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Abstract
Self-supervised contrastive learning has emerged
as a powerful tool in machine learning and com-
puter vision to learn meaningful representations
from unlabeled data. Meanwhile, its empirical
success has encouraged many theoretical stud-
ies to reveal the learning mechanisms. However,
in the existing theoretical research, the role of
data augmentation is still under-exploited, espe-
cially the effects of specific augmentation types.
To fill in the blank, we for the first time pro-
pose an augmentation-aware error bound for self-
supervised contrastive learning, showing that the
supervised risk is bounded not only by the unsu-
pervised risk, but also explicitly by a trade-off in-
duced by data augmentation. Then, under a novel
semantic label assumption, we discuss how cer-
tain augmentation methods affect the error bound.
Lastly, we conduct both pixel- and representation-
level experiments to verify our proposed theoreti-
cal results.

1. Introduction
Self-supervised contrastive learning has shown great empir-
ical success in learning representations for computer vision
(Chen et al., 2020a;b; He et al., 2020; Chen et al., 2021;
Grill et al., 2020; Chen & He, 2021) and multi-modal tasks
(Radford et al., 2021; Zhang et al., 2023a). Typically, a con-
trastive learning model learns to distinguish between similar
and dissimilar pairs of data points by drawing near the pos-
itive samples (data augmentations of the same instance),
while pushing away the negative samples (data augmenta-
tions of different instances) (Chen et al., 2020a;b; He et al.,
2020; Chen et al., 2021). This process encourages the model
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to encode useful features that capture semantic similarities
between different instances in the data, leading to improved
performance on downstream tasks like classification, detec-
tion, or segmentation.

Aside from the empirical success of self-supervised con-
trastive learning, many theoretical works aim to explain
its underlying working mechanisms. The main theoretical
framework branches into two categories. The first category
directly builds a relationship between the unsupervised con-
trastive risk and supervised risks via statistical modelings
(Arora et al., 2019; Nozawa & Sato, 2021; Ash et al., 2022;
Bao et al., 2022; Lei et al., 2023). However, these works
assume that the anchor and positive samples are condition-
ally independent, which contradicts the practical selection
procedure of positive samples therefore being unrealistic.

The second category depends on the assumption of augmen-
tation graph and borrow mathematical tools from unsuper-
vised spectral clustering (HaoChen et al., 2021; Zhang et al.,
2023a; Zhuo et al., 2023; Wang et al., 2024a;b). However,
the augmentation graph assumption is relatively abstract
and typically hard to verify. Wang et al. (2021) proposed a
similar assumption called augmentation overlap, but it still
fails to explain the impacts of specific kinds of data aug-
mentations. Huang et al. (2023) proposed a (σ, δ)-measure
to mathematically quantify the data augmentation, whereas
there still remains a gap between this measure and real-
world data augmentation methods.

Aside from these two major categories, there are also other
explanatory works of contrastive learning from aspects of
feature geometric (Wang & Isola, 2020; Zhang et al., 2023b),
information theory (Tian et al., 2020; Wu et al., 2020;
Ouyang et al., 2025), independent component analysis (Zim-
mermann et al., 2021), neighborhood component analysis
(Ko et al., 2022), stochastic neighbor embedding (Hu et al.,
2023), message passing (Wang et al., 2023), distribution-
ally robust optimization (Wu et al., 2024), etc. Nonetheless,
the role of data augmentation is still under-exploited in the
existing theoretical frameworks, especially without mathe-
matically analyzing specific data augmentation methods.

Under such background, in this paper, we propose an
augmentation-aware theory for self-supervised contrastive
learning. Specifically, we derive a novel decomposition of
the unsupervised contrastive risk with respect to the number
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of negative samples sharing the same label with the an-
chor. Then through investigating the inner risks, we propose
our main theorem of the augmentation-aware error bound,
which shows that the supervised risk is not only bounded by
the unsupervised contrastive risk, but also by the minimum
same-class distance and the maximum same-image distance
of the augmented dataset. Then under a novel semantic
label assumption, we analyze specific types of data aug-
mentation and discuss the existence of a trade-off between
the two distance terms with respect to the strength of data
augmentation.

Our contributions are summarized as follows.

• We for the first time propose an augmentation-aware
error bound for self-supervised contrastive learning,
which explicitly includes the quality of data augmenta-
tion in the bound without any additional assumptions.
The bound shows that data augmentation is equally
important to downstream classification as the unsuper-
vised contrastive risk.

• By proposing a novel semantic label assumption, we
analyze specific types of data augmentation including
random resized crop and color distortion, and show a
trade-off with respect to the strength of data augmen-
tation, i.e., the minimum same-class different-image
distance decreases while the maximum same-image
distance increases as augmentation strength increases.

• We conduct both pixel- and representation-level exper-
iments to verify our theoretical conclusions. We verify
the trend of distances with respect to augmentation
strength and that the optimal augmentation parameters
lead to optimal downstream classification accuracy.

The paper is organized as follows. In Section 2, we pro-
pose our theoretical framework, including the mathematical
formulations and our proposed augmentation-aware error
bound for self-supervised contrastive learning. In Section
3, we compare our bound with existing theoretical studies.
Based on the error bound, by proposing the semantic label
assumption, we analyze the effects of specific types of data
augmentation including random resized crop and random
color distortion in Section 4. In Section 5, we conduct nu-
merical experiments to verify our theoretical conclusions.
Finally, we conclude our paper in Section 6. Appendices A,
B, and C present the related works, proofs of the theorems,
and additional experiments, respectively.

2. Theoretical Framework
In this section, we first introduce the mathematical formu-
lations in Section 2.1. Then in Section 2.2, we present the
main theorem of this paper, i.e. the augmentation-aware er-
ror bound. We delay the error analysis of the main theorem

to Section 2.3, where we first propose a novel decomposi-
tion of the risk and then investigate the bound of the inner
risk. Detailed proofs are shown in Appendix B.

2.1. Mathematical Formulations

Notation. For original input data, we use the bar nota-
tion to denote the original input image, i.e., we let X̄ de-
note the set of all possible data points and denote PX̄ as
the corresponding distribution. Then we have the input
image x̄ ∈ X ∼ PX̄ . We denote C ∈ N as the num-
ber of classes, and c ∈ [C] ∼ πc as the class label of x̄,
where [C] := {1, . . . , C} and πc := P(y = c) denotes
the marginal probability distribution of Class c. Denote
π = {πc}Cc=1. Moreover, we denote ρc := P(·|y = c) as
the posterior probability distribution of Class c. For the
augmented data, we let A denote the set of all possible
data augmentations, and denote PA as the corresponding
distribution. We denote x := a(x̄) as the augmented image,
where a ∈ A ∼ PA.

Unsupervised contrastive learning. In unsupervised con-
trastive learning, we select the different data augmenta-
tions of the same input image as the positive samples, and
select the data augmentations of different input images
as negative samples. The data generation process is de-
scribed as follows: (i) draw positive/negative classes: c,
{c−k }Kk=1 ∼ πK+1; (ii) draw an original sample for the
anchor and positives x̄ ∼ ρc; (iii) draw original samples
for the negatives x̄−

k ∼ ρck , k = 1, . . . ,K; (iv) draw data
augmentations a, a′, {ak}Kk=1 ∼ AK+1. Then the anchor
is x = a(x̄), the positive sample is x′ = a′(x̄), and the
negative samples are xk = ak(x̄k), k = 1, . . . ,K.

Compared with the CURL frameworks (Arora et al., 2019),
our formulation accords better with the practical applica-
tions of unsupervised contrastive learning, where the anchor
and positive samples are drawn from the augmentations
of the same input image, instead of the same latent class
samples. That means, we no longer need the conditional
independence assumption. Moreover, we formulate the data
augmentations a, a′, {ak}Kk=1 explicitly, making it possible
to analyze the impacts of data augmentation to the error
bounds.

