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Abstract

While Large Language Models (LLMs) have revolutionized chatbot interactions, they often
fall short in aligning responses with the nuanced preferences of individual users—a challenge
rooted in the inherently subjective and proprietary nature of user preferences. Consequently,
prompt-based learning, though effective in enhancing factual accuracy due to its emphasis
on universal correctness, remains insufficient for achieving accurate personalised response
alignment. Because user preferences vary widely across individuals and contexts, aligning
responses requires a more personalized and context-aware approach. To address this limita-
tion, we propose Consistent Marginalization (CM)—a novel framework that aims to unlearn
misalignment by constructing a personalised memory bank of instance-response-dependent
discrepancies, built from a small set of user preference samples. This personalised memory
bank equips LLMs with the ability to understand, recall, and adapt to individual pref-
erences, enabling more consistent and personalized responses. Evaluated across a diverse
range of domain-specific datasets and model architectures, CM yields notable improvements
in response alignment and robustness. We believe Consistent Marginalization represents a
valuable step toward enabling LLMs to become genuinely personable and adaptive conver-
sational agents by understanding user preferences and generating responses that are better
aligned with individual user expectations.

1 Introduction

Autoregressive large language models (LLMs) have recently achieved widespread adoption due to their re-
markable performance across various domains (Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023).
These models are predominantly trained via next-token prediction objectives targeted at maximizing output
accuracy (Devlin et al., 2018; Touvron et al., 2023; Hu et al., 2024). However, as LLMs become increasingly
employed in personalized applications, requiring alignment with nuanced and individual user preferences,
their outputs frequently diverge from anticipated or preferred responses Zhao et al. (2025). Such devia-
tions—often characterized as hallucinations—lead to misaligned or undesired outputs, presenting substan-
tial challenges in applications requiring adaptive and personalized supervision, including recommendation
systems, personalized response generation, and text mining, where consistency, reliability, and alignment
with individual expectations are critical Wu et al. (2024). While the effectiveness of LLMs is closely tied to
the prompt strategies employed—serving as external guidance for self-correction (Brown et al., 2020; Wei
et al., 2021; Yao et al., 2022; Liu et al., 2023)—these strategies are primarily designed to ensure output
accuracy, rather than personalized response alignment. Figure 1 highlights two separate learning
objectives: response alignment—how well an LLM reflects subjective, user-specific preferences—and out-
put accuracy—the objective factual correctness of its content. Standard prompt-based learning (Figure 1a)
optimizes for output accuracy but neglects instance-response independent and dependent discrepancies—
misalignment between user intent and model response — illustrated in Figures 1b and 1c. Ignoring these
discrepancies leads to persistent misalignment, underscoring the need for mechanisms that can record, recall,
and correct personalised response misalignment between the user and LLM. Aligning large language models
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(LLMs) to generate responses tailored to individual users is challenging because it requires understanding
and incorporating user preferences. Unlike complex reasoning tasks, which are objective due to their basis
in facts and definitive solutions, user preferences are inherently subjective, reflecting personal opinions and
judgments (Hu et al., 2024). While supervised fine-tuning on comprehensive datasets can achieve such align-
ment, it is often costly, and many user-specific datasets are valuable only to the individual, limiting their
applicability to the broader community.

Consider a user interacting with a financial LLM assistant. In an earlier conversation, the user states,
“I’m highly risk-averse and prefer capital-preservation strategies.” Later, the same user asks, “Could you
recommend an investment portfolio for the next 1 months?” An LLM that has not been fine-tuned or lacks
personalized memory may suggest high-risk assets—such as “invest 80% in cryptocurrency”—because recent
returns make them appear objectively justifiable. This recommendation reveals a personalized response mis-
alignment between the user’s low-risk objective and the model’s high-risk recommendation. If this mismatch
is stored in a personalized memory bank as a response discrepancy, the LLM can retrieve it the next time
the user poses a finance-related question. Seeing that the user consistently rejects high-risk ideas, the model
can infer a latent preference for safety and propose a low-risk investment—such as an government bonds.
By recalling and correcting past misalignments, the assistant can aligns its advice with the user’s individual
risk tolerance rather than defaulting to generic, return-maximizing recommendations. Prompt-based self-
reflection and self-correction alone (Paul et al., 2023; Shinn et al., 2023; Bang et al., 2023; Li et al., 2023;
Zhou et al., 2023; 2022) struggle to achieve such personalized alignment, especially when rich user feedback
are scarce. Moreover, even in tasks focused on output accuracy, intrinsic self-correction remains limited when
models rely exclusively on their own outputs for feedback (Huang et al., 2023; Hu et al., 2024). Overall, the
goal of this work is to:

• Equip LLMs to remember and consistently follow each user’s preferences, ensuring
their responses remain aligned over time.

Z

X Y

(a) Standard-Prompt-Based
Approach with Z

(equation 1)

Z∗

X Y Y ′

(b)
Instance-Response-Independent

Discrepancies
with Optimal Z∗

Z∗

X Y Y ′

(c) Instance-Response-Dependent
Discrepancies

with Optimal Z∗ (equation 1)

Figure 1: Contrasts standard prompt with Consistent Marginalization (CM) framework and
underscores why accounting for instance–response-dependent discrepancies is necessary to
bridge the gap between LLM-generated responses and user-preferred responses. In standard
API-based prompt, given an input X to a Large Language Model (LLM), it is assumed that the desired
output, or user-preferred responses Y , can be obtained by identifying a latent variable Z representing the
prompt strategy. Consistent marginalization acknowledges that the LLM’s generated responses can deviate
from the user-preferred responses Y , which is denoted as Y ′, even for a given input X and an optimal
latent variable Z∗. Our method explicitly considers these discrepancies and aims to construct a personalised
memory bank of the discrepancies between Y and Y

′ , given X and Z. We distinguish two types of response
discrepancies: one of which is instance-response independent discrepancies shown in Figure 1(b),
where Y ′ is independent of X, and other one is instance-response dependent discrepancies shown in
Figure 1(c), which is a more realistic scenario. Our study focuses on the latter instance-response dependent
discrepancies. Assuming that the optimal Z∗ has already been determined, our primary learning objective
is to estimate p(Y ′ | Y, X). This probability shows the discrepancies between the user-preferred responses Y
and the LLM-generated responses Y ′ under given X.

