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Abstract

The Vision Transformer, when trained or pre-trained on datasets consisting of millions of
images, gives excellent accuracy for image classification tasks and offers computational sav-
ings relative to convolutional neural networks. Motivated by potential accuracy gains and
computational savings, we study Vision Transformers for accelerated magnetic resonance
image reconstruction. We show that, when trained on the fastMRI dataset, a popular
dataset for accelerated MRI only consisting of thousands of images, a Vision Transformer
tailored to image reconstruction yields on par reconstruction accuracy with the U-net while
enjoying higher throughput and less memory consumption. Furthermore, as Transformers
are known to perform best with large-scale pre-training, but MRI data is costly to ob-
tain, we propose a simple yet effective pre-training, which solely relies on big natural
image datasets, such as ImageNet. We show that pre-training the Vision Transformer
drastically improves training data efficiency for accelerated MRI, and increases robustness
towards anatomy shifts. In the regime where only 100 MRI training images are available,
the pre-trained Vision Transformer achieves significantly better image quality than pre-
trained convolutional networks and the current state-of-the-art. Our code is available at
https://github.com/MLI-lab/transformers_for_imaging.
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1. Introduction

Magnetic resonance imaging (MRI) is a medical imaging technique that provides excellent
soft-tissue contrast, and is considered to be a safe diagnostic tool with the capability to
reliably detect a wide range of diseases such as tumors, hemorrhage, and infections.

However, the data acquisition in MRI is inherently slow, leading to time-consuming
examinations. This downside makes MRI particularly unsuitable for patients who struggle
to remain still for longer periods of time (e.g., children) since even small movements increase
the risk of image artifacts (Zaitsev et al., 2015).

To accelerate the examination process, MRI is usually accelerated by only collecting a
few undersampled measurements. To enable reconstruction from few measurements, recon-
struction algorithms need to incorporate prior knowledge about MRI images. Classically
this is done without any training data, for example by assuming that the images are sparse
in some basis (Lustig et al., 2007; Candes and Wakin, 2008).

Recently, deep learning methods have shown to outperform traditional methods in re-
construction quality and speed (Hammernik et al., 2018; Zbontar et al., 2019; Sriram et al.,
2020; Darestani and Heckel, 2021; Jalal et al., 2021).
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Current state-of-the-art deep learning based reconstruction methods all deploy convo-
lutional neural networks (CNNs) as a core building block. The success of CNNs is often
partially attributed to the inductive biases inherent in CNNs, allowing impressive data
efficiency.

However, the Vision Transformer (ViT) (Dosovitskiy et al., 2020) — a convolution-free
architecture with minimal inductive bias — has recently demonstrated superior performance
over state-of-the-art CNNs in image classification when trained on millions of images. This
suggests that the inductive bias in CNNs may restrict their performance if large amounts
of data are available, and in this regime, a ViT may learn better features directly from the
training data itself. While many recent works have studied the ViT, or self-attention, for
image classification (Dosovitskiy et al., 2020; d’Ascoli et al., 2021; Xiao et al., 2021; Li et al.,
2021; Touvron et al., 2021; Liu et al., 2021) and image processing (Chen et al., 2021; Liang
et al., 2021; Wang et al., 2021), the number of works exploring self-attention for accelerated
MRI remains sparse (Feng et al., 2021a,b; Korkmaz et al., 2022, 2021).

In this work, we study the ViT for accelerated MRI. Our findings are the following:

• Even when only trained on the 35k-70k training images from the fastMRI dataset, the
ViT already performs on par or better than the U-net for accelerated MRI. The U-net
is a strong CNN baseline deployed in present state-of-the-art reconstruction methods.

• The ViT benefits from almost 2× higher throughput and less memory consumption
when compared to the U-net for accelerated MRI.

• We can improve ViT’s performance for accelerated MRI using pre-training on natu-
ral image datasets like ImageNet, which are readily available. The pre-trained ViT
achieves competitive results with the state-of-the-art and outperforms pre-trained
U-nets after fine-tuning on the fastMRI dataset. A pre-trained ViT is particulary
interesting in the low-data regime: Even when only 100 MRI images for fine-tuning
are available, the pre-trained ViT can still provide sharp and detailed reconstructions,
and outperforms the U-net in this regime.

• We further show that pre-trained ViTs are also more robust towards anatomy shifts
when compared to the current state-of-the-art convolutional neural networks.

1.1. Problem Formulation

During an accelerated MRI scan, electromagnetic waves are measured by several receiver
coils. These measurements are typically referred to as k-space measurements, and are given
by

yi = PFSix
∗ + zi ∈ Cm, i = 1, . . . , C. (1)

Here, x∗ ∈ Cn is the unknown, vectorized image, Si ∈ Cn×n are the sensitivity maps
pertaining to the C receiver coils (realized as a diagonal matrix), F ∈ Cn×n denotes the
2D discrete Fourier transformation, P ∈ Rm×n containing m < n rows of an n× n identity
matrix describes the undersampling operation, zi ∈ Cn models additive white Gaussian
noise. For C > 1 many receiver coils the setup is referred to as multi-coil MRI, and for
C = 1, it is referred to as single-coil MRI. Our goal is to reconstruct the image x∗ from the
undersampled measurements yi.
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2. Related Work

In this work we study the Vision Transformer (ViT) for accelerated magnetic resonance
imaging. Our work is motivated by the fact that standard Transformers scale well with the
amount of training data for natural language processing and computer vision tasks (Devlin
et al., 2019; Brown et al., 2020; Dosovitskiy et al., 2020).

