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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reason-
ing abilities of large language models (LLMs) on mathematics and programming
tasks, often by maximizing pass@1 correctness. However, optimizing single-
attempt accuracy can inadvertently suppress response diversity across repeated
attempts, narrowing exploration and overlooking underrepresented strategies. We
introduce UpSkill, a training time method that adapts Mutual Information Skill
Learning (MISL) to LLMs to induce structured response diversity: a discrete latent
z selects a reproducible “strategy” that steers the token distribution toward distinct
modes. We propose a novel reward that we implement within Group Relative Policy
Optimization (GRPO): a token-level mutual information (MI) reward that encour-
ages trajectory specificity to z. Experiments on GSM8K with three open-weight
models, Llama 3.1-8B, Qwen 2.5-7B, and R1-Distilled—-Qwen2.5-Math—1.5B
show that UpSkill improves multi-attempt metrics, yielding median gains of ~4%
in pass@k and ~7% in consensus@k without degrading pass@l. Addi-
tionally, we prove that improvements in pass@k are closely tied to the mutual

information objective, providing a theoretical justification for UpSkill.

1 INTRODUCTION

LLMs excel at verifiable reasoning tasks such
as mathematical problem solving and code gen-
eration (Guo et al., 2025). However, repeated
sampling often yields highly similar outputs
(Shaier et al., 2025). This is detrimental in multi-
attempt settings where just one correct comple-
tion solves the problem at hand, such as code
generation with tests (Chen et al., 2021) or for-
mal proofs in Lean (Trinh et al., 2024), as a lack
of diversity reduces the effective number of inde-
pendent attempts. Therefore, for these or other
objectives evaluated by pass@k, or the prob-
ability that at least one of k completions will
be correct, more deterministic output decreases
the chance that some sampled attempt will suc-
ceed. Furthermore, recent work has found that
post-training that optimizes single-attempt cor-
rectness suppresses response variation across
attempts (Chen et al., 2025; Dang et al., 2025),
creating a discrepancy between how models are
trained and how they are used and evaluated.
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Figure 1: Token-level MISL improves multi-
attempt accuracy without hurting single-attempt
accuracy on GSMB8K for the Qwen 2.5-7B model
(See Sec. 5.2)

The challenge of balancing diversity and accuracy, or exploration and exploitation (Sutton & Barto,
2015), has primarily been studied in prior works that change how decoding is done. Methods such as
temperature sampling (Renze & Guven, 2024), nucleus sampling (Holtzman et al., 2020), and prompt
perturbations (Shur-Ofry et al., 2024) can inject variety, but they require manual tuning (Du et al.,
2025) and are brittle across domains (Shi et al., 2024; Qiang et al., 2024). Separately, prior training-
time methods do not expose a controllable basis of strategies and require a complex training regime
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If Raymond does half as much laundry as Sarah, and Sarah does 4 times as much laundry as David, calculate
the difference in the amount of laundry Raymond and David do if Sarah does 400 pounds of laundry.

9

(] Sarah does 400 pounds of laundry. Let D be the amount of laundry David does and let (]
David does 1/4 the laundry Sarah does, so he R be the amount of laundry Raymond does.
does 400 / 4 = 100 pounds of laundry. Since Sarah does 4 times as much laundry as
Raymond does 1/2 the laundry Sarah does, so David, and Raymond does half as much laundry as
he does 400 / 2 = 100 pounds of laundry. Sarah, we know that 4D = 400 and R =400/ 2
The difference is 200 — 100 = 100 pounds of The difference is:
laundry. R—D=400/2-400/4=200-100 =100

A : 100 d
Answer: 100 pounds nswer pounds

Figure 2: UpSkill is an unsupervised method for training LLMs to produce diverse responses. After
training, different latent vectors z (blue boxes above) correspond to different response strategies.
Because of space constraints, the figure shows summarized responses from UpSkill; we report the
full responses in Appendix I.

to properly balance exploration and exploitation (Tang et al., 2025; Chen et al., 2025). We seek a
training-time mechanism that (i) increases diversity in a controlled manner, (ii) produces semantically
distinct and reproducible modes of reasoning, and (iii) preserves single-attempt verifiable accuracy.

We introduce UpSkill, a training-time approach that induces structured response diversity without
prompt engineering. The key idea behind UpSkill is to introduce an input token z that structures the
response, so that different values of z correspond to different responses. Formally, we will model
LLM attempts on verifiable reasoning tasks as a token-level Markov decision process. We can then
adopt prior work from reinforcement learning on learning skills, which learn a policy conditioned
on a latent variable z. These methods (Eysenbach et al., 2019; Gregor et al., 2016a; Achiam et al.,
2018; Sharma et al., 2020a; Florensa et al., 2017) include a loss term that maximizes the mutual
information between z and the policy’s behavior. Precisely, we adapt the CSF method (Zheng et al.,
2024) to LLMs: the model conditions its response on a discrete latent z € {1, ..., N}, and training
encourages behaviors whose distribution depends strongly on z. Intuitively, each 2z should correspond
to a reproducible strategy, and the set of strategies should span a broad range of behaviors.

The main contribution of our paper is a method for training LL.Ms to produce diverse responses.
Our method implements mutual information skill learning by applying GRPO (Shao et al., 2024)
with a novel reward term: a token-level mutual information reward, which encourages diversity in
completions. Finally, we sketch a theoretical link between Z(7; 2 | ) and pass@k: the improvement
of pass@k after training is related to Z(7; z | «), In summary, our contributions are as follows:

» UpSkill achieves median gains of +4% in pass@k and +7% in consensus@k on GSM8K
across three open-weight models using RL fine-tuning with LoRA adapters on 2,000 prob-
lems, with preserved pass@1 accuracy.

* In an arithmetic puzzle environment, UpSkill improves pass@5 by +10% by mitigating
response variation collapse and developing a collection of diverse and complementary skills.

