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Abstract

Cross-lingual sentence encoders (CLSE) cre-001
ate fixed-size sentence representations with002
aligned translations. Current pre-trained CLSE003
approaches use sentence-level objectives only.004
This can lead to loss of information, especially005
for tokens, which then degrades the sentence006
representation. We propose MEXMA, a novel007
approach that integrates both sentence-level008
and token-level objectives. The sentence rep-009
resentation in one language is used to predict010
masked tokens in another language, with both011
the sentence representation and all tokens di-012
rectly updating the encoder. We show that013
adding token-level objectives greatly improves014
the sentence representation quality across sev-015
eral tasks. Our approach outperforms current016
pre-trained cross-lingual sentence encoders on017
bitext mining as well as several downstream018
tasks. We also analyse the information encoded019
in our tokens, and how the sentence representa-020
tion is built from them.021

1 Introduction022

Creating general-purpose multilingual embeddings023

has attracted significant attention from the research024

community in recent years, driven by the grow-025

ing need for efficient and effective cross-lingual026

representations. Cross-Lingual Sentence Encoders027

(CLSE) create fixed-size sentence representations028

that are able to capture the relevant information in029

a sentence, and are aligned across languages. By030

capturing relevant sentence information in a shared031

multilingual space, these aligned representations032

enable efficient comparison and retrieval based on033

distance measures, thereby facilitating their effec-034

tive utilization in various downstream applications.035

Current CLSE (Duquenne et al., 2023; Feng036

et al., 2022) typically build upon pre-trained en-037

coders, often language models (Conneau et al.,038

2020; Devlin et al., 2019) or translation models039

(NLLB Team et al., 2022). These pre-trained en-040

coders have been trained using objectives that fo- 041

cus on individual words or tokens, i.e. token-level 042

objectives. Examples of such objectives include 043

unmasking, where the model is required to pre- 044

dict each token individually, and all predictions 045

are used to update the encoder directly. However, 046

Muennighoff et al. (2023); Hu et al. (2020) show 047

that pre-trained encoders without objectives that 048

consider entire sentences, i.e. sentence-level objec- 049

tives, do not create good sentence representations. 050

This means that CLSE need to train using sentence- 051

level objectives, in order to effectively capture the 052

relevant information of the sentences. 053

Although CLSE start from encoders pre-trained 054

with token-level objectives, they are commonly 055

trained with sentence-level objectives that only up- 056

date the encoder through the sentence represen- 057

tation (Duquenne et al., 2023; Feng et al., 2022; 058

Yang et al., 2019; Artetxe and Schwenk, 2019b), 059

without any objective for each token individually. 060

We hypothesize that token-level objectives should 061

be kept during the training of CLSE, coupled with 062

the sentence-level objectives, to better update the 063

encoder and improve sentence representation qual- 064

ity and alignment. The intuition is that only using 065

sentence-level objectives leads to a degradation of 066

token-level information, especially lexical, which, 067

in turn, can impact the sentence representation. 068

Recently, approaches have explored the use of 069

both token-level and sentence-level objectives for 070

better sentence representations. In DAP (Li et al., 071

2023), the token-level objective is only used to 072

update the token representations in the encoder, 073

without influencing directly the sentence represen- 074

tation. In RetroMAE (Xiao et al., 2022), the tokens 075

are not directly updated with the same token-level 076

objective as the sentence representation. 077

To effectively combine token and sentence-level 078

objectives, we propose MEXMA, a new approach 079

that uses the sentence representation in one lan- 080

guage to predict masked tokens in another lan- 081
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guage, and uses both the sentence and tokens’ infor-082

mation to update the encoder. This token-level ob-083

jective is combined with a sentence-level objective084

to enforce sentence alignment across languages.085

Our approach outperforms state-of-the-art pre-086

trained cross-lingual sentence encoders, namely087

LaBSE and SONAR, on several key tasks includ-088

ing bitext mining, classification, and pair classi-089

fication. Specifically, we report notable gains on090

the xsim++ benchmark computed over the FLO-091

RES200 test set, where MEXMA achieves an error092

rate of 9.6%, surpassing SONAR’s 12.1%. Addi-093

tionally, in classification tasks evaluated on MTEB094

and SentEval, MEXMA achieves an accuracy of095

65.4% compared to SONAR’s 63.0%. The larger096

supervision in MEXMA enables training smaller097

models with better alignment than LaBSE (≈2×)098

and close to SONAR’s performance (≈3×).099

Our main contributions are:100

• We introduce a novel architecture leveraging101

both sentence-level and token-level objectives102

outperforming current approaches.103

• We perform ablation studies that show the im-104

pact of token-level objectives on the sentence-105

level representations performance.106

• We thoroughly analyze our model’s inner107

workings by examining token content and sen-108

tence embedding construction.109

• We show our approach can be coupled with ex-110

isting alignment approaches, specifically con-111

trastive learning, and improve its quality.112

• Our code and model are available here: HID-113

DEN FOR ANONYMITY114

2 Related Work115

Sentence embeddings have been well studied in116

the last decade. Initially, recurrent networks were117

trained to predict previous and next sentence (Kiros118

et al., 2015) or sentence entailment (Conneau et al.,119

2017). Universal Sentence Encoder (Cer et al.,120

2018) trains a transformer network on both tasks.121

Reimers and Gurevych (2019) propose to continue122

the training of a BERT model to include a sentence-123

level objective. CLSE are multilingual extensions124

of these works that align the representations across125

languages.126

UPDATE VIA SENTENCE REPRESENTATION127

Most current CLSE approaches only update their128

encoder via the sentence representation objective,129

without having any token-level objective in the out-130

put of the encoder to update each token individually 131

(Guo et al., 2018; Yang et al., 2019; Feng et al., 132

2022; Artetxe and Schwenk, 2019b; Duquenne 133

et al., 2023; Heffernan et al., 2022). They are most 134

commonly based on contrastive learning (Hadsell 135

et al., 2006), that aims to reduce the distance be- 136

tween positive pairs (translations) and increase the 137

distance between negative pairs (non-translations) 138

(Guo et al., 2018; Yang et al., 2019; Feng et al., 139

2022). Notably, LaBSE (Feng et al., 2022) uses the 140

contrastive loss, with the additive margin softmax 141

approach of Yang et al. (2019). Non-contrastive 142

approaches reduce the distance between positive 143

pairs (translations) only, being prone to collapse. 144

A common solution to collapse is to use an auto- 145

regressive decoder to prevent it. For CLSE, it is 146

common to use translation (Artetxe and Schwenk, 147

2019b; Duquenne et al., 2023) with a fixed-size sen- 148

tence representation after the encoder (bottleneck), 149

assuming that a model can translate a sentence into 150

many languages only if a good sentence-level rep- 151

resentation is learned. The bottleneck, however, 152

prevents gradients from the decoder to directly up- 153

date the individual token representations of the en- 154

coder, which we hypothesize leads to a degradation 155

of token level information. 156

UPDATE VIA SENTENCE AND TOKEN REPRE- 157

SENTATIONS Recent approaches (Li et al., 2023; 158

Xiao et al., 2022; Wei et al., 2021; Fan et al., 2022) 159

have shown that combining token and sentence 160

level objectives can improve sentence representa- 161

tions. RetroMAE (Xiao et al., 2022), is an Infor- 162

mation Retrieval method that uses fixed-size sen- 163

tence representations to guide token unmasking, 164

demonstrating its effectiveness in enhancing sen- 165

tence representation quality. The encoder itself is 166

only updated by its own Masked Language Mod- 167

eling (MLM) loss, and via the gradients coming 168

from the sentence representation, but not from the 169

direct token-level gradients of the heavy unmasking 170

with the sentence representation as context. Wei 171

et al. (2021) combines MLM with a contrastive 172

loss. However, the alignment between sentences is 173

performed on masked sentences, and the unmask- 174

ing is not done with a cross-lingual sentence con- 175

text. DAP (Li et al., 2023) proposes to jointly align 176

tokens and sentence representations. It performs 177

unmasking with all tokens of the other language as 178

context. However, it relies exclusively on the con- 179

trastive loss to update the sentence representations. 180

In our work, we show that sentence and token-level 181
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objectives can be much more intertwined. Both in-182

dividual tokens and the sentence representations up-183

date the encoder, leading to improved performance.184

Detailed diagrams of the described architectures185

are provided in Appendix H.186

3 Methodology187

We propose MEXMA, a novel cross-lingual188

sentence encoder trained with both token- and189

sentence-level objectives. The goal is to create190

a sentence representation that is able to encode the191

syntactic, semantic and lexical information in a192

sentence, with representations well aligned across193

languages. To achieve this goal, inspired by mono-194

lingual masked auto-encoding techniques (Xiao195

et al., 2022), we use the sentence representation196

in one language to unmask the tokens in another197

language, updating both the sentence and individ-198

ual tokens. The masking allows us to use a non-199

contrastive loss to align sentence representations,200

since it prevents the collapse. Our architecture is201

depicted in Figure 1, and is composed of several202

components that we describe now. In the following,203

we refer to inputs, models and outputs that have204

no masking as clean, and masked for their masked205

counterparts. We consider two languages, language206

A and language B, and two clean parallel sentence207

representations SA and SB.208

CROSS-UNMASKING To ensure that our sen-209

tence vector captures the meaningful information210

of the sentence, we mask a significant portion of211

the input tokens in language A. This makes it chal-212

lenging for the MLM head to recover the missing213

tokens without any additional context. To over-214

come this challenge, we provide the unmasking215

head with the sentence vector SB, derived from216

the clean sentence in language B. This forces the217

model to leverage the information in SB to predict218

the masked tokens in language A. By doing so,219

we encourage the sentence vector to capture the220

essential information of the sentence that is useful221

across languages. We formulate this component222

into a symmetrical cross-entropy loss (CE), applied223

over the outputs of the encoders:224

Lmlm = CE([SB, Â], A) + CE([SA, B̂], B),225

where Â and B̂ are the outputs of the masked en-226

coders without the CLS embedding, A and B the227

masked tokens’ targets, and [X,Y ] represents the228

concatenation of X and Y.229

ALIGNMENT LOSS The cross-unmasking gener- 230

ates an implicit alignment due to the switching 231

of languages to perform the unmasking. How- 232

ever, it does not strongly enforce the same sen- 233

tence representations in two different languages 234

to be close in the embedding space. Following 235

SONAR (Duquenne et al., 2023), to further rein- 236

force the spatial proximity of semantically equiv- 237

alent sentences across languages, we use an ad- 238

ditional non-contrastive alignment objective. We 239

formulate this component as a Mean Squared Error 240

(MSE) loss between sentence representations: 241

Lalignment = MSE(SA, SB), 242

The two losses, unmasking and alignment, com- 243

plement each other to provide both aligned and 244

meaningful vector representations of sentences in 245

multiple languages. 246

SYMMETRICAL ARCHITECTURE To align all 247

languages and maximize data usage, we adopt a 248

symmetrical approach that unmasks the tokens of 249

language A with SB, and vice versa, simultane- 250

ously. We thus create four instances of the encoder 251

(with shared parameters). For each language, we 252

have two versions of each sentence: one heavily 253

masked and one clean. This allows us to gener- 254

ate two clean sentence vectors, SA and SB, which 255

is essential for aligning representations between 256

languages. The clean encoders generate the clean 257

embeddings that are further used to align the multi- 258

lingual representations. 259

KOLEO LOSS In preliminary experiments, we 260

noticed that our representations exhibited more 261

anisotropy than those learned with contrastive ap- 262

proaches. This has been shown to impact the qual- 263

ity of the representations (Godey et al., 2024). In- 264

spired by DINOv2 (Oquab et al., 2024), we employ 265

the KoLeo loss (Beirlant et al., 1997; Sablayrolles 266

et al., 2019) to encourage sentence representations 267

to spread out evenly in the latent space (details in 268

Appendix A). 269

Our training loss is a weighted combination of 270

all previous losses: 271

LMEXMA = α · Lalignment + β · Lmlm + γ · LK 272

where α, β and γ are hyper-parameters that con- 273

trol the weight of each loss term. To show that 274

MEXMA can be used on top of existing alignment 275

approaches, we provide, in Section 5.2, experimen- 276

tal results when replacing the MSE alignment loss 277

in MEXMA with a contrastive loss. 278

3



Encoder Encoder Encoder Encoder

...... ... ...