In this paper, we investigate the widely used InfoNCE loss
function (Chen et al., 2020a; He et al., 2020; Arora et al.,
2019), i.e., for f : X → Rd, the loss function is

Lun(x, x′, {xk}Kk=1; f)

:= − log
( ef(x)

⊤f(x′)

ef(x)⊤f(x′) +
∑K

k=1 e
f(x)⊤f(xk)

)
, (1)

which is mathematically equivalent to the logistic form

Lun(x, x′, {xk}Kk=1; f)
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:= log
(
1 +

K∑
k=1

exp
(
− f(x)⊤[f(x′)− f(xk)]

))
. (2)

Under the above-mentioned data generation process, we
have the unsupervised contrastive risk as

Run(f) := Ec,{ck}k∈[K]
Ex̄∼ρc,x̄k∼ρck

Ea,a′,{ak}k∈[K]

· Lun(a(x̄), a′(x̄), {ak(x̄k)}Kk=1; f). (3)

For the empirical forms, define the datasets

S := {(xj , x
′
j , xj1, . . . , xjK)}j∈[n].

Then the empirical unsupervised risk is denoted as

R̂un(f) :=
1

n

∑
j∈[n]

Lun(xj , x
′
j , {x−

jk}
K
k=1; f) (4)

Downstream supervised classification. To evaluate the rep-
resentations learned by unsupervised contrastive learning,
we adopt the linear-probing setting, i.e. given the learned
representation f : X → Rd, we train a linear classifier
g = W f : Rd → RC on top of f with W ∈ RC×d. Note
that in the downstream classification task, usually the goal
is to classify original images instead of the augmented ones,
because when directly using a pre-trained model, it is hard
to know the exact augmentation methods in training and
replicate them on the downstream datasets.

Following previous theoretical works (Arora et al., 2019;
Nozawa & Sato, 2021; Ash et al., 2022; Bao et al., 2022),
we use the mean classifier for evaluation. Specifically,
the mean classifier is defined as g = W f , where W :=
[µ1, . . . , µC ]

⊤, µc := Ex̄∈ρc
f(x̄), c ∈ [C].

We adopt the softmax cross entropy loss for the mean clas-
sifier g, defined by

Lsup(x̄, c; f) = − log
( eg(x̄)c∑K

i=1 e
g(x̄)i

)
, (5)

which is mathematically equivalent to the logistic form

Lsup(x̄, c; f) = log
(
1 +

∑
ck ̸=c

exp
(
− f(x̄)⊤(µc − µck)

))
.

Under the data generation process, we have the supervised
risk as

Rsup(f) := Ec∼πEx̄∼ρc
Lsup(x̄, c; f). (6)

2.2. Augmentation-Aware Error Bound

In Theorem 2.1, we present the upper bound of the super-
vised risk of the downstream mean classifier (the lower
bound of the unsupervised contrastive risk), where two
terms regarding with data augmentations are shown explic-
itly in the bound.

Theorem 2.1 (Error Bound). Let Rsup(f) be the su-
pervised risk of the mean classifier, and Run(f) be the
unsupervised risk of contrastive loss. Denote τK =
P(Col(c, {ck}Kk=1) ̸= 0) as the class collision probabil-
ity, where Col(c, {ck}Kk=1) =

∑K
k=1 1[c = ck]. Then we

have the following upper bound of the supervised risk.

Rsup ≤ 1

1− τK
[Run − τKEc,{ck}K

k=1
log(Col + 1)

+ EcEx̄,x̄′∼ρcEa min
a′

∥f(a(x̄))− f(a′(x̄′))∥

+ 5EcEx̄′∼ρc
max
a,a′

∥f(a(x̄′))− f(a′(x̄′))∥]. (7)

Theorem 2.1 shows that the downstream supervised risk is
upper bounded by both the unsupervised contrastive risk,
CURL’s class collision term, and two distance terms. The
first term represents the minimum distance between two aug-
mented same-class (different) images. Intuitively, this term
measures how well the same-class images are connected.
The better the same-class connection, the smaller this term
is. The second distance term represents the maximum dis-
tance between the two augmentations of the same images.
Intuitively, this term could be understood as the range or
variance of data augmentation.

Typically, as the augmentation strength increases, an image
is more likely to be connected with other images under data
augmentation, and the first distance term is smaller. On
the other hand, stronger augmentation has larger range and
variance. As a result, there is a trade-off between the two
distance terms w.r.t. augmentation strength. This point
will be further discussed in greater detail in Section 4 and
verified in Section 5.

In addition, it is worthwhile mentioning that we can further
improve the coefficient of the second distance term to 1
with a mild assumption that the original input image has a
centered representation among all of its augmentations. This
assumption has been made implicitly by previous works,
e.g. Nozawa & Sato (2021); Zimmermann et al. (2021).
Assumption 2.2 (Centered Representation). For x̄ ∈ X and
f : X → Rd, we assume that Ea∼PA

f(a(x̄)) = f(x̄).
Theorem 2.3 (Error Bound (Improved)). Under Assumption
2.2, we have

Rsup ≤ 1

1− τK
[Run − τKEc,{ck}K

k=1
log(Col + 1)

+ EcEx̄,x̄′∼ρc
Ea min

a′
∥f(a(x̄))− f(a′(x̄′))∥

+ EcEx̄′∼ρc
max
a,a′

∥f(a(x̄′))− f(a′(x̄′))∥]. (8)

To provide the generalization bound, we introduce the em-
pirical Rademacher complexity as follows,

RadS(F) := Eϵ∼{±1}3nKdE
(
sup
f∈F

∑
j∈[n]

∑
k∈[K]

∑
t∈[d]
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(
ϵj,k,t,1ft(xj) + ϵj,k,t,2ft(x

′
j) + ϵj,k,t,3ft(xjk)

)
Theorem 2.4 (Generalization Bound). Assume that
∥f(x)∥2 ≤ R for any f ∈ F and x ∈ X and the unsu-
perivsed loss Lun is bounded by B. Then for any δ ∈ (0, 1)
and any f ∈ F , we have

Rsup(f) ≤ 1

1− τK
[R̂un(f) +

12RRadS(F)

n

+ 3B

√
log(2δ)

2n
− τKEc,{ck}K

k=1
log(Col + 1)

+ EcEx̄,x̄′∼ρcEa min
a′

∥f(a(x̄))− f(a′(x̄′))∥

+ 5EcEx̄′∼ρc max
a,a′

∥f(a(x̄′))− f(a′(x̄′))∥].

with probability at least 1− δ.

We show the generalization bound in Theorem 2.4, where
the population downstream supervised risk is bounded by
the empirical unsupervised contrastive risk. Note that the
proof follows from Lei et al. (2023), where the dependence
of K is removed compared with that in Arora et al. (2019).

2.3. Error Analysis

In this part, we present the key theorems in proving The-
orem 2.1, the main theorem of this paper. Specifically, in
Theorem 2.5, we derive a novel decomposition of the un-
supervised contrastive risk w.r.t. the number of negative
samples sharing the same label with the anchor. Note that
this decomposition is non-trivial, as it only works for con-
trastive losses that treat negative samples equally.

Theorem 2.5 (Error Decomposition of Run). We have

Run(f)

= EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑
iK ̸=c

pK(i1, . . . , iK)rK(i1, . . . , iK)

· · ·

+ EcEx̄∼ρc
Ea

∑
ij ̸=c

p1(ij)r1(ij) + EcEx̄∼ρc
Eap0r0, (9)

where for k = 0, . . . ,K and i1, . . . , ik, we denote

rk(i1, . . . , ik) := Ex̄1∼ρi1
· · ·Ex̄k∼ρik

Ex̄k+1,...,x̄K∼ρc

· Ea′,{ak}k∈[K]
L(a(x̄), a′(x̄), ak(x̄k); f), (10)

and

pk(i1, . . . , ik) :=P(∃{j1, . . . , jK},
such that cj1 = i1, . . . , cjk = ik,

and cjk+1=···=cK=c), (11)

where {j1, . . . , jK} is a rearrangement of [K].