To overcome the limitations, we introduce Consistent Marginalization (CM). This method mitigates mis-
alignment between a large-language-model (LLM) and an individual user’s preferred response in a low-data
regime without any full user-specific dataset fine-tuning. CM tackles the two fundamental obstacles that
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prevent off-the-shelf LLMs from delivering truly personalised aligned responses: (i) preference recognition,
since current models often fail to detect a user’s latent preferences Zhao et al. (2025), and (ii) preference
retention, because even when a preference is conveyed once, the model does not remember it in later turns.
We argue that both shortcomings stem from overlooking instance–response–dependent discrepancies during
pre-training or the prompt. CM resolves them by (i) explicitly estimating the discrepancy between an LLM’s
response and the user’s preferred response, and (ii) storing these discrepancies in a lightweight “personalised
memory bank.” During future interactions, the model consults this bank, recalls past misalignments, and
self-corrects—achieving strong personalization with only a small set of preference examples and no per-user
fine-tuning. Our experimental results validate the effectiveness of the Consistent Marginalization (CM)
method. The main contributions include:

• A general framework for personalised response alignment. We introduce CM, a method
that accounts for instance-dependent discrepancies to mitigate misalignment between an LLM and
an individual user’s preferred response in data-constrained settings—without any full, user-specific
fine-tuning.

• A probabilistic formulation for unlearning misalignment. CM performs principled, amortised
inference of user preferences in a low-data regime by marginalising instance-response discrepancies
between the LLM and the user.

• Demonstrated effectiveness on large-scale datasets with multiple open and closed-
sourced LLMS. We validate our method on multiple user preference-related large-scale datasets.
The experimental results demonstrate its effectiveness in enhancing the user personalised response
alignment of LLMs without fine-tuning, indicating broad applicability.

2 Related Works

2.1 Prompt-based learning

Prompt-based learning, first popularised by Brown et al. (2020), shows that a handful of in-context examples
can nudge an LLM toward more accurate responses. Subsequent prompt-engineering methods—instruction
tuning (Wei et al., 2021), chain-of-thought (Cot) prompt (Wei et al., 2022), and ReAct (Yao et al., 2022)—in-
ject explicit task structure or external tool calls to improve reasoning further. Active Prompt (Diao et al.,
2023), Generate-Knowledge Prompting (Liu et al., 2023), and Consistency Prompting (Wang et al., 2023)
curate clarifying questions, external facts, or multi-path consensus so that the final answer is more consis-
tent and accurate. A parallel line of research explores self-correction: Self-Refine (Madaan et al., 2024) and
Tree-of-Thought (Tot) (Yao et al., 2024; Long, 2023) allow the model to iteratively critique and revise its
own outputs. Reflexion (Shinn et al., 2023) introduces external tools to validate self-generated feedback and
maximise accuracy, but obtaining tools that can assess personalised response alignment at scale remains
challenging. Moreover, Huang et al. (2023) shows that self-generated feedback can actually reduce qual-
ity when no external check is available, making previous methods less effective for personalised response
alignment. However, these methods still fall short on two fronts that are central to personalised response
alignment: (i) they do not tackle fine-grained preference recognition at the instance level, and (ii) they lack
a memorisation mechanism that would let the LLM remember and reuse past preference signals over time.
Our work addresses both gaps.

2.2 User Instance-Response-Dependent Discrepancies Estimation

Several related works Yang et al. (2022); Han et al. (2018); Patrini et al. (2017) leverage instance-independent
transition matrices to achieve consistent classifiers. These transition matrices, which resemble response
instance-independent discrepancies. However, such methods generally rely on a white-box setting, where
model parameters are directly accessible. This accessibility enables the estimation of transition matrices
in probabilistic forms rather than discrete forms. Despite their effectiveness in white-box scenarios, these
approaches have not addressed the accurate estimation of instance-response dependent discrepancies, which
capture finer-grained relationships between model outputs and user preferences. Addressing this gap is
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essential for enabling robust, personalized response alignment in real-world applications, particularly when
working with sourced black-box models such as open and close-sourced large language models (LLMs).

3 Problem Setting

3.1 Preliminaries

Let X denote a user query, expressed as a natural language question. The desired response, provided a
priori by the user, is denoted as Y . Notably, Y is not generated by the large language model (LLM) but is
instead a user-specified reference. A latent variable Z represents the prompt strategy to guide the LLM’s
generation process. While Z is instrumental in aligning the LLM’s response with the user’s expectations, it
alone is insufficient to guarantee perfect alignment. The LLM-generated response, given X and the chosen
Z, is represented as Y ′. Discrepancies between the user desired response Y and the generated response Y ′

are represented and stored using a deterministic transition matrix M(X)Y ′,Y
(See Section 4.1).

3.2 Notation

We define a feature space X ⊆ Rd and a label space Y = {1, . . . , c}, where c is the total number of response
classes. Each instance X ∈ X is associated with a true response Y ∈ Y and a generated response Y ′ ∈ Y.
Here, the user’s preferred response Y is treated as the true response. In many real-world scenarios, full
supervision is unavailable for the entire dataset. Instead, there is usually a small subset of cleanly labelled
samples alongside a larger set of unlabeled data. More specifically, we can define DUser as the distribution
of the cleanly labelled small sample set, denoted as user-preference sample, which contains pairs (X, Y, Y⃗ )
where Y⃗ = Y, representing a candidate label set encompassing all responses. This can be expressed as
{(Xi, Yi, Y⃗ )}s

i=1, with s being the total number of clean samples. We define Dlarge as the distribution for
the large unsupervised dataset, denoted as {Xi, Y⃗ }n

i=s+1, where n is the total number of both labelled and
unlabeled training samples. The Dlarge is considered an unsupervised dataset, meaning neither a ground truth
response nor weak supervision is associated with each instance in the distribution. The learning objective is
to design a prompt strategy that leverages DUser, which constitutes about 5% of the total training samples,
to allow large language models (LLMs) to accurately annotate the large unsupervised dataset Dlarge.

