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Summary
In the traditional view of reinforcement learning, the agent’s goal is to find an optimal pol-

icy that maximizes its expected sum of rewards. Once the agent finds this policy, the learning
ends. This view contrasts with continual reinforcement learning, where learning does not end,
and agents are expected to continually learn and adapt indefinitely. Despite the clear distinc-
tion between these two paradigms of learning, much of the progress in continual reinforce-
ment learning has been shaped by foundations rooted in the traditional view of reinforcement
learning. In this paper, we first examine whether the foundations of traditional reinforcement
learning are suitable for the continual reinforcement learning paradigm. We identify four key
pillars of the traditional reinforcement learning foundations that are antithetical to the goals of
continual learning: the Markov decision process formalism, the focus on atemporal artifacts,
the expected sum of rewards as an evaluation metric, and episodic benchmark environments
that embrace the other three foundations. We then propose a new formalism that sheds the first
and the third foundations and replaces them with the history process as a mathematical formal-
ism and a new definition of deviation regret, adapted for continual learning, as an evaluation
metric. Finally, we discuss possible approaches to shed the other two foundations.

Contribution(s)
1. We identify four foundational principles and practices that shape and constrain our thinking

about RL. We argue that these foundations, shaped by the traditional framing of RL, are
antithetical to the purported goals of continual reinforcement learning and may be holding
us back from making progress toward continual learning.
Context: Previous work by Abel et al. (2024b) has discussed three dogmas that shape most
reinforcement learning research. The second dogma overlaps with the second foundation
that we argue against as part of the foundations of traditional reinforcement learning. We
also base most of our arguments in alignment with the big world hypothesis that Javed &
Sutton (2024) originally presented.

2. We present a new formalism that replaces two of the foundations with the history process
as a mathematical formalism and deviation regret as an evaluation metric.
Context: The history process foundation is built on earlier work by Bowling et al. (2023),
and the deviation regret is an extension to earlier work by Morrill et al. (2021b) to the
continual learning setting.

3. We present experimental results suggesting that the current RL algorithms fail to learn con-
tinually and that our proposed measure of evaluation can evaluate those failures.
Context: Platanios et al. (2023) showed similar results for agents failing to learn continu-
ally, which aligns with our experimental findings.
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Abstract

In the traditional view of reinforcement learning, the agent’s goal is to find an optimal1
policy that maximizes its expected sum of rewards. Once the agent finds this policy,2
the learning ends. This view contrasts with continual reinforcement learning, where3
learning does not end, and agents are expected to continually learn and adapt indef-4
initely. Despite the clear distinction between these two paradigms of learning, much5
of the progress in continual reinforcement learning has been shaped by foundations6
rooted in the traditional view of reinforcement learning. In this paper, we first exam-7
ine whether the foundations of traditional reinforcement learning are suitable for the8
continual reinforcement learning paradigm. We identify four key pillars of the tradi-9
tional reinforcement learning foundations that are antithetical to the goals of continual10
learning: the Markov decision process formalism, the focus on atemporal artifacts, the11
expected sum of rewards as an evaluation metric, and episodic benchmark environ-12
ments that embrace the other three foundations. We then propose a new formalism that13
sheds the first and the third foundations and replaces them with the history process as a14
mathematical formalism and a new definition of deviation regret, adapted for continual15
learning, as an evaluation metric. Finally, we discuss possible approaches to shed the16
other two foundations.17

1 Introduction18

“Consider a Markov decision process defined by the tuple ...” starts many background sections of19
reinforcement learning (RL) papers. The Markov Decision Process (MDP) formalism, among other20
foundational concepts, has long shaped how we think about agents, algorithms, and evaluation in21
RL. However, these foundational concepts stemmed from a classical framing of the RL problem: an22
agent’s goal is to find an optimal policy that maximizes its expected sum of rewards. Once this policy23
is found, the learning ends – the agent no longer needs to adapt because the policy is, by definition,24
optimal. That traditional view influenced many of the foundations and standard practices in the field.25
For example, a direct consequence of the view that learning ends with finding an optimal solution26
is to have a separate training phase with the goal of finding that optimal solution and then have27
a deployment phase where no more learning is happening. Another consequence is the emphasis28
on the artifacts that the training process produces and overlooking the behavior of the agent during29
learning.30

There are many decision-making problems where the traditional framing of RL is a shortcoming.31
For example, agents acting in a world that is much bigger and more complex than themselves, such32
that they cannot perceive or represent its true underlying state, will neither be able to represent the33
value of the states they find themselves in nor find an optimal policy (Javed & Sutton, 2024). Such34
agents can only rely on approximate solutions that continually adapt to perceived changes in their35
environment and improve as they accumulate more knowledge by interacting with the world. In36
these types of decision-making problems, learning is no longer about finding an optimal solution37
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but about continual and never-ending adaption. This class of decision-making problems, where38
continual adaption is necessary, is called continual reinforcement learning (Abel et al., 2024a).39

While the traditional and the continual learning views of RL share some similarities — they both40
tackle the problem of learning by interacting with the world — they have a crucial difference: fram-41
ing learning as a means to find optimal artifacts versus learning as an indefinite process of adaption.42
Given this core difference, it is essential to reflect on whether the foundations that has stemmed from43
the traditional view still hold and are helpful when addressing the continual learning problem. Or44
could these traditional foundations hold us back from thinking most usefully about the problem?45

In the first part of this paper, we identify four traditional foundational principles and practices that46
shape and constrain our thinking about RL. We argue that these foundations, shaped by the tradi-47
tional framing of RL, are antithetical to the purported goals of continual reinforcement learning and48
may be holding us back from making progress toward continual learning. Moreover, these founda-49
tions are self-reinforcing: each depends upon and holds up the others, such that when attempting to50
replace one, the others constrain you to keep it.51

In the second part of the paper, we propose a new formalism that sheds two of these foundations,52
and we discuss possible alternatives for replacing the remaining two foundations.53

2 Four Foundations of Traditional RL54

Most reinforcement learning research, along with recent progress in continual reinforcement learn-55
ing, make the following assumptions, implicity or explicitly:56

1. Formalism: The appropriate mathematical formalism is the Markov decision process.57

2. Objective: The goal of RL algorithms is to produce atemporal artifacts (such as an optimal58
policy or value function).59

3. Evaluation: The ideal measure of evaluation is the expected sum of rewards.60

4. Benchmarking: Most benchmarks for comparing RL algorithms are episodic environments.61

These assumptions are the pillars of the traditional RL foundations and remain pervasive within62
modern RL research. Celebrated results such as DQN reaching human-level performance in Atari63
(Mnih et al., 2015), AlphaGo (Silver et al., 2016), GT-Sophy (Wurman et al., 2022), balloons in the64
stratosphere (Bellemare et al., 2020), and DeepStack beating professional poker players (Moravčík65
et al., 2017) all embody these foundations. They undergo a separate training phase in episodic envi-66
ronments respecting common MDP assumptions such as ergodicity and communicating dynamics.67
This training process generates atemporal artifacts (policy or value functions) that are considered op-68
timal or near-optimal. These artifacts are then evaluated according to their expected sum of rewards69
in an evaluation phase where no more learning occurs.70

While these foundations were behind most of the advancement of traditional RL research, do they71
give us an appropriate structure to pursue continual reinforcement learning? Continual reinforce-72
ment learning does not have a consensus definition (Ring, 1994; Abel et al., 2024a). However,73
its very name implies that learning should continue. We now discuss that this conclusion alone is74
enough to create cracks in those four foundations, and we will briefly summarize the alternatives75
that could replace those traditional foundations.76