To derive the relationship between the unsupervised con-
trastive risk Run(f) and the downstream classification
risk Rsup(f), we construct an intermediate supervised
risk R̄sup(f) := Ec,{ck}K

k=1
Ex̄∼ρc log

(
1 +

∑K
k=1 exp

(
−

f(x̄)⊤(µc − µck)
))

, which has a similar decomposition
with Run(f) shown in Corollary B.1.

Next, in Theorem 2.6, we investigate each inner risks rk,
and build a relationship between rk and rsupk . We show that
for k = 0, . . . ,K, rk is upper bounded by rsupk minus a
series of distance terms, including the distances between
same-class different-image augmentations and that between
same-image data augmentations.
Theorem 2.6 (Bound of Inner Risk). Let x̄ belong to Class
c. For k = 0, . . . ,K, given i1, . . . , ik ̸= c, we have

rk(i1, . . . , ik)

≥ rsupk (i1, . . . , ik)− [2∥f(a(x̄))− f(x̄)∥
+ 2Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥

+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥

+ Ex̄′∼ρcEa′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥], (12)

where rsupk (i1, . . . , ik) := log
(
1 + exp

(
−∑k

m=1 f(x̄)
⊤(µc − µim)

))
and µi = Ex̄′∼ρi

f(x̄′),

i ∈ {c, i1, . . . , ik}.

Then combining Theorem 2.5, Corollary B.1, and Theorem
2.6, we reach Theorem 2.7 showing the relationship between
Run and R̄sup, i.e. R̄sup is upper bounded by Run and two
distance terms induced by data augmentation.
Theorem 2.7 (Error Bound of R̄sup). We have the following
upper bound of the supervised risk.

R̄sup ≤ Run + EcEx̄,x̄′∼ρc
Ea min

a′
∥f(a(x̄))− f(a′(x̄′))∥

+ 5EcEx̄′∼ρc
max
a,a′

∥f(a(x̄′))− f(a′(x̄′))∥. (13)

Finally, to close the gap between R̄sup and Rsup, we adopt
the CURL bound directly. Theorem 2.7 and Lemma 2.8
together finish the proof of Theorem 2.1.
Lemma 2.8 (CURL bound (Arora et al., 2019; Nozawa &
Sato, 2021)). Denote τK = P(Col(c, {ck}Kk=1) ̸= 0) as
the class collision probability, where Col(c, {ck}Kk=1) =∑K

k=1 1[c = ck]. Then we have

R̄sup(f) = (1− τK)Rsup(f)

+ τKEc,{ck}K
k=1

log(Col + 1). (14)

3. Discussions on the Error Bound
We first compare our bound with previous studies on build-
ing relationships between the unsupervised contrastive risk
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and downstream supervised risk. Most of these previous
bounds are under the CURL framework (Arora et al., 2019;
Ash et al., 2022; Bao et al., 2022), which assumes that
the positive samples are conditionally independently drawn
from a certain class, whereas our framework explicitly for-
mulates the probability distribution of data augmentation
and assumes that the positive samples are drawn as different
augmentations of the same input image. That is, we are
based on a more realistic data generation process that ac-
cords with the empirical applications of contrastive learning.

Perhaps more related to our bound, Nozawa & Sato (2021)
derived a lower bound of InfoNCE loss based on the same
data generation process as ours. However, they treated
the gap term d(f) induced by data augmentation as an al-
most constant, whereas in this paper, we further dissect the
augmentation-relevant terms into two distance terms based
on our proposed error decomposition, resulting in a trade-off
between the minimum same-class distance and the maxi-
mum same-image distance. Our result suggests that to reach
a better downstream classification risk, data augmentation
is equally important as the unsupervised contrastive risk.

Also note that because the focus of our bound is on the role
of data augmentation rather than that of negative samples,
we directly adopt CURL’s class collision term for simplicity.
Nonetheless, our bound is in fact compatible with previous
bounds under the CURL framework, e.g. Arora et al. (2019);
Nozawa & Sato (2021); Ash et al. (2022); Bao et al. (2022),
with replacing the class collision term with their correspond-
ing forms. As the two distance terms in (7) are independent
of the number of negative samples K, we could reach the
same conclusions on the role of K as in the corresponding
previous works.

We also compare our bound with works that explain con-
trastive learning from the perspective of data augmentation.
Wu et al. (2020) discussed the importance of data augmenta-
tion from the perspective of permutation invariance, but the
impact of data augmentation was not reflected in the error
bound. HaoChen et al. (2021) proposed a concept called
augmentation graph where the vertices are all the augmented
data points and the edge weights is the probabilities that two
augmentations are generated from the same input image.
Their derived downstream error bound relies on the eigen-
values of the adjacency matrix of the augmentation graph.
Similarly, Wang et al. (2021) built their theory on the as-
sumption of augmentation overlap, meaning that two images
have the same augmented view under some data augmenta-
tion. However, it is unlikely in practice that two different
real images have exactly the same augmented views, espe-
cially as we usually use only two views in training instead
of using multiple ones. By contrast, in this paper, we treat
the connectivity between augmented views in a rather “soft”
way. Specifically, our bound does not require the augmen-

tations to be exactly the same, nor do we need the perfect
alignment assumption adopted in Wang et al. (2021). In-
stead, the distances between different augmentations are
shown explicitly in our bound without any additional as-
sumptions. Later on, Huang et al. (2023) defined a kind
of (σ, δ)-measure to mathematically quantify the data aug-
mentation, and provided an upper bound of the downstream
classification error rate. Whereas their bound relies on the
maximum (augmentation) distance of same-class images,
our bound relies on a trade-off between two distance terms,
enabling us to further discuss real-world data augmentation
methods.

4. Impacts of Data Augmentations
In this section, we try to explain the trade-off between the
two distance terms in Theorems 2.1 and 2.3 from the per-
spective of pixel-level discussions of the training images.
As suggested by Chen et al. (2020a), the combination of
random cropping and random color distortion contributes
to successful downstream classification. Therefore, in this
part, we discuss the impacts of random cropping and random
color distortion respectively.

First of all, under the Lipschitz continuous assumption, we
transform our main theory into an error bound w.r.t. the
pixel-level distances, so that we are able to discuss the
impact of specific data augmentation.

Assumption 4.1 (Lipschitz Continuity). For x, x′ ∈ X ,
there exists a constant cL ≥ 0, such that

∥f(x)− f(x′)∥ ≤ cL∥x− x′∥. (15)

Theorem 4.2 (Error Bound with Pixel-level Distances). Un-
der Assumptions 2.2 and 4.1, we have

Rsup ≤ 1

1− τK
[Run − τKEc,{ck}K

k=1
log(Col + 1)

+ cLEcEx̄,x̄′∼ρc
Ea min

a′
∥a(x̄)− a′(x̄′)∥

+ cLEcEx̄′∼ρc max
a,a′

∥a(x̄′)− a′(x̄′)∥]. (16)

Inspired by Koenderink (1984), we introduce the pixel-level
formulation of an d × d 3-channel original input image.
Specifically, for any integers j, ℓ ∈ [d], define

Ij,ℓ = [
j − 1

d
,
j

d
)× [

ℓ− 1

d
,
ℓ

d
) (17)

representing a square with side length 1/d. Then in each
channel, a d × d image x̄ = (x̄

(i)
j,ℓ)j,ℓ∈[d],i=1,2,3 with d2

pixels can be expressed as a function

ξ(i) : R2 → [0,∞), (18)
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where the value of the (j, ℓ)-th pixel in the i-th channel is
given by

ξ̄
(i)
j,ℓ = d2

∫
Ij,ℓ

ξ(i)(u, v) du dv, j, ℓ ∈ {1, . . . , d}, (19)

representing the average intensity of ξ(i) on Ij,ℓ.