The car is red. El coche es rojo.

[CLS][CLS] [CLS] [CLS]

... ...

Masking

Head Head

El coche es rojo.

...

Masking

The car is red.

Alignment

MLM MLM

K
ol
eo

K
ol
eo

Figure 1: MEXMA architecture. Given two translations, we create two views for each, a masked and a clean
version (symmetrical architecture), and use the sentence representations from one language to unmask the other
(cross-unmasking). We align the clean sentence representations via the alignment loss, and increase the usage of the
space with the KoLeo loss.

3.1 Experimental setup279

ENCODER BACKBONE As our encoder, we uti-280

lize a modified version of the XLM-RoBERTa281

model (Conneau et al., 2020) provided by Hugging-282

Face that uses a more efficient attention (details in283

Appendix A). Our sentence representation from the284

encoder is obtained via the CLS embedding of the285

last layer, without any further processing.286

TRAINING DATA Our training dataset is a sub-287

set of the NLLB-200 corpus (NLLB Team et al.,288

2022), which comprises 200 languages. We cover289

81 languages, utilizing only publicly available data,290

all sourced from Opus (Tiedemann, 2012). The291

specific languages used are listed in Appendix C.292

We always train using one sentence in English as-293

sociated with its translation in one of the remain-294

ing 80 languages, as done in SONAR. The dataset295

consists of a combination of human-translated and296

synthetic data, where we attempt to impose a min-297

imum of 15 million sentences per language. For298

languages with limited human-annotated data, we299

supplemented the dataset with mined data from300

NLLB (Schwenk et al., 2020; Fan et al., 2020;301

NLLB Team et al., 2022) to reach the 15 million302

sentence threshold. Conversely, to ensure that our303

dataset is somewhat balanced across languages, for304

languages with abundant human-annotated data,305

we capped the dataset at 25 million sentences per 306

language. The datasets used are in Table 15. 307

We provide details about the parameters and con- 308

figurations of our model in Appendix A. 309

4 Results 310

To assess the quality and alignment of our embed- 311

dings, we evaluate them on a range of tasks. These 312

tasks fall into two categories: mining tasks and 313

other downstream tasks. Mining tasks measure how 314

aligned our representations are across languages, 315

while downstream tasks evaluate the generalization 316

power and overall quality of our embeddings. 317

4.1 Multilingual alignment through mining 318

We evaluate our model on three alignment tasks: 319

xsim1, xsim++ (Chen et al., 2023), and BUCC 320

(Zweigenbaum et al., 2018, 2017). Both xsim 321

and BUCC involve retrieving the correct transla- 322

tion of a query sentence from multilingual datasets. 323

xsim++ adds complexity by introducing hard neg- 324

atives in English sentences. Following Heffernan 325

et al. (2022), we exclude Tatoeba due to limited 326

data and low-quality translations. 327

xsim and xsim++ use a margin-based similar- 328

ity approach (Artetxe and Schwenk, 2019a), while 329

1https://github.com/facebookresearch/LASER/
tree/main/tasks/xsim
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Model xsim ↓ xsim++ ↓ BUCC ↑

DAP 2.90 32.82 98.68
SONAR 0.04 10.55 98.25
LaBSE 0.26 14.51 98.75
MEXMA 0.02 8.26 98.93

Table 1: Results in mining (%). xsim and xsim++ are
computed on the 34 languages (FLORES200 dataset, X-
eng pairs) supported by all models. BUCC is computed
with F1 in its 4 languages.

BUCC employs cosine similarity. xsim and xsim++330

scores are the error rate of misaligned sentences,331

whereas BUCC uses the F1 score, evaluated with332

the MTEB benchmark (Muennighoff et al., 2023).333

BUCC covers German, French, Russian and Chi-334

nese. We report the results for xsim and xsim++ on335

the FLORES200 dataset, for the 34 languages com-336

mon to all models. Results per language, and on337

larger sets of languages are available in Appendix E.338

339

The results are shown in Table 1. MEXMA out-340

performs previous SOTA on all benchmarks, show-341

casing improved alignment in our approach. The342

improvements in xsim and BUCC suggest that our343

approach improves the semantic alignment of the344

embeddings. The large improvement in xsim++345

(+2.48% absolute against the previous best model346

SONAR) also indicates the increased robustness347

of our model with regard to hard negatives, likely348

due to handling better lexical information. For349

more thorough comparisons using the same data350

and backbones see Appendix B.4.351

4.2 Downstream tasks352

To understand the quality of our embeddings and353

how generic they are, we evaluate them on several354

tasks from the MTEB benchmark (Muennighoff355

et al., 2023). We report the averaged results for356

each language. For the full list of results for each357

task, see Appendix E.358

SINGLE SENTENCE CLASSIFICATION We eval-359

uate our model’s classification performance on two360

benchmarks. The SentEval (SE) suite (Conneau361

and Kiela, 2018) is used to assess the performance362

across various tasks in English and the MTEB363

benchmark for the multilingual classification ca-364

pabilities. Table 2 shows the aggregated results.365

We can see that MEXMA outperforms all baseline366

models on average, and more specifically gains367

+2.33% when compared with SONAR.368

Model Class SE PC STS
DAP 61.80 78.18 66.01 59.39
SONAR 63.02 85.82 69.70 58.04
LaBSE 62.77 85.63 68.47 64.65
MEXMA 65.35 86.38 71.55 63.99

Table 2: Averaged results on Classification (Class), Sen-
tEval (SE), Pair Classification (PC) and Semantic textual
similarity (STS), across several languages.

PAIRWISE SENTENCE CLASSIFICATION We 369

further evaluate on the pair classification task. This 370

task consists in classifying sentence pairs, e.g. de- 371

termining if two sentences are duplicates or not. 372

The metric, as reported in MTEB, is the Average 373

Precision (AP) based on the distance between sen- 374

tence representations. The results are in Table 2. 375

MEXMA consistently outperforms all baselines on 376

average, by at least +1.85%. These results, com- 377

bined with our single sentence classification results, 378

suggest that our model can effectively encode the 379

relevant information in the sentence vectors. 380

SEMANTIC TEXTUAL SIMILARITY (STS) 381

The STS task evaluates the model’s ability to repli- 382

cate human judgments on sentence similarity. The 383

metric, as reported in MTEB, is the Spearman cor- 384

relation based on distance. The results are in Ta- 385

ble 2. We can see that LaBSE outperforms all other 386

methods, and in particular MEXMA by 0.66%. 387

MEXMA outperforms SONAR (+5.95%) and DAP 388

(+4.6%). The results indicate that the contrastive 389

loss better suits the STS task, given this is the only 390

task where DAP is able to outperform SONAR, and 391

where LaBSE outperforms MEXMA. 392

5 Ablations and Analyses 393

In this section, we conduct a comprehensive anal- 394

ysis of our MEXMA architecture, examining the 395

impact of its individual components, how it scales 396

with varying model and data sizes, and its potential 397

to improve other alignment approaches. We also 398

examine the characteristics of token embeddings 399

and sentence representations learned by our model. 400

5.1 Model components 401

In Table 3 we ablate the impact of having direct 402

token-level gradients in MEXMA. The goal is to 403

understand the relevance of the gradients that up- 404

date the encoder: either only from the sentence, 405

or from the sentence and all tokens. Model 1 in- 406

cludes all of MEXMA’s components, as covered 407
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component xsim ↓ xsim++ ↓ SE ↑

Sentence grads 1 0.15 11.37 85.06
+ Token grads 2 0.10 9.67 85.98
+ KoLeo loss 3 0.06 9.60 86.38

Table 3: Ablation study of the components of the model.
All experiments are conducted with the final hyperpa-
rameters of the model, as reported in Section 3.1.

Model xsim ↓ xsim++ ↓ SE ↑

C XLM-R 0.13 33.30 85.5
C-MEXMA detach 0.13 12.78 85.86
C-MEXMA 0.12 10.93 85.94

Table 4: Using contrastive loss (refered as "C") as the
alignment loss in MEXMA and XLM-R.

in Section 3, except the KoLeo loss. However, the408

gradients from the unmasking task are only back-409

propagating through the sentence representations410

to the encoder, and are deactivated for the individ-411

ual tokens coming from the encoder, i.e. in the412

Lmlm mentioned in Section 3, Â/B̂ have no gra-413

dients flowing back to the encoder. This model414

already achieves results that are competitive with415

current state of the art models, and if we allow416

the gradients to flow through the tokens directly417

(model 2 ), we are able to outperform them. As418

we hypothesized, adding updates on the tokens di-419

rectly, coupled with the sentence updates largely420

improves results across all tasks. Additionally, we421

also show that adding the KoLeo loss also improves422

results across all tasks (model 3 ). The ablation423

on all components of the model is provided in Ap-424

pendix B.425

5.2 Contrastive alignment loss426

To further assess the improvements given by the427

direct token updates in MEXMA, and understand428

MEXMA’s scalability compared to other alignment429

approaches, we replaced our MSE alignment loss430

with a contrastive loss and dropped the KoLeo431

loss. The results are presented in Table 4. We432

used a siamese network with XLM-RoBERTa-large433

trained on the symmetric cross-entropy loss (In-434

foNCE from (van den Oord et al., 2019)) as the435

baseline model, "C XLM-R", having an architec-436

ture similar to LaBSE (Feng et al., 2022). Our437

training used a batch size of 1.2k tokens, with the438

rest of the parameters the same as reported in Sec-439

tion 3.1. Our baseline model performs well on440

xsim and SentEval but struggles with xsim++. The441

Model #par xsim ↓ xsim++ ↓ SE ↑

DAP 277M 2.90 32.82 78.18
MEXMA-b 277M 0.06 11.01 85.30
LaBSE 471M 0.26 14.51 85.63
MEXMA 559M 0.02 8.26 86.38
SONAR 766M 0.04 10.55 85.82

Table 5: Model size comparison. MEXMA-b is based
on the XLM-RoBERTa-base, and MEXMA is based on
XLM-RoBERTa-Large.

xsim ↓ xsim++ ↓ SentEval ↑

Model 81 90 81 90 81 90

SONAR 0.09 0.05 12.08 11.42 85.82 85.82
MEXMA 0.06 0.05 9.60 9.06 86.38 86.64

Table 6: Training data size comparison. We train
MEXMA on either 81 languages, or 90 languages. See
Appendix C for the list of covered languages.

