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ABSTRACT

Recent progress in text-to-image diffusion highlights the need for invisible,
tamper-resilient watermarking that maintains both visual fidelity and prompt
alignment. Existing approaches often compromise on robustness, imperceptibil-
ity, or scalability, with many introducing semantic drift that weakens provenance
guarantees. To address this, we introduce NullGuard, a training-free, plug-and-
play watermarking framework that embeds cryptographically keyed signals in
the null-space of pretrained diffusion Jacobians, using user-specific rotations to
define imperceptible directions. A lightweight Gauss–Newton pivot refinement,
constrained by a perceptual mask, perturbs only watermark-relevant components
while preserving global semantics, and a likelihood-ratio test detects watermarks
without DDIM inversion, achieving up to 99% detection accuracy under attacks
such as cropping, blurring, and JPEG compression, with PSNR ≥ 45 dB. Ex-
tensive evaluations on MS-COCO and DiffusionDB demonstrate that NullGuard
surpasses state-of-the-art (SOTA) methods in robustness, invisibility, and semantic
alignment, offering a scalable foundation for provenance-aware diffusion gover-
nance. Anonymous Code: https://anonymous.4open.science/r/NullGuard-7766.

INTRODUCTION

The rise of text-to-image diffusion models has transformed creative workflows by enabling users
to generate photorealistic and semantically rich images directly from text Chang et al. (2023);
Podell et al. (2023); Ramesh et al. (2022); Rombach et al. (2022); Saharia et al. (2022), fueling
adoption across digital art Huang et al. (2022); Podell et al. (2023); Wang et al. (2025a), enter-
tainment Blattmann et al. (2023a;b); Ho et al. (2022); Xing et al. (2024), advertising, and design.
Yet, the same accessibility raises critical challenges around ownership, authenticity, and the poten-
tial for malicious use of synthetic content1, prompting growing interest in provenance standards
and traceability Ci et al. (2024); Huang et al. (2024); Zhang et al. (2024). Among the proposed
combatant solutions, invisible watermarking has emerged as a central mechanism for copyright pro-
tection, authorship verification, and user-level traceability. Current methods fall into three types:
post-processing Cox et al. (2008); Zhang et al. (2019), which alters pixels but sacrifices robustness;
fine-tuning Cui et al. (2025); Fernandez et al. (2023); Liu et al. (2023); Xiong et al. (2023); Zhao
et al. (2023b), which modifies model weights and limits scalability; and latent-space watermark-
ing Wen et al. (2023), which preserves fidelity but may disrupt sampling.

Recent works such as Tree-Ring Wen et al. (2023), Stable Signature Fernandez et al. (2023), and
Gaussian Shading Yang et al. (2024) attempt to balance semantic alignment and imperceptibility
carefully. However, iterative denoising in many generative methods often introduces drift, which
means the methods are unable to fully preserve the semantic alignment. This particular gap empha-
sizes the need for robust and semantically stable watermarking solutions.

In this work, we address the challenge of semantic drift in diffusion-based watermarking by intro-
ducing a latent-space embedding strategy that minimizes modification to the semantic content of the
image. Moreover, rather than relying on full denoising simulation, NullGuard minimally perturbs the
clean latent embedding along a key-modulated null-space direction, ensuring high semantic fidelity
without compromising prompt alignment. NullGuard supports per-user cryptographic watermark

1https://edition.cnn.com/2023/05/22/tech/twitter-fake-image-pentagon-explosion/index.html
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personalization via key-derived orthogonal rotations, enabling scalable deployment in real-world
multi-user scenarios. To boost robustness, we perform multi-band frequency decomposition of the
keyed direction—splitting it into coordinated high-, mid-, and low-frequency components to dis-
tribute energy across resilient spectral channels. In addition, a likelihood-ratio segmentation (LRS)
masking stage selects low impact latent pixels for safe injection; we then apply a Gauss–Newton
pivot refinement constrained by this LRS perceptual mask to restrict updates to watermark-relevant
regions, thereby preserving the original image content. Our approach ensures the resulting water-
marked images are virtually indistinguishable from original images, both visually and semantically,
effectively mitigating the drift observed in prior methods. In summary, our main contributions are
as follows:

• We introduce NullGuard, A watermarking framework that embeds imperceptible signals in
the spectral null-space of pre-trained diffusion Jacobians. A secret key produces an orthog-
onal rotation that personalizes the null-space basis, enabling scalable per-user provenance
without fine-tuning or inference overhead.

• A lightweight, closed-form Gauss–Newton pivot constrained by a likelihood-ratio segmen-
tation mask limits edits to watermark relevant latent components, keeping PSNR ≥ 45 dB
while minimizing visual drift.

• We derive a statistically grounded likelihood-ratio test on the forward diffusion ELBO that
detects watermarks with 99% watermark detection rate under cropping, JPEG compression,
and noise, surpassing SOTA methods.

RELATED WORK

DIFFUSION MODELS AND LATENT INVERSION

Diffusion models have achieved remarkable success in high-fidelity image generation and now serve
as a cornerstone in generative tasks such as text-to-image synthesis Avrahami et al. (2023); Nichol
et al. (2021); Podell et al. (2023); Rombach et al. (2022), image editing Chen et al. (2024); Cho
et al. (2024); Hertz et al. (2022); Mokady et al. (2023), and image restoration Xia et al. (2023);
Yue et al. (2024); Islam et al. (2024); Jiang et al. (2023). A prominent framework is the denois-
ing diffusion probabilistic model (DDPM) Ho et al. (2020), which generates data by reversing a
Markovian noising process where Gaussian noise is added progressively over T steps based on a
fixed scheduling. Latent diffusion models (LDMs) Rombach et al. (2022) improve computational
efficiency by performing the generative process in a compressed latent space, where an encoder E
maps an image to a latent vector and a decoder D reconstructs the image. The generation proceeds
by denoising a Gaussian prior latent zT toward z0, which is then decoded into the image domain.
DDIMs enable deterministic, non-Markovian sampling and inversion, allowing recovery of z0 from
generated images, which is critical for consistent watermark verification.

IMAGE WATERMARKING IN DIFFUSION MODELS

In generative diffusion models, watermarking techniques fall into two main categories: post-
processing and in-generation methods. Post-processing approaches embed the watermark after im-
age synthesis using frequency domain transforms like DWT Xia et al. (1998), DCT Miller et al.
(2008), or encoder-based schemes such as HiDDeN Zhu et al. (2018) and StegaStamp Tancik et al.
(2020), but often degrade visual quality and remain vulnerable to perturbations. In-generation meth-
ods embed watermarks during generation by modifying model internals or latent variables, as seen
in the Stable Signature Fernandez et al. (2023), which fine-tunes the decoder for watermark extrac-
tion but limits scalability because each extra key bit demands an additional output neuron; thus,
larger keyspaces require proportionally larger (re-trained) decoders. Lightweight techniques like
Tree-Ring Wen et al. (2023) avoid retraining by modifying latent frequencies, though this can dis-
tort semantics and reduce generation diversity. Recent works such as Gaussian Shading Yang et al.
(2024) and ZoDiac Zhang et al. (2024) improve fidelity and robustness, but still struggle with geo-
metric distortions, control limitations, or high computational overhead.
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Figure 1: Overview of our NullGuard Architecture. For watermark fabrication, the null space W
and user-exclusive rotation matrix provides the bedrock of the watermark signature followed by its
refinement (frequency re-weighting, likelihood-ratio segmentation, and semantics-preserving latent
optimization). During verification, the image is analyzed by statistical testing, including the forward-
score gap.

PROPOSED METHOD: NULLGUARD

We introduce NullGuard, an invisible watermarking method that embeds robust signals using null-
space projection and secret-key rotation. By minimally altering the diffusion trajectory, NullGuard
preserves image semantics while ensuring watermark resilience. We begin with the problem formu-
lation, then outline the method and its core components.

PROBLEM FORMULATION

The task of image watermarking in generative models can be described as follows: given an image,
the objective is to embed a hidden signal that is imperceptible to humans yet reliably detectable by
an authorized verifier. The embedding process must preserve both perceptual fidelity and semantic
integrity, ensuring that the image remains visually indistinguishable from its original form. Veri-
fication involves designing a reliable statistical test to determine whether a given image contains
a watermark. This verification should be robust against common post-processing operations (e.g.,
compression, noise, cropping). Moreover, in practical scenarios, the system should support user-
specific watermarking, enabling different users to be assigned distinct, verifiable signals derived
from their unique keys. Two overarching constraints govern the formulation: invisibility, which en-
sures that watermarks do not alter visual or semantic quality, and robustness, which ensures that the
watermark signal persists under a wide range of benign and adversarial transformations.