Foundation One: MDPs as a Mathematical Formalism. This foundation is concerned with the77
assumptions on the environment that typically accompany the MDP formalism. We often make78
ergodicity assumptions, such as the MDP being unichain or communicating, which imply some79
characteristics of the environment. For example, we may implicitly assume every state is reachable80
from every other state or that the state distribution converges to some stationary distribution. Fur-81
thermore, we usually presume some properties of the MDP, such as finite state and action spaces82
or compact spaces with continuity assumptions. There are some problems where these assumptions83
hold and the MDP formalism works well. In grid-world environments, for instance, an agent can84
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revisit any state as often as needed. In Go, repeatedly playing the game in episodes guarantees a85
form of ergodicity since it allows the agent to repeatedly visit previous game states by replaying the86
same sequence of moves. However, an important observation is that these are also examples where87
continual learning is unnecessary.88

In contrast, the need for continual learning arises in settings with unpredictable non-stationarity in89
the environment (Khetarpal et al., 2022) or those that align with the big world hypothesis (Javed90
& Sutton, 2024). The big world hypothesis suggests that even if the real world is stationary, its91
complexity is much richer than the representational capacity of any agent in it. Hence, the world92
will appear unpredictably non-stationary. When acting in a much more complex world or when there93
are constraints on the computational resources of the agent, continual learning is needed (Kumar94
et al., 2023; Dong et al., 2022), even if the underlying world is stationary (Sutton et al., 2007). In95
these settings, the predictable stationarity of MDPs is invalid. Moreover, real-world settings do not96
allow one to reset the world into repeatable episodes or revisit states previously visited. You, the97
reader, can never revisit the state before you read these words. This inability to revisit states renders98
ergodicity assumptions unrealistic for real-world settings.99

The Alternative: History Processes as a Mathematical Formalism. Beyond the agent-environment100
interface, this formalism has few assumptions about the process since the big world hypothesis does101
not allow the agent to assume a priori structure or regularity about the environment. We expand on102
this foundation formally in Section 3.103

Foundation Two: Focus on Atemporal Artifacts. Artifacts refer to any atemporal representation104
of an agent’s learned knowledge, such as policies, value functions, options, or features. We often105
give considerable concern to the notion of optimal value functions and optimal policies. The as-106
sumption that learning should produce those fixed representations leads us to think of algorithms107
having a “training” period wherein they aim to converge to optimal artifacts and follow that with a108
“testing” phase to evaluate the generated artifacts. These artifacts exist for some problems, such as109
the grid world and chess examples, but they do not exist for problems that require continual learning.110

Environments of interest to continual learning rarely admit fixed optimal artifacts. The assumption111
that an agent can converge to an optimal policy or a value function contradicts the very need for112
continual adaption since such an atemporal artifact would be the end of learning rather than requiring113
its continuation. For example, consider an agent with computational constraints that cannot fully114
represent the values of all possible states in its environment. For that agent, even if a fixed optimal115
value function theoretically exists, it cannot represent it, compute it, or store it. Instead, such an116
agent must rely on an approximation of this value function that evolves over time, deciding which117
information to retain and which to discard. In this context, the most useful value representation is118
continually adapting and time-dependent, not atemporal. As a result, a focus on fixed atemporal119
artifacts should be replaced with a focus on the continual adaption of the agent’s behavior. This120
foundation is also notably critiqued as Dogma Two by Abel et al. (2024b).121

The Alternative: Focus on Behaviour. The goal of RL algorithms is to produce behavior in response122
to experience. In the continual learning setting, there is no difference between training and testing.123
All the past experience is training, and all future experience is testing. The focal point is how an124
agent behaves in response to its experience.125

Foundation Three: Expected Sum of Rewards as an Evaluation Measure. In episodic envi-126
ronments, this is the episodic return, and we desire that during training, we see the episodic return127
approach the return of the optimal policy. Episodes allow drawing i.i.d. samples of this return for128
any stationary policy, which is how evaluation is usually performed during the testing phase. Hence,129
maximizing the episodic return during training often leads to better performance during the testing130
phase.131

A salient feature of real-world settings that require continual learning is the inability to reset the132
world or revisit previous states, i.e., the MDP may not be communicating, as discussed in Foundation133
One. A ramification of this feature is that it is not even possible to estimate an expected sum of134
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rewards as it would require the environment to be repeatedly reset to something akin to an initial135
state so that the agent can reliably try different actions in the same states to achieve the optimal136
performance criteria. One might think the average reward criterion in a continuing environment is a137
solution to this criticism. However, without the communicating assumption, a high average reward138
may be more a property of how fortunate the agent is to end up in a particular communicating139
class of states with a high average reward. For continual learning settings, we need a measure of140
evaluation that does not depend on having such a repeatability assumption.141

The Alternative: Deviation Regret as an Evaluation Measure. We propose deviation regret as an142
evaluation measure for continual learning agents. Deviation regret was proposed as the evalu-143
ation measure for defining hindsight rationality, originally introduced in the context of strategic144
games (Morrill et al., 2021b). We further develop this concept for continual reinforcement learn-145
ing. The essence is that agents should be evaluated on the “situations” they find themselves in, not146
against some optimal, unrealizable sequence of actions. We formulate deviation regret for continual147
learning in Section 4.148

Foundation Four: Episodic Benchmarks. Common environments, such as classic control tasks149
and the Arcade Learning Environment (ALE, Bellemare et al. (2013)), are episodic and, therefore,150
are communicating MDPs. Other naturally continuing environments, such as Mujoco (Todorov151
et al., 2012) and Minecraft, are often truncated during training, converting them into episodic tasks.152
A few examples of continuing, never-ending environments, such as Jelly Bean World (Platanios153
et al., 2023) exist but have not been widely adopted.154

Most of these traditional benchmarks are problematic when considering the goal of continual learn-155
ing. They reinforce the idea that environments can always be thought of as ergodic and episodic and156
exhibit an optimal policy, which is the assumed goal of traditional RL training.157

The Alternative: Benchmark Environments Without a Clear Markov State or Episode Reset. We158
will not expand on this much beyond recognizing that it as an issue. In summary, we should not159
expect to see continual learning algorithms differentiate themselves in environments where continual160
learning is unnecessary. Additionally, more work is needed to design environments where continual161
learning is needed. To make progress, we should have benchmarks that align with the big world162
hypothesis. Ideally, we should test our agents in the complex, big, real world, but this is impractical163
for algorithmic development and scientific repeatability. An alternative is to constrain our agents’164
representational capacity and use more modest-sized environments such that the constraints simulate165
the big world hypothesis and allow for the development of agents that can cope in such continual166
learning settings.167

Final Remarks on the Traditional Foundations. The four foundations we discussed are self-168
reinforcing. Just presuming the goal of artifacts immediately suggests the MDP formalism to sup-169
port the existence of an optimal policy and necessary assumptions to ensure it can be learned, with170
benchmark environments that fit these assumptions. Similarly, our common benchmark environ-171
ments have a clear notion of optimal policy, making the focus be on algorithms that produce such an172
artifact. It is no simple task to tear down any one of these foundations when the others demand its173
reinstatement. Hence, our proposed alternatives seek to replace all four of these foundations.174

3 History Processes as a Mathematical Formalism175

For the new formalism to support the goals of continual RL, we need to place as few constraints176
on the environment as possible. Ideally, constraints would be limited to the interface between the177
environment and the agent (e.g., actions, observations, rewards) but not on the properties of the envi-178
ronment or its dynamics (e.g., Markovianity, ergodicity). One might consider this as an impossible179
approach as there needs to be some structure or repeatability in the environment to make learning180
possible. We will resolve this by making post hoc statements as is common with bandit algorithms,181
e.g., this agent performs nearly as well as the single best arm in hindsight. Such statements can182