MEXMA architecture without token-level gradi- 442

ents ("C-MEXMA detach"), similar to model 1 443

in Section 5.1, improves the performance. Adding 444

token-level gradients, the full MEXMA architec- 445

ture with contrastive loss ("C-MEXMA"), similar 446

to model 2 in Section 5.1, results in competitive 447

performance, outperforming previous approaches 448

in SentEval and xsim++. This demonstrates the 449

positive impact of direct token-level gradients and 450

shows that MEXMA can be easily integrated within 451

existing alignment approaches, such as contrastive 452

learning, to improve their results. 453

5.3 Model and data sizes 454

Table 5 shows how our model’s results depend- 455

ing on the model size. We train two models, 456

MEXMA-b with 277M parameters, based on XLM- 457

RoBERTa-base, and MEXMA with 559M parame- 458

ters, based on XLM-RoBERTa-large. We observe 459

that even the smaller model (277M parameters) out- 460

performs LaBSE (471M parameters), on both xsim 461

and xsim++, and gets close SentEval results, with 462

a 0.3% decrease in performance, with 59% of the 463

size. This smaller model gets surprisingly close to 464

the results of SONAR, which has 766M parameters, 465

i.e. ≈2.77 times its size. These results show that 466

our approach works on smaller and larger models, 467

and it seems to enable quite powerful small mod- 468

els, due to our stronger training signal. Our larger 469

model, MEXMA, with ≈73% the size of SONAR, 470

is able to largely outperform it across all tasks. 471

To investigate the impact of training data, we 472
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Model % other % SL % SS % T
XLM-R 1.19 63.89 2.65 32.27
LaBSE 0.00 0.13 42.33 57.54
DAP 0.00 0.66 20.11 79.23
NT-MEXMA 0.13 0.40 11.90 87.57
NLLB 0.40 3.17 1.72 94.71
SONAR 0.00 0.13 0.20 99.67
MEXMA 0.26 1.33 0.53 97.88

Table 7: Result of the token matching analysis. Where
SL: Same Language, SS: Same Sentence and T: Trans-
lation.

conducted experiments using two different lan-473

guage subsets of the FLORES200 dataset. We474

trained separate MEXMA models on each subset,475

using the same hyperparameters as reported in Sec-476

tion 3.1. For comparison, we evaluated the publicly477

available SONAR model, which was trained on all478

available 200 languages, on both language subsets.479

The results, presented in Table 6, demonstrate that480

MEXMA outperforms SONAR on both subsets,481

highlighting the adaptability and robustness of our482

approach to varying training data.483

5.4 Masking ratio484

NLP models typically use masking percentages485

around 15%, whereas vision papers have explored486

much higher masking ratios, ranging from 40% in487

BEiT (Bao et al., 2022) to as high as 90% in MAE488

(He et al., 2022) and V-JEPA (Bardes et al., 2024),489

usually aligning augmentations. For text, there is490

less redundancy and the representations are more491

information-dense. In our case, we are aligning492

the same sentence in several languages, which can493

be viewed as augmentations of a pivot sentence,494

i.e. the sentence in English. We need to know495

how much we can mask, to make the unmasking496

task hard, but to not deteriorate the performance497

of our encoder. More information is provided in498

Appendix B. The range 30%-60% seems to be the499

best operating region. We selected 40% for all500

experiments conducted in this paper, since it has the501

best balance between alignment and classification.502

5.5 Token embeddings analysis503

Sentence vectors are pooled representations of their504

tokens. In this section, we investigate the infor-505

mation encoded in the tokens from the last layer506

across different models. Our goal is to determine507

whether the tokens primarily convey semantic, lexi-508

cal, and/or contextual information. Although these509

categories can be intertwined, understanding the 510

dominant characteristics of each model’s tokens 511

provides valuable insights into their behavior. 512

To gain insight into the information encoded 513

in individual tokens, we examined their nearest 514

neighbors in the embedding space. We categorized 515

these neighboring tokens into four groups based 516

on the sentence they belong to. Same language: 517

the matched token is the same token in a different 518

sentence in the same language, which means that 519

it encodes lexical information. Same sentence: the 520

token matches another one in the same sentence, 521

meaning the tokens’ representations are heavily 522

influenced by its context. Translation: the token 523

matches its equivalent in a translation of the origi- 524

nal sentence. It means that the tokens’ representa- 525

tions are aligned across languages. Other: tokens 526

that do not belong to previous classes. 527

We conducted these experiments by encoding all 528

tokens from all sentences of the 81 languages (see 529

Appendix C for the list) on the FLORES200 test 530

set using each model. We randomly select three 531

tokens among each of the first 250 English sen- 532

tences of the dataset as query, and for each query, 533

we retrieve the five closest tokens among all to- 534

kens of all sentences (but itself). We analyze the 535

properties of the sentence encoders as well as some 536

respective backbones, XLM-RoBERTa (used to ini- 537

tialize MEXMA) and NLLB-200 encoder (used in 538

SONAR). For the sake of comparison, we also ex- 539

amine "no-tok-MEXMA", a variant of MEXMA 540

that does not use token-level gradients during train- 541

ing. The statistics are shown in Table 7. 542

Our analysis identifies distinct model charac- 543

teristics and clusters them into three behaviors. 544

XLM-RoBERTa exhibits strong lexical relation- 545

ships (high same language percentage) but weaker 546

semantic and contextual relations. LaBSE, DAP 547

and no-tok-MEXMA show higher semantic capa- 548

bilities as shown by the larger translation rate. 549

However, we can also observe a high percentage of 550

matches with adjacent tokens (same sentence col- 551

umn), indicating that those models encode a very 552

large amount of context in their tokens. 553

NLLB, SONAR and MEXMA have strong cross- 554

lingual semantic capability as shown by the very 555

high percentage in the translation column. This is 556

expected as they were trained to perform translation 557

or cross-lingual unmasking. 558

Note also that LaBSE and DAP are the only 559

models trained with a sentence-level contrastive 560

loss, and even though DAP has an additional loss 561
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to enforce the semantic alignment of the tokens, it562

does not manage to achieve the same alignment as563

SONAR and MEXMA.564

Notably, comparing the backbones NLLB and565

XLM-RoBERTa, we can see that the former ex-566

hibits more semantical tokens than the latter, as567

shown by its higher translation rate and lower568

same sentence rate, which can be attributed to its569

translation-based pre-training that enhances seman-570

tic properties and cross-lingual alignment. SONAR,571

which starts from NLLB, also matches translated572

tokens with a high rate, >99%, but does not encode573

a lot of lexical information (low same language574

rate). MEXMA also matches translated tokens575

very frequently, but additionally displays more lex-576

icality (higher same language rate) and increased577

semantic robustness (higher other rate). To assess578

the latter, we verified MEXMA’s other matches.579

The matched tokens belong to sentences in other580

languages that are not translations of the original581

one, with the matched token being the translated to-582

ken. We believe that MEXMA produces sentence583

representations that inherit the above properties,584

allowing it to outperform other models on down-585

stream tasks. We provide examples to illustrate586

the behavior of the models, also experiments with587

SimAlign (Jalili Sabet et al., 2020), in Appendix F.588

5.6 Sentence vector analysis589

Sentence representations are created by combining590

token representations in various ways (average or591

CLS attention pooling). The previous section exam-592

ined properties encoded in tokens, and this section593

explores how these representations are combined594

to form the sentence embedding.595

To create the sentence representation, SONAR596

averages the tokens embeddings (uniform distribu-597

tion) while MEXMA and LaBSE both use a CLS598

token to perform pooling over the tokens.599

We analyse the attention distributions by com-600

puting their average entropy in the last layer given601

by the CLS token, on FLORES200 test set, for the602

languages supported by both LaBSE and MEXMA.603

LaBSE gets an entropy of ≈ 3.4, while MEXMA604

gets an entropy of ≈ 2.5. Although the absolute605

entropy values themselves are difficult to interpret,606

the relative difference is informative. LaBSE has607

a more uniform distribution of attention probabil-608

ities as exhibited by the higher entropy compared609

to MEXMA. We provide examples of the distribu-610

tions in Appendix G.611

We perform an additional analysis to understand612

Model xsim ↓ xsim++ ↓ STS ↑ Class ↑

Uni-LaBSE 2.02 20.73 63.50 58.03
Uni-MEXMA 0.19 18.21 54.24 56.98
CLS-LaBSE 0.92 18.65 64.65 62.77
CLS-MEXMA 0.06 9.60 63.99 65.35
∆ LaBSE -119.65 -11.19 +1.78 +7.55

∆ MEXMA -212.50 -89.73 +15.24 +12.81

Table 8: Results for LaBSE and MEXMA, using a uni-
form (Uni-) or the CLS attention distribution. The last
two rows provide the relative delta between the uniform
and CLS distributions. STS and Classification results
are across all datasets mentioned under Appendix E.

the importance and impact of the attention distri- 613

bution for MEXMA and LaBSE. Concretely, we 614

create sentence representations by averaging the to- 615

kens embeddings, i.e. using a completely uniform 616

distribution. The results are provided in Table 8. 617

The deltas are computed in terms of relative change 618

from the uniform to the CLS representation. We 619

can see that for all tasks, MEXMA has a larger 620

change in performance compared to LaBSE, show- 621

ing that indeed since our representations are more 622

skewed, we suffer more from an increase in uni- 623

formity of the distribution. For those tasks, it is 624

noticeable that MEXMA having a uniform distribu- 625

tion, will lose its ability to focus on the important 626

tokens, decreasing its results. For LaBSE the de- 627

crease is not as accentuated, since it was already 628

not focusing as much on the important tokens with 629

its more uniform CLS pooling. 630

6 Conclusion 631

We introduced MEXMA, a novel multilingual 632

alignment technique that leverages both token-level 633

and sentence-level objectives. We show that in- 634

tegrating token-level objectives into the training 635

of cross-lingual sentence encoders (CLSE) greatly 636

improves sentence representation quality, outper- 637

forming current state-of-the-art pre-trained CLSE 638

in bitext mining and other downstream tasks. We 639

additionally validate these improvements via ab- 640

lations. Notably, MEXMA also achieves strong 641

token alignment across languages and effectively 642

encodes meaningful information within each to- 643

ken. Since the sentence representation is built from 644

these tokens, as we analysed, this leads to better 645

sentence representations. Looking ahead, we plan 646

to explore MEXMA’s scalability to more languages, 647

and potentially modalities. 648
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7 Limitations649