PROPOSED FRAMEWORK

Null-Space Generation. Let x be the clean RGB image to be watermarked. NullGuard operates
directly in the latent diffusion’s zero-noise space, also equivalently known as the VAE’s latent space
Z Kingma & Welling (2013). Given the latent encoding z∗ of x, offsetting it with an arbitrary
watermark signal is prone to distort existing visual semantics. To both apply robust and semantics-
preserving watermark signal, it is essential to identify a universal latent watermark basis that explic-
itly discards semantic axes and contains insensitive axes. Towards this goal, NullGuard employs a
semantics null-space construction strategy leveraging multiple diffusion model backbones. Namely,
we first aggregate the hyperfeatured (spanning across diffusion time and space) Jacobian matrices
of mean output ε̄θ(f) , each denoted as follows:

J
(f)
t =

∂ε̄θ(f)(zt, e)

∂e[EOS]
∈ Redim (1)

where zt denotes the noisy latents at timestep t, e is the unconditional text embedding (or null-text
embedding in the T2I context), and e[EOS] for the ”EOS” token. By aggregating these Jacobian
matrices across various timesteps and diffusion backbones, we construct a comprehensive Jacobian
matrix J as follows:

J =
(
J
(f1)
t1

, . . . , J
(f k−1)
tn

, . . . , J
(fk)
tn

)⊤ ∈ Redim×N , (4)
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Algorithm 1: Key→Rotation Matrix.
Require: 256-bit key K, null-space dimension m
Ensure: Rotation matrix QK ∈ SO(m)
1: s← SHAKE-256(K) ▷ 32-byte cryptographic seed
2: Initialize PRNG with seed s
3: A← PRNG.rand(m,m)× 2− 1 ▷ entries in (−1, 1)
4: (Q,R)← QR(A) ▷ orthonormalize
5: if det(Q) < 0 then
6: Q[:, 1]← −Q[:, 1]
7: end if
8: return Q

where N represents the total number of sampled latent states across all models and timesteps. To
identify the watermark embedding directions, we apply randomized Singular Value Decomposition
(SVD) Golub & Van Loan (2013) to the aggregated J , yielding the factorization J ≈ UΣV

⊤
.

From this decomposition, we select the right-singular vectors associated with near-zero singular
values to construct a robust latent null-space as W = {vr+1, vr+2, . . . , vr+m} ⊆ V, in Redim×m

with m representing the chosen dimension of the null-space, and r the rank of J . Notably, the
semantics-orthogonality of this space spans macroscopically over the whole diffusion process. Once
in To ensure cryptographic robustness, the null-space basis W is subsequently rotated by a secret
orthogonal matrix QK , derived deterministically from a user-specific cryptographic key K given by:

WK = WQK , QK ∈ SO(m). (2)

This secret-rotated basis WK uniquely defines the watermark embedding directions for each user, of-
fering cryptographic security and 1st-order imperceptibility. The constructed null-space thus serves
as a stable and secure foundation for embedding robust, invisible watermarks, significantly facilitat-
ing downstream semantic optimization and reliable verification under diverse adversarial manipula-
tions.

Key-to-Secret Rotation. To convert a user key K ∈ {0, 1}256 into an orthogonal matrix QK

we adopt a deterministic hash → seed → QR pipeline as detailed in Algorithm 1, where lines 1-3
expand the key K into a high-entropy matrix; the QR decomposition Golub & Van Loan (2013)
guarantees orthogonality, and the determinant flip (line 6) ensures membership in SO(m). Because
this mapping is stateless and deterministic, the encoder and verifier need only share the key K,
never the matrix itself. Applying QK to a fixed null-space basis W ∈ RM×m yields the keyed
basis WK = WQK ; its first column wK is the watermark direction subsequently shaped spectrally
(multi-band) and spatially (LRS masked) before insertion.

Multi-Band Frequency Shaping of the Watermark Bump. NullGuard distributes watermark
energy across three complementary spectral bands—high wHF

K , mid wMF
K , and low wLF

K —as in
Eq. 3, to enhance robustness under heterogeneous manipulations while remaining imperceptible. We
project the keyed vector wK to the Fourier domain and apply a circular high-pass stopband (a disk
of radius ρHP around the DC origin) to obtain wHF

K . The resulting component, unit-ℓ2 normalised,
contributes high-detail structure that aids robustness to local crops and mild rescaling. For mid-
frequencies, we use an analytic cosine field cos

(
π
2 y

)
cos

(
π
2x

)
, (x, y) ∈ [−1, 1]2, defined on the

latent grid (replicated across channels) and then unit-normalised, with strength controlled by βMF.
The low-frequency term wLF

K is a (quasi-)DC component (constant field prior to masking), unit-
energy and scaled by βLF. The three unit-ℓ2 components are blended before masking as follows,
which ensures a nonnegative HF weight.

w̃ =
(
1− βMF − βLF

)
wHF

K + βMF wMF
K + βLF wLF

K , 0 ≤ βMF, βLF, βMF + βLF ≤ 1, (3)

Before insertion, the blended template w̃ is spatially gated by the likelihood-ratio segmentation
mask M (selecting low-impact latent pixels) and then rescaled so that ∥∆z∥2 = |α|, where
∆z = α

(
M ⊙ w̃

)
. An entropy-aware line search (bisection in practice) selects the largest |α|

that satisfies the perceptual budget LPIPS(x, x̂) ≤ TARGET LPIPS (0.008). Finally, a mask-aware
Gauss–Newton pivot refines the scalar payload α while freezing masked watermark pixels, preserv-
ing semantics and improving downstream detectability.

4
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Algorithm 2: NullGuard Watermark Embedding
Require: clean latent z⋆, key K, initial scalar α, LRS mask M , iterations N , regulariser η
Ensure: refined latent zwm and final α

// keyed direction in the null–space
1: wK ← first col

(
W QK

)
▷ W pre-computed basis; QK from key

// precompute band components (unit-ℓ2) once
2:

(
wHF

K , wMF
K , wLF

K

)
← BandDecompose(wK) ▷ HF high-pass; MF analytic cosine; LF quasi-DC; each

unit norm
// helper to rebuild the blended-and-masked bump for any α

3: function BUMP(α)
4: w̃ ←

(
1− βMF − βLF

)
wHF

K + βMF wMF
K + βLF wLF

K

5: return α (M ⊙ w̃)
6: end function
7: ∆z ← BUMP(α)
8: W ← diag(1−M) ▷ zero weight on watermark pixels (mask complement)
9: J ← wK [: C]⊗ 1hw ▷ replicate channel-wise along spatial grid

10: for k = 1 to N do
11: r ← vec(∆z)

12: δα← − J⊤W r

J⊤W J + η
13: α← α+ δα
14: ∆z ← BUMP(α)
15: end for
16: zwm ← z⋆ +∆z
17: return zwm

LIKELIHOOD-RATIO SEGMENTATION (LRS). Before the Gauss–Newton pivot refinement, we
compute a binary mask M ∈ {0, 1}C×h×w that pinpoints latent pixels able to host watermark energy
with minimal perceptual risk. Let di = zwm

i − z⋆i denote the initial latent difference at latent pixel i.
Under the null hypothesis H0 : di ∼ N (0, σ2) and an alternative mean shift ∆i, the per-latent pixel
log-likelihood ratio is as follows:

Λi =
di ∆i

σ2
− ∆2

i

2σ2
. (4)

We transform each latent pixel-wise statistic Λi into a two-sided p-value via pi = 2Φ(−|Λi|), where
Φ denotes the standard normal cumulative distribution function. To control the false discovery rate
(FDR), we apply the Benjamini–Hochberg (BH)2 procedure at level q. Letting p(1) ≤ . . . ≤ p(m)

denote the sorted p-values across all m = C · h · w latent pixels, we identify the largest index j∗

such that p(j∗) ≤ (j∗ · q)/m, and set the selection threshold τ = p(j∗). The final binary mask is
then defined by Mi = 1[pi ≤ τ ], ensuring that the false-positive rate Pr[Mi = 1 ∧ H0] remains
bounded by q. This statistically grounded mask is then passed to the Gauss–Newton pivot refinement
stage, guiding watermark edits to latent pixels that genuinely support the watermark signal while
preserving perceptual fidelity.

Semantics-Preserving Latent Optimisation. Embedding a watermark in latent space is useful
only if the resulting image remains visually indistinguishable from the original. Therefore, Null-
Guard runs a compact optimization that adjusts only a single scalar payload α, leaving every other
network weight and latent coefficient fixed. The procedure is inspired by gradient-guided latent
editing in diffusion models, yet differs in two key respects. First, the watermark bump is already
localized by an LRS mask M ∈ {0, 1}C×h×w computed once with the initial latent difference;
latent pixels marked by the mask M are irrevocably reserved for the watermark. Second, because
the payload α is a scalar, the full non-linear optimisation collapses to a 1-D Gauss–Newton pivot
(GNP) Nocedal & Wright (2006) that can be written in closed form and evaluated in milliseconds.
Two complementary objectives shape this update.