4 Incorporating LLM–User Response Dependent Discrepancies via Marginalisation

Most recent work on prompt engineering focus on designing or searching for effective prompt schemes —e.g.,
chain-of-thought or tool-augmented prompts—to maximise the conditional likelihood p(Y | X) of an LLM
(Wei et al., 2022; Yao et al., 2022). The conventional approach of Hu et al. (2024), which does not account
for personalised response misalignment, is

p(Y | X) =
∑

Z

p(Z, Y | X) =
∑

Z

p(Y | X, Z) p(Z | X), (1)

where p(Y | X) is the likelihood of the sequence generated by the LLM, and Z indexes a family of
prompts (or latent reasoning paths). Equation equation 1 corresponds to the ideal, personalised response
misalignment-free setting in which the model’s response Y ′ is always aligned to the user-preferred response
Y . In practice, however, even an optimal prompt Z∗ may be inadequate for personalisation if the LLM has
not been pre-trained or fine-tuned on user-specific data. Therefore, in its unmodified form, the formulation in
equation 1 is ill-suited to personalised response-alignment tasks because it ignores the response discrepancies
between LLM outputs and user preferences. This paper addresses that gap.

Instance–Response Dependent Discrepancies via Marginalisation Let the latent variable Y ′ de-
note the misaligned response produced by the LLM for input X under prompt Z. By modelling Y ′ explic-
itly, we can learn—and later marginalise—the instance–response dependent discrepancy between Y ′ and the
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user-preferred response Y . We therefore revise the formulation as follows:

p(Y | X) =
∑

Z

∑
Y ′

p(Z, Y, Y ′ | X) =
∑

Z

∑
Y ′

p(Z | X) p(Y | X, Z) p(Y ′ | Y, X, Z) (2)

(i)=
∑

Z

∑
Y ′

p(Z | X) p(Y | X, Z) p(Y ′ | Y, X) (3)

=
∑

Z

p(Z | X) p(Y | X, Z)
∑
Y ′

p(Y ′ | Y, X)︸ ︷︷ ︸
Instance-Response

Dependent Discrepancies

. (4)

Step (i) assumes the conditional-independence Y ′ ⊥⊥ Z | (Y, X). This assumption is reasonable, as
our goal is to recover an unbiased estimate of LLM misalignment, capturing how the LLM responds to a
user query without being undermined by external factors such as the specific prompting strategy. The final
factor p(Y ′ | Y, X) is denoted as instance–response-dependent discrepancies. Our aim is to estimate the
p(Y ′ | Y, X) to maximise the conditional likelihood of LLM in producing personalised responses that align
with user preferences. Our formulation explicitly covers the realistic case in which the LLM’s raw response
Y ′ is misaligned from the user-preferred response Y . When those instance–response-dependent discrepancies
are shown, we estimate the p(Y ′ | Y, X) and utilise it to endow the LLM to align more with the user. In the
hypothetical, perfectly aligned regime where Y ′ = Y for every input, the discrepancy distribution reduces
to an identity matrix p(Y ′ | Y, X) = 1{Y ′=Y }. Under the scenario, our framework naturally reduces to
equation 1. Because our learning objective is discrepancy estimation rather than prompt optimisation, we
assume a suitable prompt Z∗ has already been given. The joint model for the user-preferred response Y and
the LLM’s misaligned response Y ′ then factorises as

p(Y | X) =
∑
Y ′

p(Z∗, Y, Y ′ | X) = p(Z∗ | X)︸ ︷︷ ︸
Optimal prompt

p(Y | X, Z∗)︸ ︷︷ ︸
User-Preferred Response

∑
Y ′

p(Y ′ | Y, X)︸ ︷︷ ︸
Instance-Response

Dependent Discrepancies

. (1)

To obtain the user’s preferred response by searching Z∗ is indeed essential but insufficient. In this paper, our
goal is to estimate the term

∑
Y ′ p(Y ′ | Y, X), which quantifies the discrepancies between LLM outputs and

user preferences for all instances with their corresponding true labels Y by marginalizing over all possible
LLM-generated responses Y ′. Given that p(Y | Z∗, X) and p(Z∗ | X) are either known or given, the task
of maximizing p(Y | X) ultimately depends on accurately estimating

∑
Y ′ p(Y ′ | Y, X). The p(Y | Z∗, X)

and p(Z∗ | X) are assumed obtainable since we assume Z∗ is given. p(Y | Z∗, X) describes how likely
each possible Y is, given the input X and the optimal prompt strategy Z∗. However, this distribution
alone does not guarantee that the LLM will produce the ground truth response in practice. The model’s
generated output Y ′ can still deviate from Y due to inherent uncertainties or imperfections in the LLM.
To address this issue, it is crucial to consider the discrepancy distribution p(Y ′ | Y, X) and incorporate it
into the inference process. By consistently marginalizing over all possible generated responses Y ′, we can
more accurately model the process by which the true label Y relates to the observed LLM output Y ′. This
leads to a more reliable and coherent inference framework that accounts for the discrepancy between the
idealized distribution p(Y | Z∗, X) and the practical reality of the LLM’s response generation. Therefore,
the conditional likelihood p(Y | X) can be maximised if

∑
Y ′ p(Y ′ | Y, X) can be correctly identified.

4.1 Instance-Response-Dependent Discrepancies Between LLMs and User

This subsection bridges theory and implementation: we show how the notion of response misalignment
formalised by

∑
Y ′ p

(
Y ′ | Y, X

)
is realised in practice and subsequently exploited.

Definition of misalignment. For a fixed query X and ground-truth label Y , the probability p(Y ′ | Y, X)
which we denote as the instance–response-dependent discrepancy—quantifies how often the LLM produces
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Figure 2: Estimated Instance-Response-Dependent Discrepancies on ChatGPT 3.5 Turbo for datasets
StackExchange(Topic) CLINC150(Intent), Banking77(Intent), MOTE(Intent), Massive(Scenario).The diag-
onal entries of the matrix indicate the aligned responses from LLMs given each dataset, whereas the other
highlighted entries indicate misaligned responses. The annotation also can be denoted as response.

Figure 3: Semantic Depiction of Instance-Response Dependent Discrepancy Estimation. Clusters indicate
instances with the same responses.

each (possibly mis-aligned) response Y ′. We instantiate the p(Y ′ | Y, X) via a deterministic transition matrix
M(X) ∈ {0, 1}|Y|×|Y| whose entry M(X)k′,k = 1 iff, at least once in the interaction history for query X, the
LLM produced response Y ′ = k′ while the ground-truth label was Y = k. Each column k therefore encodes
the set of previously observed alignments (k′ = k) and misalignments (k′ ̸= k) associated with Y = k given
X. During our experiments we treat M(X) as an personalised memory bank rather than a binary mask.
Formally,

M(X)k′,k
=

{
1, if there exists a user preference sample i such that Yi = k and Y ′

i = k′

0, otherwise.

