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Abstract
It is known that the multiplication of an N ×M matrix with an M ×P matrix can be performed using
fewer multiplications than what the naive NMP approach suggests. The most famous instance of
this is Strassen’s algorithm for multiplying 2 × 2 matrices in 7 instead of 8 multiplications. This gives
rise to the constraint satisfaction problem of fast matrix multiplication, where a set of R < NMP

multiplication terms must be chosen and combined such that they satisfy correctness constraints on
the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively
examined from that perspective, as evidenced for example by the recent deep reinforcement learning
approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming
approach to find algorithms for fast matrix multiplication or provide proof of infeasibility otherwise.
We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful
in proving infeasibility. On the feasible side, we find that exploiting solver performance variability
in conjunction with a sparsity-based problem decomposition enables finding solutions for larger
(feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer
demonstrate that we can find fast matrix multiplication algorithms for matrices up to 3 × 3 with
R = 23 in a short amount of time.
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1 Introduction

Matrix multiplication is a fundamental operation in linear algebra with applications in
virtually every computational domain. As a result, extensive research has been dedicated to
the development of faster matrix multiplication algorithms.

The elementary way of multiplying two N × N matrices requires N3 multiplications. For
example, multiplying two 2 × 2 matrices naively requires a total of 23 = 8 multiplications. In
1969, Strassen [13] constructed an algorithm that finds the product of two 2 × 2 matrices
in only 7 multiplications. This discovery has had significant implications as it opened up
the door for potentially faster algorithms for large-scale matrix or tensor computations.

1 These authors contributed equally.
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Strassen’s algorithm has later been proved to be both canonical [4] (no smaller rank exists)
and essentially unique [5] (all other solutions of the same rank are equivalent up to symmetry).

Currently, the best-known algorithm for multiplying 3 × 3 matrices requires R = 23
multiplications, compared to the naive elementary method that requires 27 multiplications.
A known theoretical lower bound of R = 19 exists [2], however, it remains unclear whether
19 ≤ R ≤ 22 is truly attainable. This is a testament to the difficulty of the fast matrix
multiplication (FMM) problem, which has been intractable for existing methods even for tiny
matrices.

In the literature, the general approach to finding FMM algorithms starts by representing
matrix multiplication as a tensor operation using the multiplication tensor TN followed by
finding exact or approximate low-rank decompositions that represent TN . The factor matrices
that are used in the low-rank decomposition encode FMM algorithms. A rank-7 decomposition
(i.e., a multiplication algorithm that uses 7 multiplication operations) of a 2 × 2 matrix
multiplication using Strassen’s algorithm is shown in Figure 1. Existing methods for finding
such factor matrices have several limitations. The most successful and common methods
include local search [10] techniques for low-rank approximation, which cannot guarantee
optimality. A more recent successful approach [6] searches for low-rank decomposition using
reinforcement learning (RL) and was successful in finding faster algorithms for N = 4.
However, this method is not exhaustive and hence cannot prove the infeasibility of a given
rank.

In this work, we propose a novel approach to finding FMM algorithms by formulating the
tensor decomposition problem, for the first time, as a constraint satisfaction problem (CSP)
that is solved using Constraint Programming (CP). We believe that this is a very natural
formulation of this highly combinatorial problem. CP is advantageous for FMM in that it
is a flexible framework that can bring to bear a wide range of search and logical inference
techniques that have been developed over the last few decades. It provides the ability to
prove infeasibility when it is not possible to multiply two matrices using a given number of
multiplications.

Besides a base CP formulation for FMM, we propose a set of symmetry-breaking con-
straints and valid inequalities that are useful for infeasibility proofs. On the feasible side,
we show that “performance variability” w.r.t. solver random seeds can be exploited in con-
junction with a sparsity-based decomposition of FMM for faster solving. Our experimental
results, while limited to matrices of size up to 3 × 3, demonstrate the effectiveness of the
aforementioned constraints and techniques. The CP approach to FMM is uniquely positioned
to close open questions such as whether it is possible to multiply two 3 × 3 matrices in 19
to 22 multiplications. While we do not yet resolve this or other open questions, our work
opens up the potential for further enhancements to the CP formulation and search such as
customized branching strategies and CP-based heuristics.

2 Fast Matrix Multiplication: Problem Statement

The multiplication of two matrices A and B of sizes N ×M and M ×P , respectively, results in
a product matrix C of size N × P . This operation can be represented by a binary third-order
tensor TNMP (TN for square matrices A and B of size N × N). An entry Ti,j,k of this tensor
is equal to 1 if and only if the kth entry in the output matrix C uses the scalar product of
the ith entry of A and the jth entry of B. Here, i, j, and k are indices of a matrix entry
starting with 1 in the first row and column; and proceeding entry by entry, left to right, top
to bottom. For example, for N = M = P = 2, it must be that T2,3,1 = 1 since the first entry
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of C, c1, is equal to a1b1 + a2b3. Similarly, T1,2,1 = 0 must hold since a1b2 is not part of c1.
Figures 1a and 1b show a complete example of the indexing and tensor representation.