This work covers 80 languages, which limits its650

usability compared to other approaches, namely651

SONAR (Duquenne et al., 2023), that have a wider652

language coverage. In this work we did not explore653

using other backbones supporting more languages,654

focusing only on using BERT-like models, since655

those are pre-trained with Masked Language Mod-656

eling, which is the task we also selected for our657

method. For future work, it would be relevant to658

carefully tune other backbones supporting more659

languages with our presented method.660

In this work, the focus was on the method and661

architecture, consequently no specific data process-662

ing was performed. We opted to use the NLLB663

data (NLLB Team et al., 2022) as-is, without any664

additional processing or cleaning, which could be665

advantageous. To train our approach 300k steps666

with 1200 batch size was needed, a total of 360M667

sentences processed. There could be a focus on668

making the approach less reliant on large scales of669

data, however, since it is not a common trend on670

other approaches, we also decided not to make it671

a focus in our approach. It is, however, an issue672

worth addressing.673

Comparing approaches using different back-674

bones and different training data is not straight-675

forward, and although in the main text we just676

compare our best model against other best models,677

in Appendix B.4, we provide fairer comparisons678

using the same backbones and training data.679
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A Experimental Setup1020

A.1 KoLeo loss1021

We define below the KoLeo loss, LKoLeo, for a set1022

of n representations, as well as the symmetrical1023

version, LK , we use to train our models:1024

LK = LKoLeo(SA) + LKoLeo(SB),1025

with LKoLeo = − 1

n

n∑
i=1

log(dn,i)1026

where dn,i = minj ̸=i ∥ xi − xj ∥ is the distance1027

between xi and its nearest point in the batch.1028

A.2 Encoder backbone1029

The available implementation of XLM-RoBERTa1030

in HuggingFace employs an inefficient attention1031

mechanism, which we have modified to incorpo-1032

rate the memory-efficient attention from xForm-1033

ers (Lefaudeux et al., 2022). This modification1034

was necessary due to the random batching pro-1035

cess used in our training, which results in a sig-1036

nificant amount of padding and increased compu-1037

tational cost. To address this issue and eliminate1038

padding, we have employed the BlockDiagonal-1039

Mask 2, which through custom CUDA kernels,1040

avoids computations in padding altogether. With1041

this change we are able to increase our batch size1042

in each GPU by a factor of ≈ 8.1043

A.3 Unmasking head1044

For the unmasking head, we use 6 transformer lay-1045

ers, also leveraging the memory-efficient attention.1046

A.4 Compute and training length1047

Our models were trained on a single node of 81048

A100 GPUs. Each GPU had a batch size of 150,1049

totalling 1,200 batch size across all GPUs. We1050

accumulated two gradients, making our effective1051

batch size 2,400. We trained our models for 300k1052

steps.1053

A.5 Losses1054

Our models were trained with α = 1, β = 1
2 and1055

γ = 0.01
2 .1056

A.6 Training parameters1057

We utilize the AdamW optimizer for our training1058

process. The learning rate is linearly increased1059

2https://facebookresearch.github.io/xformers/
components/ops.html#xformers.ops.fmha.attn_bias.
BlockDiagonalMask

from 1e-5 for the 300k steps. To optimize memory 1060

usage, we employ mixed precision training, where 1061

the model is stored in float32, while most compu- 1062

tations are performed in float16. The maximum 1063

sequence length for our input data is set to 200 1064

tokens. Finally, we apply a masking ratio of 40% 1065

to the input data. 1066
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B Ablations1067

B.1 Model components1068

In Table 9, we ablate the different components of1069

our architecture described in Section 3. We briefly1070

explain each entry in the table. Model 1 has1071

only two encoder instances, one for each language,1072

where one of the inputs is masked, and the other1073

is left clean. The token unmasking is performed1074

with the clean sentence representation as context.1075

The languages are randomly swapped at every new1076

sample, to eliminate potential biases. The gradients1077

from the unmasking task are only propagated back1078

to the encoder via the sentence representation, and1079

there is no gradient propagation from the individual1080

tokens back to the encoder. There is also neither1081

alignment nor koleo losses. Model 2 adds two ad-1082

ditional encoder instances, totalling four instances,1083

two for each language, where now each language1084

has its clean and masked input. This allows to1085

unmask language A with language B, and vice-1086

versa, and will also allow (once added) to align1087

two clean sentence representations. Model 3 adds1088

the alignment loss, but it is performed between1089

the masked sentence representation of language A1090

and the clean sentence representation of language1091

B, to better emphasize the advantages of having1092

a symmetrical architecture with an alignment loss1093

between two clean representations. Model 4 then1094

changes the alignment loss to be performed be-1095

tween the two clean sentence representations of1096

each language. In model 5 we allow the gradi-1097

ents from the unmasking to be propagated to the1098

encoder via each individual token, as well as its1099

sentence representation. Finally, model 6 adds1100

the KoLeo loss.1101

The results indicate that each component always1102

enhances performance on at least two out of the1103

three tasks. Notably, the alignment loss, 3 - 4 ,1104

and token-level gradients, 5 , emerge as the most1105

critical components. More precisely, the alignment1106

loss yields substantial improvements on two tasks1107

while also resulting in a notable decline in perfor-1108

mance on another task. In contrast, the token-level1109

gradients consistently provide significant perfor-1110

mance gains across all three tasks.1111

B.2 Cross-linguality1112

In Table 10 we ablate the importance of cross-1113

linguality in the unmasking. To conduct this ex-1114

periment, we performed the unmasking using as1115

context the sentence representation in the same lan-1116

guage of the tokens being unmasked, instead of the 1117

representation in the opposite language. The large 1118

gap in the results shows the importance of doing 1119

the unmasking cross-lingually, as motivated in Sec- 1120

tion 3. The experiments were conducted using the 1121

same hyperparameters. 1122

B.3 Masking ratio 1123

Classical NLP masked encoders like BERT use a 1124

small masking percentage, usually ≈ 15%, with- 1125

out aligning any augmentations. Recent vision 1126

approaches use much higher masking percentages. 1127

BEiT (Bao et al., 2022) was one of the first masked 1128

image modelling (MIM) approaches, in a BERT- 1129

style training, and masked 40%. MAE (He et al., 1130

2022) is another BERT-like model for images, and 1131

masks 75%, but shows that even masking 80% or 1132

90% still achieves good results. DINO v2 (Oquab 1133

et al., 2024) and I-BOT (Zhou et al., 2022) mask be- 1134

tween 10%-50% in a block-wise masking scenario, 1135

aligning augmentations. I-BOT can use 65%-75% 1136

masking ratio, if randomly masking (instead of 1137

block-wise masking). For videos, V-JEPA (Bardes 1138

et al., 2024) masks with a very high percentage of 1139

90%. Recent textual approaches, namely Retro- 1140

MAE experiment with masking percentages of up 1141

to 50∼70%, but this task will not update the actual 1142

encoder. 1143

For MEXMA, since these masking gradients are 1144

updating our encoder, we need to strive for a bal- 1145

ance where unmasking is hard, and cannot be done 1146

by the encoder and head, but also not too much 1147

that will deteriorate the representations of the en- 1148

coder. Table 11 shows the results we obtained for 1149

the different masking ratios. 1150

B.4 Fairer comparisons 1151

In this section, we conduct additional experiments 1152

to enhance the fairness of our method compar- 1153

isons, ensuring that all models are trained on the 1154

same data as MEXMA. Results are reported in Ta- 1155

ble 12. To facilitate a more equitable comparison 1156

with LaBSE, we re-implemented LaBSE using the 1157

same backbone as MEXMA, i.e. XLM-RoBERTa 1158

(XLM-R). The model was trained with the same hy- 1159

perparameters reported in the original paper, specif- 1160

ically a 4k batch size (compared to the 1k batch 1161

size used in MEXMA). This different backbone 1162

and data led to improved performance over LaBSE 1163

on the xsim and SentEval benchmarks, although it 1164

resulted in a significant decrease in performance 1165

on the xsim++ benchmark. For a more accurate 1166
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component xsim ↓ xsim++ ↓ SentEval ↑

Non-symmetrical 1 0.09 14.75 84.68
+ Symmetrical architecture 2 0.09 0.00 14.39 ↓0.36 84.83 ↑0.15

+ Alignment loss (clean to dirty alignment) 3 0.21 ↑0.12 12.09 ↓2.3 85.61 ↑0.78

+ Clean to clean alignment 4 0.15 ↓0.06 11.37 ↓0.72 85.06 ↓0.55

+ Token-level grads 5 0.10 ↓0.05 9.67 ↓1.7 85.98 ↑0.92

+ KoLeo loss 6 - MEXMA 0.06 ↓0.04 9.60 ↓0.07 86.38 ↑0.4

Table 9: Ablation study of the different components of the model. All experiments are conducted with the final
parameters of the model, as reported in Section 3.1.

component xsim ↓ xsim++ ↓ SentEval ↑

Same language unmasking 21.83 73.78 80.34
Cross lingual unmasking 0.06 ↓21.77 9.60 ↓64.18 86.38 ↑6.04

Table 10: Ablation study of the importance of cross-lingual unmasking. All experiments are conducted with the
final parameters of the model, as reported in Section 3.1.

Masking % xsim ↓ xsim++ ↓ SentEval ↑

20% 0.06 10.50 85.87
30% 0.06 9.82 86.00
40% 0.06 9.60 86.38
50% 0.07 9.56 86.37
60% 0.08 9.79 86.13
70% 0.09 10.65 86.41
80% 0.10 12.81 85.85
90% 0.11 14.62 84.99

Table 11: The model performance across different mask-
ing ratios.