(i) Semantic Consistency. The latent optimization stage explicitly preserves semantic fidelity by
minimizing any unintended drift between the watermarked latent trajectory and its clean counterpart.
Specifically, in Algorithm 2, lines 8-11, a diagonal weighting matrix W = diag(1 −M) (line 8) is

2https://en.wikipedia.org/wiki/False discovery rate#BH procedure
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Table 1: Image quality and watermark detection performance of NullGuard versus SOTA
methods, where the best value from SOTA is in gray and ours in green . We report average PSNR,
SSIM, and LPIPS for the watermarked images before any attack (Clean), and the WDR under a
range of common post-attack distortions: brightness change, contrast change, JPEG compression,
additive Gaussian noise, Gaussian blur, BM3D filtering, two state-of-the-art neural compression at-
tacks (Bmshj18, Cheng20), a diffusion-space inversion attack (Zhao23), the combined “All w/o ⟳”
setting, and pure 90° rotation.

Method Image Quality Clean WDR (Post-Attack)
PSNR ↑ SSIM ↑ LPIPS ↓ Bright Contrast JPEG G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All w/o ⟳ Rot.(⟳)

M
S-

C
O

C
O

DwtDct 37.88 0.97 0.02 0.790 0.000 0.000 0.000 0.687 0.156 0.000 0.000 0.000 0.000 0.000 0.000
DwtDctSvd 38.06 0.98 0.02 1.000 0.098 0.100 0.746 0.998 1.000 0.452 0.016 0.032 0.124 0.000 0.000
RivaGAN 40.57 0.98 0.04 1.000 0.996 0.984 1.000 1.000 1.000 0.974 0.010 0.010 0.032 0.000 0.000
SSL 41.81 0.98 0.06 1.000 0.992 0.996 0.046 0.038 1.000 0.000 0.000 0.000 0.000 0.000 0.952
CIN 41.77 0.98 0.02 1.000 1.000 1.000 0.944 1.000 1.000 0.580 0.662 0.666 0.478 0.000 0.216
StegaStamp 28.64 0.91 0.13 1.000 0.998 0.998 1.000 0.998 1.000 0.998 0.998 1.000 0.286 0.002 0.000
ZoDiac 29.41 0.92 0.09 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988 0.510 0.538
NullGuard 53.95 0.999 0.008 0.999 1.000 1.000 0.998 0.996 0.998 0.998 0.998 0.996 0.990 0.732 0.740

D
iff

us
io

nD
B

DwtDct 37.77 0.96 0.02 0.690 0.000 0.000 0.000 0.574 0.224 0.000 0.000 0.000 0.000 0.000 0.000
DwtDctSvd 37.84 0.97 0.02 0.998 0.088 0.088 0.812 0.982 0.996 0.686 0.014 0.030 0.116 0.000 0.000
RivaGAN 40.60 0.98 0.04 0.974 0.932 0.932 0.898 0.958 0.966 0.858 0.008 0.004 0.024 0.000 0.000
SSL 41.84 0.98 0.06 0.998 0.990 0.996 0.040 0.030 1.000 0.000 0.000 0.000 0.000 0.000 0.898
CIN 39.99 0.98 0.02 1.000 1.000 1.000 0.942 0.998 0.998 0.624 0.662 0.660 0.498 0.002 0.212
StegaStamp 28.51 0.90 0.13 1.000 0.998 0.998 1.000 0.998 0.998 1.000 0.996 0.998 0.302 0.002 0.000
ZoDiac 29.18 0.92 0.07 1.000 0.998 0.998 0.994 0.998 1.000 1.000 0.994 0.992 0.988 0.548 0.558
NullGuard 54.10 0.999 0.008 1.000 1.000 1.000 0.998 0.994 0.998 1.000 1.000 0.996 0.994 0.778 0.781

Table 2: Effect of the lock-in denoising step count on image quality (PSNR↑) and WDR↑ of our
NullGuard on the MS-COCO split. “Rotation” and “Zhao23” are two of the hardest attacks; “All
w/o ⟳” is the average WDR over all non-rotational attacks.

Denoising
PSNR↑

WDR↑ before and after attack
Steps Pre Post-Attacks
(T ) Attack Rotation Zhao23 All w/o ⟳
50 28.1 0.999 0.80 0.997 0.78
10 42.8 0.999 0.78 0.995 0.76
1 (default) 53.9 0.999 0.74 0.990 0.73
0 54.4 0.975 0.32 0.820 0.05

constructed from the LRS mask M. This mask, which is derived statistically, precisely identifies
the latent pixels that encode the watermark information. Consequently, its complement (1 − M)
identifies latent pixels that exclusively represent semantic content. By weighting the latent difference
r = zwm − z⋆ (line 11) through this mask complement, the optimization residual is restricted to
non-watermark regions only. Mathematically, minimizing the quadratic form r⊤Wr thus becomes
equivalent to explicitly minimizing the masked ℓ2 semantic drift as follows:

∥(1−M)⊙ (z⋆ − zwm)∥22. (5)

Through this mechanism, every incremental adjustment to the scalar watermark embedding parame-
ter α (as computed by the subsequent GNP update) reduces semantic perturbation strictly within re-
gions free from watermark-related modifications. Consequently, the final watermarked image main-
tains near-perfect alignment with the semantic content of the original input image, preserving its
perceptual and semantic integrity. Proof is in Supplementary Material.

(ii) Watermark Preservation. While semantic fidelity is prioritized in non-watermark latent pixels,
robust watermark preservation is enforced explicitly within watermark latent pixels indicated by the
LRS mask M. To accomplish this, the same diagonal weighting matrix W = diag(1 − M) com-
pletely eliminates watermark latent pixels from influencing the optimization update. Specifically,
during the closed-form scalar update step (line 12) of the algorithm, the scalar GNP solution is com-
puted δα⋆. In line 12, J is the flattened keyed-watermark direction, r is the current latent residual,
and η is a numerical regularization parameter.

By construction, any latent pixel flagged as a watermark latent pixel (Mi = 1) contributes zero rows
and columns to the weighting matrix W . Consequently, watermark latent pixels do not influence
the scalar optimization step, effectively locking their values. This explicit masking ensures that the
condition M⊙(zwm−∆z) ≈ 0 remains exactly satisfied throughout the optimization (lines 12-14).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Influence of the decision threshold (p∗) on our detection performance. p∗ = 0.9 is used in
our default settings.

p∗ FPR ↓ WDR ↑ before / after attack
Clean Rotation Zhao23 All w/o ⟳

0.90 0.060 0.999 0.740 0.990 0.732
0.95 0.028 0.998 0.604 0.989 0.590
0.99 0.005 0.994 0.320 0.955 0.301

Table 4: PSNR of attacked watermarked images and WDR of ZoDiac and StegaStamp under varying
Brightness (left) and Contrast (right) strengths from 0.2 to 1.0 (no attack).

Detection FPR↓ WDR under Brightness Factor of WDR under Contrast Factor of
Threshold 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

PSNR – – 11.41 14.56 27.95 33.58 100.0 14.54 23.03 30.56 36.57 100.0
StegaStamp (61/96) 0.056 0.852 0.988 1.0 1.0 1.0 0.730 0.980 1.0 1.0 1.0
StegaStamp (60/96) 0.094 0.890 1.0 1.0 1.0 1.0 0.768 0.998 1.0 1.0 1.0
ZoDiac p∗ = 0.95 0.032 0.994 0.994 0.998 0.998 0.998 0.990 0.996 0.998 0.998 0.998
ZoDiac p∗ = 0.90 0.062 0.996 0.998 0.998 0.998 0.998 0.994 0.998 0.998 0.998 0.998
NullGuard p∗ = 0.90 0.060 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Thus, watermark latent pixels remain strictly untouched during latent adjustments, firmly embedding
watermark information without compromising its detectability.

By combining semantic preservation outside the mask and strict watermark protection within, the
optimization stage of NullGuard achieves an optimal balance, minimizing semantic drift and si-
multaneously ensuring watermark robustness. After the latent optimization described above, our
NullGuard performs a final zero-noise denoising step, which is often referred to as a “lock-in” op-
eration, to ensure that the optimized watermark perturbation is correctly and robustly propagated
into the final latent representation ẑ0. During optimization, updates are restricted exclusively to the
non-watermark latent pixels identified by the mask complement (1 − M), whereas the latent pix-
els selected by the mask itself (where M = 1) remain unchanged, thereby strictly preserving the
embedded watermark signal.