Since the introduction of Vision Transformers and their revolutionary success in com-
puter vision (Dosovitskiy et al., 2020), a number of recent works have proposed to utilize
Transformers or self-attention mechanisms also in image reconstruction methods.

A number of works build attention mechanisms into networks that are U-shaped like
the convolutional U-net (Ronneberger et al., 2015). Specifically, Wang et al. (2021), Ji
et al. (2021), and Zamir et al. (2021) proposed U-shaped Transformer architectures, which
use their own variants of efficient self-attention mechanisms, opening up the possibility to
process high resolution images. Similarly, Liang et al. (2021) proposed an architecture based
on the Swin Transformer (Liu et al., 2021), which performs self-attention locally in shifting
windows, introducing locality biases that result in higher data-efficiency.

Most related to our approach is the work by Chen et al. (2021), which proposed a
pre-trained backbone model based on the standard ViT for handling a variety of image
restoration tasks simultaneously. The work showed that pre-trained ViTs are efficient mod-
els for image denoising and super-resolution when trained on sufficiently large datasets.
Contrary to our architecture, however, Chen et al. (2021) still use convolutional layers in
their architecture.

A few recent works have also explored self-attention for accelerated MRI reconstruction.
Guo and Patel (2021) proposed the Texture Transformer module, which can be appended to
existing architectures, such as the U-net to improve performance for MRI reconstruction.
Feng et al. (2021a) proposed a new cross-attention module that can be combined with
Transformers for multi-modal MRI reconstruction. Feng et al. (2021b) proposed the Task
Transformer, a special Transformer architecture, for jointly performing MRI reconstruction
and super-resolution. Korkmaz et al. (2022, 2021) use a Transformer architecture to perform
MRI reconstruction in a deep image prior fashion (Ulyanov et al., 2018), eliminating the
reliance on training data.

In our work, we use the original ViT from Dosovitskiy et al. (2020) with a straightforward
adaption to image reconstruction, and also without any convolutions, to perform accelerated
MRI as an end-to-end trained reconstruction method, like the U-net (Zbontar et al., 2019).

3. Image Reconstruction Transformer

In this section we describe the Transformer architecture that we consider, which is an
adaption of the original Vision Transformer for image reconstruction tasks.

Vision Transformer: The Vision Transformer (ViT), proposed by Dosovitskiy et al.
(2020), is an application of the original Transformer encoder (Vaswani et al., 2017) to
image classification tasks. The Vision Transformer maps an input image to features as
follows.
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Figure 1: Vision Transformer for image reconstruction. As in the original ViT for classifi-
cation, we linearly embed patches of the input image, and send them together with position
embeddings into a standard Transformer encoder. At the output of the Transformer, we
use a reconstruction head that maps the sequence elements back to a visual image.

First, the input image is spatially divided into a sequence of N equally sized image
patches. Then, a trainable linear transformation maps each of those image patches to a
d-dimensional feature vector called patch embedding.

Since the Transformer encoder itself does not inherit any notion of positional infor-
mation, N learnable position embeddings are introduced. These position embeddings are
d-dimensional vectors, which encode information about the absolute position of sequence
elements. They are added to the patch embeddings prior to entering the Transformer en-
coder.

A learnable classification token is prepended to the sequence of patch embeddings.
These N + 1 feature vectors serve as input to the Transformer encoder. The Transformer
encoder consists of L encoder layers, whereby each encoder layer contains a Multi-Head
Self-Attention (MHSA) block, see Appendix A, and a two-layer MLP block that transforms
each feature vector separately. Moreover, Layernorm (Ba et al., 2016) is applied before each
block, and residual connections (He et al., 2016) after each block to help with training.

At the output of the Transformer encoder, only the output representation of the classi-
fication token is fed into a classification head, which returns the estimated class label of the
input image. The classification head itself may be implemented by a multilayer perceptron
(MLP) or a simple linear layer.

Adapting the Vision Transformer to image reconstruction: Figure 1 illustrates
the ViT for image reconstruction. For this work, we adapted the original ViT (Dosovitskiy
et al., 2020) to image reconstruction by performing two simple modifications.

First, we discard the classification token as it becomes redundant for image reconstruc-
tion. Second, we replace the classification head by a reconstruction head that maps the
Transformer output back to a visual image.
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The reconstruction head contains one Layernorm followed by a linear layer, which are
shared across all the sequence elements. Hence, each sequence element in the feature space
is mapped to a corresponding image patch in pixel space. The reconstructed image patches
are then combined to a full-sized image.

Contrary to other approaches that apply special versions of Transformers in combination
with convolutions (Liang et al., 2021; Wang et al., 2021; Ji et al., 2021; Zamir et al., 2021),
our architecture is convolution-free and uses only the standard Transformer encoder. Our
approach is therefore most similar to the Image Processing Transformer (Chen et al., 2021),
which, like us, uses a standard Transformer encoder, however, has a convolutional image
patch transformation and reconstruction head.

