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Abstract

This paper studies the named entity recognition
(NER) task under distant supervision. Distant
supervision from existing resources can be used
to annotate a training corpus instead of requir-
ing a fully annotated corpus from domain ex-
perts, saving time and human effort. The draw-
back of distant supervision lies in the inferior
label quality. Errors, including false positives,
false negatives and positive type errors, are un-
avoidable. To address the different types of
noises, we propose a token-level Curriculum-
based Positive-Unlabeled Learning (CuPUL)
method. Using the proposed difficulty scoring
function, the tokens are assigned to different
curricula, with the easier tokens in the earlier
curricula and the harder tokens in the latter
curricula. Then CuPUL trains gradually with
more curricula using the Conf-MPU loss func-
tion. Our experiments on seven datasets, in-
cluding a newly collected dataset in animal sci-
ence domain, show that the CuPUL can achieve
superior performances, and extensive studies
demonstrate the effectiveness of different com-
ponents of the proposed CuPUL.

1 Introduction

Named Entity Recognition (NER) is an important
task in natural language processing that aims to
identify and classify named entities in text into
predefined types, such as person, location, and or-
ganization. In recent years, supervised learning
has been successful in NER tasks. However, it
needs a large number of high-quality annotations
to train a deep learning model, which can be costly
and time-consuming to acquire. To address this
issue, Distantly-Supervised Named Entity Recog-
nition (DS-NER) has been proposed. This task
uses existing knowledge bases (KB) or dictionaries
to provide annotations, greatly reducing the need
for manual annotations. However, the annotations
from distant supervision suffer from annotation

quality issues such as false positives, false nega-
tives, and positive type errors.

To address the aforementioned issues in DS-
NER, various methods are proposed. Some stud-
ies focus on false negative issues (Shang et al.,
2018; Peng et al., 2019; Zhou et al., 2022). These
methods adjust loss functions to reduce the im-
pact of missing labels. These methods assume
that KB or dictionaries are high quality, so false
negative issues are the predominant issues. Re-
cent studies relax the assumption and propose to
tackle general noisy annotations through noise re-
moval processes (Meng et al., 2021; Liang et al.,
2020; Hedderich and Klakow, 2018; Zhang et al.,
2021b; Liu et al., 2021). Some methods detect
noisy annotations using model prediction confi-
dence, where the assumption is if a moderately
well-trained NER model strongly disagrees with a
distant annotation, then this annotation is likely to
be noisy. Some methods detect noisy annotations
using the loss distribution, where the assumption is
that the model converges slower on noisy annota-
tions than on clean annotations.

The noise removal process faces several chal-
lenges. First, a moderately well-trained NER
model is necessary to detect noise. However, it
is hard to determine a proper threshold for when a
NER model is moderately well-trained. Stopping
the training too early, the model cannot produce an
accurate enough model for noise detection. Stop-
ping the training too late, the model will learn the
noise and degrade the performance. Second, the
moderately well-trained NER model is trained on
noisy labels initially, so the noise detection meth-
ods may have unknown biases and cause irrepara-
ble damage.

In this paper, instead of removing noisy la-
bels, we propose a token-level Curriculum-based
Positive-Unlabeled Learning (CuPUL) method to
tackle the challenge of noisy labels in DS-NER
tasks. The motivation of curriculum learning is that



deep learning models are non-convex and trained
using batches of samples, so the order of train-
ing data can significantly impact the model per-
formance. Curriculum Learning rearranges the
batches of training samples such that the model
learns from easy to hard and learns from easy sam-
ples more times. With the new arrangement, the
models tend to converge to a better local optimum.
We follow the philosophy of curriculum learning
and design a token-level curricula arrangement to
address the token-level noise for DS-NER tasks,
where we observe that “easy samples” are usually
cleaner. Consequentially, learning from easy sam-
ples first can avoid label noise initially and make
the model more robust. We further adopt Positive-
Unlabeled (PU) learning paradigm to address the
false negative issues.

Specifically, CuPUL first trains several voters
to evaluate the difficulty level of each token for
the NER task. Then, the tokens are assigned to
different curricula based on their difficulty scores,
with the easier tokens in the earlier curricula and
the harder tokens in the latter curricula. CuPUL
trains gradually with more curricula in each round
using the Conf-MPU loss function (Zhou et al.,
2022). We evaluate CuPUL on seven DS-NER
datasets. Experimental results demonstrate that
CuPUL consistently achieves better performance
over existing state-of-the-art approaches. Ablation
studies illustrate the effectiveness of curriculum
learning procedures in DS-NER tasks.

In summary, our main contributions are:

* We propose CuPUL to tackle the challenge
of noisy labels in DS-NER tasks following
the curriculum learning philosophy. As far as
we know, this is the first time that curriculum
learning being applied to DS-NER tasks.

* We propose a token-level curriculum sched-
uler to tackle the positive type noises and
adopt a PU loss function to tackle the false
negative noises.

* We also provide an expert-labeled NER
dataset in the animal science domain.

* We empirically demonstrate that CuPUL can
significantly alleviate the impact of label noise
during the model training and outperform the
state-of-the-art DS-NER methods on bench-
mark datasets and the newly collected dataset.

2 Related Work

Fully supervised NER using deep neural networks
always requires a large number of training data
with human annotations, which is very costly. To
alleviate the human efforts on annotating, DS-NER
has been proposed and received increasing research
interest recently, where annotations can be obtained
from existing professional dictionaries or knowl-
edge bases by some matching or query methods.
However, because of the polysemy in language
and the limited coverage of distant supervision re-
sources, DS-NER often suffers from annotation er-
rors like false positive, false negative, and positive
type errors. Therefore, handling annotation errors
in DS-NER has drawn special attention (Yang et al.,
2018; Shang et al., 2018; Mayhew et al., 2019; Cao
et al., 2019; Peng et al., 2019; Liang et al., 2020;
Liu et al., 2021; Zhang et al., 2021a,c; Meng et al.,
2021). Here we briefly discuss a few representative
approaches.