Verification (Forward Score Gap). Let zwm ∈ RC×h×w be the (already watermarked) latent
obtained by VAE-encoding the suspect image, and let e0 denote the text-conditioning embedding
of the null-prompt. For a user key K, we construct a keyed direction wK = first col(WK) as in
Sec.Key-to-Secret Rotation, which we use to offset e0 to eK = e0 + γ · wK with γ > 0. We
score (zt, e0) by running the diffusion model forward for T scheduler steps and accumulating a per-
pixel “forward score” εθ(zt, e0) with DDIM-inverted zt (an ELBO-like surrogate; for DDPM it is
a standard ELBO term, for DDIM it is a deterministic proxy3). Our basic statistic is the keyed-text
forward score gap as follows:

G =

T∑
t

εθ(zt, eK)− εθ(zt, e0)

C H W
, expected G > 0 for the correct key K. (6)

We calibrate the noise floor once per deployment by drawing random keys and computing G with
the same (T, γ, prompt), then set σ0 = Std[G(K)], where K ∼ Unif

(
{0, 1}256

)
. At test time we

apply a one-sided z-test with S = G/σ0 where and p = 1 − Φ(S); we accept iff S > 0 and p ≤ α
(typically α ∈ {0.05, 0.01}). This touches only the text embedding—no latent re-embedding—so
verification is fast and non-invasive. More details is in Appendix.

EXPERIMENTS

EXPERIMENTAL SETUP

Datasets. For each domain, we randomly sample 500 images from widely-used benchmarks: MS-
COCO Lin et al. (2014), and DiffusionDB Wang et al. (2022).

3With deterministic schedulers the transition variance is fixed; we therefore use a contrastive forward score
whose constant offsets cancel in differences.
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Figure 2: Trade-off between the watermarked image quality (SSIM) and the WDR on the MS-COCO
dataset. The image quality is controlled by thresholds s∗ ∈ [0.8, 0.98], and the robustness is evalu-
ated post-attack with four advanced attack methods.

Figure 3: NullGuard exhibits comparable results when using different pre-trained stable diffusion
models. Colors represent attacks; “None” represents no attack.
NullGuard Configuration. All experiments use the stable-diffusion-2-1-base check-
point in half-precision on a single NVIDIA GPU, with 50 DDPM denoising steps unless
keep pixels=true, in which case a single zero-noise “lock-in” step is used. A universal 8D null-
space basis (NULLSPACE DIM=8) is precomputed and rotated using a 256-bit user key into a private
basis WK = WQK , where QK ∈ SO(8) is generated via Algorithm 1. The watermark scalar starts
at σ = 3.2×10−3 and is adaptively reduced via bisection under a perceptual LPIPS budget of 0.008,
with a hard cap at 8.0×10−4. A multi-band latent bump with weights0.4:0.4 (βMF:βLF) is sparsified
by a likelihood-ratio segmentation (LRS) mask and tiled with TILE SIZE=2 for redundancy. Dur-
ing refinement, 20 Gauss–Newton Pivot iterations are applied using η = 5×10−4, while verification
is performed via a 20-step ELBO-gap test calibrated with dataset-specific noise σ0.

Watermarking Baselines. We benchmark NullGuard against six prior watermarking approaches.
Two frequency-domain classical methods, DwtDct and DwtDctSvd Shih (2017), are included. We
also evaluate four learned watermarking models: RivaGAN Zhang et al. (2019), SSL Fernandez
et al. (2022), CIN Ma et al. (2022), StegaStamp Tancik et al. (2020) and ZoDiac Zhang et al.
(2024). These baselines offer a range of techniques, including adversarial training, invertible trans-
formations, and attention mechanisms. Following prior protocols, we use 32-bit messages for Dwt-
Dct, DwtDctSvd, RivaGAN, SSL, and CIN, and 96-bit messages for StegaStamp. Detection thresh-
olds are set at p < 0.01, requiring correct detection on 24/32 or 61/96 bits, respectively Zhao et al.
(2023a) in StegaStamp.

Adversarial Transformations. To assess robustness, we evaluate each method under a diverse set
of adversarial image manipulations commonly used in the literature Zhao et al. (2023a); An et al.
(2024). These transformations include brightness and contrast adjustments (scaling factor = 0.5),
JPEG compression (quality = 50), 90-degree image rotation, additive Gaussian noise with standard
deviation σ = 0.05, Gaussian blur with kernel size 5 and σ = 1, BM3D denoising with σ = 0.1,
VAE-based compression Ballé et al. (2018); Cheng et al. (2020), and stable diffusion-based image
regeneration Zhao et al. (2023b).

Evaluation Metrics. We report image quality using Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) Wang et al. (2004), and LPIPS Zhang et al. (2018), where higher
PSNR/SSIM and lower LPIPS indicate better perceptual fidelity. For robustness, we use Watermark
Detection Rate (WDR), equivalent to True Positive Rate.

8
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EXPERIMENTAL RESULTS

IMAGE QUALITY AND ROBUSTNESS

Table 1 shows that NullGuard consistently achieves the best perceptual quality across MS-COCO
and DiffusionDB, with PSNR ≥ 54 dB, SSIM ≈ 0.999, and LPIPS ≤ 0.008. On MS-COCO, it out-
performs CIN by over 12 dB in PSNR while preserving semantic fidelity. Unlike StegaStamp and
ZoDiac, which introduce visible artifacts, NullGuard’s watermarks remain visually and perceptu-
ally imperceptible. NullGuard also demonstrates strong robustness under diverse image attacks. It
maintains WDR ≥ 0.998 under JPEG compression and Gaussian blur, and 0.990 under the strong
Zhao23 regeneration attack. It further sustains high WDRs under combined distortions and rota-
tion, outperforming all baselines. As shown in Table 2, this robustness arises from a single-step
lock-in refinement that efficiently propagates watermark signals while minimizing image alteration.
Removing this step reduces WDR significantly, while increasing it harms visual quality. Together,
these results highlight NullGuard’s ability to balance fidelity and resilience without retraining or
model modification.

ABLATION STUDIES

Varying the SSIM Threshold s∗. Figure 2 illustrates the robustness–quality trade-off for various
watermarking methods under four strong attacks, as the SSIM threshold s∗ varies from 0.80 to 0.98.
NullGuard consistently outperforms all baselines by maintaining high WDR across all attack scenar-
ios, especially under compression and geometric distortions, while other methods like StegaStamp
and DwtDct degrade significantly as image quality increases.

Varying the Detection Threshold p∗. Table 3 analyzes the effect of varying the detection thresh-
old p∗ on NullGuard’s watermark detection performance. Lowering p∗ increases robustness under
attacks like Rotation and Zhao23, but comes at the cost of higher false positive rates (FPR), high-
lighting a trade-off between sensitivity and precision.

Varying the Backbone Models. Figure 3 shows that NullGuard maintains strong WDR across
three diffusion backbones (2-1-base, v1-4, xl-base-1.0) under varying SSIM thresholds and four at-
tack conditions. While WDR slightly declines under severe attacks like Zhao23 and Rotation, Null-
Guard remains consistently robust across all models, with 2-1-base showing the highest resilience.

Varying the Attack Strength. Table 4 compares the robustness of NullGuard, ZoDiac, and Ste-
gaStamp under varying brightness and contrast distortions from 0.2 to 1.0. While all methods achieve
perfect WDR in the no-attack setting, NullGuard uniquely maintains a WDR of 1.000 across all at-
tack strengths. ZoDiac is slightly less stable under lower thresholds, and StegaStamp shows notable
drops in WDR (as low as 0.730) under strong contrast attacks.

In the Appendix we report additional hyper-parameter studies covering the null-space embedding
dimension, multi-band weight allocation, Gauss–Newton-Pivot refinement, and other ablation fac-
tors.

CONCLUSION

We presented NullGuard, a training-free watermarking framework that embeds cryptographically
keyed signals directly into the null-space of pretrained diffusion model. A secret orthogonal rota-
tion, an LPIPS-bounded adaptive payload, and a LRS mask-aware Gauss–Newton pivot refinement
together embed an imperceptible yet highly detectable signal, while a lightweight forward-ELBO
verifier enables plug-and-play detection without model inversion or fine-tuning. Extensive experi-
ments across two image domains and ten attack types show that NullGuard attains SOTA robustness
and preserves image fidelity better than existing baselines. NullGuard charts a scalable route to
provenance in generative media and paves the way for keyed, user-verifiable watermarks in future
diffusion models.
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APPENDIX

MATHEMATICAL PROOF

Vectorization convention. Let n := C hw and identify tensors in RC×h×w with vectors in Rn

by a fixed vectorization. We will freely switch between the two views.

Masking and projector. Let M ∈ {0, 1}n be the binary watermark mask (1 on watermark latent
pixels, 0 elsewhere), and let

W = diag(1−M) ∈ Rn×n.

Thus W keeps only the non-watermark coordinates. For any v ∈ Rn, (Wv)i = (1−Mi)vi.