4.1. Semantic Label Assumption

We introduce the generation process of pixels based on a
semantic label assumption. We underline that our proposed
pixel-level generation process aims just to provide a possible
explanation for the trade-off in the two distances terms of
Theorem 4.2, rather than generating images.

Specifically, we assume that an image can be decomposed
into several semantic areas with their corresponding seman-
tic labels, where the semantic areas/labels are dependent on
the class label. That is, for an original image x̄, aside from
a class label y for the entire image, each pixel h̄j,ℓ also has
a unique semantic label s that relates to y.

(a) Automobile. (b) Truck.

Figure 1. Illustration of semantic
label assumption. (a) An automo-
bile image with semantic labels
windshield (blue), headlights (pur-
ple), and wheels (green); (b) an
truck image with semantic labels
truck cab (yellow excluding green),
cargo box (orange), and wheels
(green).

For example, an im-
age of Class automo-
bile usually has seman-
tic features windshield,
headlights, wheels, etc.,
and an image of Class
truck usually has se-
mantic features truck
cab, cargo box, wheels,
etc. As illustrated
in Figure 1, we mark
the disjoint semantic ar-
eas with distinguished
color boxes, and we
mark the shared se-
mantic wheels with the
same color.

Mathematically, assume there are T > 0 possible semantic
labels {s1, . . . , sT } ∈ {0, 1}T . (Without loss of generality,
we assume sT represents the background). We use st = 1
to describe that the semantic st exists in an image of Class y
and st = 0 otherwise. For t ∈ [T ] and y ∈ [C], we denote
qy := P(st = 1|y) as the probability that a semantic label
st is related to Class label y. Moreover, for i = 1, 2, 3,
denote η

(i)
st = P(ξ̄(i)|st) as the probability of a pixel with

semantic label st to have value ξ̄(i) in the i-th channel.

Then the pixel-level generation process is shown as follows:
(i) Draw a class label y ∈ [C] ∼ π; (ii) draw semantic
labels st ∼ qy; (iii) generate a disjoint random partition

(Jm)
∑T

t=1 st
m=1 ; (iv) For each pixel in Jm with semntic label

st, draw a value in the i-th channel following η
(i)
st .

4.2. Impacts of Random Crop

Based on the pixel-level formulation, given the scale param-
eter δ ∈ (0, 1], we formulate the random resized crop of an
image as ξ ◦Acrop

ξ ◦ acrop(u, v) = ξ(acrop(u, v)) = ξ(θu− τ, θv − τ ′),

where θ ∼ Unif(0, δ], τ, τ ′ ∼ Unif[0, 1] are i.i.d. random
variables.

Denote ∥ · ∥F as the Frobenius norm. For the minimum dis-
tance between same-class different-image augmentations, if
a(x̄) contains only same-semantic label pixels (with seman-
tic label s), then we have

Ea(x̄) min
a′

∥a(x̄)− a′(x̄′)∥F

= Eξ̄ min
a′

[ ∑
j,ℓ∈[d],i∈[3]

(
ξ̄
(i)
j,ℓ − ξ̄′

(i)
j,ℓ

)2]1/2
≤

[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄
(i)
j,ℓ∼η

(i)
s

(
ξ̄
(i)
j,ℓ − µ(i)

s

)2]1/2
+
[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄′

(i)
j,ℓ∼η

(i)
s

(
ξ̄′

(i)
j,ℓ − µ(i)

s

)2]1/2
= 2

[
d2 ·

∑
i∈[3]

σ(i)
s

2
]1/2

:= 2σ, (20)

where µ
(i)
s and σ

(i)
s

2
denote the mean and variance pixel

value of semantic class s in the i-th channel, and the second
inequality holds because there exists a small enough θ such
that its induced resized-cropped a′(x′) has all pixels with
semantic label s.

On the other hand, if the pixels in a(x̄) has more than one
semantic labels, then we have

Ea(x̄) min
a′

∥a(x̄)− a′(x̄′)∥F

= Eξ̄ min
a′

[∑
s

∑
s(ξ̄j,ℓ)=s,i∈[3]

(
ξ̄
(i)
j,ℓ − a′(x̄′)

(i)
j,ℓ

)2]1/2
≤

[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄
(i)
j,ℓ∼η

(i)
s

(
ξ̄
(i)
j,ℓ − µ(i)

s

)2]1/2
+

[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄′

(i)
j,ℓ∼η

(i)
smax

(ξ̄′
(i)
j,ℓ − µ(i)

smax
)2
]1/2

+
[ ∑
s(ξ̄j,ℓ )̸=smax,i∈[3]

(µ(i)
s − µ(i)

smax
)2
]1/2

:= 2σ +
[ ∑
j,ℓ∈[d]

1[s(ξ̄j,ℓ) ̸= smax] ·∆µ2
]1/2

, (21)

where smax denotes the majority semantic label that most
pixels in a(x̄) have. Compared with the single-semantic
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case (20), there is an additional bias term in (21) result-
ing in a larger overall distance. Moreover, the larger the
crop size, the larger the probability that the cropping area
intersects with the partition boundary, leading to a higher
probability that a(x̄) has more semantic labels and larger∑

j,ℓ∈[d] 1[s(ξ̄j,ℓ) ̸= smax)]. Consequently, a larger crop
size (or larger scale parameter δ) results in larger value of
EcEx̄,x̄′∼ρcEa mina′ ∥a(x̄)− a′(x̄′)∥.

Likewise, for the maximum distance between same-image
different augmentations, with a smaller crop size, it is
more likely for a(x̄) to have different pixel-level seman-
tic labels with the least alike augmentation a′(x̄), and
therefore having larger bias term and the overall distance
EcEx̄′∼ρc

maxa,a′ ∥a(x̄′)− a′(x̄′)∥].

4.3. Impacts of Color Distortion

The random color distortion used for data augmentation usu-
ally contains adjustments of brightness, contrast, saturation,
and hue. For simplicity, we use brightness manipulation
of each channel as an example to represent the random
augmentations w.r.t. colors. Specifically, based on the pixel-
level formulation, given the brightness adjustment parameter
b > 0, we formulate the random brightness distortion of an
image as f ◦ acolor

ξ(i) ◦ acolor(u, v) = λ(i) · ξ(i)(u, v), (22)

where λ(i) ∈ Unif(0, b], i ∈ [3].

With combining acolor and acrop, if a(x̄) contains only same-
semantic label pixels (with semantic label s), then we have

Ea(x̄) min
a′

∥a(x̄)− a′(x̄′)∥F

≤
[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄
(i)
j,ℓ∼η

(i)
s

(
ξ̄
(i)
j,ℓ − µ(i)

s

)2]1/2
+
[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄′

(i)
j,ℓ∼η

(i)
s

(
λ(i) · ξ̄′(i)j,ℓ − µ(i)

s

)2]1/2
=

[
d2 ·

∑
i∈[3]

σ(i)
s

2
]1/2

:= σ, (23)

where the equality holds by taking λ(i) = µ
(i)
s /ξ̄

(i)
j,ℓ . Com-

pared with (20), the combination of color distortion further
reduces the minimum same-class different-image distance
by half. Similarly, when the pixels in a(x̄) have more than
one semantic labels, we have

Ea(x̄) min
a′

∥a(x̄)− a′(x̄′)∥F

≤
[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄
(i)
j,ℓ∼η

(i)
s

(
ξ̄
(i)
j,ℓ − µ(i)

s

)2]1/2
+
[ ∑
j,ℓ∈[d],i∈[3]

E
ξ̄
(i)
j,ℓ∼η

(i)
smax

(λ(i)ξ̄′
(i)
j,ℓ − µ(i)

smax
)2
]1/2

+
[ ∑
s(ξ̄j,ℓ) ̸=smax,i∈[3]

(µ(i)
s − µ(i)

smax
)2
]1/2

:= σ +
[ ∑
j,ℓ∈[d]

1[s(ξ̄j,ℓ) ̸= smax] ·∆µ2
]1/2

, (24)

where the last equation holds by taking λ(i) = µ
(i)
s /ξ̄

(i)
j,ℓ .