One line of work assumes that distant supervi-
sion often has high-quality positive labels, there-
fore focusing on alleviating the impact of false
negative errors. AutoNER (Shang et al., 2018)
proposes a new tagging scheme to identify entity
candidates and does not count the training loss on
those candidates. Mayhew et al. (2019) introduce
a constraint-driven iterative algorithm learning to
detect false negative errors in the noisy data and
down-weigh them, resulting in a weighted train-
ing set on which a weighted NER model is trained.
More recently, positive and unlabeled learning has
been adopted (Peng et al., 2019; Zhou et al., 2022)
to tackle false negative errors from the loss function
perspective without detection steps. Due to its supe-
riority in tolerating false negative errors, we embed
Conf-MPU (Zhou et al., 2022) into our proposed
method. Top-Neg (Xu et al., 2023) selectively uses
negative samples with high similarity to positives
of the same entity type, improving performance by
effectively distinguishing false negatives.

Another line of work simultaneously considers
annotation errors of all types. Cao et al. (2019)
design a data selection scheme to compute scores
for annotation confidence and annotation coverage
to distinguish high-quality sentences from noisy
ones. BOND (Liang et al., 2020), leveraging the
power of the pre-trained language model RoBERTa,
first adopts early stopping to prevent overfitting to
noisy labels. Liu et al. (2021) propose a calibrated
confidence estimation approach for DS-NER and



integrate it in an LSTM-CRF model under a self-
training framework to reduce the impact of noise.
Zhang et al. (2021a) study the noise in DS-NER
from the perspective of dictionary bias. SCDL
(Zhang et al., 2021c) takes two teacher-student net-
works and a co-training paradigm to cope with
noise and take full advantage of mislabeled sam-
ples. ATSEN (Qu et al., 2023) further develops the
teacher-student networks and achieves better per-
formance. RoOSTER (Meng et al., 2021) proposes a
noise-robust learning scheme consisting of a new
loss function and a noisy label removal step to bet-
ter model training with noisy data. SANTA (Si
et al., 2023) deals with explicit and implicit errors
separately. CLIM (Li et al., 2023) addresses the
imbalance problem in different classes with high-
quality candidate selection and label generation.

3 Preliminary

In this section, we briefly introduce the DS-NER
task and curriculum learning.

3.1 NER Classifier and DS-NER Formulation

NER is the process of locating and classifying
named entities in a corpus into predefined cate-
gories. We denote an input sentence with M to-
kens as ¢ = [z1,x2, -, 2] and denote corre-
sponding annotations as y = [y1,Y2, " ,YM]s
y; € {0,1,--- k}, where O denotes non-entity
and 1,--- | k denote k entity types. In this paper,
we consider token-level NER formulation, where
an NER classifier predicts token labels. Formally,
the contextual token representations of an input
sentence  are represented as

[hi,ho, -, hy] = Linear(Encoder(x)), (1)

where the encoder can be a pre-trained language
model (e.g., BERT). The final prediction is

f($50) :Softma‘r([h’l?h?a”' 7hM])7 (2)
g = Argmazx(f(x,0)), 3)

where 6 denotes the parameters of the encoder and
the linear layers, and g is the prediction.

To construct distantly annotated training data,
the corpus can be annotated with dictionaries by
string matching (Ren et al., 2015; Giannakopoulos
et al., 2017; Peng et al., 2019), or with knowledge
bases by their provided APIs. However, the anno-
tation process will introduce three types of noises,
namely, false positives, false negatives, and positive

type errors, where false positives refer to the noise
where non-entity tokens are erroneously labeled
as entities of a certain type, false negatives refer
to the noises where entity tokens are mistakenly
labeled as non-entity, and positive type errors refer
to misclassifications of entity tokens (for instance,
when a token of type PER is erroneously marked
as type ORG).

3.2 Curriculum Learning

Curriculum learning was first proposed by Ben-
gio et al. (2009) under the assumption that learn-
ing with reordering from “easy” samples to “hard”
samples would boost performance. It has been
applied in various applications, including neural
machine translation (Zhou et al., 2020; Platanios
et al., 2019; Zhou et al., 2020; Wang et al., 2018),
relation extraction (Huang and Du, 2019), reading
comprehension (Tay et al., 2019), natural language
understanding (Xu et al., 2020) and named entity
recognition (Jafarpour et al., 2021; Lobov et al.,
2022; Wenjing et al., 2021).

Curriculum learning has two main steps: diffi-
culty estimation and curriculum scheduler (Kocmi
and Bojar, 2017). For a dataset Z = {z;}_,, the
goal of difficulty estimation is to design a difficulty
scoring function and compute a score for each sam-
ple z;. Mathematically, the difficulty score of each
sample is

H; =D(z),1 <i<T, 4)

where D(+) is the difficulty scoring function. A
higher H; indicates that the sample z; is more diffi-
cult to learn.

Curriculum scheduler includes creating curric-
ula C1, Co, - - -, €, based on difficulty scores and
scheduling learning stages S1, S92, -+ ,S,. Each
stage consists of some curricula.

Several studies aim to adopt curriculum learning
philosophy for textual data and propose various
difficulty-scoring functions and curriculum sched-
ulers. Some methods measure sample difficulty
with features derived from lexical statistics, e.g.,
sentence length and word rarity (Platanios et al.,
2019; Jafarpour et al., 2021), where longer sen-
tences and rarer words are considered “hard”. Oth-
ers use features from pre-trained language models
(Zhou et al., 2020; Wang et al., 2018; Liu et al.,
2020). Most schedulers select samples with dif-
ficulty scores lower than a threshold (Platanios
et al., 2019). While Zhou et al. (2020) design a
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Figure 1: The CuPUL Framework

sample selecting function based on model uncer-
tainty. Our approach, unique in applying token-
level curriculum learning to DS-NER tasks, di-
verges from common sentence-level methods by
utilizing Transformer-based models like BERT for
context-aware token-specific predictions and gradi-
ent learning.