4. Experiments

We evaluate the performance of ViTs for accelerated MRI on the fastMRI dataset. We
find that, when only trained on the fastMRI dataset, the ViT achieves on par performance
with the U-net while benefiting from computational savings. We also propose a setup for
pre-training ViTs on big natural image datasets, which, after fine-tuning on the fastMRI
dataset, results in competitive performance with the current state-of-the-art.

4.1. Setup

We consider the reconstruction of knee and brain MRIs in a 4-fold accelerated MRI setting,
where we follow the undersampling procedure described by Zbontar et al. (2019, Sec. 4.9):
The central k-space region (or with a random offset for brain scans) is first fully sampled
containing 8% of all vertical k-space lines. To achieve the desired acceleration factor, the
remaining k-space lines are either sampled uniformly at random for knee scans or equidis-
tantly for brain scans.

Datasets. We use the fastMRI dataset (Zbontar et al., 2019) since its the largest public
MRI dataset. This dataset is comprised of a collection of knee and brain MRIs. The knee
dataset holds 35k slices for training and 7k for validation whereas 70k slices for training
and 21k for validation are contained in the brain dataset.

Model variants. We experiment with three different ViT variants containing 8M, 32M,
or 60M parameters, using a patch size of 10. They are denoted ViT-S, ViT-M, and ViT-L.

As a standard CNN baseline, we consider U-nets of different sizes. Our U-net variants
have 4 down-sampling layers and 32, 64, or 128 channels in the first layer, which correspond
to roughly 8M, 31M, and 124M model parameters, respectively, denoted by U-net-S, U-net-
M, and U-net-L. Note, that the U-net-L has twice as many parameters as ViT-L.

We also compare the ViT to the End-to-end VarNet (Sriram et al., 2020) in Sec. 4.3.
The End-to-end VarNet is convolution based and gives current state-of-the-art performance
for accelerated MRI.

Given the undersampled k-space coil measurements yi, the ViT and U-net models take
as input the root-sum-of-square reconstruction of the zero-filled coil images, where we ignore
the estimation of sensitivity maps, and output a real-valued reconstructed image. Thus, the

model input is given by
√∑C

i=1 |FHPHyi|2, where the square and the root operator are to
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Table 1: Reconstruction SSIM of our models when trained on the fastMRI dataset for 4-fold
accelerated multi-coil (MC) and single-coil (SC) MRI, and their empirical computational
costs during inference measured by throughput and maximal possible batch size. Best
results are reported in bold, second best are underlined. ViT-L outperforms all other
methods, even the U-net-L which has twice as many parameters. In addition, the ViTs
have a higher throughput, and are thus computationally cheaper than the corresponding
U-net versions.

ViT-L ViT-M ViT-S U-net-L U-net-M U-net-S

MC-Knee 0.908± 0.118 0.907± 0.118 0.903± 0.118 0.907± 0.118 0.906± 0.118 0.905± 0.118

SC-Knee 0.744± 0.250 0.744± 0.249 0.740± 0.248 0.744± 0.248 0.743± 0.248 0.742± 0.248

SC-Brain 0.828± 0.148 0.826± 0.148 0.823± 0.148 0.827± 0.148 0.826± 0.148 0.825± 0.148

Throughput 97.4 img/s 183.32 img/s 442.96 img/s 51.8 img/s 153.35 img/s 331 img/s
Batch size 272 380 440 145 240 512

be interpreted entry-wise, and |·| takes the absolute value entry-wise. The ViT and U-net
only take the information about the MRI forward model into account in the model input
by using the root-sum-of-squares algorithm.

Contrary, the End-to-end VarNet, uses information about the MRI forward model (1)
throughout the network.

Training and validation. We train all models with the objective to maximize the struc-
tural similarity index measure (SSIM) between model output and the ground-truth image.
During training, we randomly sample a different undersampling mask for each training
instance independently. During validation, each volume is assigned a different mask that
is used for all slices within the volume. We report reconstruction accuracy on fastMRI’s
validation set. For further details regarding training, see Appendix B.2.

4.2. Comparing ViT to U-net

We start by comparing our ViT models to the U-net baselines. The U-net is commonly used
as a standard baseline for the fastMRI dataset. We compare to the U-net, as it gives the
best performance among models that map the root-sum-of-squares reconstruction directly
to a clean image, just like the ViT does.

We later also compare to the state-of-the-art, End-to-end VarNet, which incorporates
data-consistency steps and other elements in the network architecture.

Table 1, which contains the image reconstruction performance of our models when
trained on the fastMRI dataset, shows that a large ViT outperforms the best U-net.

Furthermore, when comparing the empirical computational costs during inference, the
results in the table show that all our ViT models beat their similar sized U-net counterparts
in terms of throughput. Looking at the memory consumption, we notice that the two
larger ViT variants (ViT-M and ViT-L) can operate on significantly larger batch sizes
than the two larger U-net variants (U-net-M and U-net-L), indicating a clear advantage in
memory efficiency. For further details on how we measured the computational costs, see
Appendix B.3.
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Figure 2: Example reconstructions for the 4-fold multi-coil knee setup. Models were trained
on 35k data (top) and 100 data (bottom). The pre-trained ViT, PT-ViT-L, yields a
detailed reconstruction even when just fine-tuned on 100 images.