» We prove that pass@k improvement closely corresponds to the mutual information Z(7; z |
x), showing that large improvements in multi-attempt accuracy require — and are limited
by — sufficient mutual information.

* We provide an effective and reproducible method for token-level MI, and will release an
open-source implementation focused on practical performance.
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2 BACKGROUND AND RELATED WORK

2.1 MULTI-ATTEMPT EVALUATION, REDUNDANCY, AND WHY DIVERSITY MATTERS

For verifiable tasks, we often consider the probability of success across multiple completions rather
than a single attempt (Chen et al., 2025). Let x denote the input and 7 a sampled completion from
policy (- | ). Let Y(7) € {0, 1} indicate correctness under a deterministic verifier. For k attempts,
the standard metric

x) @)

is the complement of the joint failure probability across k i.i.d. draws 7y.; ~ 7(- | ) (Chen et al.,
2021). Letting p = Pr(Y (1) = 1 | x), we therefore have Pr(pass@k(z)) = 1 — (1 — p)*.

k
pass@k(xz) = 1— Pr(ﬂ{Y(Ti) =0}

i=1

In practice, identical prompts with fixed decoding hyperparameters can yield strongly correlated
trajectories, especially for deterministic or near-deterministic samplers (Vijayakumar et al., 2018).
A useful lens is to consider an “effective number of attempts” k.g that discounts k by a correlation
term (analogous to design effects in sampling) (Kish, 1965). If completions have pairwise correlation
p in the binary success indicators, a heuristic adjustment gives ko ~ k/(1 + (k — 1)p): as p— 1,
additional attempts contribute little; as p — 0, keg — k. Although crude, this highlights the
central point: reducing dependence among attempts is as important as raising per-attempt accuracy.
Structured diversity aims to decrease redundancy so that the joint failure probability decreases faster
in k. For Gaussian random variables, correlation and mutual information are closely related (as
intuitively, correlated variables have information on each other) (Krafft, 2013). However, as text
correctness cannot easily be framed as a Gaussian distribution, mutual information is more a natural
measurement.

Beyond pass@k, plurality@k and consensus@k measure agreement among completions,
examining robustness and internal consistency of the model’s reasoning (Wallace et al., 2025). In
many workflows, agreement acts as a proxy for confidence while still benefiting from diversity to
escape shared failure modes (Hochlehnert et al., 2025).

2.2 RL ON LANGUAGE MODELS: TOKEN-LEVEL MDPs, RLVR, AND GRPO

Autoregressive LLMs can be cast as policies over a Markov decision process (MDP), where the state
is the token prefix and the action is the next token (Bahdanau et al., 2017; Ouyang et al., 2022). This
setup, often referred to as the token-level MDP (Zhong et al., 2025), allows reinforcement learning
algorithms to directly optimize model behavior for correctness on verifiable tasks such as math or
code.

Reinforcement Learning from Verifiable Rewards (RLVR) leverages automatically checkable signals
(e.g., exact numeric answers, unit tests) as rewards, with the goal being to improve the pass rate of
policies while ensuring the new policy remains close to a base model (Liu et al., 2023; Dou et al.,
2024). Let mg denote the trainable policy and 7p,se a frozen reference. A common form of the
per-trajectory reward is

T.RLVR(T) = rcon‘ectness(’r) - 5DKL ('/TO(' | £E) || 7Tbasc(' | 1’)) ) (2)
where 8 > 0 controls deviation from the base model (Xiong et al., 2024).

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) adapts PPO-style updates to reasoning
by sampling multiple completions per prompt x as a group. Within-group baselines reduce variance
and increase the relative difference between completion rewards. Concretely, for each x one draws
C trajectories {7;}%_,, computes verifiable rewards and a group baseline (e.g., a rank or mean-
normalized signal), and updates 7y with clipped policy ratios as in PPO (Schulman et al., 2017).
GRPO typically improves pass@1 on math/code under RLVR (Shao et al., 2024). However, absent
any explicit term for diversity, it can reduce variation across attempts as the policy sharpens around
locally high-reward regions (Dang et al., 2025).

As some intuition for this distribution change, suppose that the model is attempting to predict the
correct answer in a setting where it believes that the answer is Yes with probability 70% and No
with probability 30%. Cross-entropy loss encourages a model to predict the correct distribution of
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70% Yes and 30% No; on the other hand, GRPO training would cause the model to collapse its
output distribution towards predicting 100% Yes, as it maximizes the pass@1. Empirically, this can
shrink the entropy of the completion distribution and heighten redundancy among attempts, limiting
pass@k improvements even as pass@1 increases (Dang et al., 2025).

2.3 MUTUAL INFORMATION AND SKILL DISCOVERY

Maximizing mutual information (MI) between latent variables and observed behavior has been a
recurring tool for learning structured, controllable representations (Tishby et al., 2000; Kingma &
Welling, 2013; Stratos & Wiseman, 2020).

In generative modeling, InfoGAN (Chen et al., 2016) augments GAN training with a variational lower
bound on Z(c; z) to make latent codes ¢ predictably control semantic factors (e.g., stroke thickness
for MNIST). In variational autoencoders, InfoVAE (Zhao et al., 2018b) adds an explicit MI term to
counteract posterior collapse and preserve informative latents even with expressive decoders.

In sequential decision making, MI has been used to discover diverse, reusable behaviors without
external rewards. Early work such as VIC (Gregor et al., 2016b) and DIAYN (Eysenbach et al., 2018)
maximizes Z(s; z) or Z(7; z), encouraging skills z whose rollouts visit different parts of state or
trajectory space and remain identifiable from observations. InfoGAIL (Li et al., 2017) extends this
to imitation learning by maximizing MI between a latent intention and trajectories to capture multi-
modal expert behavior. Subsequent methods bias the MI objective toward long-horizon distinctiveness
to avoid trivial short-term variation (Sharma et al., 2020b; Hansen et al., 2021). Additional related
work on Ml is available in Appendix B.