4 Methodology

This section introduces the proposed framework
named CuPUL (Figure 1). The process starts by dis-
tantly labeling the corpus using knowledge bases,
and then several voters are trained (Section 4.1)
using this data to calculate token difficulty scores
(Section 4.2). Finally, CuPUL trains a NER clas-
sifier following the curriculum scheduler using
confidence-based positive-unlabeled learning (Sec-
tion 4.3).

4.1 Difficulty Estimation

Motivated by the token-level noises in DS-NER
tasks, we design the difficulty estimator and the
curriculum scheduler at the token level as well. It
allows the model to learn from one sentence by
ignoring the noisy tokens. For example, in the sen-
tence “Peter(PER) lives(O) in(O) America(ORG)”,
“Peter”, “lives”, and “in” are clean samples, and
“America” is a noise sample. The model can learn
from “Peter lives in X” by ignoring the noise in the
sentence. The token’s difficulty score reflects its
inherent learnability. These scores are estimated us-
ing the disagreements between basic NER models
or voters.

4.1.1 Voters

The design of the voters demands simplicity and
variability. To balance efficiency and diversity, sev-

eral voters are trained to increase prediction results
variability. Label imbalance in NER tasks is miti-
gated by sampling from negative samples, introduc-
ing randomness to voters. Randomness is further
enhanced with different random processes, such as
shuffling and initialization.

For training the voters, a neural network for NER
classification is used, as defined in Section 3.1.
The voters are trained using a regular multi-class
classification risk function. The risk of a classifier
f is given by:

k k
R(f) = mR{,(/)+ (1= m)Rx(f), (5)
=1 i=1

where ngl(f) = Exwp(ady:i) [e(f(xa 9)72>] and
m; = p(y = i) are the classification risk and the
prior of the i-th positive class, respectively, and
Ry (f) = Eppaly—=0) [€(f(x,0),0)] is the classi-
fication risk of the negative class.

4.1.2 Difficulty Scores

After training V' voters, each token z receives V/
predicted class probabilities f(x, 01), ..., f(x, 0y),
where 0...0y are the voters’ parameters. The pre-
diction f(z, 6;) is a vector that represents the class
distribution of each token z denoted as Pr;(z).
The difficulty of the token is assessed based on the
disagreement among these distributions. Specifi-
cally, we use Kullback-Leibler (KL) divergence, a
measurement for dissimilarities of two distributions
Pr;(x) and Prj(x), to calculate the disagreement
level of two voters. Mathematically, it is:

Hij = %{DKL(PI‘Z'(I')HPI‘j(w)))—F
Drcr(Prj(2))|[Pri(z))}, (6)

where Dk (-) denotes the KL divergence. KL
divergence is asymmetric. By taking the average
of H;; and Hj;, we derive a symmetric difficulty
score Hy;jy.

Given that there are V' voters, the final difficulty
score for each token z is defined as the average of
the non-identical pairs among all voters as:

Zz"/:l z;/:iJrl H{ij}
V-(V-1)/2

Eq.(7) defines the token difficulty scores as an arith-
metic mean of disagreements between pair-wise
voters. Consequently, a token’s difficulty score is
low when all voters agree, and it increases with
greater disagreement.

o= )



4.2 Curriculum Design

Since the prevalence of false negatives in distant la-
bels can cause a Positive-Negative learning model
to overfit, we set the model learning process as
Positive-Unlabeled (PU) learning, where data la-
beled with 0 is considered unlabeled rather than
non-entity. PU learning assumes that 1) labeled
positive samples have the same distribution as the
positive samples in the data, and 2) the unlabeled
data follows the distribution of the entire dataset
(Zhou et al., 2022). To fulfill the second assump-
tion, we directly incorporate all unlabeled data into
the curriculum to prevent too less unlabeled tokens
in curricula. Different curriculum partitions are
executed solely on the labeled positive data.

The curriculum design is based on token diffi-
culty scores H. Empirical studies have shown that
these scores follow a long-tail distribution (Figure
3), indicating that most tokens are relatively “easy”.
Previous work (Platanios et al., 2019; Gnana Sheela
and Deepa, 2013) suggests that a curriculum with
uniformly ranged difficulty scores might lead to
most tokens belonging to the first curriculum, mak-
ing curriculum learning ineffective. Hence, we
propose using a power-law selector to construct a
more effective curriculum scheduler.

For a corpus of T}, labeled positive tokens and
T, unlabeled tokens, we initially index the labeled
positive tokens from the easiest to the hardest and
put unlabeled tokens in front of them. The first cur-
riculum is then populated with the first 77}, labeled
positive tokens and all unlabeled tokens, where 7
(0 < 7 < 1) is a selective factor that indicates the
proportion of tokens selected from the corpus. We
then select the first 727 tokens from the remaining
(1 — 7)T, tokens as the second curriculum. This
selection process continues until the penultimate
curriculum. The remaining tokens are placed in the
final curriculum. The token index of final curricula
is denoted as C'1, Cy, ..., ().

Ci:1~T,+ 71T,
Co:Ty+ 1Ty +1~Ty+ (1 4+ 7T,

Cop:Ty+ (T" 4+ )T+ 1~ Ty + T
Note that the first curriculum C starts at index 1,
and the ending position of the last curriculum C),
is defined to be at index T, + T},.

For example, suppose Tp = 20, T;, = 80 and
7 = 0.5. A three-split containing positive curricu-

lum would be (1 to 90), (91 to 95), and (96 to 100).
Thus, the curricula cover the entire corpus.

4.3 Curriculum-based PU Learning

To train the NER classifier with 7 curricula, we
employ the common discrete training scheduler,
“Baby Step” (Spitkovsky et al., 2010; Cirik et al.,
2017). Training begins with the first curriculum C',
and the next curriculum is added after a set number
of epochs. This process continues until all curricula
are included and trained, terminating the training
process. The training stages ({.5;, 1 < i < n}) cor-
respond to the number of curricula, with the model
trained over multiple epochs in each stage. Conse-
quently, the tokens in easier curricula are learned
more times. Each training stage .S; can be regarded
as a standalone training process with the training
subset C4, - -+, C;. Therefore all unlabeled data
and the majority of labeled positive data are used
in each each training stage. Under these conditions,
the two PU assumptions are maintained, allowing
PU learning to be applied directly. Thus, CuPUL
provides a more robust and effective curriculum
learning framework.