The FMM problem for a given tensor TNMP , rank R ∈ Z+, and field F (e.g., F =
{−1, 0, 1}) asks: can each entry Ti,j,k of TNMP be expressed as the sum of exactly R trilinear
terms involving the factor matrices U ∈ FN ·M×R, V ∈ FM ·P ×R, and W ∈ FN ·P ×R, as
follows:

Ti,j,k =
R∑

r=1
Ui,r · Vj,r · Wk,r ∀i ∈ {1, . . . , N · M}, j ∈ {1, . . . , M · P}, k ∈ {1, . . . , N · P}

Note that we use the notation FL×Q to refer to the set of matrices of dimension L × Q and
entries in F. The CSP is to find factor matrices with entries in F that produce the tensor
TNMP for a given rank R.

This decomposition is also referred to as the polyadic decomposition and its associated
rank is the minimal R needed. The rank can be interpreted as the number of multiplica-
tions required to compute the product. For example, for 2 × 2 matrices, the rank of the
decomposition using Strassen’s algorithm is 7. Figure 1 walks through an example of the
low-rank decomposition of a 2 × 2 matrix multiplication using Strassen’s algorithm. The
matrix multiplication of the two 2 × 2 matrices can be seen in Figure 1a, its associated tensor
representation TN in Figure 1b, the low-rank decomposition in Figure 1c, and the factor
matrices U , V , and W in Figure 1d.

3 Related Work

Since Strassen’s discovery [13], there has been substantial research on finding faster algorithms
for matrix multiplication. Mathematicians have discovered such algorithms manually over
the years for a variety of matrix dimensions and ranks. In this section, however, we will
focus on automated methods for discovering such algorithms and briefly discuss some of the
existing methods. A recent survey on the topic can be found in [3].

3.1 Continuous Local Search Methods
The most common approach in the literature to compute the factor matrices U , V , and W is to
use (heuristic, continuous) local search methods for low-rank tensor decomposition. The state-
of-the-art local method [10] uses alternating least squares with regularization. This method
has been the most successful in finding fast algorithms whilst remaining computationally
tractable and has been scaled up to N = M = P = 4, R = 492. However, this approach has
limitations which include getting stuck at local minima, facing ill-conditioned linear least-
squares problems, and solutions being only adequate up to machine precision. Additionally,
these methods are not exhaustive and hence cannot be used to provide a proof of infeasibility
for a given rank R.

3.2 AlphaTensor
More recently, DeepMind released AlphaTensor [6], a deep RL method that searches this
large combinatorial space by playing a single-player game, the TensorGame, formulated as

2 Note that this particular result is not very useful as an R = 49 solution can be obtained by applying
Strassen’s R = 7 algorithm for 2 × 2 matrices on the four 2 × 2 blocks of the 4 × 4 matrices.

CP 2023
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(
c1 c2
c3 c4

)
=

(
a1 a2
a3 a4

)
·
(

b1 b2
b3 b4

)
(a) Multiplication of two 2 × 2 matrices. We highlight the term c1 = a1b1 + a2b3.

T:,:,1 =
( 1 0 0 0

0 0 1 0
0 0 0 0
0 0 0 0

)
T:,:,2 =

(
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
T:,:,3 =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

)
T:,:,4 =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

)
(b) Tensor representation of the 2 × 2 matrix multiplication operation. T:,:,1 represents c1, the entry T2,3,1
(in yellow) is set to 1 because the product a2b3 is required to compute c1 (similarly for T1,1,1 in red).

m1 = (a1 + a4)(b1 + b4) m5 = (a1 + a2)(b4)

m2 = (a3 + a4)(b1) m6 = (a3 − a1)(b1 + b2)
m3 = (a1)(b2 − b4) m7 = (a2 − a4)(b3 + b4)
m4 = (a4)(b3 − b1)

c1 = m1 + m4 − m5 + m7

= (a1 + a4)(b1 + b4) + (a4)(b3 − b1) − (a1 + a2)(b4) + (a2 − a4)(b3 + b4)

= a1b1 +���a1b4 +���a4b1 +���a4b4 +���a4b3 −���a4b1 −���a1b4 −���a2b4 + a2b3 +���a2b4 −���a4b3 −���a4b4

= a1b1 + a2b3

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 − m2 + m3 + m6

(c) A low-rank decomposition of the 2 × 2 matrix multiplication using Strassen’s algorithm. The m
terms are the multiplication terms and the c terms represent the entries in the product matrix. Here
c1 = m1 + m4 − m5 + m7 gives c1 = a1b1 + a2b3 after expansion.

m1 m2 m3 m4 m5 m6 m7

U =


1 0 1 0 1 -1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 -1


a1
a2
a3
a4

V =


1 1 0 -1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 -1 0 1 0 1


b1
b2
b3
b4

W =


1 0 0 1 -1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 -1 1 0 0 1 0


c1
c2
c3
c4

(d) The factor matrices U , V , and W for Strassen’s algorithm. The columns in U and V represent the
coefficient of the a and b terms in each m. Each row in W represents the coefficient of the m terms in one
c term.