Unsupervised skill discovery in RL can be viewed as maximizing the MI between a latent “skill”
variable and observed trajectories (Gregor et al., 2016b; Eysenbach et al., 2018). Let z € Z index a
skill and let 7 denote a trajectory. These methods maximize

max I(r;2 | 2) = E[logpa(r|2,2) — logpe(r|2)| = H(r|2)=H(r |2,2). ()

This decomposition clarifies the pressure on the policy: (i) to increase marginal entropy H(7 | ) so
that trajectories cover more of the solution space; and (ii) to decrease conditional entropy H (7 | z, z)
so that each z induces a reproducible, stable mode. The net effect is a set of distinct, consistent
behaviors indexed by z that together span diverse solution strategies.

Our setting is closest in spirit to unsupervised skill discovery (e.g., DIAYN, VIC) and to mutual
information-based skill learning (Zheng et al., 2024), but differs in applying these techniques to
language models with RLVR training. We develop an approach for maximizing MI tailored to LLM
reasoning, and also connect pass@k performance with the mutual information objective.

2.4  OTHER TECHNIQUES FOR RESPONSE DIVERSIFICATION

Beyond MI-based training, several other approaches aim to increase output diversity.

At inference time, decoding-time diversification alters sampling: increasing temperature, switching to
nucleus/top-k sampling (Holtzman et al., 2020; Fan et al., 2018), or perturbing prompts (Qiang et al.,
2024). While simple, these approaches face limitations: (i) they often fail to explore qualitatively
distinct solution paths (Nguyen et al., 2025; Renze & Guven, 2024); (ii) they require domain-specific
tuning (Wiher et al., 2022); and (iii) they can trade off against correctness and coherence (Nguyen
et al., 2025). Prompt-cycling can inject domain knowledge (e.g., “try algebra” vs. “try geometry”),
but it burdens users with prompt engineering and saturates well below human diversity (Shur-Ofry
et al., 2024).

Determinantal point processes (DPPs) provide another path by rewarding sets of outputs that span
high-volume regions in embedding space (Kulesza, 2012; Vijayakumar et al., 2018; Meister et al.,
2023; Wang et al., 2024). In reinforcement learning, determinant-based rewards can encourage agents
to explore trajectories that span complementary regions of state space (Ash et al., 2021; Zhao et al.,
2024). Compared to MI, which directly couples a latent z with trajectories to ensure reproducible
modes, DPP-based diversity is distribution-free: it treats a set of samples as diverse if they occupy a
high-volume region in representation space, regardless of whether the same diversity is reproducible
under repeated sampling.
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Let’s try geometry.. GRPO Pressure

Let’s try algebra...\i" e

H™(t|z) = H™ (1) > H™(t|2) K H™(1)
GRPO: logp,(t | x,2) — logp,(t | x)

Figure 3: Example illustration of how the MISL reward improves pass@k performance. Before
MISL (left), the trajectory distribution is independent of the latents z, so the conditional entropy is
close to the marginal. MISL training prevents distribution collapse due to pass@1 training (middle).
Adding the token-level MI reward (right) yields well-separated clusters indexed by z, reducing
conditional entropy while preserving high marginal entropy. At inference, fixing different z values
produces consistent and diverse solution strategies.

Finally, training-time diversification has also been studied through explicit pass@k-based objectives.
Tang et al. (2025) proposed an unbiased estimator for generic k-attempt objectives, showing overall
improved model efficacy. Extending this, Chen et al. (2025) argue that simply training on pass@1
falls victim to a local maximum of over-exploitation and reduced exploration. They find that
pass@k training naturally focusing optimization efforts on harder problems producing significant
improvements in both pass@k and pass@1. Outside of verifiable domains, DivPO (Lanchantin
et al., 2025) alters preference optimization by contrasting diverse high-quality responses with common
low-quality ones using a predefined diversity objective, yielding large diversity gains on creative and
instruction-following tasks.

As we provide an orthogonal method to improve pass@k and diversity, our approach may comple-
ment that of Chen et al. (2025), Tang et al. (2025), and Lanchantin et al. (2025).

3  OPTIMIZING LLM DIVERSITY WITH MUTUAL INFORMATION

Given an input = and an autoregressive policy 7( - | z) that produces a completion (trajectory)
7= (y1,...,yr), we introduce a discrete latent z € {1,..., N} via a lightweight prompt prefix
(e.g., Strategy {z} |), yielding conditional policies 7 (- | =, z). During training, z is drawn
uniformly at random from the set {1, ..., N'}. At inference, one selects k < N distinct values of z
and generates one completion per value, producing k£ semantically distinct attempts.

3.1 OBIECTIVE

We would like to encourage structured response diversity by maximizing the conditional mutual
information Z(7; z | ). Intuitively, maximizing mutual information makes the outputs of different
strategies distinguishable, ensuring that each z induces a reliably different mode. By querying each
strategy once, we obtain k& semantically distinct attempts. Formally, this corresponds to maximizing

max I(r;z [ z) = E[logpw(Tlx,Z)*logpﬂ(T | w)}, @)

which increases the overall entropy of trajectories while reducing the conditional entropy within each
z-mode, ensuring diverse yet reproducible strategies. The term p. (7 | z) = 25:1 pr(T | 2,2") is
a uniform mixture over skills. Maximizing mutual information encourages (i) high marginal entropy
of trajectories, promoting broad coverage; and (ii) low conditional entropy given z, so that each
response is distinct and determined by z. Figure 3 provides an overview of the relevant dynamics.
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Algorithm 1 UpSkill: A method for training LLMs to produce diverse responses with mutual
information.
1: Inmputs: base policy 7y ase, trainable policy 7, latent count /N, completions per group C, weights
(al y (2, /B )
2: repeat
Sample a minibatch of prompts {z}
for each x in the minibatch do
Sample z ~ Unif({1,..., N}); generate C' completions {7;}$_, with (- | 2, 2)
Compute 7o (73), v (7i; @, 2), and Akp,(7;) as above
end for
Form per-sample rewards via equation 6; compute advantages; update m with GRPO
until convergence