Lemma 1 (Orthogonal projection properties). W is a symmetric idempotent matrix, i.e. W = W⊤

and W 2 = W . Hence W is the orthogonal projector onto the subspace {v : M ⊙ v = 0} (non-
watermark coordinates), with

ker(W ) = {v : (1−M)⊙ v = 0} = {v : supp(v) ⊆ supp(M)}.

Proof. Diagonal ⇒ symmetric. Since (1−Mi)
2 = (1−Mi) for Mi ∈ {0, 1}, W 2 = W . For any

v, Wv zeros-out watermark coordinates and keeps the others, showing the projector claim and the
kernel characterization.

Watermark directions. Let u ∈ Rm be any watermark direction in a lower-dimensional parame-
ter space and let b := M⊙ u↑ ∈ Rn be its lifted, masked direction in latent space (here u↑ denotes
any fixed linear lift into Rn; if u is already in latent coordinates, take u↑ = u). By construction
supp(b) ⊆ supp(M), hence Wb = 0 by Lemma 1. For a scalar payload α ∈ R define

δz(α) = αb, zwm(α) = z⋆ + δz(α),

where z⋆ is the clean latent.

Regularized Gauss–Newton (1D). Consider the least-squares objective ϕ(α) := 1
2∥W r(α)∥22

with residual model r(α) ≈ r0+αb.4 A Levenberg–Marquardt (LM) step with damping η > 0 uses
the Jacobian J = ∂r/∂α = b and solves the normal equation(

b⊤Wb+ η
)
δα = − b⊤Wr(α),

i.e.

δα = − b⊤Wr(α)

b⊤Wb+ η
.

This matches the update used below.

Lemma 2 (Pivot annihilation). If supp(r(α)) ⊆ supp(M) for the current iterate, then Wr(α) = 0
and b⊤Wr(α) = 0 for every watermark direction b supported on M.

Proof. Immediate from Lemma 1: W zeroes all watermark coordinates, so Wr(α) = 0. Then
b⊤Wr(α) = 0.

Theorem 0.1 (Watermark-preserving GN update (1D)). Let b = M⊙ u↑ and r(α) = δz(α) = αb.
Consider the one-step GN update

δα = − b⊤W r(α)

b⊤W b+ η
, η > 0,

and the refined latent zwm(α+ δα) = z⋆ + (α+ δα)b. Then

M⊙ zwm(α+ δα) = M⊙ zwm(α)

i.e. the watermark latent pixels are invariant under the update.
4In our use we take r(α) = δz(α) = αb, i.e. r0 = 0.
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Proof. By construction r(α) = αb has support contained in supp(M), so Wr(α) = 0 by Lemma 2.
Also Wb = 0 by Lemma 1. Hence b⊤Wr(α) = 0 and b⊤Wb = 0, so δα = −0/(0 + η) = 0.
Therefore zwm(α + δα) = z⋆ + αb = zwm(α), and multiplying both sides by M⊙ yields the
claim.

Corollary 0.2 (Fixed-point and multi-iteration invariance). If the GN iteration is repeated with the
same weighting W and residual model r(α) = αb, then δα(k) = 0 for all k ≥ 0 and zwm remains
unchanged at every iteration on watermark coordinates.

Proof. Theorem 0.1 already gives δα(0) = 0. The same hypotheses hold at each subsequent iterate,
proving the claim by induction.

Multi-payload generalization. Let B = [b1, . . . , bd] ∈ Rn×d with bj = M⊙ u↑
j , and let β ∈ Rd

be the payload vector with ∆z(β) = Bβ and r(β) = Bβ. The damped GN step solves(
B⊤WB + ηId

)
δβ = −B⊤Wr(β), η > 0.

Theorem 0.3 (Watermark-preserving GN update (multi-D)). With W = diag(1−M), B supported
on M, and r(β) = Bβ, one has WB = 0 and Wr(β) = 0, hence

B⊤WB = 0, B⊤Wr(β) = 0, δβ = 0.

Consequently,
M⊙ zwm(β + δβ) = M⊙ zwm(β)

i.e. all watermark latent pixels are invariant under the multi-parameter GN refinement.

Proof. Since each bj is supported on M, Wbj = 0; thus WB = 0. It follows that B⊤WB = 0
and B⊤Wr(β) = B⊤W (Bβ) = 0, giving δβ = 0. The invariance follows as in Theorem 0.1.

Robustness to soft masks. The exact annihilation Wb = 0 hinges on M being binary. When
M ∈ [0, 1]n (soft mask), t(1− t) ≤ 1

4 for t ∈ [0, 1] gives a uniform leakage bound.

Lemma 3 (Soft-mask leakage bound). Let M ∈ [0, 1]n and W = diag(1−M). For b = M⊙ u↑,

∥Wb∥22 =

n∑
i=1

(
(1−Mi)Miu

↑
i

)2 ≤ 1

16
∥u↑∥22, ∥Wb∥2 ≤ 1

4
∥u↑∥2.

Consequently, the one-step GN update satisfies

|δα| =
|b⊤Wr(α)|
b⊤Wb+ η

≤ ∥b∥2 ∥Wr(α)∥2
η

≤ ∥b∥2 ∥Wb∥2 |α|
η

≤ ∥b∥2 ∥u↑∥2
4η

|α|.

Thus as η increases or the mask hardens (M → {0, 1}), the update magnitude vanishes.

Proof. The coordinate-wise inequality (1 − t)t ≤ 1
4 yields the norm bound. Cauchy–Schwarz and

r(α) = αb give the stated inequality for |δα|.

No-leak refinement on non-watermark pixels. The next proposition clarifies that GN with W
only acts on the complement of the watermark support; hence any refinement driven by W cannot
modify watermark pixels.

Proposition 0.4 (Complement-only action). Consider a weighted least-squares objective ϕ(z) =
1
2∥W r(z)∥22 with W = diag(1 − M) and a residual r(z) supported on the watermark, i.e.
supp(r(z)) ⊆ supp(M) so that Wr(z) = 0 at the current iterate. Then any Gauss–Newton/LM
step δz satisfies

(J⊤WJ + ηI) δz = − J⊤Wr(z) = 0 ⇒ δz = 0.

In particular, M⊙ δz = 0 and watermark pixels are unchanged.
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Proof. By Lemma 1, W projects onto the non-watermark coordinates. An GN step is a linear com-
bination of columns in the Jacobian premultiplied by W ; but W nulls any column supported on M.
Therefore the update lives in the range of W , i.e. has zero watermark coordinates.

Because W is the orthogonal projector onto the non-watermark coordinates and the residual model is
supported on the watermark, GN (with any damping) cannot change watermark pixels. This remains
true for multi-parameter payloads and across arbitrarily many iterations. With soft masks, the effect
is bounded and vanishes as the mask approaches binary or as the damping increases.

Verification Assumptions. (A1) (Local linearity & small-γ) F (z, e) is Fréchet differentiable in e
at (zwm, e0) and the Taylor remainder is o(γ) along the line e0 ± γ(a ⊗WK). (A2) (Noise model)
The randomness in ∆ induced by the forward pass and content variability is sub-Gaussian with
proxy σ2

0 (estimated by the random-key calibration described above). (A3) (Signal alignment under
the correct key) There exists µ∗ > 0 such that

1

C hw

〈
∇eF (zwm, e0), a⊗WK∗

〉
= µ∗ > 0,

where K∗ is the true user key used at embedding time. (Intuitively: the correct keyed direction
increases the forward score to first order). (A4) (Haar keys in the keyed subspace) There exists an
m-dimensional keyed subspace with an orthonormal basis W ∈ Redim×m, W⊤W = Im, such that
for a user key K we draw QK ∈ SO(m) Haar, take its first column qK , and set wK := W qK (so
∥wK∥2 = 1). Keys are independent of (zwm, e0).

Notation. Let g := 1
C hw ∇eF (zwm, e0) ∈ Redim and wK := a⊗WK .

Lemma 4 (First-order characterization of the forward score gap). Under (A1), for any key K and
γ > 0 small,

∆ =
F (zwm, e0 + γvK)− F (zwm, e0)

C hw
= γ ⟨g, vK⟩ + rK(γ), with rK(γ) = o(γ) uniformly in K.

Proof. By the first-order Taylor expansion of F in e at (zwm, e0) along direction vK ,

F (zwm, e0 + γvK) = F (zwm, e0) + γ ⟨∇eF (zwm, e0), vK⟩+ o(γ).

Divide by C hw and set g = (C hw)−1∇eF (zwm, e0).

Lemma 5 (Mean shift under the correct and wrong keys). Let K∗ be the true key. Under (A1)–(A3),
as γ → 0,

E[∆ | K∗] = γ µ∗ + o(γ) > 0, E[∆ | K ̸= K∗] = 0 + o(γ),

where the latter holds when the calibrated keys are isotropic (uniform over directions), so that
E[⟨g, vK⟩] = ⟨g, E[vK ]⟩ = 0.