Figure 1 A low-rank decomposition of a 2 × 2 matrix multiplication using Strassen’s algorithm.
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a Markov decision process (MDP). At every step t of this MDP, the state is characterized
by a tensor St which is initially set to the target multiplication tensor, i.e., S0 = TN . An
action at at iteration t corresponds to the player selecting a triplet of vectors (u(t), v(t), w(t))
which in turn will provide the next state St = St−1 − u(t) ⊗ v(t) ⊗ w(t) where ⊗ denotes
the outer tensor product. The goal of the player is to reach the zero tensor St = 0 in the
fewest number of steps possible. This is done by providing a reward of −1 to the player after
every non-terminal state whereas a large negative reward −γ(SRlimit) is given to the player
if the number of steps Rlimit is met, where γ(SRlimit) upper bounds the rank of the tensor
at iteration Rlimit. If the agent successfully reaches the zero tensor, the sequence of actions
taken constitutes a valid low-rank decomposition of TN , and hence an FMM algorithm is
found with the rank R corresponding to the number of steps taken by the agent.

This approach is the first to directly incorporate learning into the search which resulted
in the discovery of new minimal ranks for certain non-trivial cases. The largest case tackled
by this method is N = M = P = 5, R = 98. The sole focus of this purely heuristic method
is to find lower ranks than currently best-known ranks but it cannot prove the infeasibility of
a given rank. Additionally, rather complex architectures and multiple training phases were
required for successful learning. It is worth noting that AlphaTensor was trained for one
week on 64 Tensor Processing Units (TPUs), Google’s proprietary chip. The paper [6] does
not provide any estimates of the amount of computation required to produce the reported
results, namely how long the trained “agent” must be run to discover FMM algorithms. Our
CP runs use much fewer resources while leveraging thread parallelism in the CP solver on
readily-available CPU machines.

3.3 Integer Programming
The work that is the most related to our approach tackles this problem through a mixed-
integer linear program (MILP) formulation in an unpublished technical report [11]. The goal
of this methodology is to linearize the trilinear products in the low-rank decomposition of TN

to a MILP that aims to 1) maximize the sparsity of the integer decision variables representing
factor matrices U , V , and W and 2) minimize the reconstruction loss (L1 norm) from
the input TN and the multiplication tensor attained by the decision variables representing
factor matrices. The report [11] focuses solely on presenting the MILP formulation for
square matrices but does not include any computational experiments. However, the MILP
formulations for N ∈ {2, 3} are benchmark problems in MIPLIB 2017 [8]3. The linearization
of the trilinear products likely leads to a weak linear programming relaxation as well as an
explosion in the number of integer variables and constraints, which might explain why the
MILP approach to FMM has not picked up significant interest. A CP formulation is more
natural and compact, as we will show in this paper.

3.4 Classical AI Planning
Very recently, AI planning techniques were used for FMM [12]. They use a similar state
space as AlphaTensor but use various planning tools (with and without exhaustive search) to
solve this problem. They compared a number of heuristic and exact planning methods from
the literature on matrices of size up to 3 × 3. However, the experiments show that planning
approaches are severely limited, even failing to find Strassen’s algorithm for the 2 × 2 case

3 See https://miplib.zib.de/instance_details_fastxgemm-n3r21s3t6.html for example.

CP 2023
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(see Table 1 in [12]). We will show that our CP approach is significantly more effective as we
are able to attack the 3 × 3 case with R = 23, matching the known upper bound from the
literature.

4 Constraint Programming for Fast Matrix Multiplication

In the FMM problem, all variables have the same domain F = {−1, 0, 1}4. Since the variable
domains are small and this problem is highly structured, CP is a promising solution paradigm.

The base CP model for FMM is given in Equation (1). Let U denote the set {1, . . . , N ·M},
V denote the set {1, . . . , M · P}, W denote the set {1, . . . , N · P}, and R denote the
set {1, . . . , R}. The CP model uses three sets of variables: ui,r where i ∈ U , vj,r where j ∈ V ,
and wk,r where k ∈ W; r ∈ R in all three cases. Each variable ui,r, vj,r and wk,r represents
the value of the i/j/kth row and rth column of the matrices U , V , and W . The domain of all
variables is {−1, 0, 1}. The set of constraints presented here requires that the decomposition
algorithm’s output matches the original tensor multiplication TNMP . Therefore the input to
the CSP model is 4 integers: (N, M, P ) and R. The model then reads as:

R∑
r=1

(ui,r · vj,r · wk,r) = Ti,j,k, ∀i ∈ U , j ∈ V, k ∈ W

ui,r, vj,r, wk,r ∈ {−1, 0, 1}, ∀i ∈ U , j ∈ V, k ∈ W, r ∈ R (1)

The search space for this (NP-complete) problem grows very quickly with increasing
matrix sizes N, M, P and rank R. With only one set of equality constraints, a CP solver may
struggle with constraint propagation, thus failing to scale with increasing N, M, P . To that
end, we will introduce additional valid constraints to help CP prune and propagate more
efficiently.