4.3. Improving ViTs for MRI with Pre-training on Natural Images

Since MRI datasets are costly to obtain, and Transformers are known to perform best with
large-scale training or large scale pre-training (Devlin et al., 2019; Brown et al., 2020; Doso-
vitskiy et al., 2020), we investigate to what extent pre-training on ImageNet (Russakovsky
et al., 2015) improves the image reconstruction performance of ViTs for accelerated MRI.

For pre-training on ImageNet, we construct training data by feeding the ImageNet
images through the forward model (1), where we randomly vary the acceleration factor.
Further details for this setup are provided in Appendix B.2.

We pre-train a ViT-L, denoted PT-ViT-L, on ImageNet and fine-tune it on fastMRI’s
multi-coil knee dataset. Figure 2 shows example reconstructions that illustrate the benefits
of pre-training. We observe that PT-ViT-L yields similar image quality to End-to-end
VarNet when 35k training images (whole dataset) are available.

PT-ViT-L really shines in the regime where few training images are available: Even
when only 100 training images are available, PT-ViT-L still yields a sharp and detailed
reconstruction, demonstrating promising performance for the low-data regime.

Figure 3 provides a more comprehensive overview for the data requirements of our
models. The figure depicts the reconstruction SSIM of our models when trained or fine-
tuned on 100, 1k, or 35k knee images. Here, we additionally compare to a pre-trained
U-net-L, denoted PT-U-net-L. We observe that PT-ViT-L consistently outperforms PT-
U-net-L and their non-pre-trained counterparts. Indeed, in the regime where only 100
MRI training images are available, PT-ViT-L also outperforms the End-to-end VarNet,
and reaches even on par performance with the non-pre-trained ViT-L for 35k training data.
However, as dataset size increases, we observe diminishing returns, resulting in End-to-end
VarNet slightly outperforming the PT-ViT-L at 35k data. Pre-training the U-net was not
nearly as effective as pre-training the ViT, resulting only in slight performance gains in the
low data regime.
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Figure 3: Performance of pre-training on
ImageNet for the ViT and U-net with
subsequent fine-tuning on the fastMRI
multi-coil knee dataset. Pre-training the
ViT results in a significant boost in recon-
struction accuracy when the amount of
fine-tuning data is low: when fine-tuned
on only 100 images, the pre-trained ViT
significanlty outperforms pre-trained and
non-pretrained competitors.

Table 2: Performance under anatomy shift.
Models are trained/fine-tuned on the entire
fastMRI’s knee dataset and then evaluated on
the brain dataset. Best results are reported in
bold, second best are underlined.

Model
Knee SSIM

(Trained on)
Brain SSIM

(Not trained on)

ViT-L 0.908± 0.12 0.916± 0.08

PT-ViT-L 0.911± 0.12 0.926± 0.07

E2E-VarNet 0.918± 0.12 0.923± 0.09

Ground-truth E2E-VarNet PT-ViT-L

Figure 4: Anatomy shift example. Clear arti-
fact are visible in the E2E-VarNet reconstruc-
tion, while PT-ViT-L gives a clean reconstruc-
tion.

Moreover, pre-training the ViT enhances robustness towards anatomy shifts, as sug-
gested by the results in Table 2. While End-to-end VarNet gives better in-distribution
results than PT-ViT-L, we observe under the anatomy shift that PT-ViT-L performs bet-
ter than End-to-end VarNet, as indicated by higher SSIM and tighter confidence intervals.
Looking at the example reconstructions provided in Fig. 4, we see clear artifacts in the End-
to-end VarNet reconstruction under the anatomy shift that are not present in the PT-ViT-L
reconstruction.

5. Conclusion

We investigated the application of convolution-free Vision Transformers for accelerated MR
image reconstruction. If a sufficiently large Vision Transformer is trained on the fastMRI
dataset, it slightly outperforms the U-net in terms of image quality, and notably outper-
forms the U-net in memory and computational performance. Moreover, we showed that
a Vision Transformer pre-trained on ImageNet can compete with the current state-of-the-
art convolutional method after fine-tuning on the fastMRI dataset. In particular we find
that a ViT is very effective in the low-data regime which is common in MRI due to many
different acquisition modes: Even when only fine-tuned on 100 MRI images, a pre-trained
Vision Transformer yields sharp and detailed reconstructions, showing that the ViT is very
suitable for low-data regimes in accelerated MRI.
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Table 3: Hyperparameters of our ViT variants.

Model Parameters Patch size Layers L Dimension d MLP width Heads H

ViT-S 8M 10 4 396 1584 9
ViT-M 32M 10 8 576 2304 9
ViT-L 60M 10 10 704 2816 16

Appendix A. Multi-Head Self-Attention

Vaswani et al. (2017) introduced Multi-Head Self-Attention (MHSA) as the key component
for their sequence processing neural network, called Transformer, which has enjoyed great
success in natural language processing tasks (Devlin et al., 2019; Brown et al., 2020). In
the following, we revisit MHSA in more detail.