Compared with the uniform-semantic label case, when the
pixels have multiple semantic labels, the color manipulation
has a less significant effect because it can only reduce the
distance terms with regard to smax and still fails to deal with
the bias term. This also to some extent explains that with-
out cropping, color distortion alone does not lead to good
downstream performance. (As shown in Figure 5 of Chen
et al. (2020a), the linear probing accuracy of color+crop is
56.3, whereas that of color alone is merely 18.8.)

On the other hand, for the maximum same-image distance,
by (21), color distortion enhances the bias term, because if
b > 1, we have

max
a,a′

∥a(x̄)− a′(x̄)∥F

= max
λ(i)∈(0,b]

[ ∑
j,ℓ∈[d],i∈[3]

(
ξ̄
(i)
j,ℓ − λ(i)ξ̄′

(i)
j,ℓ

)2]1/2
≥

[ ∑
j,ℓ∈[d],i∈[3]

(
ξ̄
(i)
j,ℓ − ξ̄′

(i)
j,ℓ

)2]1/2
. (25)

5. Verification Experiments
In this section, we aim to verify our theoretical conclusions
through empirical experiments. Specifically, in Section
5.1, we verify the trade-off between the two distance terms
induced by data augmentation in Theorem 2.1. Then in
Section 5.2, we show that the parameters of data augmenta-
tion minimizing the two distance terms coincides with the
optimal parameters for downstream accuracy, which in turn
verifies the effectiveness of Theorem 2.3.

Experimental Setup. We conduct numerical comparisons
on the CIFAR-100 and TinyImagenet benchmark datasets.
For conciseness of presentation, we delay the figures regard-
ing TinyImagenet to Appendix C. We follow the experimen-
tal settings of SimCLR (Chen et al., 2020a). Specifically,
we use ResNet-18 as the backbone and a 2-layer MLP as
the projection head. We set the batch size as 1024 and use
1000 epochs for training representations. We use the SGD
optimizer with the learning rate 0.5 decayed at the 700-th,
800-th, and 900-th epochs with a weight decay 0.1. We run
all experiments on an NVIDIA GeForce RTX 3090 24GB
GPU.

The data augmentations we use are random resized crop,
random horizontal flip, random color jitter, and random
grayscale. The default crop size ∈ [0.2, 1.0], the default
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flip probability is 0.5, the default color probability is 0.8,
and the default gray probability is 0.2.We evaluate the self-
supervised learned representation through linear probing,
i.e., we train a linear classifier on top of the encoder for 100
epochs and report its test accuracy.

5.1. Verification of the Trade-off between Two Distances

5.1.1. PIXEL-LEVEL VERIFICATION

We first conduct pixel-level verifications. Specifically, under
certain augmentation parameters, for n original input im-
ages, we first create 2n random augmented views. Note that
to study the effect of a certain type of data augmentation,
we vary its parameters (range of crop size and probability
of color jitter) and set the default parameters for other types
of augmentations. Then for each class, we calculate the
minimum pixel-level distances between same-class (differ-
ent) images and the maximum pixel-level distances between
the two augmentations of the same image. We report the
average maximum and minimum distances over all classes
on CIFAR-100 and TinyImagenet in Figures 2 and 7.
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Figure 2. Pixel-level maximum distance between same-class
different-image augmentations and minimum distance between
same-image data augmentations on CIFAR-100.

In Figures 2 and 7, we show that as the augmentation
strength increases (smaller range of crop size and higher
probability of color jitter), the maximum distance between
augmentations of the same image increases, whereas the
minimum distance between same-class different images de-
creases. According to the theoretical discussions in Section
4, smaller crops reduce the minimum same-class distance
by avoiding intersections with the semantic boundaries, and
color distortion further reduces the distance for crops with
pixels sharing the same semantic label. Moreover, smaller
crops increase the maximum same-image distance by creat-
ing views with non-overlapping semantic labels, and color
distortion further increases it by enhancing the bias term.

5.1.2. REPRESENTATION-LEVEL VERIFICATION

We also conduct empirical verification by calculating the
distances in the embedding space. Specifically, we train
SimCLR models with various parameters of data augmenta-
tion (range of crop size and probability of color jitter) and
set the default parameters for other types of augmentations.

Then for each class, we calculate the minimum distances
between same-class (different) images and the maximum
distances between the two augmentations of the same image
in the embedding space with training epoch from 1 to 1000.
We report the average maximum and minimum distances
over all classes on CIFAR-100 in Figures 3 and 4, and those
on TinyImagenet in Figures 8 and 9. Note that for better
visualization, we plot the moving average of the distance
curves with a window=100 epochs.
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Figure 3. Representation-level maximum distance between same-
class different-image augmentations on CIFAR-100.
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Figure 4. Representation-level minimum distance between differ-
ent same-image data augmentations on CIFAR-100.

From Figures 3, 4, 8, and 9, we observe that through training,
both distance values become smaller. Besides, at the begin-
ning of the training stage, the rank of the representation-level
distances w.r.t. augmentation parameters coincides with that
of the pixel level, i.e., as the augmentation strength increases
(smaller range of crop size and higher probability of color
jitter), the maximum distance between augmentations of
the same image increases, whereas the minimum distance
between same-class different images decreases. Moreover,
during training, this trend maintains till convergence.

5.2. Verification of Optimal Parameter

We run experiments with various augmentation parameters
including the range of random crop size and the probability
of random color jitter on the CIFAR-100 dataset. We report
the sum of the two distance terms against training epochs
in Figure 5. The curves are smoothed by taking the moving
average over 100 epochs. Besides, in Figure 6, we show
the linear probing accuracy of the unsupervised contrastive
learning representations trained with various augmentation
parameters. The results on TinyImagenet are shown in
Figures 10 and 11.
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Figure 5. Sum of the two distance terms under various data aug-
mentations in the embedding space on CIFAR-100.
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Figure 6. Linear probing accuracy under different data augmenta-
tion parameters on CIFAR-100.

According to Figures 5, 6, 10, and 11, we observe that the
optimal augmentation parameter with the smallest distance
sum also leads to the highest downstream accuracy. This
verifies Theorem 2.3, which indicates that the downstream
supervised risk is guaranteed by the sum of the maximum
distance between same-class different-image augmentations
and the minimum distance between different same-image
data augmentations in the embedding space.

6. Conclusion
In this paper, by proposing an augmentation-aware error
bound, we establish that the supervised risk is not only in-
fluenced by the unsupervised risk but also explicitly shaped
by a trade-off induced by data augmentation. Under a novel
semantic label assumption, we further analyze how specific
augmentation methods impact this bound. Moreover, we em-
pirically verify the theoretical conclusion on the trade-offs
of data augmentation. We believe our study lays a founda-
tion for further theoretically exploring data augmentation
techniques in contrastive learning.
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A. Related Works
A.1. Self-Supervised Contrastive Learning

Self-supervised contrastive learning (Chen et al., 2020a;b; He et al., 2020; Chen et al., 2021) aims to train an encoder that
maps different augmentations of the same input to similar feature representations, while ensuring that augmentations from
distinct inputs result in distinct features. Once the encoder is pre-trained, it can be fine-tuned on a specific downstream task.
Contrastive learning methods can be broadly divided into two categories based on their use of negative samples. The first
category (Chen et al., 2020a;b; He et al., 2020) involves learning the encoder by aligning an anchor point with its augmented
versions (positive samples) while explicitly pushing apart other samples (negative samples). The second category does not
rely on negative samples and often incorporates additional components, such as projectors (Grill et al., 2020), stop-gradient
techniques (Chen & He, 2021), or high-dimensional embeddings (Zbontar et al., 2021). Despite this, the first category
remains the dominant approach in self-supervised contrastive learning and has been applied to a wide range of domains
(Khaertdinov et al., 2021; Aberdam et al., 2021; Lee et al., 2022). This paper primarily analyzes and discusses the first
category of contrastive learning methods, which depend on both positive and negative samples.