4



Rethinking the Foundations for Continual Reinforcement Learning

be made for stationary bandits (with assumptions on the environment) and for adversarial bandits183
(where limited assumptions are made).184

We base the environment definition on the formalism introduced by Bowling et al. (2023), which185
had a similar aim to approach environments and goals as generally as possible. We deviate slightly186
from this formalism by assuming that the agent acts first, as in the work by Abel et al. (2024a).187
Formally, we assume a finite action space, A, and a finite observation space O. We can then define188
the space of finite-length histories as H ≡

⋃∞
n=0(A×O)n, which is the set of all possible sequences189

of observation-action pairs that can result from the agent-environment interaction. We then define190
the environment as follows:191

Definition 1. An environment e is a function from finite-length histories and actions to a distribution192
over observations, e : H×A → ∆(O).193

Finally, we assume that the agent’s goal is a preference relation over histories that satisfies the194
reward hypothesis axioms (Bowling et al., 2023), including temporal γ-indifference. Hence, it can195
be represented as a reward function mapping from actions and observations to a real-valued number:196
R : A×O → R, where the agent’s goal is to maximize the expected γ-discounted sum of rewards197
R(at, ot), summed over the transitions in its history. Since the domain of this function is the finite198
set of actions and observations, the range of this reward function is bounded.199

We continue to follow Bowling et al. (2023) and define an agent as follows:200

Definition 2. An agent λ is a function from finite-length histories to a distribution over actions,201
λ : H → ∆(A).202

We will focus on agents that can be decomposed into a representation of state and a system that203
learns to select policies over this representation. Formally, let S be a finite set, which we will call204
states, and let S : H → S be some fixed partition of the histories such that S(h) ∈ S is the agent’s205
representation of the state for history h. Using this state representation, we can specify a notion of a206
policy, π : S → ∆(A), as a mapping from a state to a distribution over actions, with Π being some207
fixed set of such mappings. Finally, we define an agent’s learning rule as follows:208

Definition 3. The agent’s learning rule σ is a function from finite-length histories to a distribution209
over policies, σ : H → ∆(Π).210

To illustrate how these definitions interact, consider the history at time t, ht ≡ ⟨a1, o1, . . . , at, ot⟩.211
Given that history, the agent takes an action at+1 ∼ πt (S(ht)) where πt = σ(ht). The environment212
then generates an observation ot+1 ∼ e(ht, at) creating the new history ht+1.213

Remarks. The use of state here should not be confused with the requirements on the state as used214
in an MDP, such as Markovianity. It is not intended to restrict the dynamics of the environment, it is215
the agent’s own representation of the history. One may require S to be defined in the form of a state216
update function, u : S ×A×O → S, that defines how states evolve in a recurrent fashion with each217
each transition from a starting state s0 as in Morrill et al. (2022).218

This kind of decomposition of the agent into a fixed state representation and an adapting policy is219
explicitly seen in Morrill et al. (2022) and Dong et al. (2022), and implicitly in Abel et al. (2024a).220
In the latter, they introduce the notion of an agent basis: Λb ⊂ Λ, and a learning rule that maps221
histories to an element of the agent basis. We are essentially choosing Π as our agent basis Λb, and222
we allow the learning rule σ to map to a distribution over the agent basis, i.e., over the policy set Π.223
As with Abel et al. (2024a), we will examine the agent’s learning through its learning rule σ that is224
adapting the choice of policy πt from its experience, ht.225

4 Deviation Regret as an Evaluation Measure226

Given the history process formalism, we now turn our attention to a measure of evaluation.227
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4.1 Agents as Creators of Worlds228

Given an environment e and a finite-length history h, we can construct a new environment,229
eh(h

′, a) ≡ e(h · h′, a), which defines the set of distributions over observations that arise from230
actions taken after history h. This matches our mathematical formalism for an environment. Thus,231
as an agent acts in its environment instantiating a sequence of histories h1, h2, . . . , hn, it can be seen232
as also instantiating a sequence of worlds, each world is itself an environment, eh1

, eh2
, . . . , ehn

. An233
effective learning agent should be well-adapted to the worlds that it finds itself in. We will at-234
tempt to instantiate this notion using deviation regret, extending the notion of hindsight rationality235
from Morrill et al. (2021b) to continual learning.236

We now define a deviation ϕ as a function that systematically applies modifications to the agent’s237
policy. Formally, a deviation is defined as ϕ : Π → Π, where Π is the set of all possible policies.238
For example, a deviation might change the action taken at a singular state, or if the agent’s policy239
is a parametrized function, it might apply a systematic perturbation to the parameters of the policy,240
generating a new deviation policy. As we discussed in section 3, the agent’s learning rule σ generates241
the agent’s policy at each time step given the history up to that time step, i.e., πt = σ(ht). To242
study an agent under a deviation, we apply the deviation ϕ to the agent’s policy in each timestep,243
producing the deviation policy ϕ(πt). Hence, we can further define a function that composes the244
agent’s learning rule with the deviation function: ϕ(σ) : H → ∆(Π).245

Deviation regret focuses on the notion of a systematic deviation. For any particular deviation, we246
care about the agent’s regret for not applying the deviation, and we sum this regret over opportu-247
nities to apply this deviation. In our case, the sequence of opportunities is the sequence of worlds248
instantiated by the agent’s own interaction with the environment. This gives us a deviation regret for249
deviation ϕ in environment e by agent λ,250

ρT (ϕ, λ, e)︸ ︷︷ ︸
deviation regret

=
1

T

T∑
t=1

(
E

[
t+H−1∑

i=t

γ(i−t)Ri

∣∣∣∣ϕ(σ), Ht−1

]
︸ ︷︷ ︸

deviation return

−E

[
t+H−1∑

i=t

γ(i−t)Ri

∣∣∣∣σ,Ht−1

]
︸ ︷︷ ︸

agent return

)
(1)

where H is an evaluation horizon chosen so γH is sufficiently small, and Ht is the history (and251
corresponding world) experienced by the agent in timestep t. An important note is that we discount252
rewards at time i with (i− t), since this new world starts at time t, with all previously accumulated253
rewards r1, . . . , rt−1 shared by both the deviation return and the agent return (so they cancel in the254
difference). The purpose of discounting in this way is to treat each world equally rather than treating255
later worlds as discounted by the time since the beginning of the interaction.256

As is common with regret notions, we are interested in whether ρT (ϕ, λ, e) → 0, i.e., the deviation257
regret is approaching zero almost surely or in expectation for any environment. And if this holds258
for all deviations ϕ ∈ Φ, we say that the agent is minimizes deviation regret with respect to the259
set of deviations Φ. What do we choose for the set Φ? This question has interesting answers in260
the repeated extensive-form game setting (Morrill et al., 2021b;a), but as one concrete example,261
we might consider Φ to be the class of external deviations. An external deviation is a constant262
function, i.e., ϕπ(·) ≡ π. So we can consider Φext = {ϕπ}π∈Π. In this case, deviation regret is263
comparing the agent’s expected return to the expected return of a fixed policy averaged over the264
worlds experienced by the agent. With no additional assumptions on the environment, this would265
necessitate an agent that continually learns. Furthermore, as an evaluation measure, deviation regret266
focuses on the agent’s behavior in response to its experience, shifting the focus away from artifacts.267