4.1 Symmetry Breaking
There are many symmetric solutions to the FMM problem. We can reduce the search space
of our problem significantly by prohibiting symmetries.

4.1.1 Permutation Symmetry
Since addition is commutative, i.e., (a1 + a2) = (a2 + a1), there are many equivalent solutions
to the tensor decomposition problem. Therefore, any permutation of the columns of matrices
U , V , and W produces an equivalent solution. If we consider Strassen’s solution for the 2 × 2
case, Figure 2 provides an example of two equivalent solutions.

In order to break this symmetry, we introduce a lexicographic-strict5 constraint on
the ui,r and vj,r variables. When applied to two variable arrays x and y, the lexicographic
ordering constraint enforces that x is strictly less than y in the defined lexicographic order.
Because of the strictness, this also enforces that the two variable arrays must be different.
This set of symmetry-breaking constraints is modelled as follows:

lexicographic-strict([u:,r; v:,r], [u:,r+1; v:,r+1]), ∀r ∈ R

4 One can consider bigger fields such as {−2, −1, 0, 1, 2} but the bulk of the work in the literature has
been with {−1, 0, 1}.

5 https://www.ibm.com/docs/en/icos/22.1.0?topic=variables-lexicographic-constraint

https://www.ibm.com/docs/en/icos/22.1.0?topic=variables-lexicographic-constraint
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sol1: U =
( 1 0 1 0 1 -1 0

0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

)
V =

( 1 1 0 -1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 -1 0 1 0 1

)
W =

( 1 0 0 1 -1 0 1
0 0 1 0 1 0 0
0 0 0 1 0 0 0
1 -1 1 0 0 1 0

)
sol2: U =

( -1 0 0 0 1 1 1
0 0 0 1 0 0 1
1 0 1 0 0 0 0
0 1 1 -1 0 1 0

)
V =

( 1 -1 1 0 0 1 0
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 0 0 1 -1 1 1

)
W =

( 0 1 0 1 0 1 -1
0 0 0 0 1 1 1
0 1 1 0 0 0 0
1 0 -1 0 1 1 0

)

Figure 2 Two equivalent solutions for Strassen’s solution of 2 × 2 matrix multiplication. sol2 is
the lexicographic-strict presentation of this solution.

where [u:,r; v:,r] represents the vector concatenating the rth column of the matrix U and V .
In Figure 2, sol2 satisfies the lexicographic-strict constraint.

4.1.2 Sign Symmetry
For the multiplicative mi terms, one can easily see that multiplying both sets of terms
from A and B by −1 will result in the same solution. For example, (a1 + a4)(b1 + b4) =
(−a1 − a4)(−b1 − b4), where we could multiply any subset of columns of U and V by −1 to
achieve the same solution. We call this symmetry the sign symmetry. In order to break it,
we introduce the following constraints:

u1,r ≤ 0

ui,r ≤
i−1∑
i′=1

|ui′,r| ∀r ∈ R, i > 1, i ∈ U

The main idea of these constraints is to enforce that the first non-zero entry in a column
of U can only take on the value of −1, enforcing that the first entry of the columns is either 0
or −1. The subsequent constraints ensure that for any column r, an entry in row i > 1 can
only be 1 if there has been an entry in the same column in an earlier row with value −1.
This set of constraints applies to the concatenation of the columns in U and V , however, in
modelling, it only needs to be applied to the columns of the U matrix as none of the columns
can be zero, so the leading −1 must appear in the U matrix. By applying these constraints,
we make sure that {−ui,r} is infeasible for any feasible {ui,r}. Employing this sign symmetry
breaking constraint to sol2 from Figure 2, we arrive at sol3 shown in Figure 3.

sol3: U =
( -1 0 0 0 -1 -1 -1

0 0 0 -1 0 0 -1
1 0 -1 0 0 0 0
0 -1 -1 1 0 -1 0

)
V =

( 1 1 -1 0 0 -1 0
1 0 0 0 -1 0 0
0 -1 0 -1 0 0 0
0 0 0 -1 1 -1 -1

)
W =

( 0 1 0 1 0 1 -1
0 0 0 0 1 1 1
0 1 1 0 0 0 0
1 0 -1 0 1 1 0

)

Figure 3 sol3 is the solution derived from enforcing the sign symmetry constraints on sol2.

Similarly, the same type of sign symmetry-breaking constraints can be applied to the W

factor matrix as follows:

w1,r ≤ 0

wk,r ≤
k−1∑
k′=1

|wk′,r| ∀r ∈ R, k > 1, k ∈ W.