Specifically, we adopt the Conf-MPU loss func-
tion, proposed by Zhou et al. (2022), as the back-
bone PU loss function in the curriculum-based
training. Conf-MPU loss function has been shown
to be more robust to PU assumption violation in
practice. The risk function is

k

R(f) =Y mi(Re,(f) + Rz, (f) = Re, (f) + Rg(f),

i=1

where Rs () = Eenp@ly=ir@)>o [5 A(I)]
Ri(f) = Euopiopn (0/(@),0), and R(f) =
Eonp(ain@ <o [E(f(@),0)]. AMz) =p(y >0 z) 'defines
the confidence score of a token being an entity to-
ken. ¢ is a confidence score threshold in the range
of (0, 1]. Due to the introduction of \(z) and ¢, R(f)
can be estimated by labeled positive data and un-
labeled data in each stage with less bias compared
with the traditional PU learning.

For stage S*, the number of token selected for
class i is T°". For simplification, we denote it as
T;. The empirical estimator of Eq.(8) is

Rconffl\APU Z Zmax{() O(f (x50 0) 1)
T, 1 T*
1y 0, AT 005 e~ (50T 0}
b X |1, 0T 6).0)] 9)



with a non-negative constraint inspired by Kiryo
et al. (2017) ensuring the risk on the negative class.
We follow Zhou et al. (2022) and set ¢ to 0.5 by
default. But different from having \(x) estimated
by another binary PU model, we reuse the voters
trained in Section 4.1 to ensemble the confidence
score for each token z. We use the soft-label en-
semble as

S f(w,65)

Pr(z) = v ,

(10)
where Pr(z) is the ensemble probability distribu-
tion over all classes.

The confidence score of a token x being an entity
token is then calculated as

Mz) = Zprj(x). (11)

For the neural network of the NER classifier, we
choose the same structure with voters, which is
defined in Section 3.1.

4.4 Loss Function

Two loss functions are popularly used for the DS-
NER tasks. The first loss function is cross entropy
(CE) loss:

ZCE - lOg fi,yi (:l‘; 0)7 (12)

where f; ., (x;0) is the prediction of token x; on
class j.
Another commonly used loss function is mean
absolute error (MAE):
Cvap =y; = fiy(z;0)], (13)
where | - | is L-1 norm of the vector and y; denotes

the one hot vector of ;. We leave the discussion of
these two loss functions in the Appendix A.

4.5 Self-Training

Several studies (Liang et al., 2020; Peng et al.,
2019; Meng et al., 2021) have shown that self-
training can effectively upgrade the performance
of a trained DS-NER model. We apply the self-
training method in Meng et al. (2021), which
uses soft labels to conduct self-training and uses
a masked language model to conduct contextual
data augmentation simultaneously. Self-training is
used directly after CuPUL, and we call the final
classifier after self-training CuPUL+ST.

5 Experimental Study
5.1 Baseline Methods

Two groups of baseline methods are shown below.

Fully supervised methods. We include a fully su-
pervised NER method based on the RoOBERTa-base
model (Liu et al., 2019) as an upper-bound perfor-
mance reference.

Distantly-supervised methods. First, we report dis-
tant supervision results as KB-Matching. We clas-
sify DS-NER methods into three groups. 1) Ds-
NER without Self-training consists of AutoNER(Shang
et al., 2018), Conf-MPU (Zhou et al., 2022), and
RoBERTa-ES (Liang et al., 2020). CuPUL is directly
comparable with these methods. 2) DS-NER with Self-
training includes BOND (Liang et al., 2020), RoSTER
(Meng et al., 2021), SCDL (Zhang et al., 2021c)
and ATSEN (Qu et al., 2023). These methods ap-
ply teach-student or training augmentation steps to
further boost the DS-NER performance. The meth-
ods in these two groups are sequence-based mod-
els. 3) Span-based DS-NER models, including CLIM
(Li et al., 2023) , SANTA (Si et al., 2023) , and Top-
Neg (Xu et al., 2023) . Previous work (Li et al.,
2023) shows that span-based NER models often
outperform sequence-based NER methods in terms
of effectiveness, albeit at the cost of increased al-
gorithmic complexity.

We also include an ablation version of CuPUL
(labeled as CuPUL-curr), which removes Curricu-
lum Learning, as a baseline. More details of base-
lines can be found in Appendix C.

5.2 Datasets and Metrics

Datasets: We conduct experiments on seven DS-
NER datasets. Six of them are benchmark datasets
including CoNLLO3 (Liang et al., 2020), Twitter
(Liang et al., 2020), OntoNotes5.0 (Liang et al.,
2020), Wikigold (Liang et al., 2020), Webpage
(Liang et al., 2020), and BCSCDR (Shang et al.,
2018). The first five datasets are open-domain
datasets, and BC5CDR is in bio-medical domain.
We also collected a new dataset from the animal
science domain named “QTL”. The NER goal is
to detect Trait Entities in animal science publica-
tions, an important task in building a comprehen-
sive database for livestock trait research and animal
breeding practice. For the corpus, domain experts
gathered 1,716 PubMed abstracts from quantitative
trait locus (QTL) studies for 6 species. For the
distant annotation, we collected a dictionary with
3,884 curated trait names from four domain on-



Dataset Train Valid Test | Types
Sentence 14041 20 3453
CONLLO3 | “pen 203621 475 46435 |
Twitter Sentence 2393 50 3844 10
Wi Token 44076 719 58064
Sentence 115812 50 12217
OntoNotes3.0 | b h ™ 2200865 1090 230118 | '

.. Sentence 1142 20 274
Wikigold Token 25819 579 6538 4

Sentence 385 20 135
Webpage Token 5293 120 1131 4

Sentence 4560 20 4797

BCSCDR Token 118170 533 124750 2
Sentence 18706 21 1044

QTL Token 514176 952 32251 !