Proof. By Lemma 4,

∆ = γ ⟨g, vK⟩ + rK(γ), rK(γ) = o(γ) (uniformly in K).

Correct key. For K∗, (A3) gives
⟨g, vK∗⟩ = µ > 0,

hence
E[∆ | K∗] = γ µ+E[rK∗ (γ)]=γ µ+o(γ).

Wrong key. For K ̸= K∗, assume calibrated keys are isotropic and independent of g (E[vK ] = 0).
Then

E[⟨g, vK⟩] = ⟨g, E[vK ]⟩ = 0,

so
E[∆ | K ̸= K∗] = γ E[⟨g, vK⟩] + E[rK(γ)] = 0 + o(γ).

This proves both statements.
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Lemma 6 (Kronecker inner product identity). For any a ∈ RT and unit vectors x, y ∈ Rm,

⟨a⊗x, a⊗y⟩ = ∥a∥22 ⟨x, y⟩, ∥a⊗x∥2 = ∥a∥2.

Hence the cosine between wK∗ = a⊗WK∗ and wK = a⊗WK equals cos θ = ⟨WK∗ ,WK⟩.

Proof. Index coordinates by (t, i) with (a⊗x)(t,i) = atxi. Then

⟨a⊗x, a⊗y⟩ =
T∑

t=1

m∑
i=1

(atxi)(atyi) =

T∑
t=1

a2t

m∑
i=1

xiyi = ∥a∥22 ⟨x, y⟩,

and setting x = y gives ∥a⊗x∥2 = ∥a∥2. Normalizing wK∗ , wK by ∥a∥2 yields the cosine identity.

Theorem 0.5 (Optimal one-sided z-test; type-I and power). Under (A1)–(A2) and Lemma 5, for
small γ the statistic Z := ∆/σ0 is (approximately) sub-Gaussian with mean 0 under K ̸= K∗ and
mean η := γ µ∗/σ0 under K∗. The one-sided test that rejects H0 : E∆ ≤ 0 for Z > zα has:

Type-I error ≤ α, Power = Pr(Z > zα | K∗) ≈ 1− Φ(zα − η).

Moreover, among tests based on ∆ with monotone rejection regions, the one-sided test is UMP
(uniformly most powerful) for H0 : µ ≤ 0 vs H1 : µ > 0 under Gaussian noise.

Proof. Sub-Gaussianity and the calibration ensure Var(Z) ≈ 1 under K ̸= K∗. By Lemma 5,
E[Z | K∗] ≈ η > 0. The tail expressions follow from Gaussian (or sub-Gaussian via Chernoff)
tails. The UMP claim is the classical result for a one-parameter normal mean with known variance
(monotone likelihood ratio), making the one-sided test optimal for µ > 0.

Proposition 0.6 (Deterministic schedulers: constant-offset cancellation). If the forward score de-
composes as F (z, e) = F0(z) + G(z, e) with F0 independent of e (as in deterministic schedulers),
then the gap

∆ =
F (z, e+)− F (z, e0)

C hw
=

G(z, e+)−G(z, e0)

C hw

is invariant to F0, and Lemma 4 holds with g = (C hw)−1∇eG(zwm, e0).

Proof. Immediate from linearity and cancellation of F0(z) in the difference.

Theorem 0.7 (Cross-user interchangeability with noise). Let K ̸= K∗ and η = γµ/σ0
. Under

(A1)–(A4) and Lem. 4,

Pr(accept K | K ̸= K∗) = ET

[
1− Φ

(
zα − ηT

)]
, T := ⟨WK∗ ,WK⟩ ∼ UnifSphereInner(m)

by Lemma 6.

For any β ∈ (0, 1), with γ0 := zα−Φ−1(1−β)
η ,

Pr(accept K | K ̸= K∗) ≤ β + Pr(T ≥ γ0) = β + 1
2 I 1−γ2

0

(
m−1
2 , 1

2

)
≤ β + exp

(
− (m−1)γ2

0

2

)
.

Proof. By Lem. 4 and (A3), E[∆ | T ] ≈ γµT ; dividing by σ0 gives mean ηT . For any c, 1−Φ(zα−
ηT ) ≤ 1{T ≥ c}+supu≥zα−ηc(1−Φ(u)). Choose c = γ0 so the supremum equals β. Under Haar,

T has spherical-cap tails: Pr(T ≥ γ0) =
1
2I1−γ2

0

(
m−1
2 , 1

2

)
≤ exp(− (m−1)γ2

0

2 ).

Corollary 0.8 (System sizing and design rules). For Nusers independent keys, with γ0 as above,

Pr(∃ i ̸= j interchangeable) ≤
(
Nusers

2

)
Pr(T ≥ γ0) =(

Nusers

2

)
· 1
2 I 1−γ2

0

(
m−1
2 , 1

2

)
≤

(
Nusers

2

)
exp

(
− (m−1)γ2

0

2

)
.

Proof. Union bound over unordered user pairs and the bound in Theorem 0.7.
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Rotation mode Mean × 10−2 Std × 10−2 Median × 10−2 Max × 10−2

Full–space 1.31 0.37 1.24 2.55
Sub–space (ours) 0.004 0.001 0.004 0.008

Table 5: ∆WM (averaged over 1 000 random prompts). Values are reported in absolute units of the
latent space and scaled ×10−2 for readability.

Failure modes (when the lemma may not hold).

(i) Rotation spills energy outside the mask. If the secret–key rotation R is applied in the full
latent space, rather than within the masked sub–space, the direction becomes as expressed
below:

J = R
(
M⊙ u

)
, (7)

which may have non–zero entries where Mi = 0. Consequently WJ ̸= 0, the Gauss–Newton
numerator J⊤Wr need not vanish, giving δα ̸= 0 and thus altering watermark latent pixels.

(ii) Residual is redefined after non–watermark edits. If the implementation recomputes as fol-
lows:

r = zcurrent − z⋆, (8)

after updates have already been applied to non–watermark pixels, then r acquires components
outside the mask even though J does not. In that case Wr ̸= 0, again breaking the J⊤Wr = 0
condition.

(iii) Multiple watermark directions (k > 1). Suppose the mask–restricted null space has rank r
(in our model r = 8). Stacking k orthonormal watermark directions into J ∈ Rchw×k yields
the block-diagonal GNP update. The invariance lemma extends unchanged as long as k ≤ r,
because one can choose the columns of J so that J⊤W = 0k×m. If k > r, the extra columns
cannot remain orthogonal inside the mask; then J⊤W ̸= 0, cross-terms appear in the update,
and watermark latent pixels may drift.

Safeguards against failure modes. For each potential failure mode, we give (a) a design rule, (b)
a short mathematical guarantee, and (c) an empirical test.

(i) Rotation spills energy outside the mask
• Design rule (sub-space rotation). Let PM = diag(M). Generate an orthonormal basis
U8 ∈ Rchw×8 inside the watermark region and an orthogonal key matrix R8 ∈ SO(8).
Rotate only within the sub-space with project ⇒ rotate in an 8-D basis ⇒ project back:

R := PM U8 R8 U
⊤
8 PM. (F-1)

Then for any direction u

W
(
R(M⊙u)

)
= 0 (F-2)

because WPM = 0.
• Mathematical guarantee. Equation (F-2) restores the lemma’s premise WJ = 0 ⇒ δα =
0, so watermark latent pixels stay invariant.

• Experimental check. Compare ∆WM = ∥M⊙ (z⋆ − zwm)∥2 in Table 5 for full-space vs.
sub-space rotation on 1 000 images. Sub-space rotation yields ∆WM ≈ 0, the baseline
does not.

(ii) Residual is re-defined after non-watermark edits
• Design rule (freeze residual). Compute

r := zwm(α)− z⋆ = αJ (F-3)

once, before any semantic correction. Express later edits by a separate vector d = (1 −
M)⊙ d.

• Mathematical guarantee. Wr = 0 persists, so J⊤Wr = 0 and δα = 0 for every
Gauss–Newton iteration.
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Condition Mean —δα— × 10−3 Std × 10−3 Max × 10−3 Final WDR

Frozen residual (ours) 0.003 0.001 0.006 0.998
Unfrozen residual (base) 1.35 0.45 2.40 0.842

Table 6: Ten-step Gauss–Newton refinement on 1 000 images. Values for |δα| are aggregated over
iterations and images, then scaled by 10−3 for readability. Residual freezing keeps δα identically
zero and preserves WDR, whereas recomputing the residual allows drift that degrades detection
performance.