The interpretation is as follows. In Figure 1c, consider c4 = m1 − m2 + m3 + m6, and notice
that one can redefine m6 = (a3 − a1)(b1 + b2) to become m6 = (a3 − a1)(−b1 − b2) and then

CP 2023
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rewrite c4 as c4 = m1 − m2 + m3 − m6. Recall that the coefficients of the m terms in an
output entry ck are the entries of row k of factor matrix W . The transformation we just
performed produces two equivalent solutions and is an instance of “value symmetry” that is
broken by the above constraint set as it forces the first non-zero entry of a column of W to
be −1.

4.2 Valid Inequalities
Based on the structure of this problem, we can also introduce a series of valid inequalities
that could potentially help a CP solver with propagation.

First, for the W matrix, we know that each multiplicative term mr must be used at
least once for sufficiently small R (i.e., for non-trivial cases of the FMM problem where
R ≤ NMP ). This means that the sum of each column in W must be at least one:∑

k∈W

|wk,r| ≥ 1, ∀r ∈ R.

Each result term cl must use at least M terms. This is due to a basic fact in algebraic
complexity theory which states that the dot-product of two vectors of size M requires at
least M multiplications [14]. This means that the sum of each row of W must be greater or
equal to M :∑

r∈R
|wk,r| ≥ M, ∀k ∈ W.

Each result term cl must differ in at least two mr terms; a simple proof by contradiction
is omitted for brevity. This can be modelled as follows:∑

r∈R
|wk,r − wk′,r| ≥ 2, ∀k ̸= k′ ∈ W.

Each term in the A and B matrices must appear in at least one of the multiplicative
terms mr. This translates to each row of U and V having at least one non-zero term as
shown in the constraints below:∑

r∈R
|ui,r| ≥ 1, ∀i ∈ U∑

r∈R
|vj,r| ≥ 1, ∀j ∈ V.

Furthermore, each valid product of two terms from the A and B matrices, e.g., a2b3 for
2 × 2 matrices, must appear in at least one of the R multiplication terms. For a2b3 appears
in c1 and c2, see Figure 1a. This can be modelled as follows:∑

r∈R
|ui,r · vj,r| ≥ 1, ∀ valid i, j.

4.3 Full CP Model
Finally, the full CP model is presented in Figure 4. The constraints in Equation (2)
ensure that the output matches the original multiplication tensor and thus the validity of an
assignment as a matrix multiplication algorithm. We enforce permutation symmetry-breaking
with Equation (3) and sign symmetry-breaking with Equations (4)–(7). The valid inequalities
are modelled through Equations (8)–(13).
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∑
r∈R

(ui,r · vj,r · wk,r) = Ti,j,k, ∀i ∈ U , j ∈ V, k ∈ W (2)

lexicographic-strict([u:,r; v:,r], [u:,r+1; v:,r+1]), ∀r ∈ R (3)
u1,r ≤ 0 ∀r ∈ R (4)

ui,r ≤
i−1∑
i′=1

|ui′,r|, ∀r ∈ R, i > 1, i ∈ U (5)

w1,r ≤ 0 ∀r ∈ R (6)

wk,r ≤
k−1∑
k′=1

|wk′,r| ∀r ∈ R, k > 1, k ∈ W (7)∑
k∈W

|wk,r| ≥ 1, ∀r ∈ R (8)∑
r∈R

|wk,r| ≥ M, ∀k ∈ W (9)∑
r∈R

|wk,r − wk′,r| ≥ 2, ∀k ̸= k′ ∈ W (10)∑
r∈R

|ui,r| ≥ 1, ∀i ∈ U (11)∑
r∈R

|vj,r| ≥ 1, ∀j ∈ V (12)∑
r∈R

|ui,r · vj,r| ≥ 1, ∀ valid i, j (13)

Figure 4 Full CP Model with symmetry-breaking constraints and valid inequalities.

4.4 Sparsity-based Problem Decomposition
Given that the factor matrices that have been found for known decompositions tend to
be sparse, we introduce some inexact inequalities to induce sparsity and trim candidate
assignments that have a high likelihood to be infeasible or that are unnecessarily dense. For
example, observe that Strassen’s solution in Figure 1c leads to many zeros in the factor
matrices; no m term uses more than 2 out of 4 of the a or b terms, no c term uses more
than 4 out of the 7 m terms. It has been observed that as the matrix sizes grow, the best
solutions become even sparser.

We first introduce a constraint limiting the number of active (i.e., nonzero) terms in each
column r (i.e., multiplication term) of U and V . This constraint is written as:∑

i∈U
|ui,r| +

∑
j∈V

|vj,r| ≤ K1, ∀r ∈ R.

A similar constraint can be imposed on W , by restricting that each output must use at most
K2 multiplication terms. This constraint is written as:∑

r∈R
|wk,r| ≤ K2, ∀k ∈ W.