Ideally, only the diagonal entries of M(X) would be positive, indicating that the LLM’s generated responses
match the true responses (Y = Y ′). All off-diagonal entries would remain zero, indicating perfect response
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alignment. In practice, however, discrepancies arise which represent instances where the LLM’s responses
deviate from the true responses in the user preference samples, resulting in nonzero off-diagonal elements
that capture the discrepancies between true responses and the LLM-generated responses. Each row of the
estimated matrix M(X) encodes the dependency between the LLM’s generated responses Y ′ and the possible
true labels Y . Specifically, M(X) records all past discrepancies observed for instances sharing the same true
label Y . This dependency is utilized to truncate the candidate label set for each sample based on the LLM’s
responses. Formally, M is defined as a K × K deterministic transition matrix (where K is the number of
classes) with elements Mk′,k, where: For example: M(X)1,1 = 1 indicates that the LLM predicted responses 1
given the true responses was 1, meaning that there are no response discrepancies. M(X)4,1 = 1 indicates that
the LLM predicted responses 4 given the true responses was 1, meaning that there are response discrepancies.
For illustration purposes, consider the following example of the deterministic transition matrix M(X):

M(X) =


M1,1| M1,2| M1,3| M1,4|
M2,1| M2,2| M2,3| M2,4|
M3,1| M3,2| M3,3| M3,4|
M4,1| M4,2| M4,3| M4,4|

 =


1| 0| 0| 1|
0| 1| 0| 0|
0| 1| 1| 0|
1| 0| 0| 1|

 . (5)

The highlighted entries denotes previously made misalignments by LLMs recorded for all instances with
respect to each true responses Y . We treat each true responses as a category, thereby aggregating all possible
misalignments of the instances made by LLMs associated with that category. In this deterministic transition
matrix, M(X)k′,k

indicates that the LLM predicted responses k′ when the ground-truth responses was k for
at least one observed sample. Each row of M(X) corresponds to a predicted label Y ′ = k′, and each column
corresponds to a ground-truth label Y = k. The entry M(X)k′,k

= 1 indicates that the LLM has generated
the response Y ′ = k′ when the true label was Y = k. This can be described as follows:

Condition 1: k′ = k (Response Agreement). If k′ = k, the LLM’s prediction aligns with the true label,
indicating no discrepancy:

M(X)k′,k
= 1 (LLM’s prediction matches the true label Y = k).

Condition 2: k′ ̸= k (Response Discrepancies). If k′ ̸= k, the LLM has generated an incorrect response
Y ′ = k′ for instances where the true label is Y = k. This captures a discrepancy:

M(X)k′,k
= 1 (LLM’s prediction Y ′ = k′ does not match the true label Y = k).

By estimating the M(X) from user preference samples DUser, we record all possible past misalignments (Y ′)
made by the LLM for instances with the corresponding true response Y . This matrix provides a structured
representation of the alignment or discrepancies between the LLM’s responses and user-preferred responses.
Given new inputs, the deterministic transition matrix M(X) and the initial responses from the LLM, we can
refine the prediction process as follows: By treating the initial prediction Y ′ as an index, M(X) allows us
to retrieve the set of potential correct responses Y associated with Y ′ during the estimation phase. This
enables the LLM to reconsider its prediction by selecting only from the refined candidate set, effectively
recalling past misalignments. To summarise and connect the theoretical construction with our practical
implementation, we add the following. The M(X)k′,k records every aligned (k′ = k) and mis-aligned (k′ ̸= k)
occurrence, we can obtain an empirical conditional distribution of misalignment and alignment via simple
row normalisation: p

(
Y ′ = k′ | Y = k, X

)
= M̃(X)k′,k := M(X)k′,k∑

j∈Y
M(X)j,k

whenever
∑

j M(X)j,k > 0. In

practice, however, our LLM is a black-box: its parameters, loss function, and internal soft-max layer are
inaccessible. Subsequently, we cannot train the LLM using estimated M̃(X).

4.2 Example: Personalizing LLM Responses to User Preferences

This following example illustrates the complete instance-response-dependent discrepancy-estimation pipeline.
Each user query Xi is initially paired with an candidate set Y⃗i that lists all potential responses. Our aim is to
steer the LLM toward responses that faithfully reflect individual user preferences across the unlabeled corpus
Dlarge. Consistent Marginalisation (CM). CM first estimates instance–response-dependent discrepancies
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between the LLM’s misaligned response Y ′
i and the ground-truth preference Yi. Because full supervision is

impractical, these discrepancies are infers from a small but reliable set of annotated preference samples,
storing them in a transition matrix M(X) . This matrix acts as a lightweight personalised memory bank that
records how—and how often—the model has deviated from user intent. At inference time, M(X) is exploited
to refine the original candidate set Y⃗i, generating a pruned set Y⃗i,Updated that excludes potentially unwanted
responses. The LLM then generates a final response Ȳi,Refined = G(Xi, Y⃗i,Updated), which is statistically more
likely to align with the user’s stated preference.

Instance-Response Dependent Discrepancy Estimation. Let DUser = {(Xi, Yi)}s
i=1 denote a small

set of user preference samples, where s = 4. Each input Xi has a known ground-truth label Yi. From these
samples, we construct a deterministic transition matrix M , which captures mappings between the LLM’s
generated responses Y ′

i and the corresponding ground-truth labels Yi. We also define the unlabeled dataset
as Dlarge = {Xi}N

i=1, with N = s = 4 in this illustrative example. Let X⃗ = {X1, X2, X3, X4} be the set of
input queries, and let Y⃗Query = {Y⃗1, Y⃗2, Y⃗3, Y⃗4} denote the initial candidate sets for each query. Assuming a
known label space of size K, each Y⃗i is initialized to the same universal candidate set Y⃗ ∈ {0, 1}K , where all
entries are initially set to one—i.e., every class is a potential candidate. We define YTrue = {Y1, Y2, Y3, Y4} as
the set of one-hot encoded vectors representing ground-truth responses. Using this setup, the personalised
memory bank M(X) is estimated from DUser and subsequently used to refine the prediction space for the
LLM during inference, producing a final output Ȳi,Refined = G(Xi, Y⃗i,Updated).