A.2. Theory of Contrastive Learning

The early studies of theoretical aspects of contrastive learning manage to link contrastive learning to the supervised
downstream classification. Arora et al. (2019) first proposed the CURL framework where the positive samples are generated
from the same latent class. They proved that the downstream supervised risk of a mean classifier can be bounded by the
unsupervised contrastive risk and a class collision term. Under the CURL framework, succeeding studies further extended
this bound and incorporated the effect of negative samples (Ash et al., 2022; Bao et al., 2022). Moreover, Lei et al. (2023)
improved the results of Arora et al. (2019) by deriving a tighter generalization bound. However, the CURL framework has
long been criticized as having unrealistic generation process of positive samples (Wang et al., 2021). Nozawa & Sato (2021)
formulated the positive samples from the perspective of data augmentations, whereas they considered the corresponding
term as a relative constant without conducting further analysis.

Later on, HaoChen et al. (2021) motivated from the unsupervised nature of contrastive learning by proposing the concept of
the augmentation graph, where the vertices are all augmented images and the edge weights representing the probability
of two augmented views originating from the same original image. They borrowed the mathematical tools from spectral
clustering to build generalization guarantees for their proposed spectral contrastive learning. The theoretical framework was
later extended to contrastive learning for unsupervised domain adaption (Shen et al., 2022), multi-modal learning (Zhang
et al., 2023a), and weakly supervised learning (Cui et al., 2023). In a similar vein, Wang et al. (2021) propose the idea of
augmentation overlap to explain the alignment of positive samples. However, these modelings of data augmentation measure
the case where two original images sharing the same view, whereas this is empirically hard to realize, especially with only
two views used in contrastive learning instead of multiple ones.

Besides, contrastive learning is also interpreted through various other theoretical frameworks in unsupervised learning. For
example, Wang & Isola (2020) explained the contrastive learning through alignment of positive samples and uniformity
of negative samples. Zimmermann et al. (2021) showed that training with InfoNCE inverts the data generating process
through establishing a theoretical connection between InfoNCE and nonlinear independent component analysis (ICA). Ko
et al. (2022) built the relationship between contrastive learning and neighborhood component analysis (NCA) and developed
new contrastive losses. Hu et al. (2023) interpreted contrastive learning as a type of stochastic neighbor embedding (SNE)
methods. Wang et al. (2023) showed the learning dynamics of contrastive learning corresponds to a specific message passing
scheme on the corresponding augmentation graph. Wu et al. (2024) explained the tolerance of contrastive learning towards
sampling bias via the perspective of distributionally robust optimization (DRO). Nonetheless, the role of data augmentation
is still under-exploited in the existing theoretical frameworks, especially without mathematically analyzing specific data
augmentation methods.

B. Proofs
B.1. Proof of Error Decomposition

Proof of Theorem 2.5. According to the definition, we have

Run(f) = Ec,{ck}k∈[K]
Ex̄∼ρc,x̄k∼ρck

Ea,a′,{ak}k∈[K]
L(a(x̄), a′(x̄), ak(x̄k); f)

11
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= EcEx̄∼ρcEa

C∑
i1=1

· · ·
C∑

iK=1

P(c1 = i1) · · ·P(cK = iK) · Ex̄k∼ρik
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

= EcEx̄∼ρcEa

( ∑
i1 ̸=c

+
∑
i1=c

)
· · ·

( ∑
iK ̸=c

+
∑
iK=c

)
P(c1 = i1) · · ·P(cK = iK)

· Ex̄k∼ρik
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

= EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑
iK ̸=c

P(c1 = i1) · · ·P(cK = iK) · Ex̄k∼ρik
,k∈[K]Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

+ EcEx̄∼ρcEa

K∑
j=1

∑
i1 ̸=c

· · ·
∑

ij−1 ̸=c

·
∑

ij+1 ̸=c

· · ·
∑
iK ̸=c

P(c1 = i1) · · ·P(cj = c) · · ·P(cK = iK)

· Ex̄j∼ρc
Ex̄k∼ρik

,k ̸=jEa′,{ak}k∈[K]
L(a(x̄), a′(x̄), ak(x̄k); f)

· · ·

+ EcEx̄∼ρcEa

K∑
j=1

∑
ij ̸=c

P(c1 = c) · · ·P(cj = ij) · · ·P(cK = c)

· Ex̄k∼ρc,k ̸=jEx̄j∼ρij
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

+ EcEx̄∼ρc
EaP(c1 = c) · · ·P(cK = c) · Ex̄k∼ρc,k∈[K]Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

= EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑
iK ̸=c

P(c1 = i1) · · ·P(cK = iK) · Ex̄k∼ρik
,k∈[K]Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

+ EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑

ij−1 ̸=c

·
∑

ij+1 ̸=c

· · ·
∑
iK ̸=c

K∑
j=1

P(c1 = i1) · · ·P(cj = c) · · ·P(cK = iK)

· Ex̄j∼ρc
Ex̄k∼ρik

,k ̸=jEa′,{ak}k∈[K]
L(a(x̄), a′(x̄), ak(x̄k); f)

· · ·

+ EcEx̄∼ρc
Ea

∑
ij ̸=c

K∑
j=1

P(c1 = c) · · ·P(cj = ij) · · ·P(cK = c)

· Ex̄k∼ρc,k ̸=jEx̄j∼ρij
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

+ EcEx̄∼ρc
EaP(c1 = c) · · ·P(cK = c) · Ex̄k∼ρc,k∈[K]Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f). (26)

Note that the loss L(a(x̄), a′(x̄), ak(x̄k); f) is symmetric w.r.t. negative samples. Specifically, denoting {i1, . . . , iK} as a
rearrangement of [K] = {1, . . . ,K}, we have

L(a(x̄), a′(x̄), ak(x̄k); f) = log
(
1 +

K∑
k=1

exp
(
− f(a(x̄))⊤[f(a′(x̄))− f(ak(x̄k))]

))
= log

(
1 +

iK∑
k=i1

exp
(
− f(a(x̄))⊤[f(a′(x̄))− f(ak(x̄k))]

))
. (27)

Therefore, for k ∈ [K], given i1, . . . , ik, by denoting

rk(i1, . . . , ik) := Ex̄1∼ρi1
· · ·Ex̄k∼ρik

Ex̄k+1,...,x̄K∼ρc
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f), (28)

and

pk(i1, . . . , ik) := P(∃{j1, . . . , jK}, such that cj1 = i1, . . . , cjk = ik, and cjk+1=···=cK=c), (29)

where {j1, . . . , jK} is a rearrangement of [K] = {1, . . . ,K}, we have

Run(f) = EcEx̄∼ρcEa

∑
i1 ̸=c

· · ·
∑
iK ̸=c

pK(i1, . . . , iK)rK(i1, . . . , iK)

12



An Augmentation-Aware Theory for Self-Supervised Contrastive Learning

+ EcEx̄∼ρcEa

∑
i1 ̸=c

· · ·
∑

ij−1 ̸=c

·
∑

ij+1 ̸=c

· · ·
∑
iK ̸=c

pK−1(i1, . . . , ij−1, ij+1 . . . iK)rK−1(i1, . . . , ij−1, ij+1 . . . iK)

· · ·

+ EcEx̄∼ρcEa

∑
ij ̸=c

p1(ij)r1(ij) + EcEx̄∼ρcEap0r0. (30)

Corollary B.1 (Error decomposition of R̄sup). We have

R̄sup(f)

= EcEx̄∼ρc

∑
i1 ̸=c

· · ·
∑
iK ̸=c

pK(i1, . . . , iK)rsupK (i1, . . . , iK)

· · ·

+ EcEx̄∼ρc

∑
ij ̸=c

p1(ij)r
sup
1 (ij) + EcEx̄∼ρc

p0r
sup
0 , (31)

where rsupk (i1, . . . , ik) := log
(
1 +

[
(K − k) +

∑k
m=1 exp

(
− Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

)])
.