Table 1: The statistics of involved DS-NER datasets,
the valid set comprises a small subset from the original
dataset, whereas trainset and testset utilize the entire
original dataset.

tologies'. For validation and testing, we randomly
selected 107 abstracts and acquired ground truth
annotations from a domain expert curator. We split
the annotated sentences to form validation and test-
ing sets with 21 and 1,044 sentences, respectively.
The statistics of seven datasets are summarized in
Table 1. More details can be found in Appendix B.

Metrics: We use span-level Precision (P), Recall
(R), and F1 score as the evaluation metrics. These
metrics require exact matches between predicted
and actual entities. A continuous span with the
same label is considered a single entity during in-
ference.

In the QTL application, according to the cura-
tor’s practical needs, identifying potential entities
is more important than identifying precise bound-
aries. Therefore, we also introduce relaxed Preci-
sion (P), Recall (R), and F1 score to evaluate the
performance of DS-NER methods for practical us-
age. For relaxed metrics, it deems a predict span
correct if there is at least one overlapping word
with the ground truth annotation.

5.3 Experiment Settings

We use the pre-trained ROBERTa as the backbone
model for both the Voter and NER classifier*. For
open-domain datasets, we use roberta-base®. For bio-
domain datasets, we use biomed-reberta-base*. We

'Vertebrate Trait (VT) Ontology, Livestock Product Trait
(LPT) Ontology, Livestock Breed Ontology (LBO), Clinical
Measurement Ontology (CMO).

2We will release code upon paper acceptance.

3https://huggingface.co/roberta-base

4https ://huggingface.co/allenai/biomed_
roberta_base

employ PyTorch® and conduct all experiments on a
server with a Tesla A100 GPU (32G).

For the benchmark dataset, we use the small sub-
set of validation to adjust the learning rate. Other
hyper-parameters are set according to data statistics.
For QTL dataset, baselines are reproduced using
their published codes. Baselines CLIM, SANTA,
and Top-Neg are excluded due to reproduction ob-
stacles. Hyperparameters of baseline methods and
CuPUL are tuned on the validation set. Details can
be found in Appendix D.

5.4 Main Results

Table 2 presents the overall span-level precision,
recall, and F1 scores for all methods on benchmark
datasets. Note that ROSTER was tested on a dif-
ferent version of the OntoNotes5.0 dataset (Meng
et al., 2021). Therefore we exclude its reported
results in Table 2 for a fair comparison. We have
the following observations.

The KB-Matching results show that distant la-
bels are often of low recall, and on four of the
benchmark datasets, of low precision as well. The
noise-aware DS-NER models significantly outper-
form the KB-Matching. Span-based DS-NER mod-
els tend to perform better than sequence-based mod-
els, which aligns with previous findings (Li et al.,
2023). However, span-based NER models require
innumerating all spans in the sentences, having
higher complexity and longer training and infer-
ence time than sequence-based models.

The proposed methods CuPUL and CuPUL+ST
achieve the best F1 scores on five out of six
datasets compared with all DS-NER models and
comparable results on OntoNotes5.0 dataset. For
OntoNotes5.0 dataset, almost all noise-aware DS-
NER models have similar performance, implying
that the distant annotations may contain certain bi-
ases that is hard for the model to address. Except
for OntoNotes5.0 dataset, compared with DS-NER
Baselines without Self-training, CuPUL shows sig-
nificant improvement on all metrics. Even com-
pared with DS-NER Baselines with Self-training,
CuPUL outperforms on four datasets. With the self-
training step, CuPUL+ST in general can further im-
prove the performance. Surprisingly, CuPUL and
CuPULAST achieve higher F1 scores than the su-
pervised baseline (RoBERTa) on Twitter and Web-
page. We suspect that the distributions of the train-
ing and test data are inconsistent for these datasets,

Shttps://pytorch.org/
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Method CoNLLO03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
Fully Supervised
RoBERTa 90.11 (89.14/91.10)  52.19 (51.76/52.63) 86.20 (84.59/87.88) 86.43 (85.33/87.66) 72.39 (66.29/79.73) 90.99 (-/-)f

DS-NER Baselines without Self-training

KB-Matching” 71.40 (81.13/63.75) 35.83 (40.34/32.22)
AutoNER#  67.00 (75.21/60.40)  26.10 (43.26/18.69)

RoBERTa-ES#  75.61 (83.76/68.90) 46.61 (53.11/41.52)
Conf-MPUT  79.16 (78.58/79.75) -

59.51 (63.86/55.71)
67.18 (64.63/69.95)
68.11 (66.71/69.56)

64.32 (86.39/51.24)F
79.99 (82.63/77.52)1
73.66 (80.43/67.94)t
77.22 (69.79/86.42)F

47.76 (47.90/47.63)
47.54 (43.54/52.35)
51.55 (49.17/54.50)

52.45 (62.59/45.14)
51.39 (48.82/54.23)
59.11 (60.14/58.11)

Span-based DS-NER models

CLIM® 85.4 (1) 538 (1) 69.6 (-1 70 (-1-) 67.9 (1) N
SANTA®  86.59 (86.25/86.95) - 69.72 (69.24/70.21) ) 71.79 (78.40/66.72)  79.23 (81.74/76.88)
Top-Neg®  80.55(81.07/80.23) 52.86 (52.30/53.55) . . . 80.39 (82.09/78.90)

