are established since the larger662

curriculum is repeatedly trained.663

Ethics Statement664

We comply with the ACL Code of Ethics.665
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Appendix908

A Discussion of Loss Function909

Comparing the two loss functions, ℓCE is un-910

bounded, and it grants better model convergence911

when trained with clean data (i.e., y are ground truth912

labels) because more emphasis is put on difficult to-913

kens. However, when the labels are noisy, training914

with the cross-entropy loss can cause overfitting to915

the wrongly labeled tokens. ℓMAE is more noise-916

robust than ℓCE. It is bounded and treats every917

token more equally for gradient update, allowing918

the learning process to be dominated by the correct919

majority in distant labels. However, using ℓMAE for920

training deep neural models generally worsens the921

convergence efficiency and effectiveness due to the922

inability to adjust for challenging training samples.923

Considering the different characteristics of these924

two loss functions, in practice, we suggest using925

ℓCE loss for tasks with more entity types and using926

ℓMAE loss for tasks with fewer number of entity927

types.928

B Datasets929

Here, we give a short description of the six bench-930

mark datasets as follows:931

• CoNLL03 (Tjong Kim Sang and De Meulder,932

2003) is built from 1393 English news arti-933

cles and consists of four entity types: person,934

location, organization, and miscellaneous.935

• Twitter (Godin et al., 2015) is from the WNUT936

2016 NER shared task and consists of 10 en-937

tity types.938

• OntoNotes5.0 (Weischedel et al., 2013) is939

built from documents of multiple domains940

like broadcast conversations, web data, etc.941

It consists of 18 entity types.942

• Wikigold (Balasuriya et al., 2009) is built from943

a set of Wikipedia articles (40k tokens). They944

are randomly selected from a 2008 English945

dump and manually annotated with four entity946

types same as CoNLL03.947

• Webpage (Ratinov and Roth, 2009) comprises948

personal, academic, and computer science949

conference web pages. It consists of 20 web950

pages that cover 783 entities with four entity951

types same as CoNLL03 too.952

• BC5CDR comes from the biomedical domain.953

It consists of 1,500 articles, containing 15,935954

Chemical and 12,852 Disease mentions.955

C Baselines 956

Here, we give a short description of all the baseline 957

methods: KB-Matching distantly labels the test sets 958

using distant supervision, serving as a reference to 959

illustrate the performance improvements given by 960

other advanced DS-NER methods. 961

AutoNER (Shang et al., 2018) trains the neural 962

model with a “Tie or Break” tagging scheme for 963

entity boundary detection and then predicts entity 964

type for each candidate. 965

Conf-MPU (Zhou et al., 2022) treats the NER task 966

as a Positive-Unlabeled learning problem and uti- 967

lizes the pre-learned confidence scores to enhance 968

the model’s performance. 969

CLIM (Li et al., 2023) addresses the imbal- 970

ance problem in the high-performance and low- 971

performance classes by improving the candidate 972

selection and label generation. 973

SANTA (Si et al., 2023) dealing with inaccurate 974

and incomplete annotation noise in DS-NER by 975

utilizing separate strategies. 976

Top-Neg (Xu et al., 2023) selectively uses neg- 977

ative samples with high similarity to positives of 978

the same entity type, improving performance by 979

effectively distinguishing false negatives. 980

RoBERTa-ES (Liang et al., 2020) trains a NER 981

model using a RoBERTa-base model and adopts 982

early stopping to prevent the model from overfitting 983

to noisy distant labels. 984

BOND (Liang et al., 2020) trains a RoBERTa 985

model on distantly labeled data with early stop- 986

ping and then uses a teacher-student framework to 987

iteratively self-train the model. 988

RoSTER (Meng et al., 2021) employs a noise- 989

robust loss function and a self-training process with 990

contextual augmentation to train a NER model. 991

SCDL (Zhang et al., 2021c) conducts self- 992

collaborative denoising with teacher-student frame- 993

work. It trains two teacher-student networks, and 994

the final reports come from the best model (teacher 995

or student). 996

ATSEN (Qu et al., 2023) develops a teacher- 997

student framework with adaptive teacher learning 998

and fine-grained student ensembling. 999

D Experiment Settings 1000

For datasets CoNLL03, OntoNotes5.0, Webpage, 1001

Twitter, Wikigold, QTL and BC5CDR, the maxi- 1002

mum sequence length is set as 150, 230, 120, 160, 1003

120, 180, 280 respectively, to ensure the algorithm 1004

works correctly. Other parameters shows in Table1005
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4. OntoNote5.0 and Twitter have more entity types,1006

so we choose relatively small γ values. We ap-1007

ply cross-entropy loss to OntoNotes5.0 and Twitter1008

since they have more entity types and apply MAE1009

loss to CoNLL03, Webpage, and Wikigold. For1010

all the datasets, we train them with a batch size of1011

32 sentences and apply Adam optimizer (Kingma1012

and Ba, 2014). For all the datasets, the number of1013

voters K and the number of curricula C are set as 51014

and 5, respectively. The curriculum selective factor1015

τ is set to 0.5 for all the datasets. We use the same1016

random seeds for all datasets.1017

E Difficulty Score Estimation1018

Figure 2: Distant Label Quality Token Level Positive
Error Rate and Mean Difficulty Scores for Each Cur-
riculum on Wikigold Dataset.