Model xsim ↓ xsim++ ↓ SentEval ↑

XLM-R LaBSE 0.10 33.82 86.08
NLLB-MEXMA 0.11 23.36 85.20

Baselines
MEXMA 0.06 9.60 86.36
SONAR 0.09 12.08 85.82
LaBSE 0.92 18.65 85.63

Table 12: Fairer comparisons with same backbone to
compare different strategies, all trained on the same
data.

comparison with SONAR, we replaced the XLM-1167

R backbone in MEXMA with the NLLB encoder.1168

This approach is more straightforward than train-1169

ing SONAR with XLM-R, as SONAR requires a1170

pre-trained translation decoder. The results, how-1171

ever, were inferior to those of MEXMA across all1172

tasks, with larger gaps than SONAR. This outcome1173

is expected, given that the NLLB model was not1174

originally trained for masked language modeling.1175
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C Language information appendix1176

In this section, we cover the languages used by1177

our model. The list of languages used to train1178

our model is reported in Table 13. The list used1179

to conduct the experiments with 90 languages is1180

available in Table 14.1181
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FLORES200 code Language FLORES200 code Language
acm_Arab Mesopotamian Arabic kan_Knda Kannada
aeb_Arab Tunisian Arabic kat_Geor Georgian
afr_Latn Afrikaans kaz_Cyrl Kazakh
amh_Ethi Amharic khm_Khmr Khmer
ary_Arab Moroccan Arabic kir_Cyrl Kyrgyz
arz_Arab Egyptian Arabic kor_Hang Korean
asm_Beng Assamese lao_Laoo Lao
azb_Arab South Azerbaijani mal_Mlym Malayalam
azj_Latn Azerbaijani mar_Deva Marathi
bel_Cyrl Belarusian mkd_Cyrl Macedonian
ben_Beng Bengali mya_Mymr Burmese
bos_Latn Bosnian nld_Latn Dutch
bul_Cyrl Bulgarian nno_Latn Norwegian
cat_Latn Catalan nob_Latn Norwegian Bokmål
ces_Latn Czech npi_Deva Nepali
ckb_Arab Central Kurdish pol_Latn Polish
cym_Latn Welsh por_Latn Portuguese
dan_Latn Danish ron_Latn Romanian
deu_Latn German rus_Cyrl Russian
ell_Grek Greek san_Deva Sanskrit
eng_Latn English sin_Sinh Sinhala
epo_Latn Esperanto slk_Latn Slovak
est_Latn Estonian slv_Latn Slovenian
eus_Latn Basque snd_Arab Sindhi
fin_Latn Finnish som_Latn Somali
fra_Latn French spa_Latn Spanish
gla_Latn Scottish Gaelic srp_Cyrl Serbian
gle_Latn Irish sun_Latn Sundanese
glg_Latn Galician swe_Latn Swedish
guj_Gujr Gujarati swh_Latn Swahili
hau_Latn Hausa tam_Taml Tamil
heb_Hebr Hebrew tel_Telu Telugu
hin_Deva Hindi tha_Thai Thai
hrv_Latn Croatian tur_Latn Turkish
hun_Latn Hungarian uig_Arab Uyghur
hye_Armn Armenian ukr_Cyrl Ukrainian
ind_Latn Indonesian urd_Arab Urdu
isl_Latn Icelandic vie_Latn Vietnamese
ita_Latn Italian xho_Latn Xhosa
jav_Latn Javanese zho_Hant Chinese (Traditional)
jpn_Jpan Japanese

Table 13: 81 languages set.
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FLORES200 code Language FLORES200 code Language
afr_Latn Afrikaans kmr_Latn Kurdish (Kurmanji)
als_Latn Albanian kor_Hang Korean
amh_Ethi Amharic lao_Laoo Lao
arb_Arab Arabic lit_Latn Lithuanian
asm_Beng Assamese lvs_Latn Latvian
azj_Latn Azerbaijani mal_Mlym Malayalam
bel_Cyrl Belarusian mar_Deva Marathi
ben_Beng Bengali mkd_Cyrl Macedonian
bos_Latn Bosnian mya_Mymr Burmese
bul_Cyrl Bulgarian nld_Latn Dutch
cat_Latn Catalan nno_Latn Norwegian
ces_Latn Czech npi_Deva Nepali
cym_Latn Welsh ory_Orya Oriya
dan_Latn Danish pan_Guru Punjabi
deu_Latn German pbt_Arab Pashto
ell_Grek Greek plt_Latn Malagasy
eng_Latn English pol_Latn Polish
epo_Latn Esperanto por_Latn Portuguese
est_Latn Estonian prs_Arab Persian
eus_Latn Basque ron_Latn Romanian
fin_Latn Finnish rus_Cyrl Russian
fra_Latn French san_Deva Sanskrit
gaz_Latn Oromo sin_Sinh Sinhala
gla_Latn Gaelic slk_Latn Slovak
gle_Latn Irish slv_Latn Slovenian
glg_Latn Galician snd_Arab Sindhi
guj_Gujr Gujarati som_Latn Somali
hau_Latn Hausa spa_Latn Spanish
heb_Hebr Hebrew srp_Cyrl Serbian
hin_Deva Hindi sun_Latn Sundanese
hrv_Latn Croatian swe_Latn Swedish
hun_Latn Hungarian swh_Latn Swahili
hye_Armn Armenian tam_Taml Tamil
ind_Latn Indonesian tel_Telu Telugu
isl_Latn Icelandic tha_Thai Thai
ita_Latn Italian tur_Latn Turkish
jav_Latn Javanese uig_Arab Uyghur
jpn_Jpan Japanese ukr_Cyrl Ukrainian
kan_Knda Kannada urd_Arab Urdu
kat_Geor Georgian uzn_Latn Uzbek
kaz_Cyrl Kazakh vie_Latn Vietnamese
khk_Cyrl Mongolian xho_Latn Xhosa
khm_Khmr Khmer ydd_Hebr Yiddish
kir_Cyrl Kyrgyz zho_Hans Chinese (Simplified)
zsm_Latn Malay zho_Hant Chinese (Traditional)

Table 14: 90 languages set
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D Datasets1182

In this section we report the data used to train our1183

models. Table 15 reports all the datasets used to1184

train the models.1185
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Dataset Source Origin
bible-uedin Opus Christodouloupoulos and Steedman (2015); Tiedemann (2012)
DGT Opus Steinberger et al. (2012); Tiedemann (2012)
ECB Opus Tiedemann (2012)
EMEA Opus Tiedemann (2012)
EUbookshop Opus Tiedemann (2012)
infopankki Opus Tiedemann (2012)
memat Opus Tiedemann (2012)
OpenSubtitles Opus Lison and Tiedemann (2016); Tiedemann (2012), Link: opensubtitles.org

QED Opus (Abdelali et al., 2014; Tiedemann, 2012)
Tanzil Opus Tiedemann (2012), Link: tanzil.net/trans

Tatoeba Opus Tiedemann (2012)
Ted20 Opus Reimers and Gurevych (2020); Tiedemann (2012)
Tico19 Opus Anastasopoulos et al. (2020); Tiedemann (2012)
UNPC Opus Ziemski et al. (2016); Tiedemann (2012)
Wikimedia Opus Tiedemann (2012)
NLLB mined Opus Schwenk et al. (2020); Fan et al. (2020); Tiedemann (2012)

Table 15: Datasets used to train our models.
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E Detailed results1186

In this section, we report the detailed scores of the1187

MTEB benchmark reported in Section 4, as well1188

as the remaining benchmarks. We report the scores1189

per task, with every dataset used per task, and per1190

language. MEXMA is able to outperform the previ-1191

ous SOTA results on mining, while also improving1192

the downstream results on classification and pair1193

classification. LaBSE outperforms all other models1194

on STS.1195

E.1 Bitext Mining1196

Results for mining are in Table 16, for the BUCC1197

dataset. We report the scores on the four available1198

languages: German, French, Russian and Chinese.1199

We evaluate our model using xsim and xsim++ on1200

the FLORES200 dataset, covering the 81 languages1201

supported by our model (listed in Appendix C). For1202

fairer comparison, we also report results for the1203

72 languages supported by LaBSE, SONAR, and1204

MEXMA ("o-xsim"), and separately for the 341205

languages common to DAP and the other models1206

("d-xsim"). The results are available in Table 17.1207

Results on all languages covered by MEXMA for1208

xsim and xsim++ on FLORES200 are provided in1209

Tables 18 and 19, respectively.

LP DAP SONAR LaBSE MEXMA
de-en 99.45 98.82 99.35 99.52
fr-en 98.58 98.09 98.72 98.98
ru-en 97.74 97.37 97.78 98.06
zh-en 98.96 98.72 99.16 99.18

Table 16: BUCC results for each language pair (LP).

1210

E.2 Classification1211

Classification results for English are available in1212

Table 20, for SentEval, and in Table 21 for the En-1213

glish MTEB classification datasets. Classification1214

results for Chinese, French, Danish, Norwegian1215

and Polish are reported in Table 22, Table 23, Ta-1216

ble 24, Table 25, Table 26, respectively. MEXMA1217

outperforms all other models on average.1218

E.3 Pair Classification1219

Pair classification results for English, French and1220

Chinese are reported in Table 27, Table 28, and1221

Table 29, respectively. MEXMA outperforms all1222

other models on average.1223

E.4 Semantic Textual Similarity (STS) 1224

Semantic Textual Similarity (STS) results are re- 1225

ported in Table 30, Table 32, Table 33 and Table 31 1226

for English, French, Polish and Chinese, respec- 1227

tively. LaBSE outperforms MEXMA and the re- 1228

maining models on STS. MEXMA and LaBSE 1229

outperform SONAR by large margins. 1230
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Model xsim ↓ xsim++ ↓ BUCC ↑ o-xsim ↓ o-xsim++ ↓ d-xsim ↓ d-xsim++ ↓

DAP - - 98.68 - - 2.90 32.82
SONAR 0.09 12.08 98.25 0.08 11.68 0.04 10.55
LaBSE 0.92 18.65 98.75 0.31 16.21 0.26 14.51
MEXMA 0.06 9.60 98.93 0.05 9.01 0.02 8.26

Table 17: Results in mining (%). xsim and xsim++ are computed on 81 languages (FLORES200 dataset, X-eng
pairs), with o-. . . columns showing results for 72 supported languages from LaBSE and d-. . . columns showing
results for 34 languages supported by DAP. BUCC is computed with F1 in its 4 languages.