R A

3.2 TOKEN-LEVEL MUTUAL INFORMATION REWARD

We now focus on implementing the mutual information as a token-level reward. For each pair (z, z),
let {7;}_; be C completions sampled from 7(- | x, z). We define a per-sample token-level score
c
romi(Tii @, 2) = ) [Ingw(yt | @, 2,y<t) — logpx(ys | 7, y<t)} ; (5)
t=1
where the second term is the uniform mixture

N
1
Pr(ye | T, y<t) = N 5 Pr (Yt |93,Z/ay<t)-
z'=1

Log-probabilities are computed by 7 on the realized 7;. In our implementation the mixture is
computed exactly across all IV skills; this is feasible for the NV used in our experiments (Section 5).
Since &7nvi(7i; @, 2) is a Monte Carlo estimator of Z(7; z | «), we make this our main reward term
with UpSkill, with the other reward term being considered in ablation experiments. Appendix D

discusses an alternative based on semantic mutual information.

3.3 COMBINED RL OBJECTIVE

Let reorr(73) € R denote the verifiable correctness reward (often binary) and define the per-trajectory
KL penalty as

|7

m(ye | @, 2,Y<t)
AKL T = log ’
( Z) t=Z1 7T-base(yt | aj,Z,y<t)

The per-sample scalar reward is
r(ri;@,2) = reon(Ti) — BAkL(T) + o1 rrvmi(7i; @, 2), (6)
with a1, 8 > 0. We apply GRPO to optimize the sum of the combined rewards.

3.4 TRAINING PROCEDURE

We fine-tune a trainable policy mp with GRPO while injecting a discrete strategy variable z &€
{1,..., N}. At each step, we draw a minibatch of prompts z and, for each x, sample a strategy
z uniformly and generate C' completions 71.c ~ 7g(- | «,z) under fixed decoding. For every
completion 7, we compute: (i) a verifiable correctness reward 7o (7) from the task’s deterministic
checker; (ii) the token-level MISL term 71y that measures how specific the trajectory is to the
chosen strategy; and (iii) a KL control term toward a frozen base policy. We then update the policy
with GRPO on this reward.

3.5 INFERENCE

Given a budget of k attempts, we choose k distinct latents from {1,..., N} and generate one
completion per latent under fixed decoding hyperparameters. Aggregation (e.g., majority vote) can
optionally be applied. Because each completion is produced by a trained, distinct mode, conditional
success probabilities remain larger than with redundant samplings, improving multi-attempt metrics.
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4 THEORETICAL CONNECTION BETWEEN Pass@k IMPROVEMENT AND
MUTUAL INFORMATION

Our main theoretical result shows that the mutual information objective is closely tied to pass@k.
In particularly, we will show that the mutual information objective is a lower bound on improvement
in the pass@k objective, so maximizing mutual information provably results in an increased (lower
bound on) pass@k. Our theoretical results will require the following assumptions:

1. k-uniform mixture model: Assume that the marginal distribution over the skills is identical
to the base model.

2. Distributional impact: Let a, be the probability of success of strategy z and a be the
probability of success of the base model. Assume that for all x € A there exists 7 > 0 such
that for all z € [k], |a, — a| > né(wa (- | ), 7 (- | z)), where ¢ is the total variation
distance.

The second assumption says that the distribution shifts induced by UpSkill correspond to different
problem approaches, and, as a result, will have different probabilities of success. A more precise
definition of k-uniform mixture models, additional justification for the assumptions, and the statement
and proof of the lemma is in Appendix C.

Lemma 1. Let pass@k g be the pass@k score of the base model on prompt z and pass@k,,; be
the pass@k score of the mixture model on prompt . Under the above assumptions, we show that:

< pass@k)s —pass@kp

1—exp (—C1n*Z(r;2 | z)?) <1—exp(—CoZ(r;z | x))

1 —pass@kp

where C'; depends on k and C'> depends on k£ and max, a.

The quantity in the middle can be interpreted as the fraction of possible improvement from the base
model that is realized by the mixture model. Since monotonically increasing functions in Z(7; z | )
provide both lower and upper bounds on how much the mixture model improves over the base model,
it makes sense to optimize directly for the mutual information. UpSkill explicitly increases Z(7; z | x)
during training, ensuring diversity across skills and giving a guaranteed improvement in pass@k
over the base model.

5 EXPERIMENTS

We evaluate whether conditioning on a discrete latent z and training with our token-level mutual-
information reward (equation 5) improves multi-attempt metrics. We present results in two settings:
(1) a controlled arithmetic environment that allows for fully verifiable evaluation and direct inspection
of distributional effects, and (2) the GSM8K benchmark across three open-weight models. We then
report ablations on the number of strategies /V and on adding a semantic-MI surrogate.

5.1 ARITHMETIC ENVIRONMENT

The arithmetic environment consists of prompts with three single-digit integers and a latent skill
index z€{0, ..., N—1}. A small transformer model chooses one of the integers to be a target and is
required to produce a simple arithmetic expression with the other two digits that evaluates to this
target. We use an automatically-verified correctness reward and training uses GRPO without a KL
penalty. Full details of the environment, model, and training procedure are provided in Appendix E.