Given a sequence of N elements ξ1, . . . , ξN ∈ Rd at the input of a MHSA block, each
element ξj is mapped to H queries qi ∈ RdH , keys ki ∈ RdH and values vi ∈ RdH , where
i = 1, 2, . . . ,H, H denotes the total number of ‘heads’, and dH = d/H is the dimensionality
of one head. This map is typically a trainable linear transformation.

In each head i, the self-attention mechanism, denoted by Attention: RdH × RdH×N ×
RdH×N → RdH , computes for each element ξj a weighted average of the N values, where
the weights are computed by correlating its query with all N keys. Thus, self-attention has
the form

Attention (qi,Ki,Vi) = Vi softmax

(
KT

i qi√
dH

)
, (2)

where the matrices Ki =
[
k
(1)
i , . . . ,k

(N)
i

]
and Vi =

[
v
(1)
i , . . . ,v

(N)
i

]
concatenate the keys

and values, respectively.
Lastly, we concatenate the attention outputs of each head to form a single vector in Rd

again, and transform this vector using a learnable weight matrix Wout ∈ Rd×d, i.e.,

ξoutj = Wout

 Attention (q1,K1,V1)
...

Attention (qH ,KH ,VH)

 , (3)

where ξoutj denotes the output representation of the input element ξj after leaving the
MHSA block.

Appendix B. Details of Experimental Setup

B.1. Hyperparameters

Table 3 provides the hyperparameters of our ViT models from Sec 4.1.

B.2. Training

We train all models with the structural similarity index measure (SSIM) loss between model
output and target image and with the Adam optimizer (Kingma and Ba, 2015) with hyper-
parameters β1 = 0.9, β2 = 0.999, and no weight decay. Additionally, we clip the gradients
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Ground-truth PT-ViT-L, 100 E2E-VarNet, 35k PT-ViT-L, 35k

Figure 5: Random selection of reconstructions for the 4-fold accelerated multi-coil knee
set-up. The number behind the model names denotes the amount of data used for training
or fine-tuning. The pre-trained ViT can provide competitive image quality with End-to-end
VarNet.

at a global ℓ1-norm of 1 to help with training stability. The models are validated every 5
epochs, of which the best validation score is reported.
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Table 4: Performance under anatomy shift. Models are trained or fine-tuned on the entire
fastMRI’s knee dataset and then evaluated on the brain dataset. Best results are reported
in bold. The pre-trained ViT consistently achieves better results under the anatomy shift.

Train. data Model
Knee SSIM

(Trained on)
Brain SSIM

(Not trained on)

35k PT-ViT-L 0.911± 0.12 0.926± 0.07

E2E-VarNet 0.918± 0.12 0.923± 0.09

1k PT-ViT-L 0.907± 0.12 0.926± 0.07

E2E-VarNet 0.908± 0.12 0.905± 0.1

100 PT-ViT-L 0.904± 0.12 0.922± 0.07

E2E-VarNet 0.890± 0.12 0.895± 0.1

Table 5: Reconstruction performance on 8-fold accelerated multi-coil knee MRIs. Best
results are reported in bold, second best are underlined.

PT-U-net-L PT-ViT-L E2E-VarNet

SSIM 0.875± 0.138 0.881± 0.135 0.887± 0.136

Ground-truth PT-U-net-L PT-ViT-L E2E-VarNet

Figure 6: Example reconstructions for the 8-fold accelerated multi-coil knee setup. PT-
U-net-L fails to reconstruct the highlighted area, which PT-ViT-L and End-to-end VarNet
successfully reconstructed. However, End-to-end VarNet gives a slightly more accurate
reconstruction.

Training on fastMRI dataset. For training on the fastMRI dataset, we use a mini-
batch size of 1, and train all models for 40 epochs using a linear learning rate warm-up
and decay. We use 4 warm-up epochs for all models. The base learning rates for ViT-L,
U-net-M, and U-net-S are 0.0005, while U-net-L, ViT-M, and ViT-S use 0.0003. The End-
to-end VarNet uses a base learning rate of 0.003. In order for the ViT to handle varying
image sizes, we first initialized the trainable position embeddings according to the average
image size estimated on the training dataset, and then bi-linearly interpolated between the
embedding values.
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Pre-training and fine-tuning. For pre-training on ImageNet, we first gray-scale each
image and resize them such that the smaller edge has size 320 and proportionally adjusted
the longer edge. Then, we randomly crop out an image patch of size 272× 272, perform a
random flip and rotation by ±90 degrees, and use this augmented image as ground-truth.
We take this ground-truth to construct undersampled Fourier measurements by following
the forward model (1), where we randomly vary the acceleration factor between 2 and 10.
We use a batch-size of 32 and train 10 epochs with a learning rate of 0.0005, then 4 epochs
with a learning rate of 0.0003, and another 2 epochs with a learning rate of 0.0001. For
fine-tuning, we re-sample the position embeddings using bi-linear interpolation to fit the
average image size on the fastMRI dataset. We fine-tune for 30 epochs with a batch size of
1 and use a linear learning rate schedule. We use 3 warm-up epochs and a base learning
rate of 0.0001.