4.2 Deviation-Regret Estimation268

We now show that an agent can estimate the deviation regret given its stream of experience. The269
definition of deviation regret in Eq. 1 consists of two components: the agent return and the devi-270
ation return. The rewards along the trajectory of the agent directly estimate the agent return. The271
deviation return may seem unknowable as it requires a counterfactual estimate of the return under272
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an alternative sequence of policies. However, just as with adversarial bandits, we can estimate the273
counterfactual return of having applied a deviation as long as the agent’s support for policies is al-274
ways closed under the deviation function, so that one can compute an importance sampling ratio275
Pr(ai|ϕ(πi))
Pr(ai|πi)

and construct an unbiased estimator of the deviation return with bounded variance. This276
can be achieved by a sufficiently random learning rule.277

A precise algorithm for the deviation regret estimate is given in Algorithm 1. While the presented278
algorithm uses ordinary importance sampling, practical implementations may use other importance279
sampling variants or variance reduction methods.280

Algorithm 1: Estimating the Deviation Regret ρ̂T (ϕ, λ, e)

Input: Deviation ϕ, agent λ, horizon H , trajectory {(ht−1, at, rt)}Tt=1

Output: Estimated deviation regret ρ̂T (ϕ, λ, e)
Initialize ĜT ← 0, Ĝ′

T ← 0
for t = 1 to T do

Compute Gt ←
∑min(T,t+H−1)

i=t γi−tri

Compute importance weight Wt ←
∏min(T,t+H−1)

i=t

ϕ(πi)(ai|hi−1)

πi(ai|hi−1)

Update ĜT ← ĜT +Gt, Ĝ′
T ← Ĝ′

T +WtGt

Compute ρ̂T (ϕ, λ, e)← 1
T
(ĜT − Ĝ′

T )
return ρ̂T (ϕ, λ, e)

Our main theorem states that if the agent is sufficiently random, the deviation regret estimator given281
is consistent, as the agent’s experience grows, the agent’s estimate of the deviation regret gets arbi-282
trarily close to the true deviation regret, with probability approaching 1.283

Theorem 1 (Estimating the H-step Deviation Regret). The estimator we defined above, ρ̂T (ϕ, λ, e),284
is a consistent estimator of deviation regret ρT (ϕ, λ, e) for all environments e, deviations ϕ, γ ∈285
[0, 1], and agents λ that take every action with probability at least c > 0 in every timestep. More286
precisely, for all ε > 0,287

lim
T→∞

P
(
|ρT (ϕ, λ, e)− ρ̂T (ϕ, λ, e)| ≤ ε

)
= 1, (2)

where the probability is taken over the random behaviour of the agent acting in the environment.288

Theorem 2. There is a consistent estimator for the case where γ < 1 and H = ∞.289

For the proofs, see the Appendix. While the statements here are asymptotic, the appendix contains290
a finite sample bound for the H-step deviation return estimator.291

4.3 Illustrative Experiments292

In this section, we present an illustrative experiment demonstrating that deviation regret is a suitable293
evaluation measure for continual learning agents. We show that widely used reinforcement learning294
algorithms, developed around the traditional foundations, often fail in continual learning settings.295
We then show that when these failures occur, the agent experiences positive deviation regret —296
meaning there exists a deviation policy, representable by the agent, that would have avoided the297
failure.298

Current algorithms fail to continually learn. To study agents’ behaviors when there is no repeata-299
bility or resets in the environment, we modified the Swimmer environment from Mujoco (Todorov300
et al., 2012) and turned it into a continuing task. We then trained a PPO (Schulman et al., 2017)301
agent in this Continuing Swimmer environment for 50 million steps and repeated the experiment us-302
ing 10 different seeds. Figure 1 shows the results of this experiment. Across all seeds, agents started303
learning for some time, and then they all failed. While some seeds managed to learn for longer than304
others, after 20 million steps of interaction with the environment, all agents had already failed.305
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Figure 1: PPO agents failing to continually learn. The lines represent individual runs.

There exists a deviation policy when agents fail to learn. We constructed a deviation set Φ306
from different checkpoints of the neural network weights, each defining a different policy. These307
checkpoints contain the network parameters at different points during learning. We then estimated308
the deviation regret of the agents had they used any of these deviation policies. Finally, we selected309
the best deviation policy for each agent and sampled estimates for its return starting from various310
history points. Figure 2 shows the results of this experiment. We plotted the discounted H-step311
return for the agents and we plotted samples for the deviation return starting from various history312
points. When the deviation return sample is higher than the agent’s return, then there is a positive313
deviation regret. We can see that when agents fail, the return from the deviation policy is almost314
always higher than the agent’s return, meaning that if the agent had used this deviation policy, it315
wouldn’t have failed.
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Figure 2: Deviation regret for agents that fail to continually learn.
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5 Discussion317

We now consider a number of objections that can be raised against this notion of deviation regret318
and the history process formalism.319

Deviations give an alternative and unknowable sequence of worlds. A potential challenge is320
that systematically applying a deviation would change the distribution of worlds encountered by the321
agent, which is an unknowable counterfactual. A critical distinction in the choice of deviation regret322
is that we are not doing policy regret (Arora et al., 2012), where the environment within which323
the deviation’s return is evaluated is affected by the applied deviation. However, we also are not324
making any “oblivious adversary” assumption that the distribution of worlds is not impacted by the325
agent’s actions, i.e., we have an adaptive adversary. Typically, this setting is met with responses326
such as external regret does not admit any natural interpretation when the adversary is adaptive327
(Arora et al., 2018). The interpretation though is clear, it reflects how much the agent would prefer328
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to have applied the deviation to its policy under the sequence of worlds it actually found itself in;329
whether that is a natural interpretation seems at least debatable. Note that a similar choice is made330
in off-policy reinforcement learning, where the excursion setting considers the target policy’s effect331
on future states and rewards from the distribution of states visited by the behavior policy rather332
than correcting the distribution to fit the target policy’s distribution if it were to be followed (Sutton333
et al., 2016). Furthermore, there are settings where vanishing external regret implies vanishing334
policy regret (Arora et al., 2018), which are exactly recovered in games where this notion was first335
explored. Most importantly, though, this approach does not need the unknowable counterfactual.336

This distinction between policy regret and deviation regret can be observed with an environment that337
is constructed as a two-state MDP. The actions are STAY or SWITCH, which deterministically cause338
their respective transition. The reward for SWITCH is always −10 while the reward for STAY is +1339
in state 1, and +2 in state 2 (the initial state), and γ = 1

2 . Policy regret would compare any agent340
to the policy that always chooses STAY never leaving the initial state and its discounted return is 4.341
However, an agent that followed this policy does not guarantee no policy regret (or deviation regret342
for many deviations), as the adversary could just as easily set the reward for SWITCH and STAY in343
state 1 high enough for it to suffer linear regret. Now consider an agent that avoids this outcome via344
doing some degree of exploration. At some point it will end up in state 1, and once in state 1 the345
best policy to maximize future discounted return is to STAY forever for a return of +2. Policy regret346
would consider this a poor outcome. However, does it really make sense to look back in time and347
compare the agent’s future behavior from state 1 to what would have been possible if it had never348
ever taken the SWITCH action to leave state 2? Once in state 1, the comparison should be to what can349
be done to maximize discounted return in the world it finds itself in. That is the heart of deviation350
regret. Finally, note that γ (or the evaluation horizon H) is playing a significant role in the notion351
of deviation regret.1 If γ was large enough, the optimal policy would, in fact be to SWITCH back to352
state 2 and STAY forever. And in such a case, policy regret and deviation regret would coincide.353