Figure 4 illustrates that in the control condition (a;=0), training quickly collapses to a single
deterministic strategy: by the end of training, pass@1 and pass@5 are indistinguishable (0.793),
offering no benefit from multiple attempts. In contrast, with UpSkill (o1 =0.5, MI reward cap at
1.0), the model maintains diverse trajectories, yielding substantially higher multi-attempt accuracy
(pass@5= 0.897) despite a lower single-attempt accuracy (pass@1= 0.390). This difference aligns
with the entropy dynamics: UpSkill preserves broad output distributions (token entropy 0.723 —
0.797), sustaining diverse strategies and higher pass@5. By contrast, the control run—while
substantially improving pass@1l—collapses to near-deterministic outputs (entropy 0.723 — 0.030),
leaving pass@5 identical to pass@1 (see Appendix E.5 for more details).
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Accuracy on Arithmetic Task Without MI — ops by z
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Figure 4: Arithmetic environment results. Training curves show that under GRPO alone (blue),
pass@1 and pass@5 converge together, indicating that multiple attempts provide little benefit.
With MISL (orange; N=5), pass@5 improves substantially while pass@1 remains modest, demon-
strating that different latents yield complementary solutions. Operator distributions further highlight
this effect: without MISL, they are nearly identical across z, reflecting a lack of specialization,
whereas with MISL, distinct latents focus on different operators, producing diverse strategies that
drive multi-attempt gains.

Figure 4 illustrates that under UpSkill, different z values yield distinct distributions over operators
and digits, whereas the control produces nearly identical distributions across z. On this small scale
environment, we can directly observe the learned strategies, and notably z = 1 and z = 2 converge
to risky yet common modes, whereas other values of z cover the remaining operations, improving
multi-attempt success with a strategy infeasible for optimizing a pass@1 objective. The distributions
over the first digit are available in Appendix E.7.

We additionally ablate the impact of starting model capabilities, the coefficient of KL-penalty, and
GRPO parameters (see Appendix F for full details and results). KL penalty [ discourages entropy
collapse by ensuring the new policy remains close to the initial policy, thereby improving performance.
On models with 8 € [0.05,0.10], we test a; € [0.1,0.3,0.5] and find that well-chosen MI-reward
parameters increase pass@k by an average of 3% for the weaker base model. However, for the
stronger base model, we find the opposite trend. It is always best to choose a; = 0, with the
best choice of ay € [0.1,0.3,0.5] still leading to a 1.2% performance decrease. Our theoretical
results in Lemma 1 suggest that UpSkill improvement is negatively related to pass@1 (equivalently
pass@kp) capability, and thus, although surprising, this result is in line with our theoretical analysis.
We separately conjecture that 3, which corresponds with a decrease in exploration from the base
policy, conflicts with the mutual information incentive to explore.

5.2 GSMSK

We next evaluate on GSM8K (Cobbe et al., 2021), a dataset of grade-school arithmetic word problems.
We use 2,000 training problems and a held-out set of 100 questions. All experiments are conducted
in a zero-shot setting with a maximum sequence length of 1024 tokens. We train LoRA adapters
(approximately 80M trainable parameters) on top of three open-weight backbones: Llama 3.1-8B
(Meta Al 2025), Qwen 2.5-7B (Qwen Team, 2025), and R1-Distilled—-Qwen2.5-Math—1.5B. As
before, we apply GRPO with a correctness reward and with default KL penalty, and UpSkill is
applied at the token level as in Eq. (6). At inference, we fix k distinct skill indices and generate one
completion per skill. More details are available in Appendix G.

Figure 5 shows our performance on the withheld evaluation set; asterisks mark p<.05 improvements.
Token-level MISL improves pass@k at a significant level in R1-Distilled-Qwen and improved
consensus@k at a significant level in Qwen, while pass@1 is maintained or improved. Interest-
ingly, these results do not entirely parallel the arithmetic environment, as UpSkills improvement has
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not come at the cost of pass@1. We hypothesize this is due to the existence of a larger set of correct
reasoning approaches, and thus MISL does not necessarily come at a cost of pass@1. Chen et al.
(2025) have separately found that pass@k training method can improve pass@1 performance. We
include summarized outputs from Qwen in Figure 1.

100 pass@1 pass@k plurality@k consensus@k
B without MI 87 88 g4

—w with MT g2* 83
= 80T 74.8 ]
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8 68
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Figure 5: Performance with N=5 strategies and token MI only. We observe consistent gains on
pass@l and consensus@5. Asterisks denote p<<.05 from a two-proportions z-test on the results.

5.3 GSMS8K ABLATIONS

We conduct two ablations to probe the robustness of the approach. First, increasing the number of
skills beyond N =5 produces mixed results. Many GSM8K problems admit only a limited number
of distinct solution paths, so larger NV values fragment the capacity into modes that do not translate
into additional gains. Second, we study the effect of replacing the token-level MI with a semantic
MI, which we formally introduce in Appendix D. This semantic MI occasionally yields further
improvements but introduces instability due to estimator variance in high dimensions. We provide
more details in Appendix H. Our main results therefore use token-level MISL only, with semantic
variants left as a direction for future work.

6 CONCLUSION

Our experiments show that UpSkill provides a simple and effective way to induce strategy-level
diversity in LLMs, leading to consistent gains on multi-attempt metrics such as pass@5 and
consensus@5. By conditioning on discrete latent variables, the model learns reproducible modes
of reasoning that reduce redundancy across attempts and increase the likelihood of success. Beyond
these empirical findings, UpSkill provides a principled training-time approach for improving response
diversity, and our analysis links Z(7; z | ) to upper bounds in pass@k improvement in training.
We hope this stimulates research on robust semantic diversity signals and theoretical ties between
information-theoretic objectives and multi-attempt success.

Limitations. There are a few notable limitations with our work. Assumption 1 is rather limiting
and difficult to enforce empirically, so we hope to find a natural way to either incorporate it into our
training method or find another assumption that can also prove Lemma | As future work, we hope
for further experimentation across domains and with larger models, to better study how our method
is affected by KL-penalty and base model performance, and to approach the theoretical guarantees
from the perspective of Tsallis entropy (Furuichi, 2000).

Reproducibility. We make several efforts towards encouraging reproducibility of our work and
results. We have included all experiment code in the supplementary files, along with instructions
to reproduce our results. We use only models under permissive licenses. For our theoretical results, we
provide a description of assumptions and the complete proof of claims in the appendix. Additionally,
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for various experiments whose full results could not fit in the main paper, we include the full results
in the appendix.