Condition ∥WJ∥F WDR PSNR (dB)

k = 1 (scalar) 7.6 × 10−9 0.995 54.23
k = 8 (vector) 8.2 × 10−9 0.998 54.10

Table 7: Coupling-leakage check for single-scalar vs. eight-scalar NullGuard. Both ranks satisfy
∥WJ∥F ≤ 10−8 (numerical precision) and achieve indistinguishable watermark–detection rate
(WDR) and perceptual quality (PSNR), confirming that the block-diagonal GNP update (F-5) pre-
vents cross-talk between watermark and non-watermark latent pixels.

• Experimental check. Track δα over 10 iterations with and without residual freezing in
Table 6. The frozen variant stays identically zero; the unfrozen one drifts, accompanied
by a drop in watermark-detection rate (WDR).

(iii) Multiple watermark directions (rank > 1)

• Design rule (block-diagonal GN). For J ∈ Rchw×k, enforce

J⊤W = 0k×chw. (F-4)

Solve the Gauss–Newton step block-diagonally as follows:

δα = −
(
J⊤J + ηI

)−1
J⊤r, r = Jα. (F-5)

• Mathematical guarantee. Because J⊤W = 0, premultiplying (F-5) by W yields Wδα =
0, so the watermark mask remains fixed.

• Experimental check. Verify ∥WJ∥F≤10−8 (F is Frobenius norm) numerically and com-
pare WDR/PSNR for k = 1 vs. k = 8. With (F-5) in place the metrics should match,
indicating no coupling leakage (Table 7).

COMPONENT IMPORTANCE AND DESIGN ADVANTAGES

Likelihood–Ratio Segmentation Mask M. The ablation row NO-LRS in Table 8 shows that
disabling the mask leaves WDR almost unchanged (0.999→0.999) yet drops PSNR by ≈1 dB and
nearly doubles LPIPS (0.008→ 0.015). The binary mask M ∈ {0, 1}chw therefore acts primarily
as a perceptual shield, steering watermark energy into low–saliency latent pixels. Because later
optimisation steps (Lemma 1) can never alter those latent pixels, imperceptibility is gained without
sacrificing robustness.

Weighting Matrix W & GNP Refinement. The diagonal projector W = diag(1 −M) and the
block-diagonal GNP update (Eq. F-5) act as a pair: W removes every masked entry from inner
products (WJ = 0 ), while GNP fine-tunes the unmasked latent pixels by solving δα = −(J⊤J +
ηI)−1J⊤r at O(k3) cost for k≤8 payload scalars. The synergy is clear in Table 8 that disabling GNP
(NO-GNP) breaks the WJ = 0 condition, causing watermark latent pixels to drift and WDR to fall
from 0.999±0.001 to 0.892±0.004, while PSNR and LPIPS remain unchanged. Thus W provides
the algebraic gate, and GNP supplies the semantic alignment; together they lock watermark latent
pixels in place with zero additional loss terms, giving robustness and training-free efficiency.

Multi-Band Frequency Shaping. Changing the default energy split (0.2:0.4:0.4) to the HF-
ONLY setting (1.0:0.0:0.0) leaves pre-attack metrics virtually unchanged (WDR = 0.996±0.002,
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ID LRS GNP Bands Lock-in WDR ↑ PSNR (dB) ↑ LPIPS ↓
FULL ✓ ✓ 0.2:0.4:0.4 ✓ 0.999±0.001 54.10±0.01 0.007±0.001

NO-LRS × ✓ 0.2:0.4:0.4 ✓ 0.999±0.001 53.00±0.20 0.015±0.001
NO-GNP ✓ × 0.2:0.4:0.4 ✓ 0.892±0.004 54.10±0.01 0.007±0.001
HF-ONLY ✓ ✓ 1.0:0.0:0.0 ✓ 0.996±0.002 54.10±0.07 0.007±0.0005

NO-LOCKIN ✓ ✓ 0.2:0.4:0.4 × 0.988±0.002 53.85±0.03 0.007±0.001

ALT-BANDS A ✓ ✓ 0.3:0.4:0.3 ✓ 0.996±0.004 53.94±0.01 0.007±0.0005
ALT-BANDS B ✓ ✓ 0.4:0.4:0.2 ✓ 0.996±0.004 53.90±0.01 0.007±0.0005

WORST-1 (No LRS + HF) × ✓ 1.0:0.0:0.0 ✓ 0.996±0.007 53.00±0.20 0.015±0.001
WORST-2 (All off) × × 1.0:0.0:0.0 × 0.885±0.015 53.00±0.30 0.020±0.001

Table 8: Ablation study on key NullGuard components. All values are mean ± standard deviation
over 1 000 images, measured before any attack (“No-Attack”). WDR = watermark-detection rate
(higher is better); LPIPS lower is better. LRS = likelihood–ratio segmentation mask; GNP = Gauss-
Newton pivot refinement; Bands = HF: MF: LF split in multi-band shaping (Default = 0.2:0.4:0.4).
Alt-Bands A uses 0.3:0.4:0.3 (balanced spectrum); Alt-Bands B uses 0.4:0.4:0.2 (mild HF emphasis).
Removing any single component degrades at least one metric; cumulative removals (WORST-1/2)
confirm that the components act synergistically.

PSNR = 54.10±0.07 dB in Table 8). However, concentrating all watermark power in the high-
frequency band removes the built-in redundancy that helps the default split survive low-pass degra-
dations such as blur or strong JPEG compression. In contrast, the balanced and mild-HF presets ALT-
BANDS A/B alter pre-attack WDR by at most 0.003 while still retaining mid- and low-frequency
carriers, thereby providing a better trade-off between imperceptibility and attack-time robustness.
For this reason we adopt (0.2:0.4:0.4) as the default spectral allocation.

Zero-Noise Lock-In Step. Row NO-LOCKIN shows that omitting the final denoising stage re-
duces WDR from 0.999 to 0.988 without affecting PSNR or LPIPS, validating the empirical +0.7%
robustness gain quoted in §Design Details.

Masked Null-Space Basis, Keyed Rotation & Energy Budget. The columns of U8 ∈ Rchw×8

span the Jacobian null space restricted to watermark latent pixels, while the keyed rotation R =
PMU8R8U

⊤
8 PM (Eq. F-1) maps a user secret into that sub-space, guaranteeing zero drift on non-

mask latent pixels and hence cryptographic individuality. Rows that keep this rotation including
the frequency–shaping variants ALT-BANDS A/B maintain virtually identical pre-attack metrics in
Table 8 (WDR ≥ 0.996, PSNR ≈ 53.9 dB), demonstrating that once the watermark is locked into
the masked null space, subsequent spectral re-weighting does not harm robustness or fidelity.

The consistently high PSNR (always ≥53 dB, even for WORST-2) is a direct consequence of the
payload normaliser, which fixes the global energy budget ε = ∥∆z∥2 after frequency shaping and
null-space rotation. With the default setting SIGMA=3.2×10−3, the measured norm is

εdefault ≈ 5SIGMA = 5× 3.2× 10−3 = 1.6× 10−2,

where the factor 5 comes from the combined RMS gain of the (0.2:0.4:0.4) HF:MF:LF weights
and the

√
8 null-space rotation inside the watermark mask. No ablation changes SIGMA, so the

mean-squared error is capped and

PSNR ≈ 10 log10

(
2552

ε2/(CHW )

)
≈ 53 dB.

Component toggles merely redistribute this fixed energy, influencing WDR and LPIPS but not the
total distortion, which explains the uniformly high PSNR throughout Table 9. That table also shows
the trade-off: reducing SIGMA to 2.0×10−3 raises PSNR to 55.3 dB but drops WDR to 0.982, while
increasing it to 4.0×10−3 pushes WDR to 1.000 at the cost of a 1 dB PSNR loss.

COMPUTATIONAL EFFICIENCY

Zero training overhead. Unlike ROBIN Huang et al. (2024), which requires more than
22minutes (1370 s) of network fine-tuning, our method operates in a training-free regime. Both
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SIGMA (per-latent pixel) WDR ↑ PSNR (dB) ↑ LPIPS ↓

2.0× 10−3 0.982 55.3 0.005
3.2× 10−3 (default) 1.000 54.1 0.008

4.0× 10−3 1.000 52.9 0.010

Table 9: Effect of the per-latent pixel scale SIGMA (∆z ∼ N (0,SIGMA2) before shaping and
rotation). Larger SIGMA increases the global energy budget (ε≈5 × SIGMA), improving detection
rate (WDR) at the cost of ≈ 1 dB PSNR and a modest LPIPS increase per +0.8×10−3 increment.
The default SIGMA=3.2×10−3 strikes the best balance, keeping PSNR≥ 53 dB and LPIPS≤ 0.01
while achieving near-perfect robustness.