For CuPUL, one assumption adopted is that diffi-1019

culty scores can reflect the quality of distant super-1020

vision, where “easier” tokens have “cleaner” labels.1021

To validate this assumption and evaluate the quality1022

of the difficulty score estimation, we examine the1023

correlation between the difficulty scores and the1024

quality of distant labels. We use Wikigold as the1025

testbed, and the results are illustrated in Figure 2.1026

For each training curriculum, we compute the1027

token-level positive error rate (positive errors in-1028

cludes false positives and positive type errors), and1029

plot the rate for each curriculum use the left y-axis1030

in Figure 2. We also compute the average difficulty1031

scores for tokens in each curriculum shown with1032

the right y-axis in Figure 2.1033

We can see that as the number of curricula in-1034

creases, the average token difficulty scores and pos-1035

itive error rate have a clear increase. This illustrates1036

a strong negative correlation between the difficulty1037

scores and the quality of distant labels. Specifi-1038

cally, as the difficulty score increases, the quality 1039

Figure 3: Distribution of the Difficulty Scores for La-
beled Positives on Wikigold Dataset

of the distant labels significantly decreases. This re- 1040

sult validates our assumption that “easy” data have 1041

cleaner labels and “hard” data have noisier labels. 1042

The clean data can initialize the model from a better 1043

starting point and improve the model’s robustness 1044

to noise in the latter curricula. 1045

Another important assumption we adopt for the 1046

design of curricula is that the difficulty scores 1047

follow a long-tail distribution. We illustrate the 1048

distribution of difficulty scores estimated on the 1049

Wikigold dataset in Figure 3. It clearly demon- 1050

strates the long-tail phenomenon, with most tokens 1051

having low difficulty scores. This phenomenon can 1052

be observed in other datasets. Due to the space 1053

limit, we omit the plots for other datasets. 1054

F Ablation Study 1055

To further evaluate the effectiveness of CuPUL, we 1056

conduct ablation studies based on Wikigold and 1057

Twitter datasets. The results are shown in Table 5. 1058

To evaluate the effectiveness of the curriculum 1059

learning in CuPUL, we compare it with two varia- 1060

tions of CuPUL. First, we use the five voters trained 1061

using positive and sampled negative examples and 1062

take the average of their soft label predictions as the 1063

result. The results are shown as voter ensemble in 1064

Table 5. Second, we include the result of CuPUL- 1065

curr from Table 2 since it is another variation. To 1066

evaluate the effectiveness of the Conf-MPU loss 1067

estimation for curriculum learning in CuPUL, we 1068

use the regular loss estimation, which considers 1069

unlabeled tokens as non-entity tokens, denoted as 1070

w/o Conf-MPU in Table 5. 1071

Our analysis reveals the critical role of each com- 1072

ponent, as removing any of them results in a signif- 1073

icant drop in the F1 score. Compared CuPUL-curr1074
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hyper-parameter CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR QTL
trainset sentence # 14041 2393 115812 1142 385 4560 18706
voter drop negative 0.3 0.1 0.3 0.1 0.1 0.3 0.3
voter learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

voter learning epochs 1 5 1 10 15 5 1
Conf-MPU γ 20 10 20 10 10 20 20

curriculum learning stage epochs 1 2 1 2 2 1 1
curriculum learning learning rate 1e-5 7e-5 3e-5 1e-5 5e-5 1e-5 5e-5

Table 4: The hyper-parameters used in CuPUL

Method Wikigold Twitter
Precision Recall F1 Precision Recall F1

CuPUL 67.06 74.39 70.53 54.47 54.20 54.34
w/o Curriculum Learning

voter ensemble 56.88 74.88 64.65 35.52 49.52 41.37
CuPUL-curr 58.89 76.18 66.43 47.48 53.07 50.12

w/o Conf-MPU 59.31 75.86 66.57 58.91 47.04 52.53

Table 5: Ablation study on Wikigold and Twitter
datasets. CuPUL is compared with variations without
Curriculum Learning (voter ensemble only and Conf-
MPU only) and without Conf-MPU loss in Curriculum
Learning.