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone Fishing: Neural Active
Learning with Fisher Embeddings, December 2021. URL http://arxiv.org/abs/2106.
09675. arXiv:2106.09675 [cs].

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An Actor-Critic Algorithm for Sequence Prediction, March 2017.
URL http://arxiv.org/abs/1607.07086. arXiv:1607.07086 [cs].

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and R Devon Hjelm. Mine: Mutual information neural estimation, 2021. URL
https://arxiv.org/abs/1801.04062.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107.
03374. arXiv:2107.03374 [cs].

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets, 2016.
URL https://arxiv.org/abs/1606.03657.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@k training for adaptively balancing exploration and exploitation of large reasoning models,
2025. URL https://arxiv.org/abs/2508.10751.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xingyu Dang, Christina Baek, J Zico Kolter, and Aditi Raghunathan. Assessing diversity collapse in
reasoning. In Scaling Self-Improving Foundation Models without Human Supervision, 2025. URL
https://openreview.net/forum?id=AMiKsHLjQh.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Junjie Shan, Caishuang Huang, Wei
Shen, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and
Tao Gui. StepCoder: Improve Code Generation with Reinforcement Learning from Compiler
Feedback, February 2024. URL http://arxiv.org/abs/2402.01391. arXiv:2402.01391
[cs] version: 1.

Weihua Du, Yiming Yang, and Sean Welleck. Optimizing Temperature for Language Models with
Multi-Sample Inference, February 2025. URL http://arxiv.org/abs/2502.05234.
arXiv:2502.05234 [cs] version: 1.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You Need:
Learning Skills without a Reward Function, October 2018. URL http://arxiv.org/abs/
1802.06070. arXiv:1802.06070 [cs].

10


http://arxiv.org/abs/2106.09675
http://arxiv.org/abs/2106.09675
http://arxiv.org/abs/1607.07086
https://arxiv.org/abs/1801.04062
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/2508.10751
https://openreview.net/forum?id=AMiKsHLjQh
http://arxiv.org/abs/2402.01391
http://arxiv.org/abs/2502.05234
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070

Under review as a conference paper at ICLR 2026

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJx63 JRgFm.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation, 2018. URL
https://arxiv.org/abs/1805.04833.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. arXiv preprint arXiv:1704.03012, 2017.

Shigeru Furuichi. Information theoretical properties of Tsallis entropies. Journal of Mathematical
Physics, 47(2):023302, February 2006. ISSN 0022-2488, 1089-7658. doi: 10.1063/1.2165744.
URL http://arxiv.org/abs/cond-mat/0405600. arXiv:cond-mat/0405600.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016a.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational Intrinsic Control, November
2016b. URL http://arxiv.org/abs/1611.07507. arXiv:1611.07507 [cs].

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Steven Hansen, Guillaume Desjardins, Kate Baumli, David Warde-Farley, Nicolas Heess, Simon
Osindero, and Volodymyr Mnih. Entropic Desired Dynamics for Intrinsic Control. In Ad-
vances in Neural Information Processing Systems, volume 34, pp. 11436—-11448. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/hash/5f7f02b7e4ade23430£345£954¢c938cl-Abstract.html.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Re-
producibility, April 2025. URL http://arxiv.org/abs/2504.07086. arXiv:2504.07086
[cs].

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2020. URL https://arxiv.org/abs/1904.09751.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled representation
learning for non-parallel text style transfer, 2018. URL https://arxiv.org/abs/1808.
04339.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2013. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [stat].

Leslie Kish. Survey Sampling. Wiley, 1965.

Peter Krafft. Correlation and mutual information. https://lips.cs.princeton.edu/
correlation-and-mutual-information/, February 2013. Laboratory for Intelligent
Probabilistic Systems, Princeton University Department of Computer Science.

Alexander Kraskov, Harald Stoegbauer, and Peter Grassberger. Estimating Mutual Information.
Physical Review E, 69(6):066138, June 2004. ISSN 1539-3755, 1550-2376. doi: 10.1103/
PhysRevE.69.066138. URL http://arxiv.org/abs/cond-mat/0305641. arXiv:cond-
mat/0305641.

Alex Kulesza. Determinantal point processes for machine learning. Foundations and Trends® in
Machine Learning, 5(2-3):123-286, 2012. ISSN 1935-8245. doi: 10.1561/2200000044. URL
http://dx.doi.org/10.1561/2200000044.

Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
Sukhbaatar, and Ilia Kulikov. Diverse preference optimization, 2025. URL https://arxiv.
org/abs/2501.18101.

11


https://openreview.net/forum?id=SJx63jRqFm
https://arxiv.org/abs/1805.04833
http://arxiv.org/abs/cond-mat/0405600
http://arxiv.org/abs/1611.07507
https://proceedings.neurips.cc/paper_files/paper/2021/hash/5f7f02b7e4ade23430f345f954c938c1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/5f7f02b7e4ade23430f345f954c938c1-Abstract.html
http://arxiv.org/abs/2504.07086
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1808.04339
https://arxiv.org/abs/1808.04339
http://arxiv.org/abs/1312.6114
https://lips.cs.princeton.edu/correlation-and-mutual-information/
https://lips.cs.princeton.edu/correlation-and-mutual-information/
http://arxiv.org/abs/cond-mat/0305641
http://dx.doi.org/10.1561/2200000044
https://arxiv.org/abs/2501.18101
https://arxiv.org/abs/2501.18101

Under review as a conference paper at ICLR 2026

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations, 2017. URL https://arxiv.org/abs/1703.08840.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. RLTF:
Reinforcement Learning from Unit Test Feedback, November 2023. URL http://arxiv.
org/abs/2307.04349. arXiv:2307.04349 [cs].