B.3. Empirical Computational Costs

To measure the empirical computational costs of our models, we deploy our models on a
single NVIDIA RTX A6000 GPU, and measure their throughput as well as their memory
usage by fitting the largest possible batch size on the device. The models operate on gray
scale images of size 320× 320 as this image size is typical for our experiments.

Appendix C. Additional Results and Insights

C.1. Additional Example Reconstructions

We provide a set of random reconstructions in Fig. 5 for the 4-fold accelerated multi-coil
knee setup. We observe that the pre-trained ViT, PT-ViT-L, can consistently provide image
quality competitive with the state-of-the-art, End-to-end VarNet, even when only fine-tuned
on 100 training images.

C.2. Additional Anatomy Shift Experiments

In the following, we extend our anatomy shift results from Sec 4.3 by evaluating the
anatomy shift performance of the PT-ViT-L and End-to-end VarNet as a function of fine-
tuning/training data used.

Table 4 shows the results. We fine-tune/train PT-ViT-L and End-to-end VarNet on
either 100, 1k, or 35k training images from fastMRI’s multi-coil knee dataset for 4-fold
acceleration, and then evaluate on fastMRI’s multi-coil brain dataset. The pre-trained ViT
consistently achieves better results under the anatomy shift, as indicated by higher SSIM
and tighter confidence intervals.

C.3. Results for 8-fold Accelerated Multi-Coil Knee MRI

We also train and evaluate our models for the 8-fold accelerated multi-coil knee MRI task, as
it is a common benchmark task alongside the 4-fold acceleration setup (Zbontar et al., 2019;
Sriram et al., 2020). For this setup, we fine-tune the pre-trained U-net-L (PT-U-net-L), the
pre-trained ViT-L (PT-ViT-L), and trained the End-to-end VarNet.
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maps of one query (red dot) for the first 10
attention heads of each layer.

Table 5 shows the reconstruction SSIM of our models on the fastMRI validation set. We
observe that PT-ViT-L performs better than PT-U-net-L, however, still slightly worse than
End-to-end VarNet. Figure 6 provides example reconstruction, where we notice that PT-U-
net-L fails to reconstruct the highlighted area, which, however, is successfully reconstructed
by PT-ViT-L and End-to-end VarNet.

C.4. What Does a ViT for MRI Reconstruction Attend To?

In the following we inspect the learned attention weights of a fine-tuned PT-ViT-L.

Figure 7 plots the mean attention distance of each head in each layer, which is anal-
ogous to the receptive field of a convolutional network. The attention distance for one
input is calculated by weighing the distances between queries and keys with their attention
weights (d’Ascoli et al., 2021). From the figure, we observe that all the attention heads in
the first layer consistently apply global attention, which can be interpreted as global infor-
mation exchange. This behavior changes abruptly starting from layer 2 all the way up to
layer 8, where we see an almost uniform mix of global and a local attention. Finally, in the
last two layers the attention behavior changes back abruptly to consistent global attention.

Figure 8 shows the attention maps of our model for one example input and one query
element. Indeed, we can observe attention behavior as previously discussed. Interesting,
however, are the attention maps in the middle layers, where the query element appears to
mostly attend to keys that are positioned in the same horizontal line as the query. We
suspect that this behavior is caused by our considered undersampling procedure (Sec. 4.1),
which introduces blurring along the horizontal axis of an image.
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Figure 9: Reconstruction SSIM of our models on the single-coil brain dataset as a function
of trained epochs. Training large ViT models tends to be more epoch efficient than training
U-nets when given enough data.

We notice that the attention behavior of a ViT for image reconstruction is quite different
from a ViT trained for classification (Dosovitskiy et al., 2020). A ViT for image classification
typically start with a widely spread mix of global and local attention in the first layer, which
monotonically converges to consistent global attention as we move to deeper layers.

C.5. ViT Training Behavior

With reduced inductive bias, one might wonder how much training time the ViT needs in
order to reach reasonable performance. In the following we inspect the training behavior
of our models. Figure 9 depicts validation scores of our largest and smallest model variants
after taking certain numbers of gradient steps. The models were trained on the single-coil
brain dataset for 40 epochs with the same mini-batch size.

Contributed to their inductive bias, the U-net models attain high validation scores
already early on during training but experience saturating returns after 50% of total training
time, whereas for ViT the validation score starts at a lower point but seems to improve in
a more steady fashion. Interestingly, even with drastically reduced inductive bias, the ViT-
L enters the performance regime of the U-net after only 25% of total training time and
overtakes the U-net-L after 75% of total training time.

For both the U-net and the ViT we notice that larger models need fewer epochs to
reach higher validation scores. However, the ViT appears to benefit more effectively from
increasing parameter counts than the U-net, since not only does our largest ViT model have
significantly fewer parameters than our largest U-net model, but it also experiences a bigger
performance gain when switching from the smallest variant.

These observations indicate that the ViT enjoys higher training efficiency than the U-net
in high parameter and data regimes.

C.6. Linear Transformer

For a regular Transformer, both computational time and space scale quadratically with the
sequence length due to the computation of the self-attention matrix (2). For image recon-
struction, this quadratic bottleneck quickly becomes prohibitively expensive with growing
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Table 6: Reconstruction ac-
curacy of Nyströmformer vari-
ants for the 4-fold single-coil
setup.