Y⃗Query =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 Y ′ =


0 0 0 1
0 1 0 0
0 0 0 1
1 0 0 0

 Y⃗G =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 M(X) =


1 0 0 1
1 1 0 0
1 0 1 1
1 0 0 1




Given LLMs Generated Response Y ′
i on X⃗i

If LLM generated response is 1
If LLM generated response is 2
If LLM generated response is 3
If LLM generated response is 4


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1




In the right-hand-side matrix, the estimated M(X) represents the potential user-preferred response Y⃗iUpdated

for X⃗i corresponding to different LLM-generated responses. Y⃗G denotes the ground truth responses with
respect to X. If the LLM generates response Y ′ = k, then Y⃗iUpdated will be the k-th row of the matrix MY1

(X).
This rule applies to all LLM-generated responses and significantly reduces the candidate set of responses from
[1, 1, 1, 1] to a one-hot vector (e.g., [1, 0, 0, 0] if k = 1). Inference. Our goal is to enable the LLM to recall
and generate the correct response for each query Xi from the corresponding candidate set Y⃗i, transforming
Y⃗Query into Y⃗Refined. Ultimately, after M(X) has been estimated, given a LLM, denoted as G, then takes an
unannotated data point Xi from DLarge and Y⃗iUpdated which is inferred using M(X) as input to produce a
refined responses ȲiRefined = G(Xi, Y⃗iUpdated). The goal is to ensure that ȲiRefined matches the true class label
YiTrue for each Xi.

5 Selection Criterion for User-Preference Samples

In practice, selecting a small subset of samples (hereafter referred to as “user preference samples”) from a large
training set is challenging. High Confidence from Human Annotators: In parallel, we select samples for
which human annotators have high confidence in their preferred responses. Formally, consider an instance X
and a label Y drawn from the label set Y⃗ . A user preference sample must satisfy p(Y | X, Y⃗ ) ≈ 1, indicating
that the human annotator is certain of their responses. This criterion ensures that the user preference
samples are as misalignment-free as possible, minimizing uncertainty and reducing the risk of propagating
incorrect user preferences into the learning process. Since our setting assumes the availability of a small set of
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user-preferred responses, we do not conduct an extensive feasibility study on the selection process. Instead,
we adopt this selection criterion as a working assumption, ensuring that the chosen user preference samples
are reliable (from the human annotator’s perspective). Section 4 shows that instance–response-dependent
discrepancies are essential for aligning LLM response with user preference. We now describe how to estimate∑

Y ′ p(Y ′ | Y, X, Y⃗ ) and specify the assumption of user-preference samples for the estimation under which
alignment can be achieved without per-user fine-tuning. Because the candidate set Y⃗ is deterministic in our
setting, it appears explicitly in the conditional notation to ensure the estimation procedure is clear.
Definition 1 (LLM misaligned Response). Let G denote the LLM. For a query X and candidate set Y⃗ ,

p(Y ′ | X, Y⃗ ) = G(X, Y⃗ ), (6)

where Y ′ may differ from the user-preferred response Y .
Proposition 1. Because every model output Y ′ is paired with (possibly latent) Y , we have

p(Y ′ | X, Y⃗ )︸ ︷︷ ︸
LLM-Generated Response

=
∑

Y

p(Y ′ | Y, X, Y⃗ )︸ ︷︷ ︸
Instance-Response

Dependent Discrepancies

p(Y | X, Y⃗ )︸ ︷︷ ︸
User-Preferred Response

. (7)

Assumption 1 (High-Confidence User Preference Samples). There exists a finite set

DUser = {(Xi, Yi)}s
i=1,

for which Pr(Y = Yi | Xi, Y⃗ ) = 1 for all i.
Corollary 1 (Discrepancy Estimation). Under Assumption 1, pairing each ground-truth Yi with its model
output Y ′

i enables estimation of p(Y ′ | Y, X, Y⃗ ).

Example 1. If Y = 1 is known for X1 with certainty
(
p(Y = 1 | X1, Y⃗ ) = 1

)
, then

p(Y ′ = 2 | X1, Y⃗ )︸ ︷︷ ︸
LLM-Generated Response (1)

=
∑

Y

p(Y ′ = 2 | Y = 1, X1, Y⃗ )︸ ︷︷ ︸
Estimated Instance-Response
Dependent Discrepancies (3)

p(Y = 1 | X1, Y⃗ )︸ ︷︷ ︸
User-Preferred Response (2)

. (8)

With an accurate estimate of
∑

Y ′ p(Y ′ | Y, X), the conditional likelihood p(Y | X) can be maximised
without full per-user fine-tuning.

6 Experiment

6.1 Evaluation Setup

To assess the effectiveness and generalisability of Consistent Marginalization (CM), we conduct exper-
iments on three widely used LLMs—Chatgpt-4o-mini, Chatgpt-3.5, and Llama-8b-Instruct—each
run with two random seeds for robustness. CM is benchmarked against standard prompt and recent
self-correction baselines on five diverse, real-world datasets: StackExchange: a multi-domain QA cor-
pus (e.g., programming) that tests how well an LLM aligns responses in varied, user-specific contexts.
CLINC150: 150 intent categories drawn from realistic dialogue, measuring an LLM’s ability to capture
subtle user preferences in high-variance settings. BANK77: banking-themed user queries that probe align-
ment performance in high-stakes, user-sensitive scenarios. MOTE: a multilingual dataset for evaluating
CM’s cross-lingual adaptability. Massive Scenario: 51 typologically-diverse multilingual natural language
understanding dataset, highlighting CM’s scalability to broad situations and linguistic coverage. For each
LLM, we compare every baseline prompt method with its CM-enhanced counterpart under identical condi-
tions—that is, Baseline Prompt versus CM + Baseline Prompt —and report results averaged over the two
seeds.
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Metric ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5 ChatGPT-3.5
Dataset StackExchange(Topic) CLINC150(Intent) Banking77(Intent) MOTE(Intent) Massive(Scenario)

CotWei et al. (2022) 49.82% ± 0.19% 64.62% ± 1.63% 19.16% ± 0.14% 57.42% ± 0.40% 60.54% ± 0.24%
CM3.5+ Cot 54.72% ± 0.17% 68.09% ± 1.92% 31.90% ± 0.30% 64.91% ± 0.36% 68.11% ± 0.43%

FoTBrown et al. (2020) 46.04% ± 0.01% 61.62% ± 1.16% 36.77% ± 0.44% 55.93% ± 0.23% 58.23% ± 0.45%
CM3.5+ FoT 51.92% ± 0.08% 63.53% ± 1.23% 45.94% ± 0.60% 63.94% ± 1.15% 66.70% ± 0.86%