Clara Meister, Martina Forster, and Ryan Cotterell. Determinantal Beam Search, June 2023. URL
http://arxiv.org/abs/2106.07400. arXiv:2106.07400 [cs].

Meta AL The llama 4 herd: The beginning of a new era of natively multimodal
ai innovation. Meta AI Blog, April 2025. URL https://ai.meta.com/blog/
llama—4-multimodal-intelligence/. Announcement of the Llama 4 multimodal Al
model family. Accessed: September 25, 2025.

Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs, June 2025.
URL http://arxiv.org/abs/2407.01082. arXiv:2407.01082 [cs] version: 7.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, March 2022.
URL http://arxiv.org/abs/2203.02155. arXiv:2203.02155 [cs].

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky,
and Aram Galstyan. Prompt Perturbation Consistency Learning for Robust Language Models. In
Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational Linguis-
tics: EACL 2024, pp. 1357-1370, St. Julian’s, Malta, March 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.findings—eacl.91/.

Qwen Team. Qwen3: Think deeper, act faster. Qwen Blog, April 2025. URL https://gwenlm.
github.io/blog/gwen3/. Announcement of Qwen3 large language model family. Accessed:
September 25, 2025.

Matthew Renze and Erhan Guven. The Effect of Sampling Temperature on Problem Solving in Large
Language Models. In Findings of the Association for Computational Linguistics: EMNLP 2024,
pp- 7346-7356, 2024. doi: 10.18653/v1/2024.findings-emnlp.432. URL http://arxiv.org/
abs/2402.05201. arXiv:2402.05201 [cs].

Igal Sason and Sergio Verdd. $f$-divergence Inequalities. IEEE Transactions on Information
Theory, 62(11):5973-6006, November 2016. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.2016.
2603151. URL http://arxiv.org/abs/1508.00335. arXiv:1508.00335 [cs].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Sagi Shaier, Mario Sanz-Guerrero, and Katharina von der Wense. Asking Again and Again: Exploring
LLM Robustness to Repeated Questions, March 2025. URL http://arxiv.org/abs/2412.
07923. arXiv:2412.07923 [cs].

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020a.
URL https://openreview.net/forum?id=HJgLZR4KvVH.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-Aware

Unsupervised Discovery of Skills, February 2020b. URL http://arxiv.org/abs/1907.
01657. arXiv:1907.01657 [cs].

12


https://arxiv.org/abs/1703.08840
http://arxiv.org/abs/2307.04349
http://arxiv.org/abs/2307.04349
http://arxiv.org/abs/2106.07400
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
http://arxiv.org/abs/2407.01082
http://arxiv.org/abs/2203.02155
https://aclanthology.org/2024.findings-eacl.91/
https://qwenlm.github.io/blog/qwen3/
https://qwenlm.github.io/blog/qwen3/
http://arxiv.org/abs/2402.05201
http://arxiv.org/abs/2402.05201
http://arxiv.org/abs/1508.00335
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2412.07923
http://arxiv.org/abs/2412.07923
https://openreview.net/forum?id=HJgLZR4KvH
http://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1907.01657

Under review as a conference paper at ICLR 2026

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
Thorough Examination of Decoding Methods in the Era of LLMs. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Processing, pp. 8601-8629, Miami, Florida,
USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.489.
URL https://aclanthology.org/2024.emnlp-main.489.

Michal Shur-Ofry, Bar Horowitz-Amsalem, Adir Rahamim, and Yonatan Belinkov. Growing a
Tail: Increasing Output Diversity in Large Language Models, November 2024. URL http:
//arxiv.org/abs/2411.02989. arXiv:2411.02989 [cs].

Greg Ver Steeg. gregversteeg/npeet, May 2025. URL https://github.com/
gregversteeqg/NPEET. original-date: 2014-10-10T19:57:02Z.

Karl Stratos and Sam Wiseman. Learning Discrete Structured Representations by Adversarially
Maximizing Mutual Information, July 2020. URL http://arxiv.org/abs/2004.03991.
arXiv:2004.03991 [cs].

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. 2015.

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models
for inference time objectives using reinforcement learning, 2025. URL https://arxiv.org/
abs/2503.19595.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, April
2000. URL http://arxiv.org/abs/physics/0004057. arXiv:physics/0004057.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding, 2019. URL https://arxiv.org/abs/1807.03748.

Ashwin K. Vijayakumar, Michael Cogswell, Ramprasath R. Selvaraju, Qing Sun, Stefan Lee,
David Crandall, and Dhruv Batra. Diverse Beam Search: Decoding Diverse Solutions from
Neural Sequence Models, October 2018. URL http://arxiv.org/abs/1610.02424.
arXiv:1610.02424 [cs].

Eric Wallace, Olivia Watkins, Miles Wang, Kai Chen, and Chris Koch. Estimating Worst-Case Frontier
Risks of Open-Weight LLMs, August 2025. URL http://arxiv.org/abs/2508.03153.
arXiv:2508.03153 [cs] version: 1.

Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stallone, Yoon Kim, Polina Golland, and Rameswar
Panda. Diversity Measurement and Subset Selection for Instruction Tuning Datasets, February
2024. URL http://arxiv.org/abs/2402.02318. arXiv:2402.02318 [cs].

Gian Wiher, Clara Meister, and Ryan Cotterell. On Decoding Strategies for Neural Text Generators,
March 2022. URL http://arxiv.org/abs/2203.15721. arXiv:2203.15721 [cs].

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative Preference Learning from Human Feedback: Bridging Theory and Practice
for RLHF under KL-Constraint, May 2024. URL http://arxiv.org/abs/2312.11456.
arXiv:2312.11456 [cs].

Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, and Yann LeCun. Adversarially regularized
autoencoders, 2018a. URL https://arxiv.org/abs/1706.04223.