DS-NER Baselines with Self-training

BOND? 81.15 (82.00/80.92) 48.01 (53.16/43.76)  68.35 (67.14/69.61)  60.07 (53.44/68.58) 65.74 (67.37/64.19) -
RoOSTERY 85.40 (85.90/84.90) - - 67.80 (64.90/71.00) - -
SCDL} 83.69 (87.96/79.82) 51.10 (59.87/44.57) 68.61 (67.49/69.77) 64.13 (62.25/66.12) 68.47 (68.71/68.24) -
ATSEN! 85.59 (86.14/85.05)  52.46 (62.32/45.30)  68.95 (66.97/71.05) - 70.55 (71.08/70.55) -
Proposed Methods
CuPUL-curr  83.18 (83.69/82.68) 50.12 (47.48/53.07) 67.76 (65.66/70.00) 66.43 (58.89/76.18) 65.15 (62.89/67.57) 79.91 (75.07/85.43 )
CuPUL 85.09 (84.64/85.53) 54.34 (54.47/54.20) 68.06 (66.31/69.91) 70.53 (67.06/74.39) 73.10 (74.65/71.62)  81.57 (77.02/86.70)
CuPUL+ST  86.64 (86.02/87.27) 54.78 (57.32/52.46) 68.20 (66.57/69.11)  70.19 (66.96/73.74) 74.48 (76.06/72.97)  80.92 (75.45/87.26)

Table 2: Performance on benchmark datasets: F1 Score (Precision/Recall) (in %). # marks the row of results
reported by Liang et al. (2020). J marks the row of results reported by Meng et al. (2021), where results for Twitter,
OntoNote5.0 and Webpage are not reported in Meng et al. (2021). % marks the row of results reported by Zhang
et al. (2021c). & marks the row of results from the method proposed paper respectively. T marks the results from

Zhou et al. (2022). Best results are in bold.

Method QTL-strict

DS-NER Baselines without Self-training

KB-Matching 37.15 (82.95/23.93) 41.86 (93.46/26.97)
AutoNER 41.67 (69.07/29.83)  55.49 (83.17/41.64)

RoBERTa-ES  38.07 (76.30/25.37) 46.58 (91.15/31.28)

DS-NER Baselines with Self-training

QTL-relax

BOND 53.08 (60.89/47.04)  65.57 (77.97/56.57)
RoSTER 47.80 (73.12/35.51)  55.43 (91.35/39.79)
SCDL 43.62 (79.57/30.05) 50.18 (89.85/34.81)
ATSEN 46.23 (66.98/35.30) 51.64 (86.21/36.86)
Proposed Methods
CuPUL-curr  54.75 (75.40/42.99) 62.94 (86.76/49.38)
CuPUL 58.02 (65.73/51.93)  70.24 (79.75/62.76)
CuPUL+ST  61.83 (58.65/65.38) 75.82 (72.96/78.91)

Table 3: Performance on QTL dataset: F1 Score (Preci-
sion/Recall) (in %). The best results are in bold.

and the supervised learning may have overfitted the
training set due to the limited size.

Compared to CuPUL-curr, the ablation ver-
sion of CuPUL by removing curriculum learning,
CuPUL outperforms it across datasets, showing
the efficacy of curriculum learning in boosting per-
formance. Delving into precision and recall, we
observe that CuPUL consistently achieves better
precision than CuPUL-curr, indicating that curricu-
lum learning does improve the model’s robustness
to false positives in training data.

Table 3 presents strict and relaxed precision, re-
call, and F1 scores for all methods on the QTL
dataset. KB matching reveals that QTL annotations
suffer from low recall but have relatively high pre-

cision, creating a notable imbalance between these
metrics. We observe that DS-NER baselines with-
out self-training have limited recall improvement,
resulting in weak performance. DS-NER baselines
with self-training improve recall, but CuPUL and
CuPULAST can further boost the recall, signifi-
cantly outperforming all baseline methods. Specifi-
cally, strict F1 and relaxed F1 of CuPUL+ST out-
perform the runner-up by 8.75% and 10.25%, re-
spectively.

More experimental studies including Difficulty
Score Estimation Efficiency Analysis, and Parame-
ter Studies can be found in Appendix E H G.

6 Conclusion and Future Work

In this paper, we propose a token-level curriculum-
based PU learning (CuPUL) method to improve
distantly supervised named entity recognition tasks.
We propose a difficulty scoring function that esti-
mates the token difficulty based on disagreements
between pair-wised voters. The tokens are then
arranged into different curricula according to their
difficulty scores. Finally, we propose a novel
curriculum-based PU learning procedure and train
CuPUL from easy to hard curricula. Experiments
demonstrate the effectiveness of CuPUL on six
benchmark datasets and the newly collected QTL
dataset, and CuPUL outperforms state-of-the-art
DS-NER models. Further studies illustrate the effi-
cacy of each component in CuPUL.



Limitations

The "Baby Step" strategy in curriculum learning
involves multiple repetitions of the first curriculum.
Coupled with our power-law selector and curricu-
Ium scheduler, which tends to choose a larger initial
curriculum, this may negatively impact efficiency
if many curricula are established since the larger
curriculum is repeatedly trained.

Ethics Statement
We comply with the ACL Code of Ethics.
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Appendix
A Discussion of Loss Function

Comparing the two loss functions, ¢cg is un-
bounded, and it grants better model convergence
when trained with clean data (i.e., y are ground truth
labels) because more emphasis is put on difficult to-
kens. However, when the labels are noisy, training
with the cross-entropy loss can cause overfitting to
the wrongly labeled tokens. ¢j,4r is more noise-
robust than ¢cg. It is bounded and treats every
token more equally for gradient update, allowing
the learning process to be dominated by the correct
majority in distant labels. However, using ¢y, 4 for
training deep neural models generally worsens the
convergence efficiency and effectiveness due to the
inability to adjust for challenging training samples.

Considering the different characteristics of these
two loss functions, in practice, we suggest using
¢c g loss for tasks with more entity types and using
¢mag loss for tasks with fewer number of entity

types.
B Datasets

Here, we give a short description of the six bench-
mark datasets as follows:

« CoNLLO3 (Tjong Kim Sang and De Meulder,
2003) is built from 1393 English news arti-
cles and consists of four entity types: person,
location, organization, and miscellaneous.

Twitter (Godin et al., 2015) is from the WNUT
2016 NER shared task and consists of 10 en-
tity types.

OntoNotes5.0 (Weischedel et al., 2013) is
built from documents of multiple domains
like broadcast conversations, web data, etc.
It consists of 18 entity types.