Based on these constraints, K1 has an upper bound of (NM +MP ) and K2 is upper bounded
by R. By observing decompositions for small to medium-scale matrices, we can estimate K1

CP 2023
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and K2. For example, for 3 × 3 matrices with R = 23, we observe that K1 = 9 and K2 = 10
is the safest estimate possible compared to the upper bounds of 18 and 23, respectively,
which could restrict the CP search dramatically. Note that one could start with any such
estimates of the decomposition parameters K1 and K2, iteratively increasing them if the
restricted instances are found to be infeasible by the CP solver, eventually resulting in a
complete resolution of the original problem.

4.5 Cyclic Invariant Formulation

In contrast to the symmetries of the factor matrices discussed in Section 4.1, there exists
well-known cyclic symmetry for the multiplication tensors TN of square matrices. More
precisely, it is known that Ti,j,k = Tj,k,i = Tk,i,j . The authors in [1] proposed to leverage
this cyclic symmetry property and parameterize FMM algorithms with cyclic invariant
factor matrices: U = [ABCD], V = [ADBC], W = [ACDB] with A ∈ {−1, 0, 1}N2×S and
B, C, D ∈ {−1, 0, 1}N2×T corresponding to a rank R = S + 3T .

Although this parametrization reduces the number of integer variables by a factor of
three, helping with the combinatorial nature of the problem, there is no guarantee that
the minimal rank decomposition corresponds to solutions that exhibit cyclic symmetry.
That being said, Strassen’s solution of R = 7 for N = 2, which is optimal, exhibits such
a symmetry (S ∈ {1, 4}), as does the best-known rank of 23 for N = 3 (S ∈ {2, 5, 11}).
Performing two steps of Strassen’s algorithm for N = 2 yields a rank 49 cyclic invariant
solution for N = 4. It is currently unknown whether a solution of rank less than 49 exists for
N = 4, let alone one exhibiting cyclic invariance.

We implement Ballard and Benson’s cyclic invariant reduction [1] of the FMM problem
for square matrices by reducing the decision variables of our CP formulation as required and
imposing the invariant structure on the factor matrices.

5 Experiments

In this section, we present our experimental results starting by showing how our CP approach
can recover the best-known upper bounds on the rank in a small amount of time on
multiplication problems ranging from the trivial (N, M, P ) = (1, 1, 1) case all the way up to
the much harder (2, 2, 4) and (3, 3, 3) cases. We then present results for the infeasible cases
for (2, 2, 2). We used IBM’s CP Optimizer (CPO) 22.1.06 to solve our CP models. We ran
our experiments on a compute cluster of AMD Ryzen Threadripper 2990WX cores with 128
GB of RAM per node.

5.1 Experimental Setup

To ensure the reproducibility and robustness of our results, all our experiments are run
with multiple random seeds. This accounts for the often observed performance variability in
combinatorial search; this is documented for example in MILP [9]. To that end, we ran each
experiment with 10 different seeds. We assigned 8 cores (CPO’s Workers parameter) to the
solver for each run (except for more compute-intensive experiments in Section 5.4 where we
assigned 20 cores) and timed out the experiments after 2 hours.

6 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
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5.2 Evaluation Metrics

We will report the solver runtime and the number of branches during the solution process
for completed runs (i.e., runs that returned a feasible solution or a proof of infeasibility).
Given that each problem is attempted with multiple random seeds, the shifted geometric
mean with a shift of 0.00017, median, minimum, and maximum of the time in seconds and
the number of branches will be reported for a complete picture of the results. Runs that
terminated due to the time or memory limits will be discussed where applicable.

Table 1 Runtime results for the base CP model on various matrix dimensions. “geo mean”
refers to the shifted geometric mean as described in Section 5.2; “med” refers to the median and
“min”/“max” to the minimum and maximum, respectively.

Time (sec) Num Branches
N M P R geo mean (min, med, max) geo mean (min, med, max)

1 1 1 1 0.00 (0.00, 0.00, 0.01) 5.05×101 (4.50×101, 5.00×101, 5.80×101)
1 1 2 2 0.00 (0.00, 0.00, 0.01) 1.31×102 (1.00×102, 1.27×102, 2.13×102)
1 2 1 2 0.00 (0.00, 0.01, 0.01) 1.68×102 (1.08×102, 1.69×102, 2.31×102)
1 1 3 3 0.00 (0.00, 0.01, 0.01) 7.09×102 (3.47×102, 7.78×102, 1.38×103)
1 3 1 3 0.00 (0.00, 0.01, 0.01) 9.44×102 (3.68×102, 9.83×102, 1.82×103)
1 2 2 4 0.01 (0.00, 0.01, 0.01) 4.86×103 (1.68×103, 5.27×103, 7.68×103)
2 1 2 4 0.01 (0.01, 0.01, 0.02) 4.36×103 (2.63×103, 4.39×103, 7.14×103)
1 2 3 6 0.05 (0.02, 0.04, 0.10) 3.51×104 (1.41×104, 2.96×104, 9.83×104)
1 3 2 6 0.05 (0.03, 0.06, 0.12) 3.19×104 (1.40×104, 3.19×104, 7.18×104)
2 1 3 6 0.05 (0.02, 0.04, 0.11) 3.79×104 (1.45×104, 3.33×104, 8.93×104)
2 2 2 7 0.74 (0.28, 0.75, 1.84) 6.41×105 (2.03×105, 6.69×105, 1.70×106)
1 3 3 9 0.37 (0.26, 0.36, 0.60) 2.92×105 (1.84×105, 3.09×105, 4.16×105)
3 1 3 9 0.42 (0.18, 0.52, 0.61) 3.10×105 (1.64×105, 3.35×105, 4.36×105)
2 2 3 11 49.64 (0.98, 71.82, 245.06) 3.40×107 (6.90×105, 4.71×107, 1.74×108)
2 3 2 11 26.47 (6.68, 29.41, 133.29) 1.56×107 (3.52×106, 1.39×107, 9.00×107)