Zero-Shot 51.96% ± 0.02% 63.18% ± 1.13% 62.55% ± 0.85% 65.84% ± 0.47% 62.22% ± 0.05%
CM3.5+Zero-Shot 56.29% ± 0.04% 67.84% ± 1.70% 66.92% ± 1.10% 74.36% ± 0.73% 67.26% ± 0.12%

Self-ConsistencyWang et al. (2022) 51.75% ± 0.06% 68.90% ± 0.08% 56.61% ± 0.34% 68.26% ± 0.26% 62.49% ± 0.19%
CM3.5+Consistent 53.96% ± 0.08% 69.36% ± 0.19% 57.42% ± 0.44% 75.57% ± 0.77% 64.63% ± 0.12%

Self-RefineMadaan et al. (2024) 48.94% ± 0.68% 71.63% ± 1.24% 53.90% ± 2.94% 71.88% ± 0.59% 63.55% ± 0.02%
CM3.5+Self-Refine 54.09% ± 0.04% 75.29% ± 1.23% 57.87% ± 3.37% 68.05% ± 0.29% 68.27% ± 0.40%

Metric Llama-8B Instruct Llama-8B Instruct Llama-8B Instruct Llama-8B Instruct Llama-8B Instruct
Dataset StackExchange(Topic) CLINC150(Intent) Banking77(Intent) MOTE(Intent) Massive(Scenario)

CotWei et al. (2022) 14.72% ± 0.19% 32.24% ± 0.55% 22.20% ± 0.45% 55.75% ± 0.21% 46.94% ± 0.10%
CMLlama+Cot 23.22% ± 0.02% 33.08% ± 0.24% 24.62% ± 0.19% 56.89% ± 0.16% 50.27% ± 0.24%

FoT Brown et al. (2020) 14.61% ± 1.47% 42.84% ± 1.06% 25.07% ± 0.78% 66.87% ± 0.84% 54.91% ± 1.38%
CMLlama+FoT 26.56% ± 0.20% 43.84% ± 0.25% 29.00% ± 0.35% 65.50% ± 0.93% 56.49% ± 0.95%

Zero-Shot 17.80% ± 0.19% 58.24% ± 0.69% 49.03% ± 0.13% 41.09% ± 1.42% 55.82% ± 0.19%
CMLlama+Zero-Shot 22.66% ± 0.09% 59.78% ± 0.67% 55.19% ± 0.45% 50.91% ± 1.77% 63.95% ± 0.57%

Consistent Wang et al. (2022) 19.32% ± 0.12% 55.36% ± 0.11% 38.31% ± 0.26% 63.43% ± 0.55% 57.53% ± 1.09%
CMLlama+Consistent 24.76% ± 0.07% 55.42% ± 0.31% 43.34% ± 0.35% 65.98% ± 0.32% 59.95% ± 0.62%

Self-Refine Madaan et al. (2024) 18.9% ± 0.14% 60.19% ± 0.98 48.70 ± 0.28% 42.64% ± 1.05% 55.75% ± 0.19%
CMLlama+Self-Refine 23.34% ± 0.48% 61.42% ± 1.23% 55.23% ± 0.32% 51.41% ± 0.93% 63.85% ± 0.52%

Metric ChatGPT-4-o-mini ChatGPT-4-o-mini ChatGPT-4-o-mini ChatGPT-4-o-mini ChatGPT-4-o-mini
Dataset StackExchange(Topic) CLINC150(Intent) Banking77(Intent) MOTE(Intent) Massive(Scenario)
Cot Wei et al. (2022) 44.72% ± 0.19% 74.55% ± 2.73% 59.41% ± 0.50% 69.70% ± 1.07% 63.99% ± 0.69%
CM3.5+Cot 49.54% ± 0.31% 75.76% ± 3.22% 65.32% ± 1.73% 69.25% ± 1.32% 66.40% ± 0.38%
FoT Brown et al. (2020) 42.81% ± 0.40% 73.14% ± 2.33% 55.87% ± 0.10% 66.23% ± 0.81% 67.49% ± 0.12%
CM3.5+FoT 48.09% ± 0.35% 74.60% ± 2.48% 62.74% ± 0.89% 67.60% ± 0.94% 70.03% ± 0.19%
Zero-Shot 49.94% ± 0.36% 83.23% ± 1.11% 66.61% ± 1.82% 73.79% ± 0.61% 72.04% ± 0.07%
CM3.5+Zero-Shot 50.02% ± 0.25% 82.70% ± 1.56% 69.45% ± 2.30% 73.72% ± 0.94% 71.03% ± 0.07%
Consistent Wang et al. (2022) 47.63% ± 0.37% 81.85% ± 0.63% 66.08% ± 1.38% 74.00% ± 0.32% 70.82% ± 0.02%
CM3.5+Consistent 48.19% ± 0.27% 79.86% ± 1.53% 65.86% ± 1.30% 79.82% ± 0.90% 69.81% ± 0.40%
Self-RefineMadaan et al. (2024) 51.72% ± 0.27% 79.34% ± 0.49% 64.81% ± 1.33% 71.93% ± 0.02% 71.35% ± 0.29%
CM3.5+Self-Refine 51.69% ± 0.24% 80.21% ± 1.37% 68.71% ± 2.68% 71.06% ± 0.60% 71.72% ± 0.38%

Table 1: Response–matching accuracy (%±STD) of several prompt methods evaluated on five domain-specific NLP
datasets with three LLM back-bones: ChatGPT-3.5-Turbo, ChatGPT-4-o-mini, and Llama-8B-Instruct. For each
dataset, the best score—obtained by pairing our Consistent Marginalization (CM) module with standard prompt
techniques—is shown in bold. We report Few-Shot, Self-Consistency, Chain-of-Thought(CoT), Self-Refine, and CM
variants. Note: CM3.5 is learned from ChatGPT-3.5-Turbo and then applied to both ChatGPT-3.5-Turbo and
ChatGPT-4-o-mini, whereas CMLlama is learned and used solely on Llama-8B. The weaker gains on Chatgpt-4-o-
mini highlight that an instance–response discrepancy matrix transfers poorly across model families. In contrast, it
delivers substantial improvements when applied to the model on which it was estimated.