« Wikigold (Balasuriya et al., 2009) is built from
a set of Wikipedia articles (40k tokens). They
are randomly selected from a 2008 English
dump and manually annotated with four entity
types same as CoNLLO3.

« Webpage (Ratinov and Roth, 2009) comprises
personal, academic, and computer science
conference web pages. It consists of 20 web
pages that cover 783 entities with four entity
types same as CoNLLO3 too.

« BC5CDR comes from the biomedical domain.
It consists of 1,500 articles, containing 15,935
Chemical and 12,852 Disease mentions.
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C Baselines

Here, we give a short description of all the baseline
methods: KB-Matching distantly labels the test sets
using distant supervision, serving as a reference to
illustrate the performance improvements given by
other advanced DS-NER methods.

AutoNER (Shang et al., 2018) trains the neural
model with a “Tie or Break” tagging scheme for
entity boundary detection and then predicts entity
type for each candidate.

Conf-MPU (Zhou et al., 2022) treats the NER task
as a Positive-Unlabeled learning problem and uti-
lizes the pre-learned confidence scores to enhance
the model’s performance.

CLIM (Li et al., 2023) addresses the imbal-
ance problem in the high-performance and low-
performance classes by improving the candidate
selection and label generation.

SANTA (Si et al., 2023) dealing with inaccurate
and incomplete annotation noise in DS-NER by
utilizing separate strategies.

Top-Neg (Xu et al., 2023) selectively uses neg-
ative samples with high similarity to positives of
the same entity type, improving performance by
effectively distinguishing false negatives.

RoBERTa-ES (Liang et al., 2020) trains a NER
model using a RoBERTa-base model and adopts
early stopping to prevent the model from overfitting
to noisy distant labels.

BOND (Liang et al., 2020) trains a RoBERTa
model on distantly labeled data with early stop-
ping and then uses a teacher-student framework to
iteratively self-train the model.

RoSTER (Meng et al., 2021) employs a noise-
robust loss function and a self-training process with
contextual augmentation to train a NER model.

SCDL (Zhang et al., 2021c) conducts self-
collaborative denoising with teacher-student frame-
work. It trains two teacher-student networks, and
the final reports come from the best model (teacher
or student).

ATSEN (Qu et al., 2023) develops a teacher-
student framework with adaptive teacher learning
and fine-grained student ensembling.

D Experiment Settings

For datasets CoNLL03, OntoNotes5.0, Webpage,
Twitter, Wikigold, QTL and BC5CDR, the maxi-
mum sequence length is set as 150, 230, 120, 160,
120, 180, 280 respectively, to ensure the algorithm
works correctly. Other parameters shows in Table



4. OntoNote5.0 and Twitter have more entity types,
so we choose relatively small v values. We ap-
ply cross-entropy loss to OntoNotes5.0 and Twitter
since they have more entity types and apply MAE
loss to CoNLLO03, Webpage, and Wikigold. For
all the datasets, we train them with a batch size of
32 sentences and apply Adam optimizer (Kingma
and Ba, 2014). For all the datasets, the number of
voters K and the number of curricula C are set as 5
and 5, respectively. The curriculum selective factor
7 is set to 0.5 for all the datasets. We use the same
random seeds for all datasets.

E Difficulty Score Estimation
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Figure 2: Distant Label Quality Token Level Positive
Error Rate and Mean Difficulty Scores for Each Cur-
riculum on Wikigold Dataset.

For CuPUL, one assumption adopted is that diffi-
culty scores can reflect the quality of distant super-
vision, where “easier” tokens have “cleaner” labels.
To validate this assumption and evaluate the quality
of the difficulty score estimation, we examine the
correlation between the difficulty scores and the
quality of distant labels. We use Wikigold as the
testbed, and the results are illustrated in Figure 2.

For each training curriculum, we compute the
token-level positive error rate (positive errors in-
cludes false positives and positive type errors), and
plot the rate for each curriculum use the left y-axis
in Figure 2. We also compute the average difficulty
scores for tokens in each curriculum shown with
the right y-axis in Figure 2.

We can see that as the number of curricula in-
creases, the average token difficulty scores and pos-
itive error rate have a clear increase. This illustrates
a strong negative correlation between the difficulty
scores and the quality of distant labels. Specifi-
cally, as the difficulty score increases, thequality
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Figure 3: Distribution of the Difficulty Scores for La-
beled Positives on Wikigold Dataset

of the distant labels significantly decreases. This re-
sult validates our assumption that “easy” data have
cleaner labels and “hard” data have noisier labels.
The clean data can initialize the model from a better
starting point and improve the model’s robustness
to noise in the latter curricula.

Another important assumption we adopt for the
design of curricula is that the difficulty scores
follow a long-tail distribution. We illustrate the
distribution of difficulty scores estimated on the
Wikigold dataset in Figure 3. It clearly demon-
strates the long-tail phenomenon, with most tokens
having low difficulty scores. This phenomenon can
be observed in other datasets. Due to the space
limit, we omit the plots for other datasets.

F Ablation Study

To further evaluate the effectiveness of CuPUL, we
conduct ablation studies based on Wikigold and
Twitter datasets. The results are shown in Table 5.

To evaluate the effectiveness of the curriculum
learning in CuPUL, we compare it with two varia-
tions of CuPUL. First, we use the five voters trained
using positive and sampled negative examples and
take the average of their soft label predictions as the
result. The results are shown as voter ensemble in
Table 5. Second, we include the result of CuPUL-
curr from Table 2 since it is another variation. To
evaluate the effectiveness of the Conf-MPU loss
estimation for curriculum learning in CuPUL, we
use the regular loss estimation, which considers
unlabeled tokens as non-entity tokens, denoted as
w/o Conf-MPU in Table 5.