5.3 Feasible Cases: Searching for Solutions with the Base CP Model

Table 1 shows the time and number of branches (Num Branches) required by the base
CP model (i.e., without symmetry breaking or valid inequalities) to find solution for a
range of problems. Our approach was able to find Strassen’s solution for the 2 × 2 matrix
multiplication in less than a second whereas the AlphaTensor paper [6] reports a few minutes
of model inference to find that solution.
Performance variability. In Table 1, we can see that for (2, 2, 3) with R = 11, the worst
seed took 245 seconds to find a feasible solution compared to 0.98 seconds for the best seed.
This drastic difference in time (and ultimately the number of branches) is an indication that
minute parameters such as the seed can significantly impact the CP search. For feasible
instances, this phenomenon can be seen as a blessing rather than a curse if one has access to
multiple cores: the randomness can be exploited by running multiple copies of the solver,
terminating as soon as the first successful run is completed. This has been done in MILP [7].

7 The shifted geometric mean of a set of n values t1, . . . , tn is defined as
( ∏n

i=1 [ti + shift]
) 1

n − shift.
Compared to the arithmetic mean, it is less sensitive to large variations in the values.
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5.4 Feasible Cases: Sparsity Constraints and Cyclic Invariance Help
Solving the base CP formulation, with our current time and memory budgets, does not yet
yield feasible decompositions for dimensions higher than (2, 2, 3) or (2, 3, 2). However, after
increasing both the time and memory limits, we were able to find a solution to the problem
for dimension (2, 2, 4) with R = 14 in 19.6 hours using the inexact inequalities (K1 = 11
and K2 = 7) developed in Section 4.2. Furthermore, our cyclic invariant formulation (with
S = 5) with inexact inequalities (K1 = 9 and K2 = 10) was able to find a solution for
(3, 3, 3), R = 23. More specifically, we ran the cyclic invariant formulation for 10 hours with
5 different seeds and observed that two seeds produced a feasible solution within one hour
whereas the other three seeds hit the time limit. Once again, this indicates that performance
variability in the CP search is significant for our problem. Additionally, we ran the base CP
formulation for (3, 3, 3) without inexact inequalities for 5 seeds which all hit the time limit
of 10 hours, demonstrating the benefit of the reduction of variables for the cyclic invariant
formulation and sparsity constraints. We have yet to check whether using only inexact
inequalities can help the base formulation for (3, 3, 3). A similar result was observed for
the (2, 2, 2) case in which the cyclic invariant formulation (S = 4) with inexact inequalities
(K1 = 6 and K2 = 4) produced an average solution time of 0.05 seconds across 10 seeds
whereas the base CP model has an average of 1.46 seconds. Our current implementation is
not able to find cyclic invariant solutions for N = 4 with R = 48, but we have hope that
this approach is a promising tool for the search for new cyclic invariant solutions for square
matrix multiplication.

5.5 Infeasible Cases: The Importance of Symmetry Breaking
Since CP performs an exhaustive search, it can provide a proof of infeasibility if a given
rank R is not achievable for certain matrix dimensions. As expected, the runtime to prove
infeasibility significantly increases as we approach the known minimum rank; this can be seen
in Table 2 for the (2,2,2) case. It is also apparent that the addition of symmetry-breaking
constraints helps tremendously when proving infeasibility given that they reduce the search
space significantly. More specifically, for R = 6 in Table 2, it is not even currently possible to
prove infeasibility without symmetry-breaking constraints in 2 hours whereas the CP model
with symmetry-breaking constraints (B+S) requires around 7 minutes. These results highlight
the importance of symmetry-breaking constraints when looking to prove infeasibility.

6 Conclusion

We have proposed a novel CP approach to solve the fast matrix multiplication problem. We
have provided a set of constraints for breaking permutation and sign symmetries as well as
a set of valid inequality constraints to help CP prune and propagate more efficiently. We
provide a decomposition framework that is beneficial for finding feasible solutions for the
largest case we have attempted, i.e., 3 × 3 matrix multiplication. Based on our experimental
results, we have been able to solve small instances of this problem within a reasonable amount
of time. This is in contrast to some existing search-based approaches (MILP, planning) that
seem to struggle. In contrast to the AlphaTensor approach [6], the CP model is far more
natural for this combinatorial task and is uniquely positioned to provide proof of infeasibility
for some open problems in this space.