6.2 Baselines

Self-Consistency Wang et al. (2023) aims to improve the response accuracy of LLMs by considering con-
sistently generated answers through selecting multiple and diverse paths in a few-shot chain of thought
approach. The problem with this method is its dependence on multiple sources of paths from the same
model; even slight changes in one source’s responses can drastically impact the final responses. In addition,
self-consistency only reflects the proportions of the dataset used for training the LLMS, but not the personal
response preference of the user. The chain of thought method Wei et al. (2022) is a step-by-step illustration
for the given query to the LLMs. Few-Shot Thought Prompting: Brown et al. (2020) uses a few relevant
examples as illustrations in the prompt to aid the model in aligning the response with the user. We have also
included Self-Refine Madaan et al. (2024) to show that relying on model reflection is inadequate to make a
model produce persistent alignment.
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Metric StackExchange CLINC150 Banking77 Mtop Massive
(Topic) (Intent) (Intent) (Intent) (Scenario)

Cot Wei et al. (2022) 14.49% ± 0.19% 32.33% ± 0.38% 22.44% ± 0.10% 55.95% ± 0.23% 47.31% ± 0.03%
CMLlama(1%)+Cot 19.85% ± 0.02% 32.18% ± 0.04% 22.14% ± 0.06% 57.32% ± 0.14% 50.34% ± 0.24%
FoT Brown et al. (2020) 14.73% ± 1.54% 43.02% ± 1.38% 25.45% ± 0.45% 65.50% ± 0.57% 53.30% ± 0.03%
CMLlama(1%) 22.52% ± 0.38% 42.84% ± 0.84% 25.45% ± 0.39% 67.28% ± 0.43% 56.25% ± 0.17%
Zero-Shot 18.46% ± 0.07% 58.04% ± 0.40% 48.70% ± 0.45% 40.08% ± 0.05% 55.41% ± 0.27%
CMLlama(1%)+Zero-Shot 22.47% ± 0.10% 58.22% ± 0.22% 48.38% ± 0.52% 51.12% ± 0.23% 62.14% ± 0.34%
Consistent Wang et al. (2022) 19.42% ± 0.02% 55.53% ± 0.02% 38.05% ± 0.19% 62.75% ± 0.41% 56.96% ± 0.13%
CMLlama(1%)+Consistent 23.75% ± 0.31% 54.40% ± 0.04% 37.92% ± 0.26% 66.19% ± 0.52% 59.92% ± 0.20%
Self-Refine Madaan et al. (2024) 18.94% ± 0.07% 58.47% ± 0.38% 48.38% ± 0.45% 41.36% ± 0.14% 55.35% ± 0.34%
CMLlama(1%)+Self-Refine 22.71% ± 0.05% 58.27% ± 0.22% 48.21% ± 0.55% 51.03% ± 0.05% 62.10% ± 0.30%

Table 2: Response–matching accuracy (%±STD) of several prompt methods evaluated on five domain-specific NLP
datasets with Llama-8B-Instruct. For each method (row), the best score across datasets is shown in bold. Note:
CMLlama(1%) is estimated with 1% of the training sample and used solely on Llama-8B.

Table 3: Comparison between Prompt-Based Methods and Consistent Marginalization (CM) on Personalized
Response Alignment Task

Method Objective Correction Mechanism Personalised
Alignment
Ability

Memory
of Past
Misalign-
ment

External
Tool

Limitations on Personalised Response
Alignment Task

Few-Shot Brown et al.
(2020)

General task performance None ✗ Low ✗ Implicit
via reason-
ing paths

No Cannot adapt to user-specific preferences or
feedback

Chain of Thought
(Wei et al., 2022)

Improve reasoning accuracy Implicit via reasoning path ✗ Low ✗ None No No adaptation to feedback; prone to halluci-
nations

Self-Consistency (Wang
et al., 2023)

Improve response accuracy Majority voting over responses ✗ Low ✗ None No Relies on diverse paths; No user-specific guid-
ance

Self-Refine (Madaan
et al., 2024)

Iterative self-correction
with Feedback

Self-generated revision loop Medium ✗ None Yes Requires Many Iterative rounds of Correction.
Lack of long-term Memory

Consistent
Marginalization
(Ours)

Personalized response
alignment

Explicit memory of instance-
response dependent discrepan-
cies

✓High ✓ Yes No No need for per-user Fine-tune; scalable
and adaptive to personalised user pref-
erences

6.3 Experimental Result

6.3.1 Robust Gains with Just 5 % User-Preference Samples

Consistent Marginalization (CM) is both effective and adaptable. As Table 4 shows, adding CM to every
plain-prompt baseline raises response-matching accuracy across all datasets on Chatgpt-3.5 and Llama-
8b-Instruct, and delivers notable gains on Chatgpt-4o-mini. ChatGPT-3.5-Turbo. CM improves
every prompt strategy on four of the five datasets; the single dip occurs with CM+Self-Refine on MOTE.
The largest boost is +12.74 % on Banking77 with CM+CoT, while the other datasets record balanced
gains of +3–8 %. Llama-8B-Instruct. CM produces the strongest overall gains: 23 of 25 cases improve,
16 by at least 2 %. The highest is +11.95 % on StackExchange with CM+FoT; the single drop is a mild
−1.37 % on MOTE with CM +FoT. ChatGPT-4o-mini. Because the discrepancy matrix was learned on
GPT-3.5-Turbo, gains transfer slightly less, yet CM still adds +6.87 % on Banking 77 with CM+FoT
and remains positive or neutral on most other cells. Overall, with just 5% of user-preference samples, CM
consistently outperforms every plain-prompt baseline, confirming its practical value across prompts, datasets,
and LLM architectures.

6.3.2 Moderate Gains with Just 1% User-Preference Samples

To quantify how many annotated preferences CM needs, we perform an ablation using Llama-8b-Instruct
and two annotation budgets—1% and 5% of the training set—across all five datasets (Table 2). Robust
gains with only 1 %. Even at the 1 % budget, CM lifts nearly every prompt baseline. The largest jump
occurs on StackExchange, where CM raises FoT from 14.73 % to 22.52 % (+7.79 pp) and Consistent
from 19.42 % to 23.75 % (+4.33 pp). These results show that CM is practical in low-data settings. Mod-
erate gains from 1 % → 5 %. Moving to 5 % of user-preference samples yields further, but smaller,
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improvements—evidence of diminishing returns once the discrepancy matrix is well estimated. Overall, CM
scales smoothly with additional data while remaining highly effective in resource-constrained regimes.