Proof of Corollary B.1. Because log
(
1 +

∑K
k=1 exp

(
− f(x̄)⊤(µc − µck)

))
is symmetric w.r.t. the negative samples, we

follow the proof of Theorem 2.5, replace rk(i1, . . . , ik) with rsupk (i1, . . . , ik), and finish the proof.

B.2. Proof of the Error Bound without Additional Assumption

Proof of Theorem 2.6. By Jensen’s inequality and the convexity of log-sum-exp, we have

rk(i1, . . . , ik)

= Ex̄1∼ρi1
· · ·Ex̄k∼ρik

Ex̄k+1,...,x̄K∼ρc
Ea′,{ak}k∈[K]

L(a(x̄), a′(x̄), ak(x̄k); f)

= Ex̄1∼ρi1
· · ·Ex̄k∼ρik

Ex̄k+1,...,x̄K∼ρcEa′,{ak}k∈[K]
log

(
1 +

K∑
k=1

exp
(
− f(a(x̄))⊤[f(a′(x̄))− f(ak(x̄k))]

))
≥ log

(
1 +

K∑
k=1

exp
(
− Ex̄1∼ρi1

· · ·Ex̄k∼ρik
Ex̄k+1,...,x̄K∼ρc

Ea′,{ak}k∈[K]
f(a(x̄))⊤[f(a′(x̄))− f(ak(x̄k))]

))
= log

(
1 +

k∑
m=1

exp
(
− Ex̄m∼ρim

Ea′,amf(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]
)

+

K∑
m=k+1

exp
(
− Ex̄m∼ρc

Ea′,am
f(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]

))
. (32)

We note that the negative samples break into two groups: x̄m’s sharing the same class with x̄, and x̄m’s having different
classes with x̄. For the same-class terms, given a, x̄, x̄m, and f , we take a∗ as the augmentation such that

a∗ = argmin
a

∥f(a1(x̄))− f(a(x̄k))∥, (33)

and then we have

Ex̄m∼ρcEa′,amf(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]

= Ex̄m∼ρcEa′,amf(a(x̄))⊤[f(a′(x̄))− f(a∗(x̄m)) + f(a∗(x̄m))− f(am(x̄m))]

= Ex̄m∼ρcEa′f(a(x̄))⊤[f(a′(x̄))− f(a∗(x̄m))] + Ex̄m∼ρcEamf(a(x̄))⊤[f(a∗(x̄m))− f(am(x̄m))]

≤ Ex̄m∼ρcEa′∥f(a′(x̄))− f(a∗(x̄m))∥+ Ex̄m∼ρcEam∥f(a∗(x̄m))− f(am(x̄m))∥

13
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≤ Ex̄m∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄m))∥+ Ex̄m∼ρc

max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥, (34)

where the first inequality holds because ∥f(·)∥ = 1.

On the other hand, for the different-class terms, we have

Ex̄m∼ρim
Ea′,am

f(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]

= Ex̄′∼ρc
Ex̄m∼ρim

Ea′,a′′,am
f(a(x̄))⊤[f(a′(x̄))− f(a′′(x̄′)) + f(a′′(x̄′))− f(am(x̄m))]

= Ex̄′∼ρc
Ea′,a′′f(a(x̄))⊤[f(a′(x̄))− f(a′′(x̄′))] + Ex̄′∼ρc

Ex̄m∼ρim
Ea′′,am

f(a(x̄))⊤[f(a′′(x̄′))− f(am(x̄m))]. (35)

Following (34), the first term of (35) is bounded by

Ex̄′∼ρc
Ea′,a′′f(a(x̄))⊤[f(a′(x̄))− f(a′′(x̄′))]

≤ Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥. (36)

Besides, we decompose the second term of (35) as follows.

Ex̄′∼ρcEx̄m∼ρim
Ea′′,amf(a(x̄))⊤[f(a′′(x̄′))− f(am(x̄m))]

= Ex̄′∼ρcEx̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

+ Ex̄′∼ρcEx̄m∼ρim
Ea′′,am [f(a(x̄))− f(x̄)]⊤[f(a′′(x̄′))− f(am(x̄m))]

+ Ex̄′∼ρc
Ea′′f(x̄)⊤[f(a′′(x̄′))− f(x̄′)] + Ex̄m∼ρim

Eam
f(x̄)⊤[f(x̄m)− f(am(x̄m))]

≤ Ex̄′∼ρc
Ex̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)] + 2∥f(a(x̄))− f(x̄)∥
+ Ex̄′∼ρc

Ea′′∥f(a′′(x̄′))− f(x̄′)∥+ Ex̄m∼ρim
Eam

∥f(x̄m)− f(am(x̄m))∥
= Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)] + 2∥f(a(x̄))− f(x̄)∥

+ Ex̄′∼ρc
Ea′′∥f(a′′(x̄′))− f(Id(x̄′))∥+ Ex̄m∼ρim

Eam
∥f(Id(x̄m))− f(am(x̄m))∥

≤ Ex̄′∼ρc
Ex̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)] + 2∥f(a(x̄))− f(x̄)∥
+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥, (37)

where the last inequality holds if Id(·) ∈ {a : a ∼ A}. Combining (36) and (37), we have the different-class terms bounded
by

Ex̄m∼ρim
Ea′,am

f(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]

≤ Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥

+ Ex̄′∼ρc
Ex̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)] + 2∥f(a(x̄))− f(x̄)∥
+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥

= Ex̄′∼ρc
Ex̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)] + Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥

+ 2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥. (38)

Then plugging (34) and (38) into (32), we have

rk(i1, . . . , ik)

≥ log
(
1 +

k∑
m=1

exp
(
− [Ex̄′∼ρcEx̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)] + Ex̄′∼ρcEa′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥

+ 2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]
)

+ (K − k) exp
(
− [Ex̄m∼ρc

Ea′ min
a′′

∥f(a′(x̄))− f(a′′(x̄m))∥+ Ex̄m∼ρc
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]
))
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≥ log
(
1 +

k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

)
· exp

(
− [Ex̄′∼ρc

Ea′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥

+ 2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]
)

+ (K − k) exp
(
− [Ex̄′∼ρcEa′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc max

a′,a′′
∥f(a′′(x̄′))− f(a′(x̄′))∥]

))
= log

(
1 +

[
(K − k) +

k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

)
· exp

(
− [2∥f(a(x̄))− f(x̄)∥

+ Ex̄′∼ρc max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]
)]

· exp
(
− [Ex̄′∼ρcEa′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc max

a′,a′′
∥f(a′′(x̄′))− f(a′(x̄′))∥]

))
≥ log

(
1 +

[
(K − k) +

k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

)
· exp

(
− [2∥f(a(x̄))− f(x̄)∥

+ Ex̄′∼ρc max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]
)])

− [Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]

≥ log
(
1 +

[
(K − k) +

k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(x̄)⊤[f(x̄′)− f(x̄m)]

)])
− [2∥f(a(x̄))− f(x̄)∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥]

= log
(
1 +

[
(K − k) +

k∑
m=1

exp
(
− Ex̄′∼ρcEx̄m∼ρim

f(x̄)⊤[f(x̄′)− f(x̄m)]
)])

− [2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥

+ Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥]

:= rsupk (i1, . . . , ik)− [2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥

+ Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥+ Ex̄′∼ρcEa′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥]. (39)

Proof of Theorem 2.7. Combining Theorems 2.5 and 2.6, we have

Run(f) = EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑
iK ̸=c

pK(i1, . . . , iK)rK(i1, . . . , iK)