with w/o Conf-MPU, we find that CuPUL-curr con-1075

sistently achieves higher recall. This is attributed to1076

Conf-MPU primarily addressing false positives and1077

partial false positives (Zhou et al., 2022), leading1078

to more tokens being predicted as entities, thereby1079

enhancing recall. Conversely, w/o Conf-MPU ex-1080

hibits higher precision since it tackles both false1081

positives and positive type errors. Addressing posi-1082

tive type errors benefits both precision and recall,1083

but the increase in precision is more pronounced1084

compared to CuPUL-curr.1085

In previous methods, a moderately well-trained1086

model is often used to detect label noise, and the1087

confidently predicted soft labels from the moder-1088

ately well-trained model are often used to replace1089

the noisy distant labels. Based on our previous1090

experiments, the ensembled voters can be viewed1091

as a moderately well-trained model, and the earlier1092

curricula are formed with data that the moderately1093

well-trained model can confidently predict. Thus,1094

following the previous methods, we study which1095

labels should be used for curriculum learning in1096

CuPUL, the voters’ ensembled soft labels or the1097

noisy distant labels. Note that the ensembled labels1098

used here are the soft labels of the voters’ ensem-1099

ble. We use KL-divergence as the loss function in1100

curriculum learning to learn from soft labels.1101

Figure 4 plots the results regarding F1 scores1102

on test data with respect to incremental curriculum1103

stages. We can see that CuPUL learns in almost all 1104

stages of the curricula, and the F1 value is steadily 1105

improving until the second last curriculum. How- 1106

ever, using ensembled soft labels, the model has a 1107

good start but reaches the upper bound quickly. We 1108

have the following insights from this experiment. 1109

1) A model that only learns from the confidently 1110

predicted labels and ignores the potential noisy 1111

data may converge faster but can be impacted by 1112

the performance bottleneck of the initial model. 2) 1113

the last curricula may contain high label noise (See 1114

Appendix E for more details), so training on the 1115

last curricula may degrade the performance slightly. 1116

However, thanks to the curriculum learning sched- 1117

ule, the model is overall robust to noise in the last 1118

curricula. 1119

Figure 4: F1 scores of CuPUL on test data of Wikigold
trained with Distant Labels (red) and Ensembled Labels
from voters (blue) after each curriculum training stage.

G Parameter Study 1120

Here, we perform parameter studies. Due to the 1121

simplicity of CuPUL, we mainly study two param- 1122

eters: number of voters V and number of curricula 1123

η. To ensure comparability of experimental results, 1124

we keep all other parameters fixed and only change 1125

the corresponding parameter (V or η) to demon- 1126

strate their impact. The experiments are carried out 1127

on Wikigold. 1128
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Figure 5: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Voters V .

G.1 Number of Voters V1129

Figure 5 shows the effect of the number of voters1130

V to CuPUL performance. From the figure, we1131

can see that when there are only two voters, the1132

performance of CuPUL is poor. This is understand-1133

able because, with too few voters, the difficulty1134

scores estimated are unreliable, which leads to a1135

low-quality curriculum scheduler. As the number1136

of voters increases, the performance of CuPUL also1137

rapidly improves. When the number of voters is 4,1138

it reaches a local maximum. Then, as the number1139

of voters increases, the new voters can no longer1140

provide new information for difficulty estimation,1141

and the results of CuPUL are stabilized around 0.7.1142

Therefore, with the consideration of computation1143

efficiency, a moderate number greater than or equal1144

to 4 can be chosen for the number of voters.1145

G.2 Number of Curricula η1146

Figure 6 shows the effect of the number of curricula1147

to CuPUL performance. Like the number of voters,1148

when the number of curricula is small, the perfor-1149

mance of CuPUL is poor. Too few curricula can1150

reduce the ability to distinguish between easy and1151

difficult tokens, leading to ineffective curriculum1152

learning. With the increase of η, the performance1153

of CuPUL also improves and reaches the best per-1154

formance at η = 5. After that, as the number of1155

curricula increases, the performance of CuPUL is1156

relatively stable. The performance of CuPUL be-1157

gins to decline after η > 8. The decline may be1158

caused by the data having been trained too many1159

rounds and the model starts to overfit to noisy la-1160

bels.1161

Figure 6: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Curricula η.

BOND RoSTER SCDL Conf-MPU CuPUL CuPUL-ST

Run Time
978s 2397s 4319s 732s 819s 1733s

16m18s 39m57s 71m59s 12m12s 13m39s 28m53s

Table 6: Efficiency analysis on CoNLL03, m means
minute, s means second

H Efficiency Analysis 1162

In order to evaluate the efficiency of CuPUL, we un- 1163

dertook performance timing of the principal meth- 1164

ods on CoNLL03, with the results displayed in 1165

Table 6. All tests were performed on an identi- 1166

cal computing infrastructure. The training epochs 1167

for BOND and SCDL were preset to 5, while 1168

the parameter configurations for RoSTER adhered 1169

strictly to those detailed in their respective paper. 1170

The data in the table reveals that Conf-MPU had 1171

the least time requirement. Our approach, CuPUL, 1172

demonstrated competitive performance in this re- 1173

gard. Even when the self-training procedure was 1174

incorporated into CuPUL-ST, it maintained a sub- 1175

stantial efficiency advantage relative to both RoS- 1176

TER and SCDL. 1177
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