Table 4: Response Alignment Accuracy improvement (%) of Consistent Marginalization (CM) over baseline
prompt methods across datasets.

Model + Method StackExchange CLINC150 Banking77 MOTE Massive (Intent)

ChatGPT-3.5
CM3.5 +Cot +4.90% +3.47% +12.74% +7.49% +7.57%
CM3.5 +FoT +5.88% +1.91% +9.17% +8.01% +8.47%
CM3.5 +Zero-Shot +4.33% +4.66% +4.37% +8.52% +5.04%
CM3.5 +Consistent +2.21% +0.46% +0.81% +7.31% +2.14%
CM3.5 +Self-Refine +5.15% +3.66% +3.97% -3.83% +4.72%

Llama 8B Instruct
CMLlama +Cot +8.50% +0.84% +2.42% +1.14% +3.33%
CMLlama +FoT +11.95% +1.00% +3.93% -1.37% +1.58%
CMLlama +Zero-Shot +4.86% +1.54% +6.16% +9.82% +8.13%
CMLlama +Consistent +5.44% +0.06% +5.03% +2.55% +2.42%
CMLlama +Self-Refine +4.44% +1.23% +6.53% +8.77% +8.10%

ChatGPT-4o-mini
CM3.5 +Cot +4.82% +1.21% +5.91% -0.45% +2.41%
CM3.5 +FoT +5.28% +1.46% +6.87% +1.37% +2.54%
CM3.5 +Zero-Shot +0.08% -0.53% +2.84% -0.07% -1.01%
CM3.5 +Consistent +0.56% -1.99% -0.22% +5.82% -1.01%
CM3.5 +Self-Refine -0.03% +0.87% +3.90% -0.87% +0.37%

Additional LLM: ChatGPT-4 Turbo. To test the cross-model consistency of CM, we trans-
fer the instance–response discrepancies estimated on ChatGPT-3.5-Turbo to ChatGPT-4 Turbo.

Method Ratio (%)

Zero-Shot (GPT-3.5) 62.99
CM3.5+Zero-Shot 67.35

Zero-Shot (GPT-4 Turbo) 61.98
CM3.5+Zero-Shot 64.48

Table 5: Cross-LLMs Consistency of CM

As Table 5 shows, this transfer still lifts the Zero-Shot Prompt
baseline by 3.5 % in response alignment ratio, showing that
CM3.5 remains useful even on a stronger backbone. However,
the absolute gain is smaller than on ChatGPT-3.5-Turbo. We
attribute the drop to model architecture and parameter dif-
ference : the larger the gap between the source model (where
the discrepancies were learned) and the target model, the less
precisely those discrepancies characterise the new model’s mis-
alignment. This observation indicates that the effectiveness of
a instance response dependent discrepancy decays as the underlying LLM family shift farther from the one
on which it was estimated.

7 Conclusion

We have introduced Consistent Marginalization(CM), a paradigm that enables large language models to
deliver genuinely personalised responses by explicitly modelling instance-response–dependent discrepancies.
CM’s learning objective stores each misalignment between the model’s draft and the user-preferred answer,
then recalls this memory to “unlearn” past errors and adapt future outputs. With only a small set of anno-
tated preference examples—no per-user fine-tuning—CM detects and corrects these discrepancies, steadily
steering the LLM toward the user’s desired style. Experiments across multiple LLM backbones and five
diverse, large-scale datasets show consistent gains in response alignment, confirming CM’s practicality and
robustness in data-constrained settings.
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8 Appendix

8.1 Table of Notations

Table 6: Summary of Notations Used in the Paper

Symbol Description

X User query or input instance
Y User-preferred (true) response
Y ′ LLM-generated response (possibly misaligned)
Ȳ Refined response generated by LLM using CM’s personalised memory bank
Y⃗ Candidate response set for input X

Y⃗Query Initial candidate response matrix (e.g., all 1’s)
Y⃗Updated Updated candidate response set via CM memory
Y⃗Refined Final refined candidate set passed to LLM
YG One-hot ground-truth labels for user-preference samples
Z Prompting strategy (latent variable)
Z∗ Optimal or fixed prompt (assumed given)
p(Y | X, Z) Probability of generating Y under prompt Z
p(Y ′ | Y, X) Instance–response dependent discrepancy distribution
M(X) Deterministic discrepancy (transition) matrix
DUser User-preference dataset (annotated samples)
DLarge Large unlabeled dataset
s Number of annotated (user-preference) samples
n Total number of training samples
c, K Number of possible response classes
G The LLM model used to generate responses

8.2 Comprehensive comparison table showing the performance differences between 1% and 5%
user-preference samples across all methods and datasets

Dataset Method 1% Acc 5% Acc Improvements

StackExchange

Cot 14.49 14.72 +0.23
CM+Cot 19.85 23.22 +3.37
FoT 14.73 14.61 -0.12
CM+FoT 22.52 26.56 +4.04
Consistent 19.42 19.32 -0.10
CM+Consistent 23.75 24.76 +1.01

CLINC150

Cot 32.33 32.24 -0.09
CM+Cot 32.18 33.08 +0.90
Zero-Shot 58.04 58.24 +0.20
CM+Zero-Shot 58.22 59.78 +1.56
Self-Refine 58.47 60.19 +1.72
CM+Self-Refine 58.27 61.42 +3.15

Banking77

Cot 22.44 22.20 -0.24
CM+Cot 22.14 24.62 +2.48
FoT 25.45 25.07 -0.38
CM+FoT 25.45 29.00 +3.55
Zero-Shot 48.70 49.03 +0.33
CM+Zero-Shot 48.38 55.19 +6.81
CM+Self-Refine 48.21 55.23 +7.02

Mtop

Cot 55.95 55.75 -0.20
CM+Cot 57.32 56.89 -0.43
FoT 65.50 66.87 +1.37
CM+FoT 67.28 65.50 -1.78
Consistent 62.75 63.43 +0.68
CM+Consistent 66.19 65.98 -0.21

Massive

Cot 47.31 46.94 -0.37
CM+Cot 50.34 50.27 -0.07
FoT 53.30 54.91 +1.61
CM+FoT 56.25 56.49 +0.24
Zero-Shot 55.41 55.82 +0.41
CM+Zero-Shot 62.14 63.95 +1.81
CM+Self-Refine 62.10 63.85 +1.75

Table 7: Accuracy comparison between 1% and 5% user-preference samples. Bold indicates improvements
>1%.
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