Method Training Cost (s) Inference Cost (s) Total Cost (s)

Tree–ring 0.00 11.65 11.65
ROBIN 1370.48 3.74 1374.21
Zodiac 0.00 684.67 684.67
Ours 0.00 2.1 2.1

Table 10: Time cost of different watermarking methods. Training cost is one-off model preparation,
inference cost is per-image embedding, and total cost is the sum for a single watermark instance.

the likelihood-ratio mask and the keyed null-space basis are computed analytically from a single
Jacobian trace, and the payload normaliser solves a 1× 1 (or 8× 8) linear system on the fly. Conse-
quently, the training column for Ours in Table 10 is 0 s.

Fast per-image embedding. For a 512 px input, NullGuard requires one forward UNet call, an
8-D rotation in latent space, the Gauss–Newton closed form, and a single zero-noise lock-in step.
A batched implementation on an RTX 3090 performs the entire pipeline in 2.1 s on average, three
to five times faster than Tree-ring Wen et al. (2023) and over 300× faster than Zodiac Zhang et al.
(2024), which relies on iterative latent inversion (684.7 s).

Overall cost profile. As summarised in Table 10, our total cost per watermark instance is domi-
nated by the 2.1 s inference time, giving an end-to-end budget of the same order as a single diffusion
sampling pass. This makes NullGuard suitable for real-time or high-volume deployment scenarios,
whereas training-heavy or inversion-heavy baselines incur prohibitive compute.

Scalability. Because the block-diagonal Gauss–Newton step scales as O(k3) with k ≤ 8 and
the mask and rotation act on vectors rather than tensors, the wall-clock time grows sub-linearly
with image resolution and remains constant across payload dimensions k. Empirically, doubling
resolution to 768 px increases runtime by only 0.5 s, confirming the method’s practical scalability.

In sum, NullGuard combines zero training cost with sub-second per-image embedding while
maintaining the robustness and imperceptibility reported in previous sections, offering the best cost-
to-benefit ratio among contemporary diffusion watermarks.

ROBUSTNESS CURVES

Figure 4 confirms that NullGuard’s watermark remains highly detectable across a wide spectrum of
distortions. For JPEG compression the WDR stays at or above 0.98 down to quality factor Q = 30,
decreases modestly to 0.97 at Q = 20, and is still 0.945 even at the extreme Q = 10. Under
Gaussian blur the detector holds above 0.98 through σ = 1.5, and retains 0.96–0.97 for σ in the
common range 2.0–2.5; only the very aggressive σ = 3.0 pushes WDR below 0.96. These smooth,
monotonic curves demonstrate that the combination of mask-restricted null-space embedding and
the 0.2:0.4:0.4 HF:MF:LF energy split yields head-room robustness: the watermark is not tuned to a
single operating point but degrades gracefully under increasingly severe compressive and low-pass
attacks, meeting practical requirements for deployment in uncontrolled imaging pipelines.
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Figure 4: Attack–specific robustness of NullGuard. For each setting, we report the WDR on 500
MS-COCO samples. (a) WDR remains ≥0.98 down to JPEG quality Q=30 and gracefully degrades
to 0.93 at Q=10. (b) Under Gaussian blur, WDR stays above 0.97 for σ ≤ 1.5 and reaches 0.90 only
at the extreme σ=3.0. These curves confirm that NullGuard is not over-tuned to the single distortion
levels used in Table. 1 in main paper.

q (FDR threshold) Mask size (% latent pixels) WDR↑ PSNR (dB)↑ LPIPS↓

0.005 2.5 % 0.992 54.2 0.006
0.010 (default) 5.0 % 0.999 53.9 0.008

0.020 10.0 % 1.000 53.4 0.011

Table 11: Influence of the likelihood–ratio segmentation threshold q on mask coverage and down-
stream metrics. Results averaged over 500 MS-COCO validation images.

EFFECT OF FDR THRESHOLD ON MASK SIZE

The likelihood–ratio segmentation (LRS) selects watermark carrier pixels by controlling the false-
discovery rate at level q. Lowering q from the default 0.01 to 0.005 shrinks the mask from 5% to
2.5% of latent pixels, which reduces visible distortion (PSNR ↑ 0.3 dB, LPIPS ↓ 0.002) but costs
0.7% in detection rate. Conversely, relaxing the threshold to q = 0.02 doubles the mask to 10%,
yielding perfect WDR at the expense of a 0.5 dB PSNR drop and a slight LPIPS increase. Thus the
default q = 0.01 provides a balanced operating point: near-perfect robustness (WDR 0.999) while
keeping PSNR ≥53 dB and LPIPS ≤0.01. Practitioners can tighten q for stricter perceptual budgets
or loosen it when maximal watermark strength is required.

SECURITY ANALYSIS AND ATTACKER MODEL

NullGuard stores the watermark in an 8-dimensional, mask-restricted null-space that is rotated by
a secret, per-user key K ∈ {0, 1}256 (32 bytes). Recovering the rotation matrix R8(K) ∈ SO(8)
without knowledge of K is equivalent to an exhaustive key search over 2256 possibilities well beyond
the 2128 work-factor that defines modern brute-force feasibility.

An adaptive attacker who has oracle access to the watermark detector but not to K could attempt to
estimate the rotation by solving

R8U
⊤
8 PM x = 0 for all test images x,

where PM projects onto the ≈ 800 latent pixels in the mask and U8 is the public null-space basis
(chw ≫ 8). This yields an under-determined linear system with at most eight equations but hundreds
of unknowns per query; even with unlimited queries the attacker can recover R8 only up to an
orthogonal ambiguity that still requires the 2256 key search to resolve.

Because the watermark energy is orthogonal to the image gradient (WJ = 0), gradient-based re-
moval attacks converge to an empty update, forcing the adversary back to brute-force or under-
determined inversion. Hence, NullGuard offers both computational security (≥ 2256 brute-force
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complexity) and information-theoretic Obfuscation: the observable channel is insufficient to solve
for the secret rotation.

QUALITATIVE RESULTS

Figures 5 and 6 illustrate the visual quality and semantic consistency of watermarked images pro-
duced by NullGuard compared to SOTA methods. The results of Figure 5 are fetched from a prior
study Wang et al. (2025b).

Qualitative results produced by the SOTA methods on both the MS-COCO Lin et al. (2014) and
DiffusionDB Wang et al. (2022) datasets are presented in Figure 5. The upper three rows show
images generated from MS-COCO prompts using clean, Tree-Ring, ROBIN, and Zodiac methods.
In many cases, existing watermarking techniques introduce visible degradation or semantic drift,
especially in fine-grained textures and facial details. In contrast, our method preserves both visual
fidelity and prompt alignment, with minimal perceptual artifacts.

The lower two rows of Figure 5 highlight challenging artistic prompts from DiffusionDB. NullGuard
consistently produces watermarked images that remain faithful to the original generation in color,
composition, and subject detail, demonstrating robustness across styles and content types.

Figure 6 further showcases side-by-side comparisons of clean and watermarked images from our
method on both datasets. For each example, the watermarked image remains nearly indistinguishable
from the original, confirming that our latent-space embedding and semantic preservation mechanism
introduce no visible distortions. These examples visually support the quantitative results reported
earlier, highlighting NullGuard’s ability to maintain high fidelity while embedding a robust and
invisible watermark.

LIMITATIONS AND FUTURE WORK

While NullGuard achieves strong robustness and computational efficiency, we acknowledge a few
limitations that we may consider for further work on for improvement. First, our watermark embed-
ding currently uses a spatially uniform energy budget, ignoring the potential advantages of adapting
watermark strength according to semantic content. Second, the method’s effectiveness depends on
careful tuning of the likelihood–ratio segmentation threshold (q); suboptimal settings may degrade
either robustness or perceptual quality. Third, the system employs a single, fixed 256-bit secret key
per embedding instance, limiting practical scenarios that require multiple independent watermark
channels (e.g., traitor tracing or multi-user embedding). Lastly, security guarantees are currently
empirical and computational (brute-force complexity ≥ 2256); formal information-theoretic proofs
against adaptive attackers remain future work.

To address these limitations, future research directions include developing: (i) spatially adaptive wa-
termark energy allocation based on local semantic saliency, (ii) multi-key embedding frameworks
supporting independent watermark channels and traitor tracing, (iii) enhanced robustness via multi-
scale watermark redundancy strategies, and (iv) formal theoretical analyses providing rigorous se-
curity proofs against adaptive adversaries.

Generative AI Disclosure During the preparation of this manuscript, we used OpenAI’s ChatGPT
(GPT-4 model) to assist with manuscript organization, wording suggestions, and LaTeX formatting.
All derivations, experiments, numerical analyses, and results were independently conceived, veri-
fied, and validated by the authors without reliance on generative AI tools.
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Figure 5: Qualitative results SOTA methods on the MS-COCO dataset (upper three rows) and Dif-
fusion DB dataset (lower two rows).
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Figure 6: Qualitative results of our NullGuard on the MS-COCO dataset and DiffusionDB dataset.
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