Our analysis reveals the critical role of each com-
ponent, as removing any of them results in a signif-
icant'drop in the F1 score. Compared CuPUL-curr



hyper-parameter ‘ CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BCS5CDR QTL
trainset sentence # ‘ 14041 2393 115812 1142 385 4560 18706
voter drop negative 0.3 0.1 0.3 0.1 0.1 0.3 0.3
voter learning rate le-5 le-5 le-5 le-5 le-5 le-5 le-5
voter learning epochs 1 5 1 10 15 5 1
Conf-MPU ~ 20 10 20 10 10 20 20
curriculum learning stage epochs 1 2 1 2 2 1 1
curriculum learning learning rate le-5 Te-5 3e-5 le-5 Se-5 le-5 Se-5

Table 4: The hyper-parameters used in CuPUL

Wikigold Twitter
Method Precision Recall F1  Precision Recall F1
CuPUL 67.06 7439  70.53 54.47 5420 54.34
w/0 Curriculum Learning
voter ensemble 56.88 74.88  64.65 35.52 49.52  41.37
CuPUL-curr 58.89 76.18  66.43 47.48 53.07 50.12
w/o Conf-MPU 59.31 75.86  66.57 58.91 47.04 52.53

Table 5: Ablation study on Wikigold and Twitter
datasets. CuPUL is compared with variations without
Curriculum Learning (voter ensemble only and Conf-
MPU only) and without Conf-MPU loss in Curriculum
Learning.

with w/o Conf-MPU, we find that CaPUL-curr con-
sistently achieves higher recall. This is attributed to
Conf-MPU primarily addressing false positives and
partial false positives (Zhou et al., 2022), leading
to more tokens being predicted as entities, thereby
enhancing recall. Conversely, w/o Conf-MPU ex-
hibits higher precision since it tackles both false
positives and positive type errors. Addressing posi-
tive type errors benefits both precision and recall,
but the increase in precision is more pronounced
compared to CuPUL-curr.

In previous methods, a moderately well-trained
model is often used to detect label noise, and the
confidently predicted soft labels from the moder-
ately well-trained model are often used to replace
the noisy distant labels. Based on our previous
experiments, the ensembled voters can be viewed
as a moderately well-trained model, and the earlier
curricula are formed with data that the moderately
well-trained model can confidently predict. Thus,
following the previous methods, we study which
labels should be used for curriculum learning in
CuPUL, the voters’ ensembled soft labels or the
noisy distant labels. Note that the ensembled labels
used here are the soft labels of the voters’ ensem-
ble. We use KL-divergence as the loss function in
curriculum learning to learn from soft labels.

Figure 4 plots the results regarding F1 scores
on test data with respect to incremental curriculum
stages. We can see that CuPUL learns in almost all
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stages of the curricula, and the F1 value is steadily
improving until the second last curriculum. How-
ever, using ensembled soft labels, the model has a
good start but reaches the upper bound quickly. We
have the following insights from this experiment.
1) A model that only learns from the confidently
predicted labels and ignores the potential noisy
data may converge faster but can be impacted by
the performance bottleneck of the initial model. 2)
the last curricula may contain high label noise (See
Appendix E for more details), so training on the
last curricula may degrade the performance slightly.
However, thanks to the curriculum learning sched-
ule, the model is overall robust to noise in the last
curricula.

0.8

0.7 »* * *
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F1 of CuPUL

0.4 1

0371 4 —A— CuPUL Train with Ensemble Label
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1 2 3 4 5
Curriculum Stages

Figure 4: F1 scores of CuPUL on test data of Wikigold
trained with Distant Labels (red) and Ensembled Labels
from voters (blue) after each curriculum training stage.

G Parameter Study

Here, we perform parameter studies. Due to the
simplicity of CuPUL, we mainly study two param-
eters: number of voters V and number of curricula
n. To ensure comparability of experimental results,
we keep all other parameters fixed and only change
the corresponding parameter (V' or n) to demon-
strate their impact. The experiments are carried out
on Wikigold.
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Figure 5: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Voters V.

G.1 Number of Voters V

Figure 5 shows the effect of the number of voters
Vv to CuPUL performance. From the figure, we
can see that when there are only two voters, the
performance of CuPUL is poor. This is understand-
able because, with too few voters, the difficulty
scores estimated are unreliable, which leads to a
low-quality curriculum scheduler. As the number
of voters increases, the performance of CuPUL also
rapidly improves. When the number of voters is 4,
it reaches a local maximum. Then, as the number
of voters increases, the new voters can no longer
provide new information for difficulty estimation,
and the results of CuPUL are stabilized around 0.7.
Therefore, with the consideration of computation
efficiency, a moderate number greater than or equal
to 4 can be chosen for the number of voters.

G.2 Number of Curricula

Figure 6 shows the effect of the number of curricula
to CuPUL performance. Like the number of voters,
when the number of curricula is small, the perfor-
mance of CuPUL is poor. Too few curricula can
reduce the ability to distinguish between easy and
difficult tokens, leading to ineffective curriculum
learning. With the increase of 5, the performance
of CuPUL also improves and reaches the best per-
formance at n = 5. After that, as the number of
curricula increases, the performance of CuPUL is
relatively stable. The performance of CuPUL be-
gins to decline after n > 8. The decline may be
caused by the data having been trained too many
rounds and the model starts to overfit to noisy la-
bels.
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Figure 6: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Curricula 7.

BOND RoSTER SCDL Conf-MPU CuPUL CuPUL-ST

978s 2397s 4319s 732s 819s 1733s
16ml8s  39m57s  71m59s 12m12s 13m39s 28m53s

Run Time

Table 6: Efficiency analysis on CoNLLO3, m means
minute, s means second

H Efficiency Analysis

In order to evaluate the efficiency of CuPUL, we un-
dertook performance timing of the principal meth-
ods on CoNLLO3, with the results displayed in
Table 6. All tests were performed on an identi-
cal computing infrastructure. The training epochs
for BOND and SCDL were preset to 5, while
the parameter configurations for ROSTER adhered
strictly to those detailed in their respective paper.
The data in the table reveals that Conf-MPU had
the least time requirement. Our approach, CuPUL,
demonstrated competitive performance in this re-
gard. Even when the self-training procedure was
incorporated into CuPUL-ST, it maintained a sub-
stantial efficiency advantage relative to both RoS-
TER and SCDL.
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