+ EcEx̄∼ρc
Ea

∑
i1 ̸=c

· · ·
∑

ij−1 ̸=c

·
∑

ij+1 ̸=c

· · ·
∑
iK ̸=c

pK−1(i1, . . . , ij−1, ij+1 . . . iK)rK−1(i1, . . . , ij−1, ij+1 . . . iK)

· · ·

+ EcEx̄∼ρc
Ea

∑
ij ̸=c

p1(ij)r1(ij) + EcEx̄∼ρc
Eap0r0

≥ EcEx̄∼ρc

∑
i1 ̸=c

· · ·
∑
iK ̸=c

pK(i1, . . . , iK)rsupK (i1, . . . , iK)

+ EcEx̄∼ρc

∑
i1 ̸=c

· · ·
∑

ij−1 ̸=c

·
∑

ij+1 ̸=c

· · ·
∑
iK ̸=c

pK−1(i1, . . . , ij−1, ij+1 . . . iK)rsupK−1(i1, . . . , ij−1, ij+1 . . . iK)

· · ·
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+ EcEx̄∼ρc

∑
ij ̸=c

p1(ij)r
sup
1 (ij) + EcEx̄∼ρcp0r

sup
0

− EcEx̄∼ρc
Ea[2∥f(a(x̄))− f(x̄)∥+ 2Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥+ Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥]

− Ec

K∑
k=0

∑
{j1,...,jK}∈re([K])

∑
i1 ̸=c

. . .
∑
ik ̸=c

P(cj1 = i1) . . .P(cjk = ik)P(cjk+1
= c) . . .P(cK = c)

· Ex̄m∼ρim
max
a′,a′′

∥f(a′′(x̄m))− f(a′(x̄m))∥, (40)

Note that

Ec

K∑
k=0

∑
{j1,...,jK}∈re([K])

∑
i1 ̸=c

. . .
∑
ik ̸=c

P(cj1 = i1) . . .P(cjk = ik)P(cjk+1
= c) . . .P(cK = c)

·max
a′,a′′

Ex̄m∼ρim
∥f(a′′(x̄m))− f(a′(x̄m))∥

= Ec

K∑
k=0

∑
{j1,...,jK}∈re([K])

∑
im ̸=c

P(cjm = im) ·max
a′,a′′

Ex̄m∼ρim
∥f(a′′(x̄m))− f(a′(x̄m))∥

·
∑
i1 ̸=c

. . .
∑
ik ̸=c

P(cj1 = i1) . . .P(cjk = ik)P(cjk+1
= c) . . .P(cK = c)

= EcEc′ ̸=c max
a′,a′′

Ex̄m∼ρc′∥f(a
′′(x̄m))− f(a′(x̄m))∥

·
m∑

k=0

∑
{j1,...,jK}∈re([K])

P(cj1 ̸= c) . . .P(cjk ̸= c)P(cjk+1
= c) . . .P(cK = c)

≤ EcEc′ ̸=c max
a′,a′′

Ex̄m∼ρc′∥f(a
′′(x̄m))− f(a′(x̄m))∥

= EcEc′ ̸=cEx̄′∼ρc′ max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥. (41)

Then by Corollary B.1, we have

Run(f) ≥ R̄sup(f)− EcEx̄∼ρc
Ea[Ex̄′∼ρc

Ea′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]

− EcEx̄∼ρc
EaP(cm ̸= c) · [2Ex̄∼ρc

Ea∥f(a(x̄))− f(x̄)∥+ Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]

− EcEx̄∼ρcEaEc′ ̸=cEx̄′∼ρc′ max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥

= R̄sup(f)− EcEx̄∼ρc
Ex̄′∼ρc

Ea′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥ − EcEx̄∼ρc
max
a′,a′′

∥f(a′′(x̄))− f(a′(x̄))∥

− 2EcP(c
′ ̸= c) · Ex̄∼ρc

Ea∥f(a(x̄))− f(x̄)∥ − EcEx̄∼ρc
max
a′,a′′

∥f(a′′(x̄))− f(a′(x̄))∥

− Ec′Ec̸=c′Ex̄′∼ρc′ max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥

≥ R̄sup(f)− EcEx̄∼ρc
Ex̄′∼ρc

Ea min
a′

∥f(a(x̄))− f(a′(x̄′))∥ − 5EcEx̄∼ρc
max
a,a′

∥f(a(x̄))− f(a′(x̄))∥. (42)

Proof of Theorem 2.1. By combining Theorem 2.7 and Lemma 2.8, we finish the proof.

B.3. Proof of the Improved Bound

Theorem B.2. Under Assumption 2.2, we have

rk(i1, . . . , rk) ≥ log
(
1 +

k∑
m=1

exp
(
− Ex̄′∼ρcEx̄m∼ρim

f(a(x̄))⊤[f(x̄′)− f(x̄m)]
)
+ (K − k)

)
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− [Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]. (43)

Proof of Theorem B.2. Under Assumption 2.2, we have

Ex̄′∼ρc
Ex̄m∼ρim

Ea′′,am
f(a(x̄))⊤[f(a′′(x̄′))− f(am(x̄m))] = Ex̄′∼ρc

Ex̄m∼ρim
f(a(x̄))⊤[f(x̄′)− f(x̄m)]. (44)

Then by (32), (34), and (35), we have

rk(i1, . . . , rk) ≥ log
(
1 +

k∑
k=1

exp
(
− Ex̄m∼ρim

Ea′,amf(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]
)

+

K∑
m=k+1

exp
(
− Ex̄m∼ρc

Ea′,am
f(a(x̄))⊤[f(a′(x̄))− f(am(x̄m))]

))

≥ log
(
1 +

k∑
m=1

exp
(
− [Ex̄′∼ρc

Ex̄m∼ρim
f(a(x̄))⊤[f(x̄′)− f(x̄m)]

+ Ex̄′∼ρc
Ea′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc

max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]
)

+ (K − k) exp
(
− [Ex̄′∼ρcEa′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc max

a′,a′′
∥f(a′′(x̄′))− f(a′(x̄′))∥]

))
= log

(
1 +

[ k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(a(x̄))⊤[f(x̄′)− f(x̄m)]

)
+ (K − k)

]
· exp

(
− [Ex̄′∼ρcEa′ min

a′′
∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc max

a′,a′′
∥f(a′′(x̄′))− f(a′(x̄′))∥]

))
≥ log

(
1 +

k∑
m=1

exp
(
− Ex̄′∼ρc

Ex̄m∼ρim
f(a(x̄))⊤[f(x̄′)− f(x̄m)]

)
+ (K − k)

)
− [Ex̄′∼ρc

Ea′ min
a′′

∥f(a′(x̄))− f(a′′(x̄′))∥+ Ex̄′∼ρc
max
a′,a′′

∥f(a′′(x̄′))− f(a′(x̄′))∥]. (45)

Proof of Theorem B.2. Combining Theorem 2.5, Corollary B.1, and Theorem B.2, we finish the conclusion.

B.4. Proof of the Generalization Bound

Proof of Theorem 2.4. By combining Theorem 2.1 and Theorem 4.6 in Lei et al. (2023) with G2 = 1 for the logistic loss in
(2), we get the assertion.
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C. Experimental Results of TinyImagenet
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(a) Various crop size.
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(b) Various color probability.

Figure 7. Pixel-level maximum distance between same-class different-image augmentations and minimum distance between same-image
data augmentations on TinyImagenet.
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Figure 8. Representation-level maximum distance between same-class different-image augmentations on TinyImagenet.
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Figure 9. Representation-level minimum distance between different same-image data augmentations on TinyImagenet.
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(a) Various crop size.
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Figure 10. Sum of the two distance terms under various data augmentations in the embedding space on TinyImagenet.
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Figure 11. Linear probing accuracy under different data augmentation parameters on TinyImagenet.
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