Deviation regret does not order agents. A desirable property of an evaluation criteria is that you354
can use it to order agents. We might desire to say that if maxϕ∈Φ ρ(ϕ, λ, e) < maxϕ∈Φ ρ(ϕ, λ′, e),355
then λ is preferred to λ′ in environment e. However, this doesn’t mean what it appears to mean.356
Agent λ likely observes a different sequence of histories, and so a different distribution of worlds,357
compared to λ′, and as a result, it is not at all clear what it would mean to compare the devia-358
tion regret over those worlds. Notice that the above notion of policy regret allows for this kind of359
comparison since the comparator in the regret term does not depend on the agent at all. This is a360
fair objection. It does not seem possible to construct an intuitive total ordering using these criteria361
(however, note that it does seem possible to make an intuitive partial ordering). Deviation regret is362
best used to judge if an agent is adapting effectively and to do so without making assumptions on363
the environment (e.g., assuming the environment is a finite ergodic MDP, where effective adaptation364
would necessarily converge to the MDP’s optimal policy). Empirical leaderboards and benchmarks365
may still need to resort to expected discounted return on an environment. However, that approach366
has its own weaknesses, particularly if we do not require ergodicity assumptions.367

We can observe these different weaknesses in a simple environment where an agent must choose368
between LEFT or RIGHT as its first action. Suppose LEFT deterministically results in the agent369
playing repeated games of rock-paper-scissors against an opponent that always chooses ROCK, so370
that there is a simple learning problem. While RIGHT results in the agent playing repeated games of371
Go against a strong but imperfect opponent, so there is a challenging learning problem. The agent372
is completely uninformed in this decision. However, considering simple expected discounted return373
on this environment, an agent that defaults to choosing its first action as its first decision will most374
definitely outperform any agent that orders its actions differently or chooses randomly. This is true375
even if this alternative agent is extremely capable at learning, and manages to eventually learn to376

1This is in contrast to the “futility of discounting in continuing problems” from Sutton & Barto (2018, p. 254), where the
choice of discount factor is shown not to affect the agent’s objective. The difference from our treatment is their appeal to a
stationary distribution, which requires an ergodicity assumption on the environment we explicitly avoid. Maybe discounting
in a continuing problem such as our history process is not“futile” after all?
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win the majority of its games of Go. Deviation regret, instead evaluates agents by whether they are377
effectively adapted, relative to some set of deviations, to the worlds in which they find themselves378
— whether that be a simple to learn rock-paper-scissors setting or a challenging game of Go. Since379
the above two agents don’t see the same distribution of such worlds, it makes little sense to order380
the agents by this criteria. However, it makes equally little sense to order them by how they make381
one completely uninformed decision, which would dominate any expected return assessment.382

Deviation Regret encourages agents to reach a place where no learning is possible. We can383
avoid reaching places where no learning is possible by sublinearly increasing the evaluation horizon384
H. So even if the agent reaches a “no learning place”, it will incur deviation regret that encourages it385
to change its policy and eventually get out of it. However, if no deviation policy incurs a deviation386
regret along the “no learning path”, then the agent is doing the best it can given the world it found387
itself in.388

6 Conclusion and Future Work389

In this paper, we described four foundations of traditional RL that are antithetical to the goals of390
continual reinforcement learning. Further, we presented the underpinnings of an alternative set of391
foundations that better conceptualize the challenges faced within continual learning. More excit-392
ingly, these foundations seem to suggest a new approach to agent and algorithm design. This will393
also entail the development of suitable benchmark environments that embrace these alternative foun-394
dations.395

Appendix396

Here, we give a proof of Theorem 1 and provide an outline for the proof of Theorem 2, establishing397
the consistency of the estimators. The complete proof of Theorem 2 can be found in the Supple-398
mentary Materials (7). The proofs primarily rely on the concentration of the return estimates around399
the true returns, shown by identifying a relevant martingale and applying the Azuma-Hoeffding in-400
equality. The above statement is true for idealized return estimates that can access future data, while401
in practice such data is not available. Therefore we provide an error analysis of this difference and402
establish that as we see more data, the contribution of this error diminishes to 0. Following these two403
ideas, we can prove the consistency of the H-step deviation regret estimator. The infinite discounted404
return case requires some additional care, which we discuss later. In the remainder of this section405
we introduce the relevant notation, state some basic results used, and then give the proofs.406

Any behaviour f : H → ∆(A) in an environment e induces a distribution over trajectories. Let407
Rt be the random reward at timestep t. We define Gt =

∑t+H−1
i=t γi−tRi, the random H-step408

discounted return from timestep t. Furthermore, Ht denotes the random histories induced by the409
agent in the environment. Then, the deviation regret may be re-expresed as410

ρT (ϕ, λ, e) =
1

T

T∑
t=1

E [Gt|ϕ(σ), Ht−1]− E [Gt|σ,Ht−1] . (3)

Recall, when estimating the returns in Algorithm 1, we only had access to data up to timestep T ,411
that is, the return estimates for the last H steps are truncated. To capture these, define412

G
[T ]
t =

min(T,t+H−1)∑
i=t

γi−tRi and W
[T ]
t =

min(T,t+H−1)∏
i=t

ϕ(πi)(Ai|Hi−1)

πi(Ai|Hi−1)
,

where At is the random action of the agent in timestep t, G[T ]
t is the truncated agent return estimate,413

and G′
t
[T ]

= W
[T ]
t G

[T ]
t the truncated deviation return estimate. Recall, πi is the policy used by414
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the agent in timestep i. The non-truncated (idealized) agent return estimate is captured by Gt, and,415
defining Wt =

∏t+H−1
i=t

ϕ(πi)(ai|hi−1)
πi(ai|hi−1)

, G′
t = WtGt is the non-truncated (idealized) deviation return416

estimate. Note, an apostrophe (or prime) denotes a quantity relevant to the deviation. With this,417

ρ̂T (ϕ, λ, e) =
1

T

T∑
t=1

G′
t
[T ] −G

[T ]
t .

We will argue through the idealized estimator ρ̂∗T (ϕ, λ, e) =
1
T

∑T
t=1 G

′
t −Gt.418

Finally, let r∗ = maxa∈A,o∈O |R(a, o)|, which exists since A and O are finite. Then419

|Gt| ≤
t+H−1∑

i=t

γi−t|Ri| ≤ Hr∗, (4)

and for an agent that takes every action with probability at least c in every timestep420

|G′
t| = |Wt| · |Gt| ≤

∣∣∣∣∣
t+H−1∏

i=t

ϕ(πi)(ai|hi−1)

πi(ai|hi−1)

∣∣∣∣∣Hr∗ ≤ c−HHr∗. (5)

Proof of Theorem 1. Fix any ϕ, e, and λ as in the theorem statement. Let Ht be as above. For421
brevity, we will simply denote the deviation regret by ρT , and the estimates as ρ̂T and ρ̂∗T . We422
decompose the estimator error as423

|ρT − ρ̂T | = |ρT − ρ̂∗T + ρ̂∗T − ρ̂T | ≤ |ρT − ρ̂∗T |+ |ρ̂∗T − ρ̂T |, (6)

where we used the triangle inequality. The first term is the estimation error for the idealized estimate,424
the second term is the difference between the idealized and the truncated estimates. We bound each425
of these separately.426

Idealized Estimator Error. Consider427

∆T = T (ρT − ρ̂∗T ) =

T∑
t=1

(G′
t − E[Gt|ϕ(σ), Ht−1]) + (Gt − E[Gt|σ,Ht−1]).