Language SONAR LaBSE MEXMA DAP Language SONAR LaBSE MEXMA DAP
acm_Arab 0 0 0 - kan_Knda 0 0 0 -
aeb_Arab 0.10 0.10 0.10 - kat_Geor 0.40 0 0 7.41
afr_Latn 0 0 0 0.10 kaz_Cyrl 0.20 0.20 0.20 44.96
amh_Ethi 0 0 0 - khm_Khmr 0 2.08 0 -
ary_Arab 0.79 1.09 0.89 - kir_Cyrl 0.10 0 0 -
arz_Arab 0 0 0 - kor_Hang 0 0 0 0
asm_Beng 0 0 0 - lao_Laoo 0 2.77 0 0.20
azb_Arab 1.68 9.58 0.99 - mal_Mlym 0.10 0.10 0.10 1.48
azj_Latn 0.20 0.10 0.10 - mar_Deva 0 0 0 1.38
bel_Cyrl 0.30 0 0 - mkd_Cyrl 0 0 0 -
ben_Beng 0 0 0 0 mya_Mymr 0.20 0.30 0.20 -
bos_Latn 0 0 0 - nld_Latn 0.10 0 0 0
bul_Cyrl 0.10 0 0 0 nno_Latn 0.10 0 0.10 -
cat_Latn 0 0 0 - nob_Latn 0.10 0.10 0.10 -
ces_Latn 0 0 0 - npi_Deva 0.40 0.30 0.30 -
ckb_Arab 0.10 49.11 0 - pol_Latn 0 0 0 -
cym_Latn 0 0 0 - por_Latn 0 0 0 0
dan_Latn 0 0 0 - ron_Latn 0 0 0 -
deu_Latn 0 0 0 0 rus_Cyrl 0.10 0 0 0
ell_Grek 0 0 0 0.10 san_Deva 0.50 0.79 0.40 -
epo_Latn 0 0 0 - sin_Sinh 0 0 0 -
est_Latn 0 0 0 0 slk_Latn 0 0 0 -
eus_Latn 0 0 0 0 slv_Latn 0.10 0 0 -
fin_Latn 0.10 0.10 0.10 0.10 snd_Arab 0 0 0 -
fra_Latn 0 0 0 0 som_Latn 0.10 0.20 0.10 -
gla_Latn 0.10 0.10 0.10 - spa_Latn 0.10 0.10 0.10 0.10
gle_Latn 0 0 0 - srp_Cyrl 0 0 0 -
glg_Latn 0 0 0 - sun_Latn 0.10 0.10 0.10 -
guj_Gujr 0 0 0 - swe_Latn 0 0 0 -
hau_Latn 0.30 0.30 0.30 - swh_Latn 0 0 0 0
heb_Hebr 0 0 0 0 tam_Taml 0 0 0 28.26
hin_Deva 0.10 0 0 0.10 tel_Telu 0 0 0 2.77
hrv_Latn 0 0 0 - tha_Thai 0 5.53 0.10 0.10
hun_Latn 0 0 0 0 tur_Latn 0 0 0 0
hye_Armn 0 0 0 - uig_Arab 0.10 0.10 0.10 -
ind_Latn 0 0 0 0 ukr_Cyrl 0 0 0 -
isl_Latn 0.20 0.10 0.10 - urd_Arab 0.10 0.10 0.10 0.30
ita_Latn 0 0 0 0 vie_Latn 0 0 0 0
jav_Latn 0 0 0 11.17 xho_Latn 0.10 0.10 0.10 -
jpn_Jpan 0 0 0 0 zho_Hant 0.10 0 0 0

Table 18: xsim results for each language in FLORES200 covered by MEXMA.
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Language SONAR LaBSE MEXMA DAP Language SONAR LaBSE MEXMA DAP
acm_Arab 13.54 28.56 12.35 - kan_Knda 16.21 18.38 10.77 -
aeb_Arab 14.23 35.38 14.82 - kat_Geor 16.01 18.48 11.66 69.66
afr_Latn 6.62 9.39 5.63 20.75 kaz_Cyrl 12.55 15.32 8.89 89.72
amh_Ethi 11.56 19.07 7.51 - khm_Khmr 14.72 20.55 9.39 -
ary_Arab 15.91 44.47 25.59 - kir_Cyrl 15.12 20.55 13.04 -
arz_Arab 13.93 31.03 13.24 - kor_Hang 14.82 18.58 9.19 -
asm_Beng 17.98 41.11 13.44 - lao_Laoo 10.18 18.77 7.41 42.19
azb_Arab 45.26 69.17 33.00 - mal_Mlym 13.14 19.96 11.17 54.35
azj_Latn 17.69 17.69 12.35 - mar_Deva 10.97 15.42 8.00 54.45
bel_Cyrl 20.26 21.94 13.44 - mkd_Cyrl 7.51 11.86 6.42 -
ben_Beng 13.83 17.79 8.70 33.60 mya_Mymr 19.66 28.06 15.91 -
bos_Latn 7.61 8.10 5.24 - nld_Latn 13.34 13.34 10.08 20.45
bul_Cyrl 9.19 9.19 5.53 17.89 nno_Latn 16.80 13.24 8.30 -
cat_Latn 6.03 8.79 5.04 - nob_Latn 15.51 11.56 7.41 -
ces_Latn 8.20 11.76 6.72 - npi_Deva 14.53 13.74 7.61 -
ckb_Arab 13.64 93.97 14.03 - pol_Latn 11.17 12.65 8.70 -
cym_Latn 7.61 14.03 5.43 - por_Latn 5.93 9.09 6.32 14.53
dan_Latn 6.03 8.10 4.84 - ron_Latn 8.10 8.40 5.73 -
deu_Latn 6.13 7.61 6.13 15.22 rus_Cyrl 7.91 9.98 6.23 19.17
ell_Grek 10.57 16.40 8.99 26.58 san_Deva 24.41 51.09 22.33 -
epo_Latn 6.13 9.49 5.63 - sin_Sinh 12.15 16.01 7.91 -
est_Latn 8.10 11.46 5.93 18.87 slk_Latn 8.99 10.77 7.51 -
eus_Latn 10.87 15.32 8.30 25.20 slv_Latn 9.58 11.56 6.62 -
fin_Latn 8.99 13.44 8.50 20.55 snd_Arab 13.64 28.85 9.68 -
fra_Latn 5.93 7.61 5.34 17.59 som_Latn 15.81 30.93 14.92 -
gla_Latn 17.19 23.62 12.25 - spa_Latn 9.49 11.07 7.71 20.55
gle_Latn 10.57 15.81 9.68 - srp_Cyrl 6.92 9.98 5.34 -
glg_Latn 7.51 8.40 5.63 - sun_Latn 15.02 16.50 10.38 -
guj_Gujr 11.56 15.12 8.30 - swe_Latn 8.00 8.99 6.03 -
hau_Latn 16.40 25.99 13.44 - swh_Latn 7.11 15.71 8.89 29.05
heb_Hebr 6.92 15.02 7.51 26.28 tam_Taml 15.61 18.48 11.26 81.32
hin_Deva 9.58 10.97 6.92 29.74 tel_Telu 13.83 15.12 10.87 57.02
hrv_Latn 8.20 9.09 6.52 - tha_Thai 10.57 28.16 8.20 30.83
hun_Latn 9.09 13.74 7.91 17.79 tur_Latn 8.60 10.87 7.51 18.38
hye_Armn 7.51 12.94 9.09 - uig_Arab 16.70 23.12 13.74 -
ind_Latn 6.23 9.09 5.73 14.92 ukr_Cyrl 10.08 12.25 7.61 -
isl_Latn 10.38 14.43 8.50 - urd_Arab 12.25 16.70 10.08 47.13
ita_Latn 9.98 9.49 6.23 16.11 vie_Latn 7.41 12.15 7.61 18.58
jav_Latn 13.74 17.09 9.88 63.04 xho_Latn 11.96 31.42 15.61 -
jpn_Jpan 15.22 17.79 10.08 27.17 zho_Hant 17.89 24.60 12.55 28.56

Table 19: xsim++ results for each language in FLORES200 covered by MEXMA.
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Task DAP SONAR LaBSE MEXMA
Average 78.18 85.82 85.63 86.38
MR 74.33 81.23 78.89 80.14
SST2 81.88 86.49 83.64 86.16
TREC 75.00 95.00 92.80 94.80
CR 78.70 85.67 86.44 84.43
SUBJ 91.83 93.70 93.14 94.27
MPQA 78.86 89.38 89.66 89.41
MRPC 66.67 69.28 74.84 75.42

Table 20: SentEval results.

Dataset DAP SONAR LaBSE MEXMA
Average 66.35 65.63 66.75 68.20
AmazonCounterfactualClassification 77.16 81.49 75.93 78.06
AmazonPolarityClassification 65.73 62.73 68.95 64.96
AmazonReviewsClassification 34.03 31.55 35.80 32.77
Banking77Classification 71.83 73.50 69.85 75.14
ImdbClassification 62.06 55.75 62.04 62.08
MTOPDomainClassification 85.54 89.92 86.06 89.85
MTOPIntentClassification 64.17 70.85 63.03 75.18
MasakhaNEWSClassification 77.95 55.42 77.77 72.28
MassiveIntentClassification 63.48 64.37 61.46 66.64
MassiveScenarioClassification 68.75 69.05 66.41 70.38
ToxicConversationsClassification 59.14 67.28 66.90 62.85

Table 21: MTEB English classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.46 63.13 68.69 66.25
AmazonReviewsClassification (zh) 34.35 31.91 32.98 33.40
MassiveIntentClassification (zh-CN) 71.99 62.08 63.86 74.41
MassiveScenarioClassification (zh-CN) 65.45 68.88 70.85 65.28
JDReview 71.54 69.59 79.13 70.73
MultilingualSentiment 62.03 57.69 65.52 60.34
OnlineShopping 85.03 75.64 85.62 80.09
Waimai 81.82 76.12 82.85 79.52

Table 22: MTEB Chinese classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.76 61.88 62.05 66.07
AmazonReviewsClassification 35.60 34.91 38.52 35.62
MTOPDomainClassification 84.43 86.19 84.14 86.70
MTOPIntentClassification 65.78 66.75 62.01 74.12
MassiveIntentClassification 64.51 58.55 60.47 65.59
MassiveScenarioClassification 68.50 63.02 65.1 68.31

Table 23: MTEB French classification results.
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Dataset DAP SONAR LaBSE MEXMA
Average 52.27 54.01 49.53 55.38
DanishPoliticalCommentsClassification 36.44 37.59 38.69 38.75
LccSentimentClassification 58.27 54.27 50.07 52.40
MassiveIntentClassification (da) 58.74 62.03 58.25 65.75
MassiveScenarioClassification (da) 66.15 67.76 65.24 69.26
NordicLangClassification 41.73 48.40 35.38 50.74

Table 24: MTEB Danish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 51.58 55.59 50.76 58.08
MassiveIntentClassification 55.85 59.90 57.91 64.48
MassiveScenarioClassification 62.67 65.81 64.29 68.22
NoRecClassification 46.06 48.25 45.44 48.88
NordicLangClassification 41.73 48.40 35.38 50.74

Table 25: MTEB Norwegian classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 53.03 55.09 56.00 57.09
AllegroReviews 31.58 29.62 34.89 31.09
MassiveIntentClassification (pl) 58.53 65.86 59.71 66.85
MassiveScenarioClassification (pl) 63.05 69.99 64.58 70.20
PAC 67.97 73.87 68.11 73.31
PolEmo2.0-IN 61.75 52.80 64.00 59.10
PolEmo2.0-OUT 35.32 38.40 44.72 42.00

Table 26: MTEB Polish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.87 70.73 69.75 74.39
PawsX 55.30 75.05 54.07 73.18
SprintDuplicateQuestions 72.47 77.08 89.26 86.89
XNLI 63.83 60.06 65.92 63.10

Table 27: MTEB English pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 73.03 77.57 73.70 78.13
PawsX (fr) 55.57 71.36 54.63 71.07
Opusparcus (fr) 100.00 100.00 100.00 100.00
XNLI 63.52 61.34 66.48 63.32