Task Model SSIM

Knee Nyst-M 0.7427
ViT-M 0.7438

Brain Nyst-L 0.8274
ViT-L 0.8274
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Figure 10: Empirical computational costs of
Nyströmformer compared to ViT during inference
when operating on gray scale images of size 320 × 320.
The models were deployed on a single NVIDIA RTX
A6000 GPU. Left: Throughput measured in images
per second. Right: Largest possible batch size to fit
on device. Note that the Nyströmformer is a linear
Transformer and thus time and space complexity only
scales linearly with increasing image size (as opposed to
quadratic scaling in the case of ViT).

image size and limited computational resources. To mitigate the scaling issue, linear Trans-
formers have been proposed, e.g., (Wang et al., 2020; Choromanski et al., 2020; Xiong et al.,
2021), which allow linear time and space complexity by approximating the self-attention
mechanism.

We found the Nyströmformer (Xiong et al., 2021) to be a promising linear Transformer
variant for image reconstruction in accelerated MRI, as it reaches on par reconstruction
accuracy with the regular ViT.

Table 6 shows the reconstruction performance on the 4-fold accelerated single-coil knee
or brain MRI reconstruction task of a 60M and 32M parameter Nyströmformer, denoted
Nyst-L and Nyst-M, respectively. Both linear Transformers have the same hyperparameter
configurations as our regular ViT variants, and are also trained in the same fashion. We see
that the Nyströmformer reaches comparable SSIM to the regular ViT in both reconstruction
tasks while being much more computationally efficient than the regular ViT, especially in
memory consumption, as shown in Fig. 10.

C.7. Impact of Patch Size

Computational time and space of a ViT scales quadratically with number of sequence ele-
ments. Therefore, increasing the patch size is of computational interest as larger patches
lead to a smaller sequence length and thus a drastic decrease in time and memory consump-
tion.

In this section, we investigate how a larger patch size impacts the reconstruction per-
formance of ViTs. In all our previous experiments we used a patch size of 10. For the
experiments in this section, we took our previous models and only changed the patch size
from 10 to 16. Additionally, we introduce a new ViT variant with 152M parameters (12
layers, 16 heads with dH = 64), denoted ViT-XL/16, that uses patch size 16. To distinguish
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Table 7: Reconstruction accuracy of
ViTs with different patch sizes on 4-
fold single-coil knee MRI reconstruc-
tion task.

Model Patch size SSIM

ViT-S 10 0.7402
16 0.7375

ViT-M 10 0.7438
16 0.7408
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Figure 11: Data and parameters scaling of a patch
size 16 ViT. In order for a larger patch size model
to reach the same SSIM as a smaller patch size
model, more parameters and data are needed.

between models in this section, we append ViT model names with ‘/16’ or ‘/10’ to refer to
patch size 16 or patch size 10 models, respectively. We find that, given the same amount
of data, the patch size 16 models yield slightly worse reconstruction accuracy.

Reconstruction accuracy. Table 7 compares the reconstruction accuracy (SSIM) of
patch size 16 models to the patch size 10 models on the 4-fold single-coil knee MRI task.
We see that the SSIM for the patch size 16 models dropped by a slight amount. However, we
notice that the accuracy gap between the larger patch size model and the smaller patch size
model may be compensated by scaling up the amount of data and the parameter count, as
for example demonstrated in Fig. 11. Here, we observe that as the amount of data increases
the SSIM difference between the smaller patch 10 model, ViT-S/10, and the larger patch 16
model, ViT-M/16, decreases. However, if we only increase the patch size without changing
the model size, then the accuracy gap appears to continue as indicated by the accuracy
curve of ViT-S/16.

Computational resources. Although the patch size 16 models need more parameters
(and more data) than the patch size 10 models to perform equally well, they still have
a clear computational advantage as shown in Table 8. We observe that the patch size 16
models, though having more parameters, still provide a significant throughput and especially
memory advantage over the patch size 10 models. Setup is described in Appendix B.3.

ImageNet pre-training. Finally, when utilizing pre-training on ImageNet as described
in 4.3, it is also possible for a patch size 16 model to perform on par with a U-net. Figure 12
shows the effect of pre-training and fine-tuning the ViT-XL/16 on the 4-fold single-coil brain
MRI dataset. The pre-trained model is denoted by PT-ViT-XL/16. We observe that PT-
ViT-XL/16 experiences a drastic performance gain over the non-pre-trained ViT-XL/16,
while yielding on par results with U-net-L. Note that PT-ViT-XL/16 has an enormous
speed and memory advantage over the U-net-L.
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Table 8: Comparison of throughput and maximal batch-size between patch size 16 and
patch size 10 models.

Model Parameters Throughput Batch size

ViT-S/10 8M 442 img/s 440
ViT-M/16 32M 635 img/s 2100
ViT-L/10 60M 97 img/s 272
ViT-XL/16 152M 207 img/s 1200
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Figure 12: Impact of ImageNet pre-training on the patch size 16 ViT-XL with subsequent
fine-tuning on the fastMRI single-coil brain dataset. Pre-training the ViT results in a
significant boost in reconstruction performance, especially when the amount of fine-tuning
data is low. The pre-trained patch size 16 ViT reaches on par accuracy with the U-net-L.