Let δt = (G′
t − E[Gt|ϕ(σ), Ht−1]) + (Gt − E[Gt|σ,Ht−1]), the terms in the sum. We will show428

that δt is a martingale difference sequence (MDS), hence ∆T is a martingale. Towards this, we need429
E[δt|σ,Ht−1] = 0 and |δt| bounded. We have430

E[δt|σ,Ht−1] = E
[
(G′

t − E[Gt|ϕ(σ), Ht−1]) + (Gt − E[Gt|σ,Ht−1])
∣∣∣σ,Ht−1

]
= E[G′

t|σ,Ht−1]− E
[
E[Gt|ϕ(σ), Ht−1]

∣∣∣σ,Ht−1

]
+ E[Gt|σ,Ht−1]− E[Gt|σ,Ht−1]

by linearity of expectation. The last two terms cancel, and now we show the first two do as well.431
Since E[Gt|ϕ(σ), Ht−1] is the expected deviation return (a constant), the second term itself is the432
same constant. In the first term G′

t = WtGt, where Wt is the importance sampling that corrects433
from the agents’ behaviour to the deviation’s behaviour. That is, it is well known that434

E[G′
t|σ,Ht−1] = E[WtGt|σ,Ht−1] = E[Gt|ϕ(σ), Ht−1],

and we see that the first two terms also cancel. We conclude E[δt|σ,Ht−1] = 0.435

We bound |δt| by noting that each term in it is bounded. More precisely, we use Eq. 4, Eq. 5, the436
triangle inequality, and that for any X < c, we also have E[X|Y ] < c for all Y .437

|δt| ≤ |G′
t|+ |E[Gt|ϕ(σ), Ht−1])|+ |Gt|+ |E[Gt|σ,Ht−1])| ≤ c−HHr∗ + 3Hr∗.
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Therefore, ∆T is a martingale with the increments, δt, bounded by (c−H + 3)Hr∗. Note that438
∆0 = 0. By the Azuma-Hoeffding inequality, we conclude that for any ϵ1 > 0 and T ≥ 1439

P(|∆T | ≥ ϵ1) ≤ 2 exp

(
−ϵ21

2T
(
(c−H + 3)Hr∗

)2
)
.

Since |∆T | ≥ ϵ1 is equivalent to |ρT − ρ̂∗T | ≥ ϵ1/T , letting ϵ2 = ϵ1/T we can restate the above as440

P(|ρT − ρ̂∗T | ≥ ϵ2) ≤ 2 exp

(
−(ϵ2T )

2

2T
(
(c−H + 3)Hr∗

)2
)

= 2 exp

(
−ϵ22T

2
(
(c−H + 3)Hr∗

)2
)
. (7)

We see that the idealized estimate gets close to the true deviation at an exponential rate. This441
completes the bound on the first error term.442

Error due to truncating the estimate. By definition and the triangle inequality443

T |ρ̂∗T − ρ̂T | =

∣∣∣∣∣
T∑

t=1

(G′
t
[T ] −G

[T ]
t )− (G′

t −Gt)

∣∣∣∣∣ ≤
T∑

t=1

|G′
t
[T ] −G′

t|+ |G[T ]
t −Gt|.

Both
∑T

t=1 |G′
t
[T ] − G′

t| and
∑T

t=1 |G
[T ]
t − Gt| are bounded by r∗H2. It is only the last H terms444

that are truncated, therefore all other terms in the sum are 0. Each of the non-zero terms are no more445
than H-step returns of rewards no more than r∗. Plugging this into the inequality we developed so446
far, we find447

|ρ̂∗T − ρ̂T | ≤
2r∗H

T (1− γ)
. (8)

As this is a uniform bound over all realizations of the random estimates, for any ϵ3 > 0, choosing448
T ≥ 2r∗H

ϵ3(1−γ) , we have |ρ̂∗T − ρ̂T | ≤ ϵ3.449

Combining the Error Estimates. Using the error decomposition in Eq. 6, as well as the bounds450
Eq. 7 and Eq. 8 developed for each error component, we can conclude that for any ϵ > 0, T ≥451

2r∗H
(ϵ/2)(1−γ) ,452

P(|ρT − ρ̂T | ≤ ϵ) ≥ 1− 2 exp

(
−(ϵ/2)2T

2(c−H + 3)Hr∗

)
.

Letting T → ∞, we conclude with the result we set out to prove,453

lim
T→∞

P(|ρT − ρ̂T | ≤ ε) = 1.

The infinite discounted deviation return case. The proof is analogous to the H-step return case,454
with only two changes.455

1. The errors in the truncated estimates are larger, albeit still bounded and independent of T .456

2. The importance sampling weights become unbounded unless treated carefully.457

The first change is straightforward. For the second change, we note that if we only estimate the458
deviation regret up to some δ > 0 accuracy, we can truncate to a finite return of sufficient length,459
thus controlling the importance sampling weights. See Supplementary Materials (7) for details.460
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Supplementary Materials530

The following content was not necessarily subject to peer review.531
532

7 There is a consistent estimator for the infinite discounted deviation regret533

For the proof of Theorem 2, we follow the ideas outlined in Appendix. More precisely, we will534
define535

• ρT,δ , a truncated version of ρT that is still δ close to the deviation regret, for any δ > 0.536

• ρ̂∗T,δ , an idealized estimator of the truncated regret that can access future data.537

We argue that ρ̂∗T,δ estimates ρT,δ arbitrarily well with high probability. However, ρ̂∗T,δ uses future538
data, while a real estimator, ρ̂T,δ does not have access to this, resulting in an additional error. Our539
analysis shows that with increasing data, this error is also driven to be arbitrarily small. Finally,540
requiring better and better estimates over time by setting δ = δ(T ) for some δ(T ) that goes to 0541
with time, we arrive at our final estimator ρ̂T = ρ̂T,δ(T ). Note that ρ̂T is not exactly Algorithm 1542
with H = ∞, as ρ̂T may not immediately incorporate a new observed reward into all of its deviation543
return estimates.544

Now that we gave an outline of the proof, we introduce all required notation. All the terms not545
explicitly introduced here use the definitions provided earlier. In this section, we denote by Pλ546
the probability measure on the trajectories induced by the agent-environment interaction, and by547
Eλ the corresponding expectation operator. Similarly, Pϕ denotes the probability measure induced548
by applying the deviation and Eϕ its expectation operator. Effectively, Eλ replaces E[ · |σ] and Eϕ549
replaces E[ · |ϕ(σ)].550

We define both infinite and H-step returns.551

G∞
t =

∞∑
i=t

γi−tRi,

G
{H}
t =

t+H−1∑
i=t

γi−tRi.

With this notation, the deviation regret with infinite returns is552

ρT (π, λ, e) =
1

T

T∑
t=1

Eπ[G∞
t |Ht−1]− Eλ[G∞

t |Ht−1],

where Ht−1 is the random history of the agent. These quantities are bounded for γ < 1.553

Fact 1. |G∞
t | ≤ 1

1−γ r
∗ and therefore |ρT | ≤ 2

1−γ r
∗. Also, as before, |G{H}

t | ≤ Hr∗.554

We want to truncate returns, while staying close to the true values. Towards this, let, for any δ >555
0, γ ∈ [0, 1), let556

H(δ, γ) =


ln
(

r∗

δ(1−γ)

)
1− γ

 ,

the effective horizon. Choosing H ≥ H(δ, γ) guarantees557

|G∞
t −G

{H}
t | < δ.