Table 28: MTEB French pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 61.12 60.80 61.95 62.12
PawsX(zh) 56.20 65.35 54.26 63.68
Cmnli 69.29 61.86 72.67 67.45
Ocnli 57.86 55.18 58.91 55.23

Table 29: MTEB Chinese pair classification results.
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Dataset DAP SONAR LaBSE MEXMA
Average 67.45 67.24 70.93 70.62
BIOSSES 70.51 79.11 78.70 75.97
SICK-R 69.18 62.94 69.99 66.00
STS12 64.69 65.46 65.08 67.32
STS13 63.50 62.79 67.98 67.05
STS14 61.49 57.54 64.03 62.73
STS15 75.38 74.25 76.59 75.72
STS16 68.00 75.73 72.98 76.93
STS17 (en-en) 77.03 79.94 79.45 80.97
STS22 (en) 53.38 47.12 60.97 57.11
STSBenchmark 69.39 67.39 72.25 73.53
STSBenchmarkMultilingualSTS (en) 69.39 67.39 72.25 73.53

Table 30: MTEB English STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 45.31 42.15 47.50 51.56
ATEC 28.01 26.18 26.61 29.68
BQ 40.01 37.66 42.60 44.37
LCQMC 54.97 50.11 52.19 61.34
PAWSX 12.99 32.75 10.23 27.77
STS22(zh) 52.05 52.82 63.02 63.49
STSB 63.67 50.18 68.38 65.75
STSBenchmarkMultilingualSTS (zh) 65.46 45.33 69.50 68.55

Table 31: MTEB Chinese STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.74 65.60 74.33 70.10
SICKFr 66.84 66.1 69.94 65.94
STS22 (fr) 64.44 61.72 77.95 72.19
STSBenchmarkMultilingualSTS (fr) 71.92 68.99 75.1 72.17

Table 32: MTEB French STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 57.06 57.17 65.82 63.67
CDSC-R 74.12 85.77 85.53 85.95
SICK-R-PL 60.63 62.98 65.90 64.31
STS22 (pl) 28.16 25.31 39.28 32.51
STSBenchmarkMultilingualSTS (pl) 65.31 54.62 72.58 71.93

Table 33: MTEB Polish STS results.
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F Token level analysis1231

In this section, we illustrate the behaviour of each1232

model by visualizing the closest tokens in the space.1233

We observe that MEXMA matches tokens in trans-1234

lations but also different contexts when tokens are1235

used with the same meaning. This is further bro-1236

ken down in Table 7, which distinguishes between1237

two types of matches MEXMA does: (1) "same1238

language" matches, where the model identifies the1239

same token used in a different context (monolin-1240

gual), and (2) "other" matches, where it recognizes1241

translated tokens in a sentence in another language1242

that is not a translation (multilingual). We observe1243

that SONAR primarily matches tokens across trans-1244

lations, but does not tend to match the same to-1245

ken when it appears in different sentences within1246

the same language. Examples of MEXMA and1247

SONAR comparisons of matching the same token1248

in other sentences is in Figure 5, and both models1249

matching translations in Figure 6. In both figures,1250

we show the three closest tokens to the selected1251

token, denoted as query on the green box, with the1252

blue text. The closest tokens are in the purple boxes1253

with the pink text. Additionally, we show exam-1254

ples of how LaBSE and MEXMA without direct1255

token-level gradients (no-tok MEXMA), match ad-1256

jacent tokens in the same sentence regularly. These1257

are shown for LaBSE in Figure 2, and for no-tok1258

MEXMA in Figure 3. Lastly, we show how XLM-1259

RoBERTa mostly matches the same tokens in other1260

sentences in the same language, presented in Fig-1261

ure 4. For these last three models, we show the1262

top-2 closest tokens, with the same color scheme1263

as mentioned above. Each image has two examples1264

for the given model.1265

F.1 Verifying the token alignment quality1266

through SimAlign1267

Several approaches have showed that aligned to-1268

kens across languages lead to better performing1269

sentence representations (Li et al., 2023; Cao et al.,1270

Dataset XLM-R SONAR LaBSE MEXMA
Average 56.90 70.66 67.53 73.03
eng-deu 61.50 77.10 72.90 80.50
eng-fra 71.20 89.20 84.40 91.50
eng-ces 38.00 45.70 45.30 47.10

Table 34: SimAlign results using different models as
backbone for the token-level alignment on different lan-
guage pairs.

2020; Schuster et al., 2019). In order to further val- 1271

idate the improved alignment of our tokens, we use 1272

XLM-RoBERTa, SONAR, LaBSE and MEXMA 1273

as the backbone for SimAlign (Jalili Sabet et al., 1274

2020). We test the models across 3 language pairs, 1275

on the datasets reference in SimAlign, English- 1276

German (Koehn, 2005), English-French (Och and 1277

Ney, 2000) and English-Czech (Mareček, 2008). 1278

The alignment created by the models is compared 1279

a reference word alignment to compute a F1 score. 1280

The results are provided in Table 34, and it is pos- 1281

sible to see that the alignment created by MEXMA 1282

achieves better F1 scores. All results were achieved 1283

using the itermax method, taking the word repre- 1284

sentations from the last layer of each model. 1285
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The governor's office said nineteen of the
injured were police officers.

Token: nineteen Token: bell

The governor's office said nineteen of the
injured were police officers.

The governor's office said nineteen of the
injured were police officers.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

Figure 2: Example of LaBSE’s token matching. The token in blue is the query token, the tokens in pink are the
closest tokens to the query token in the space.

. Scientists say this animal's plumage ...
with a pale ... underside.

Token: plumage Token: down

. Scientists say this animal's plumage ...
pale ... underside.

. Scientists say this animal's plumage
... pale ... underside.

"The researchers suggested ... this is the
tail ... chick's down."

"The researchers suggested ... this
is the tail ... chick's down."

"The researchers suggested ... this is the
tail ... chick's down."

Figure 3: Example of MEXMA no token-level grad’s token matching. The token in blue is the query token, the
tokens in pink are the closest tokens to the query token in the space.

"We now have 4-month-old mice that are non-
diabetic that used to be diabetic," he added.

Token: diabetic Token: particles

Some venues offer alcoholic beverages on the
house. ...

You can also have alloys that include small
amounts of non-metallic elements like carbon.

This theory says that most dark matter around a
galaxy is located around a galaxy in a kind of halo,

and is made of lots of small particles.

A curry is a dish based on herbs and spices,
together with either meat or vegetables.

Examples include control, planning and ...

Figure 4: Example of XLM-RoBERTa token matching. The token in blue is the query token, the tokens in pink are
the closest tokens to the query token in the space.
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He built a WiFi door bell, he said.

SONAR

িতিন জানান �য িতিন এক�ট ওয়াই-
ফাই �ডার �বল �তির কেরিছেলন।

అత� WiFi �� ��
��� ం��. అ� ��� �.

അേ�ഹം ഒരു WiFi
േഡാർ െബൽ

ഉ�ാ�ിെയ�് അവൻ
പറ�ു.

Dheweke mbangun bel 
lawang WiFi, jarene.

Previously, Ring's CEO, 
Jamie Siminoff, remarked 
the company started when 
his doorbell wasn't audible 
from his shop in his garage.

WiFi ile çalışan bir kapı 
zili yaptığını söyledi.

MEXMA

The find also grants insight into the evolution of feathers
in birds.

SONAR

यह खोज पि�यो ंम� पंखो ंके 
िवकास की पूरी जानकारी भी �दान

करती है.

கண்���ப்பான�
பறைவகளில் இற�களின்

பரிணாம 
வளரச்�்ையப் பற்�ய

�ண்ண�ைவ வழங்��ற�.

ഈ ക�ുപിടി�ം 
പ�ികളിെല തൂവലുകളുെട 
ഉൽഭവ�ിേല�് െവളി�ം 

വീശി.

Oppdagelsen gir i tillegg 
innsikt i utviklingen for 

fjær hos fugler.

The area is also home to 
an extremely wide variety 
of animal and bird species.

But there are a lot of 
things about birds that 
still look like a dinosaur.

MEXMA

The researchers suggested that, even though this is the tail of
a young dinosaur, the sample shows adult plumage and not a

chick's down.

SONARMEXMA

The number of people present was so large that it was not
possible for everybody to gain access to the funeral in St.

Peter's Square.

SONARMEXMA

The feathers' structure
suggests that they were not
used in flight but rather for
temperature regulation or
display. The researchers

suggested that, even though
this is the tail of

a young dinosaur, the sample
shows adult plumage 

and not a chick's down.

Token: bell Token: birds

Token: young Token: funeral

Cercetătorii au sugerat că, 
deși aceasta este coada 

unui dinozaur tânăr, 
eșantionul arată un penaj 
adult și nu puful unui pui.

Os pesquisadores 
sugeriram que, apesar do

rabo ser de um
dinossauro jovem, a amostra

revela uma plumagem 
adulta, não uma penugem.

Fue tanta la cantidad de
gente que se concentró, que
no todos pudieron acceder

al funeral en la Plaza de San
Pedro.

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Foi tal o número de persoas
que acudiu que non todo o

mundo puido acceder
ao funeral na praza de 

San Pedro.

Els investigadors 
suggereixen que, tot i que 

es tracta de la cua d'un
dinosaure jove, la mostra
revela un plomatge adult, 

i no pas plomissol.

Հետազոտողները
ենթադրում են, որ չնայած

սա երիտասարդ դինոզավրի
պոչ է, նմուշը ցույց է տալիս
մեծահասակի փետուր և ոչ

ձագի:

研究者らは、この標本が若い恐竜
の尻尾であるにもかかわらず、ひ
なの羽毛ではなく大人の羽毛が生
えていることを示唆している。

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Over four million people 
went to Rome to attend

the funeral.

Hi havia tanta gent present
que no tots van aconseguir
accedir al funeral a la Plaça

de Sant Pere.

Figure 5: Comparison of SONAR and MEXMA token matching. MEXMA displays the ability to match a token in
another sentence in the same language. SONAR matches a translated token. The token in blue is the query token,
the tokens in pink are the closest tokens to the query token in the space. MEXMA is on the left, SONAR on the
right.
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 "We now have 4-month-old mice that are non-diabetic that
used to be diabetic," he added.

SONAR

انہوں نے مزید بتایا کہ، "اب ہمارے پاس
غیر ذیابیس والے 4 مہینے کی عمر کے
"چوہے ہیں جنہیں شوگر ہوجایا کرتا تھا۔

"Ni havas nun 4-monataĝajn
musojn, kiuj ne estas

diabetaj, sed estis diabetaj",
li aldonis.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

“Ons het nou 4-maand oue
muise wat nie diabeties is,

wat eenmaal diabeties was,”
het hy bygevoeg.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

"Mae gennym ni nawr lygod
pedwar mis oed sydd ddim yn
ddiabetig oedd yn arfer bod

yn ddiabetig", 
ychwanegodd e.

MEXMA

He did not set a figure for the cuts, saying they will be
made based on China's economic output.