C.8. Impact of the Loss Function

In this section we discuss how different choices of training objectives (loss functions) can
impact model performance. We compare two training objectives: (i) minimizing the L1-loss,
which we now refer to as ‘L1-loss training’, and (ii) maximizing the SSIM, which we now
refer to as ‘SSIM training’. Intuitively, L1-loss training should yield higher peak signal-
to-noise ratio (PSNR) than SSIM training, while SSIM training should yield higher SSIM
scores than L1-loss training.

Table 9 depicts our results for a ViT-M with either L1-loss training or SSIM training.
SSIM training indeed results in significantly better evaluation SSIM than L1-loss training.
However, L1-loss training does not provide much better PSNR than SSIM training, and
in fact only reaches on par PSNR with SSIM training. Moreover, we also noticed during
the experiments that SSIM training gives much better PSNR early on during the training
process than L1-loss training.

These observations suggest that using a perceptual metric, such as SSIM, as loss function
for training ViTs for image reconstruction might be more advantageous than choosing a
pixel-wise loss function such as the L1-loss.
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Table 9: Comparison of performance of a ViT-M on 4-fold accelerated single-coil knee
dataset, when using L1-Loss or SSIM as training objective. Training on maximizing SSIM
not only yields better SSIM at inference than L1-Loss training but also yields on-par PSNR
with L1-Loss training.

Training
Objective

PSNR [dB]
(evaluated)

SSIM
(evaluated)

L1-Loss 32.28± 7.55 0.726± 0.267

SSIM 32.22± 7.99 0.744± 0.249

Table 10: Results for ViT-VarNets on the 4-fold accelerated single-coil knee task. Using
the ViT in a VarNet fashion hurts performance rather than improving it: ViT-S has 8M
parameters and performs better than any of the ViT-VN variants which each have about
32M parameters.

ViT-VN-8/4M ViT-VN-4/8M ViT-VN-2/16M ViT-S

SSIM 0.725± 0.249 0.728± 0.253 0.731± 0.251 0.736± 0.247

C.9. Data-consistency in ViTs

In all previous sections, we train the ViT to directly map a coarse root-sum-of-squares
reconstruction to the ground-truth magnitude image, without incorporating data consis-
tency with known k-space data. However, networks that incorporate data consistency steps
typically give a boost in performance. In this section, we therefore experiment with data
consistency techniques for ViTs.

Replacing U-nets with ViTs in the VarNet. The End-to-end VarNet (Sriram et al.,
2020) yields state-of-the-art image reconstruction performance for deep learning based ac-
celerated MRI, by combining data consistency steps with U-nets. In the following, we
experiment with replacing U-nets with ViTs in the VarNet.

We train 3 ViT-VarNet variants with 32M parameters: (i) ViT-VN-8/4M, which has
8 cascades of 4M parameters sized ViTs, (ii) ViT-VN-4/8M, which has 4 cascades of 8M
parameters sized ViTs, and (iii) ViT-VN-2/16M, which has 2 cascades of 16M parameters
sized ViTs. We further note that we use a patch size of 16 for all ViTs used in this section.
Moreover, for simplicity, we apply the End-to-end VarNet to the single-coil setup, which
omits the need for sensitivity maps estimation networks.

Table 10 provides our results on the 4-fold accelerated single-coil knee dataset. We
observe that, first, having fewer cascades with larger ViTs yields better performance than
having more cascades but with smaller ViTs, and second, none of the ViT-VarNet variants
outperform a simple ViT-S (only 8M parameters) that does not rely on any data consistency.
Thus we did not identify a benefit by directly substituting Unets with ViTs in a VarNet,
however there might be other options to use data consistency steps together with ViTs that
yield a benefit.
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Data consistency at inference. Other than using ViTs in a VarNet, we can also apply
data consistency in the single-coil setup as follows: First, we train the ViT to map the coarse
least-square reconstruction x̂LS = FHPHy to the ground-truth image x∗ ∈ Cn, which yields
an estimate fθ(x̂LS), where fθ is the neural network with parameters θ. Note that we use
the larger full-sized complex-valued images as opposed to the cropped magnitude images
as in Sec. 4. Then, at inference, we replace the Fourier coefficients of our estimate fθ(x̂LS)
with the known k-space measurements y.

For this setup, we experimented with several loss functions. For example, using the
L1-loss for separately penalizing the real and imaginary part, or applying the SSIM-loss
separately on real and imaginary part. We also tried several combinations of L1-loss and
SSIM-loss, such as first applying the L1-loss on complex-values, and then combine this loss
value together with the loss value after applying the SSIM-loss to the magnitude image.

We made the following observations from our experiments: We found that applying data
consistency as described in this paragraph improves reconstruction performance. However
to apply a data-consistency term for MRI, we need to train the network to reconstruct a
complex-valued image, and for the loss function we used (SSIM, L2, and L1 losses), training
a network to reconstruct a complex-valued image and then mapping it to a real-valued one
by taking absolute values performs worse than training a ViT to map the cropped magnitude
zero-filled image to the cropped magnitude ground-truth image as in Sec. 4. The benefit of
the data consistency step did not offset this loss in performance, thus, in our setup a ViT
performed best without relying on a data consistency techniques.
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