Define the truncated regret for any δ > 0 as558

ρT,δ(π, λ, e) =
1

T

T∑
t=1

Eπ[G
{H(δ,γ)}
t |Ht−1]− Eλ[G∞

t |Ht−1].
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Then, by construction,559
|ρT (π, λ, e)− ρT,δ(π, λ, e)| < δ. (9)

To estimate the (truncated) deviation return we use importance sampling, that is560

G
′{H}
t = Wt:t+H−1G

{H}
t with Wt:i =

i∏
k=t

π(Ak|Hk−1)

λ(Ak|Hk−1)
. (10)

For an agent that takes every action in every step with probability at least c > 0, Wt:t+H−1 ≤ c−H .561
With this, we can bound the deviation regret estimate.562

Fact 2. |G′{H}
t | ≤ c−HHr∗.563

At this point, we can define ρ̂∗T,δ , the idealized estimator of the truncated regret,564

ρ̂∗T,δ(ϕ, λ, e) =
1

T

T∑
t=1

G′
t
{H(δ,γ)} −G∞

t . (11)

However, for the practical estimator of regret at timestep T all estimates will naturally be truncated565
at step T , that is566

ρ̂T,δ(ϕ, λ, e) =
1

T

T∑
t=1

G′
t
{min(T−t+1,H(δ,γ))} −G

{T−t+1}
t . (12)

As stated in the proof outline, we will choose a δ(T ) such that δ(T ) decreases to 0 in the limit as567
T → ∞, and use ρ̂T = ρ̂T,δ(T ). The particular choice we make is568

δ(T ) = T−1/|4 ln(c)|

With this, we are ready to provide a proof for Theorem 2.569

Proof. When the deviation ϕ, agent λ, and environment e are clear from context, they are omitted570
from the notation. We have seen that for any δ > 0, |ρT − ρT,δ| < δ. We will show that for any571
ϵ > 0,572

Pλ(|ρT,δ(T ) − ρ̂T,δ(T )| ≤ ϵ) ≥ 1− f(T, ϵ), (13)

for some f with f(T, ϵ) → 0 as T → ∞. We will refer to the event573

E = {|ρT,δ(T ) − ρ̂T,δ(T )| ≤ ϵ}

as the “good event”. For any ϵ > 0, for large enough T such that δ(T ) < ϵ, on the good event, we574
have575

|ρT − ρ̂T,δ(T )| = |(ρT − ρT,δ(T )) + (ρT,δ(T ) − ρ̂T,δ(T ))|
≤ |ρT − ρT,δ(T )|+ |ρT,δ(T ) − ρ̂T,δ(T )|
≤ ϵ+ ϵ

= 2ϵ,

which in turn shows that for any ϵ > 0576

lim
T→∞

Pλ(|ρT − ρ̂T,δ(T )| ≤ ϵ) = 1,

the statement we set out to prove.577
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We focus on the estimation problem in Eq. 13 for the rest of the proof. As we did in the H-step578
deviation regret estimation case, we argue through the idealized estimator ρ̂∗T,δ(T ). We decompose579
the estimator error as580

|ρT,δ(T ) − ρ̂T,δ(T )| = |ρT,δ(T ) − ρ̂∗T,δ(T ) + ρ̂∗T,δ(T ) − ρ̂T,δ(T )|
≤ |ρT,δ(T ) − ρ̂∗T,δ(T )|+ |ρ̂∗T,δ(T ) − ρ̂T,δ(T )|, (14)

where we used the triangle inequality. The first term is the estimation error for the idealized estimate,581
the second term is the difference between the idealized and the truncated estimates. We bound each582
of these separately.583

Idealized Estimator Error. We will use the shorthand H = H(δ, γ). Consider584

∆T = T (ρ̂∗T,δ(T ) − ρT,δ(T ))

=

T∑
t=1

(G′
t
{H} − Eϕ[G

{H}
t |Ht−1]) + (G∞

t − Eλ[G∞
t |Ht−1]),

where we regrouped the terms to capture the difference between the true returns and their random585
estimates. Let δt = (G′

t
{H}−Eϕ[G

{H}
t |Ht−1])+(G∞

t −Eλ[G∞
t |Ht−1]), the terms in the sum. We586

will show that δt is a martingale difference sequence (MDS), hence ∆T is a martingale. Towards587
this, we need Eλ[δt|Ht−1] = 0 and |δt| bounded. We have588

Eλ[δt|Ht−1] = Eλ
[
(G′

t
{H} − Eϕ[G

{H}
t |Ht−1])) + (G∞

t − Eλ[G∞
t |Ht−1]))

∣∣∣Ht−1

]
= Eλ[G′

t
{H}|Ht−1]− Eλ

[
Eϕ[G

{H}
t |Ht−1]

∣∣∣Ht−1

]
+ Eλ[G∞

t |Ht−1]− Eλ[G∞
t |Ht−1]

by linearity of expectation. The last two terms cancel and now we show the first two do as well.589
Since Eϕ[G

{H}
t |Ht−1] is the expected deviation return (a constant), the second term itself is the590

same constant. In the first term G′
t = Wt:t+H−1G

{H}
t , where Wt:t+H−1 is the importance sampling591

that corrects from the agents’ behaviour to the deviation’s behaviour. That is, it is well known that592

Eλ[G′
t|Ht−1] = Eλ[Wt:t+H−1G

{H}
t |Ht−1] = Eϕ[G

{H}
t |Ht−1],

and we see that the first two terms also cancel. We conclude Eλ[δt|Ht−1] = 0.593

We bound |δt| by noting that each term in it is bounded. More precisely, we use Facts 1 and 2 bound-594
ing the individual terms, the triangle inequality, and that for any X < c, we also have E[X|Y ] < c595
for all Y .596

|δt| ≤ |G′
t
{H}|+ |Eϕ[G

{H}
t |Ht−1])|+ |G∞

t |+ |Eλ[G∞
t |Ht−1])|

≤ c−HHr∗ +Hr∗ +
2

1− γ
r∗.

Therefore, ∆T is a martingale with the increments, δt, bounded by597

b(c,H, γ, r∗) = (c−HH +H + 2(1− γ)−1)r∗.

Note that ∆0 = 0. By the Azuma-Hoeffding inequality, we conclude that for any ϵ1 > 0 and T ≥ 1598

Pλ(|∆T | ≥ ϵ1) ≤ 2 exp

(
−ϵ21

2Tb(c,H, γ, r∗)2

)
.

Since |∆T | ≥ ϵ1 is equivalent to |ρT,δ(T ) − ρ̂∗T,δ(T )| ≥ ϵ1/T , letting ϵ2 = ϵ1/T we can restate the599
above as600

Pλ(|ρT,δ(T ) − ρ̂∗T,δ(T )| ≥ ϵ2) ≤ 2 exp

(
−(ϵ2T )

2

2Tb(c,H, γ, r∗)2

)
= 2 exp

(
−ϵ22T

2b(c,H, γ, r∗)2

)
. (15)
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Note that H ∈ Θ(ln(1/δ)), not considering its dependence on r∗, γ. Furthermore, δ(T ) =601
T−1/|4 ln(c)|. This makes H ≈ ln(T 1/|4 ln(c)|) = lnT

4| ln(c)| , and we have for the denominator in602
the exponent in Eq. 15 that603

2b(c,H, γ, r∗)2 = 2(c−HH +H + 2(1− γ)−1)2r∗2

≤ 6(c−2HH2 +H2 + 4(1− γ)−2)r∗2

≈ 6

(
(c−2 lnT

4| ln(c)| + 1)

(
lnT

4| ln(c)|

)2

+ 4(1− γ)−2

)
r∗2.