While the results of our approach are promising given the limited amount of computing
used, there are several limitations that we aim to address in future work. First, our algorithm
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Table 2 Runtime results for the base CP model and variants to prove infeasibility of R < 7 for
(2,2,2). “geo mean” refers to the shifted geometric mean as described in Section 5.2; “med” refers
to the median and “min”/“max” to the minimum and maximum, respectively. Overall, the use of
symmetry-breaking constraints (denoted by the letter “S”) on top of the base CP formulation (“B”)
is crucial for efficient proofs of infeasibility. “V” refers to the valid inequalities of Section 4.2 which
sometimes complement symmetry-breaking but are not always needed for the fastest results.

Time (sec) Num Branches
R Method geo mean (min, med, max) geo mean (min, med, max)

1 B 0.01 (0.00, 0.01, 0.02) 1.08×103 (1.06×103, 1.08×103, 1.10×103)
B+S 0.00 (0.00, 0.01, 0.01) 1.00×10−4 (0.00, 0.00, 0.00)
B+V 0.00 (0.00, 0.00, 0.01) 1.00×10−4 (0.00, 0.00, 0.00)
B+V+S 0.00 (0.00, 0.00, 0.00) 1.00×10−4 (0.00, 0.00, 0.00)

2 B 0.01 (0.00, 0.01, 0.03) 4.38×103 (3.72×103, 4.41×103, 5.30×103)
B+S 0.01 (0.01, 0.01, 0.02) 1.08×103 (1.08×103, 1.08×103, 1.08×103)
B+V 0.00 (0.00, 0.01, 0.02) 1.33×103 (1.31×103, 1.32×103, 1.34×103)
B+V+S 0.01 (0.01, 0.01, 0.03) 1.09×103 (1.07×103, 1.08×103, 1.10×103)

3 B 0.21 (0.17, 0.21, 0.28) 1.70×105 (1.42×105, 1.70×105, 1.95×105)
B+S 0.02 (0.01, 0.02, 0.03) 4.13×103 (3.06×103, 4.30×103, 5.32×103)
B+V 0.20 (0.13, 0.21, 0.25) 1.38×105 (1.14×105, 1.35×105, 1.78×105)
B+V+S 0.02 (0.01, 0.02, 0.03) 3.61×103 (2.52×103, 3.67×103, 4.92×103)

4 B 43.79 (31.33, 41.89, 66.93) 3.85×107 (3.06×107, 3.80×107, 5.00×107)
B+S 0.12 (0.07, 0.13, 0.18) 8.50×104 (6.94×104, 8.54×104, 1.03×105)
B+V 53.49 (39.10, 48.87, 69.35) 3.70×107 (3.18×107, 3.69×107, 4.23×107)
B+V+S 0.15 (0.11, 0.15, 0.20) 8.53×104 (7.34×104, 8.10×104, 1.06×105)

5 B T.O. (N/A, N/A, N/A) 6.03×109 (5.56×109, 5.75×109, 7.14×109)
B+S 3.06 (2.28, 3.02, 4.15) 2.22×106 (1.89×106, 2.19×106, 2.67×106)
B+V T.O. (N/A, N/A, N/A) 5.57×109 (3.97×109, 5.83×109, 6.16×109)
B+V+S 2.98 (2.56, 2.94, 3.44) 2.14×106 (1.91×106, 2.12×106, 2.56×106)

6 B T.O. (N/A, N/A, N/A) 5.99×109 (4.53×109, 5.79×109, 6.93×109)
B+S 429.26 (333.88, 441.63, 528.61) 3.28×108 (2.94×108, 3.31×108, 3.76×108)
B+V T.O. (N/A, N/A, N/A) 4.67×109 (3.82×109, 4.73×109, 5.48×109)
B+V+S 517.33 (414.07, 522.81, 640.65) 3.35×108 (2.97×108, 3.28×108, 3.95×108)
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struggles to scale for larger matrix dimensions or ranks due to the quick increase in the
number of variables of the CP model. Secondly, we have found that the base CP model
outperforms the addition of symmetry constraints and valid inequalities in the case of feasible
solutions, likely due to the latter’s tendency to prune symmetric solutions early in the tree
search. However, we believe that our experiment’s small matrix dimensions may have skewed
these results and valid inequalities may be crucial for larger sizes. Moving forward, we
propose several areas for further exploration and improvement:

Conduct larger-scale experiments using larger compute clusters to take advantage of the
parallelizability of the CP solver’s search procedure.
Analyze the highly structured nature of this problem to develop more valid inequalities
that can further reduce the search space of our CP model, including inexact inequalities
that may not hold for all matrix multiplication dimensions but help for some cases.
Explore solver parameter tuning, particularly for branching strategies and other important
search-related decisions.
Further investigate the idea of sparsity-based problem decomposition as a means of
improving the scalability and performance of our approach.
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