SONAR

മുറിവുകൾ�ായി അേ�ഹം ഒരു
ചി�തം സ�മാ�ിയി�ി�,
ൈചനയുെട സാ��ിക

ഉൽ പാദനെ� 
അടി�ാനമാ�ിയാണ്അ

വ നിർ�ി�ുക എ�് പറ�ു.

Ông ấy đã không đưa ra con
số cắt giảm, mà nói rằng 

việc đó sẽ được thực
hiện dựa vào kết quả của 
nền kinh tế Trung Quốc.

ລາວບ່ໍໄດ້ກໍານົດຕົວເລກສໍາລັບການຕັດ
ອອກ ເຊ່ິງກ່າວວ່າພວກເຂົາຈະເຮັດໂດຍ
ອີງໃສ່ຜົນໄດ້ຮັບທາງດ້ານເສດຖະກິດຂອງ

ຈີນ.

चीन�ा आिथ�क आउटपुटवर 
आधा�रत ते ठरवले जाईल असे 
�णून �ांनी कटसाठी 

कोणतीही सं�ा ठरवली नाही.

Níor shocraigh sé figiúr do na
giorrúcháin, á rá go ndéanfar

iad bunaithe ar aschur
geilleagrach na Síne.

Han satte ikke tall for
kuttene, og sa at disse ville
bli foretatt basert på Kinas
økonomiske produksjon.

MEXMA

Siminoff said sales boosted after his 2013 appearance in a
Shark Tank episode where the show panel declined funding the

startup.

SONARMEXMA

Liberal criticism of the reconstruction effort has focused on the
awarding of reconstruction 

contracts to perceived Washington insiders.

SONAR

Либеральная критика усилий
по восстановлению

сосредоточивалась на том,
что контракты на

восстановительные работы
отдавались

предположительно имеющим
связи с правительством.

MEXMA

A crítica liberal sobre o
esforço de reconstrução 
focou na concessão de

contratos de reconstrução a
pessoas com influência em

Washington.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på tilldelningen
av återuppbyggnadskontrakt
till förmodade Washington-

insiderpersoner.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på 
tilldelningen av

återuppbyggnadskontrakt 
till förmodade Washington-

insiderpersoner.

Liberal kritik af
genopbygningsindsatsen

har fokuseret på tildelingen 
af genopbygningskontrakter
til betragtede Washington-

insidere.

Критика на либералите 
към опитите за
реконструкция

се фокусира върху
възлагането на договори за

реконструкция на
предполагаеми

вашингтонски вътрешни
лица.

Ο Σίμινοφ δήλωσε πως οι
πωλήσεις αυξήθηκαν μετά 
την εμφάνισή του σε ένα

επεισόδιο του Shark Tank το
2013 στο οποίο το πάνελ της

εκπομπής αρνήθηκε να
χρηματοδοτήσει την

επιχείρηση.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Симинофф сказал, что
продажи выросли после 

его появления в выпуске шоу
"Shark Tank" в 2013 году, где

члены жюри отказались
финансировать его стартап.

Siminoff afirmou que as 
vendas se

incrementaron despois 
da súa aparición en 2013 no
episodio Shark Tank, no que 

o panel do programa 
rexeitou financiar a empresa

emerxente.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Smirnoff sa att försäljningen
ökade efter hans medverkan 

i ett avsnitt av Shark Tank
2013, där panelen sa nej till

att finansiera startupen.

Token: diabetic Token: based

Token: boosted Token: focused Token: focused

Figure 6: Comparison of SONAR and MEXMA on translated tokens in translations.
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G Attention distribution over tokens1286

In this section, we provide some examples of1287

MEXMA and LaBSE’s attention probabilities1288

given by the CLS token to the word tokens. The1289

examples are provided in Figures 7, 8, 9 and 10.1290

Across all figures, it is possible to see that LaBSE1291

tends to be more uniform across all tokens, while1292

MEXMA tends to focus more attention on a smaller1293

subset of the tokens. All examples are taken from1294

the FLORES200 test set with the xsim++ exten-1295

sion, where some words in the original sentences1296

are replaced, and the models have to be able to still1297

match the correct translation, and not a sentence1298

with a small change. From Figure 7 to Figure 81299

"nineteen" is replaced with "twenty nine". From1300

Figure 9 to Figure 10 the word "white" is replaced1301

with "black".1302

Figure 7 shows the attention placed by MEXMA1303

and LaBSE on the same sentence in English and1304

Portuguese. It is possible to see that MEXMA1305

in Portuguese places most of the attention in two1306

tokens, "governador" and "19", where the token in1307

"19" is very relevant here since it is the one needed1308

to distinguish the examples in xsim++. LaBSE1309

seems to have many tokens with a lot of attention,1310

and does not have "19" as one of the tokens with1311

the most attention.1312

In Figure 8, we have the English example with1313

nineteen (as previously shown in Figure 7) com-1314

pared to the same sentence with nineteen replaced 1315

by twenty-nine. Interestingly, LaBSE places more 1316

attention on the "##teen" token than the "nine" to- 1317

ken, but similar attention to the "twenty", "-" and 1318

"nine" tokens. MEXMA places similar attention in 1319

all nineteen tokens, and in twenty nine it places a 1320

small amount of attention on the irrelevant "-", with 1321

a higher degree of attention in "nine" and a smaller 1322

amount of attention in "twenty". MEXMA also 1323

seems to do a good job ignoring irrelevant tokens 1324

like "of", while LaBSE places a lot of attention in 1325

it. 1326

Figure 9 has the same sentence in English and 1327

Portuguese, where, in xsim++ the models need to 1328

be able to match the color "white" instead of other 1329

colors. It is possible to see that, for LaBSE, white 1330

is not one of the most relevant tokens in English, 1331

but for MEXMA it is, along with "television". In 1332

Portuguese the behavior is similar, the token "bran" 1333

in "esbranquiçada" has a large degree of attention 1334

from MEXMA, while for LaBSE is it not a token 1335

with a lot of attention, and "çada" which is a token 1336

that does not convey the idea of white, is the one 1337

with the most attention out of the 4 tokens of the 1338

word, for LaBSE. In Portuguese it is also noticeable 1339

that MEXMA gives a small amount of attention 1340

to most of the less relevant tokens, while LaBSE 1341

seems to have a lot more tokens with a high degree 1342

of attention. 1343

Figure 10 shows the same English sentence as 1344

Figure 9, with the word white replaced with the 1345

word black. Interestingly, MEXMA’s attention re- 1346

mains the same with black and white, while for 1347

LaBSE the token "black" seems to get less atten- 1348

tion than the token "white". The remaining tokens 1349

get similar attention in both models. 1350

Additionally, Figure 11, provides a comparison 1351

for MEXMA and LaBSE with the probabilities 1352

of all heads, and all tokens, using BertViz (Vig, 1353

2019). It is possible to see that MEXMA places 1354

a lot of attention on the EOS token, </s>, which 1355

is used as an attention dump, i.e. an irrelevant 1356

token that receives a very large attention proba- 1357

bility, a common phenomena in transformers, as 1358

explored in Xiao et al. (2024); Darcet et al. (2024); 1359

Sun et al. (2024). This happens frequently with 1360

MEXMA. It is, again, possible to see the differ- 1361

ence in uniformity for MEXMA and LaBSE, with 1362

LaBSE having a more uniform attention in the fig- 1363

ure. If we remove the BOS and EOS tokens from 1364

the entropy computation, we now get an entropy of 1365

≈ 3.5 and ≈ 3 for LaBSE and MEXMA, respec- 1366
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tively. MEXMA’s entropy increases, while LaBSE1367

stays mostly similar, which shows that MEXMA1368

indeed frequently uses the EOS token as a dump.1369

However, MEXMA still has a lower entropy and1370

a more skewed distribution over its word tokens,1371

with or without BOS and EOS, as shown by the1372

lower entropy and the Figures 7-10.1373
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L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: O gabinete do governador afirmou que 19 dos feridos eram agentes policiais .
M: ▁O ▁gabinet e ▁do ▁governador ▁afirmou ▁que ▁19 ▁dos ▁fer idos ▁eram ▁agentes ▁policiais .

Figure 7: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the
models had to match the sentence with "19" in Portuguese and English. LaBSE’s entries are preceeded with "L:",
and MEXMA’s with "M:".

L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: The governor ' s office said twenty - nine of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁twenty - nine ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

Figure 8: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the
models had to distinguish the sentence with "19" and "29" in Portuguese and English. LaBSE’s entries are preceeded
with "L:", and MEXMA’s with "M:"

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .
L: Reportage ##ns televisiva ##s divulga ##m a fum ##aça es ##bran ##qui ##çada saindo da planta .

M: ▁Report agens ▁televisi vas ▁divulga m ▁a ▁fum a ça ▁es bran qui ça da ▁sa indo ▁da ▁planta .

Figure 9: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the
models had to match the sentence with "white" in Portuguese and English. LaBSE’s entries are preceeded with "L:",
and MEXMA’s with "M:"

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .

L: Television reports show black smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁black ▁smo ke ▁coming ▁from ▁the ▁plant .

Figure 10: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this example, the
models had to distinguish the sentence with "white" and "black" in Portuguese and English. LaBSE’s entries are
preceeded with "L:", and MEXMA’s with "M:"
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[SEP]
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Figure 11: Attention distribution of MEXMA and LaBSE across all heads, and all tokens. On the left is LaBSE,
on the right is MEXMA. MEXMA uses the EOS token as an attention dump, and has a more skewed distribution,
while LaBSE has a more uniform distribution.
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H Baseline architectures1374

We report SONAR, LaBSE’s, DAP’s and Retro-1375

MAE’s architectures in Figures 12b, 12a, 12c and1376

12d, respectively for easier comparison. LaBSE1377

employs a slightly modified contrastive loss, to1378

increase separation, and SONAR is based on trans-1379

lation. DAP uses token-level objectives, but it does1380

not leverage them to update the sentence represen-1381

tation. RetroMAE uses the sentence in the heavy1382

unmasking, but that unmasking does not update1383

the tokens outputted by the encoder, it is mono-1384

lingual, and the sentence representation does not1385

come from an unmasked input. MEXMA is based1386

on cross unmasking and has direct token level gra-1387

dients updating its internal representations.1388
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mBERT mBERT

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

(a) LaBSE’s architecture.

The car is red. [EOS]

El coche es rojo.

Average pooling

NLLB-200
Encoder NLLB-200

Decoder

M
S

E

[BOS]The car is red.

Cross attention

Translation + AE

(b) SONAR’s architecture.

XLM-R XLM-R

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

100 % Masking

Head

MLM

(c) DAP’s architecture.

BERT
1-layer decoder

[CLS]

The car is red.

Head

MLM

15% Masking

The car is red.

The car is red.

70% Masking

The car is red.

MLM

(d) RetroMAE’s architecture.

Figure 12: Architecture of the baselines.
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