Here, using alogb(x) = xlogb(a),604

c−2 lnT
4| ln(c)| = exp

(
lnT

2 ln(c)
· ln c

)
= exp

(
lnT

2

)
= T

1
2 ,

so605

2b(c,H, γ, r∗)2 ≤ C0

(
(T

1
2 + 1)

(
lnT

4| ln(c)|

)2

+ 4(1− γ)−2

)
r∗2

≤ C1

(
T

3
4 |2 ln(c)|−2 + 4(1− γ)−2

)
r∗2

≤ C1T
3/4(|2 ln(c)|−2 + 4(1− γ)−2)r∗2,

for some constants Ci ∈ R and for sufficiently large T . We used that lnT ≤ C2T
1/8 for large606

enough T and some C2 > 0, and that T 3/4 ≥ 1. Plugging this back into Eq. 15 we find607

Pλ(|ρT,δ(T ) − ρ̂∗T,δ(T )| ≥ ϵ2) ≤ 2 exp

(
−ϵ22T

1/4

C1 (|2 ln(c)|−2 + 4(1− γ)−2) r∗2

)
. (16)

We see that the idealized estimate gets close to the true deviation with increased interaction time T .608
This completes the bound on the first error term.609

Error due to truncation. We turn our attention to the second term of Eq. 14, |ρ̂∗T,δ(T ) − ρ̂T,δ(T )|.610
The analysis will use δ for δ(T ) and H for H(δ, γ) except when the dependence on the arguments611
is important. By definition and some algebra,612

T |ρ̂∗T,δ − ρ̂T,δ| =

∣∣∣∣∣
T∑

t=1

(
G′

t
{H} −G∞

t

)
−
(
G′

t
{min(T−t+1,H)} −G

{T−t+1}
t

)∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

(
G′

t
{H} −G′

t
{min(T−t+1,H)}

)
−
(
G∞

t −G
{T−t+1}
t

)∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

(
G′

t
{H} −G′

t
{min(T−t+1,H)}

)
− γT−t+1G∞

T+1

∣∣∣∣∣
≤

∣∣∣∣∣
T∑

t=1

(
G′

t
{H} −G′

t
{min(T−t+1,H)}

)∣∣∣∣∣+
∣∣∣∣∣

T∑
t=1

γT−t+1G∞
T+1

∣∣∣∣∣ ,
where in the last step we used the triangle inequality. The second term is bounded as613 ∣∣∣∣∣

T∑
t=1

γT−t+1G∞
T+1

∣∣∣∣∣ ≤ r∗

1− γ

T∑
t=1

γT−t+1 ≤ r∗

(1− γ)2
.

For the first term, when H ≤ T − t+1, the difference is 0. We continue with the other case, that is,614
min(T − t+ 1, H) = T − t+ 1.615 ∣∣∣∣∣

T∑
t=1

G′
t
{H} −G′

t
{T−t+1}

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

t+H−1∑
i=t

γi−tWt:iRi −
T∑
i=t

γi−tWt:iRi

∣∣∣∣∣
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=

∣∣∣∣∣
T∑

t=1

t+H−1∑
i=T+1

γi−tWt:iRi

∣∣∣∣∣
≤

T∑
t=1

t+H−1∑
i=T+1

γi−tWt:i r
∗

≤
T∑

t=1

t+H−1∑
i=T+1

γi−t

(
i∏

k=t

1

c

)
r∗

=

T∑
t=T−H+1

t+H−1∑
i=T+1

γi−tc−(i−t+1) r∗

≤ c−1
T∑

t=T−H+1

T+H−1∑
i=T+1

γi−tc−(i−t) r∗

≤ c−1
T∑

t=T−H+1

2H∑
h=0

(γ/c)h r∗

= r∗c−1H

2H∑
h=0

(γ/c)h.

We control f(H, γ/c) :=
∑2H

h=0(γ/c)
h dependent on where γ/c lands compared to 1.616

• If γ/c < 1, f(H, γ/c) ≤ (1− γ/c)−1.617

• If γ/c = 1, f(H, γ/c) ≤ 2H + 1.618

• If γ/c > 1, f(H, γ/c) ≤ (γ/c)2H+1−1
γ/c−1 .619

In conclusion, for any H, δ, T620

T |ρ̂∗T,δ − ρ̂T,δ| ≤
r∗

(1− γ)2
+ r∗c−1Hf(H, γ/c).

We now make explicit the dependency of H on T through δ(T ), while continuing to suppress the621
dependency of H on γ and r∗. As before, for δ(T ) = T−1/|4 ln(c)| we have H ≈ ln(T 1/|4 ln(c)|) =622

lnT
4| ln(c)| and623

T |ρ̂∗T,δ(T ) − ρ̂T,δ(T )| ≲
r∗

(1− γ)2
+ r∗c−1 lnT

4| ln(c)|
f

(
lnT

4| ln(c)|
, γ/c

)
,

where f scales the worst in H for the γ/c > 1 case. In this setting,624

f(H, γ/c) ≤ (γ/c)2H+1 − 1

γ/c− 1
≤ (γ/c)T

ln(γ/c)
2| ln(c)| − 1

γ/c− 1
,

where, noting the range of c and γ, we see ln(γ/c)
2| ln(c)| =

− ln(c)
2(− ln(c)) +

ln(γ)
−2 ln(c) ≤ 1/2, since the second625

term is negative. That is, we are guaranteed that |ρ̂∗T,δ(T ) − ρ̂T,δ(T )| ∈ O(T−1/2). With this, we are626
ready to finish up the proof.627

The Estimation Problem. We originally set out to analyze the truncated regret estimation problem628
introduced in Eq. 13, through the error decomposition of Eq. 14. We now provided a bound for each629
of the error terms and we are ready to combine them for the desired result. Eq. 14 stated that630

|ρT,δ(T ) − ρ̂T,δ(T )| ≤ |ρT,δ(T ) − ρ̂∗T,δ(T )|+ |ρ̂∗T,δ(T ) − ρ̂T,δ(T )|.
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We chose δ(T ) = T−1/|4 ln(c)|, which indeed approaches 0 as T → ∞. Then, we saw that for all631
ϵ2 > 0 there exist constants C0, T0 (independent of ϵ2) such that for all T > T0632

Pλ(|ρT,δ(T ) − ρ̂∗T,δ(T )| ≥ ϵ2) ≤ 2 exp

(
−ϵ22T

1/4

C0 (|2 ln(c)|−2 + 4(1− γ)−2) r∗2

)
.

Finally, we saw that there exists f0 and T1 such that for any T ≥ T1633

|ρ̂∗T,δ(T ) − ρ̂T,δ(T )| ≤
1√
T
f0(r

∗, γ, c).

We can conclude that634

|ρT,δ(T ) − ρ̂T,δ(T )| ≤ |ρT,δ(T ) − ρ̂∗T,δ(T )|+
1√
T
f0(r

∗, γ, c).

Then, ∀ε > 0, choosing T ≥ max(T0, T1, (f0(r
∗, γ, c)/ε)2), we have ε ≥ f0(r

∗, γ, c)/
√
T , and635

Pλ
(
|ρT,δ(T ) − ρ̂T,δ(T )| ≥ 2ε

)
≤ Pλ

(
|ρT,δ(T ) − ρ̂∗T,δ(T )|+ f0(r

∗, γ, c)/
√
T ≥ 2ε

)
≤ Pλ

(
|ρT,δ(T ) − ρ̂∗T,δ(T )| ≥ ε

)
≤ 2 exp

(
−ε2T 1/4

C0 (|2 ln(c)|−2 + 4(1− γ)−2) r∗2

)
.

This bound indeed goes to 0 as T → ∞, so the proof is complete.636
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