Kaiyan Zhao, Yiming Wang, Yuyang Chen, Xiaoguang Niu, Yan Li, and Leong Hou U. Efficient
Diversity-based Experience Replay for Deep Reinforcement Learning, October 2024. URL
http://arxiv.org/abs/2410.20487. arXiv:2410.20487 [cs] version: 1.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational
autoencoders, 2018b. URL https://arxiv.org/abs/1706.02262.

13


https://aclanthology.org/2024.emnlp-main.489
http://arxiv.org/abs/2411.02989
http://arxiv.org/abs/2411.02989
https://github.com/gregversteeg/NPEET
https://github.com/gregversteeg/NPEET
http://arxiv.org/abs/2004.03991
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
http://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/2508.03153
http://arxiv.org/abs/2402.02318
http://arxiv.org/abs/2203.15721
http://arxiv.org/abs/2312.11456
https://arxiv.org/abs/1706.04223
http://arxiv.org/abs/2410.20487
https://arxiv.org/abs/1706.02262

Under review as a conference paper at ICLR 2026

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders, 2017. URL https://arxiv.org/
abs/1703.10960.

Chongyi Zheng, Jens Tuyls, Joanne Peng, and Benjamin Eysenbach. Can a misl fly? analysis and
ingredients for mutual information skill learning. arXiv preprint arXiv:2412.08021, 2024.

Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian,
and Liwei Wang. Dpo meets ppo: Reinforced token optimization for rlhf, 2025. URL https:
//arxiv.org/abs/2404.18922.

A USE OF LLMS

Large language models were used in the preparation of this work for writing assistance (including
polishing, improving presentation of concepts, and restructuring of text), for retrieval and discovery
of related work, and for support in producing experimental code and figures. Language models were
additionally used for feedback on the paper and to formalize mathematical arguments. All analysis,
experimental design, and final interpretations are our own.

B EXTENDED MUTUAL INFORMATION RELATED WORK

Estimating MI reliably is challenging in high dimensions. Variational bounds (Barber—Agakov)
optimize a classifier or regressor g4(z|-) as a proxy for the intractable posterior (van den Oord et al.,
2019). Contrastive bounds such as InfoNCE (van den Oord et al., 2019) reduce MI estimation to
noise-contrastive classification and have become standard due to their stability. Neural MI estimators
like MINE (Belghazi et al., 2021) directly optimize a Donsker—Varadhan bound but can suffer from
bias/variance trade-offs and training instability. Nonparametric kNN estimators (KSG) (Kraskov et al.,
2004) avoid parametric critics but require many samples and are sensitive to dimension, motivating
careful batching and normalization when used inside policy gradients. In text generation, MI-style
objectives have been used to prevent latent collapse and enable controllable generation, e.g., by
encouraging informative latents in variational text models (Zhao et al., 2017; 2018a) or aligning
codes with style attributes (John et al., 2018). These approaches typically maximize MI between
prompts or attributes and latent variables, rather than between a discrete strategy and the full trajectory
distribution, and are optimized with supervised losses rather than RL.

Conceptually, our objective reconciles two desiderata emphasized in prior MI work: coverage (high
marginal entropy over trajectories) and control (low conditional entropy given z). Whereas decoding-
time diversity manipulates token entropy without guarantees about identifiable modes, MI-based
diversification learns reusable, reproducible modes indexed by a small discrete latent. This makes
diversity a first-class, training-time property that can be cleanly exercised at inference by selecting
distinct z values.

C STATEMENT AND DERIVATION OF THEORETICAL BOUNDS

C.1 PROBLEM SETUP AND ASSUMPTIONS

Let & be the set of all possible prompts. The statement of Lemma | applies to the general class of
k-uniform mixture models.

Definition. A k-uniform mixture model (M, B) is defined to be an ordered pair of a mixture model,
which is a set of k different policies for generating trajectories, which we will call mps (- | z) for a
prompt © € X and strategy z € [k], along with a base model (- | x) for generating trajectories
subject to the condition that

k
1
%ZWM7Z('|$) =mp(-|z)Vx € X.

z=1
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This definition can be interpreted as follows: g is the trajectory distribution of the original, non-
strategy conditioned language model. If we weigh each strategy as being equally important, we
sample once from the mixture model by randomly choosing one strategy. In this case the joint
distribution of trajectories from the mixture is

1 k
7TM(' | J?) = % ZT"JW,Z(' | Z‘)
z=1

The condition essentially means that the joint distribution of trajectories over picking a strategy
uniformly at random must be the same as the original distribution. Therefore, in essence the mixture
model partitions 7 into k different policies that together average back to 7.

In practice, this condition imposes undue constraints on the strategy distribution, and thus for the
practical implementation, this is not enforced. Also, while in practice one may actually train N > k
different strategies and then randomly sample k different strategies so that they still have equal
probabilities of being selected, here we make the simplifying assumption that N = k, which is true
for all of our experiments.

For ease of notation, let « = Pr(Y,(751) = 1 | ) and a, = Pr(Yy(rm,) = 1) for z € [k].
Because the trajectories 7,7, , are sampled independently, we have that

k
Z (7

We provide additional justification for the second assumption made in section 4. For the first, if the
strategies differ in more than just style and contain meaningful semantic differences, we expect that
the difference in success should be proportional to how different these two distributions are. The
total variation distance measures this distance in trajectory space, while the constant 7 controls how
sensitive the success probabilities are to changes in the distribution shift.

(| x) =7p(-|

?r\»—x

C.2 EXTENDING PASS@K TO k-UNIFORM MIXTURE MODELS

We now extend the traditional definition of pass@k to fit the setting of k-uniform mixture models to
leverage the fact that we now have a natural structure for querying k different strategies by varying z.
This is notably different from the setting in the consistency assumption, which can be interpreted as
querying just one strategy uniformly at random.

For a given prompt = and deterministic verifier Y,.(7) outputting 1 if 7 is a valid output on prompt
2 and 0 otherwise, and k-uniform mixture model (M, B), define pass@k,, be the probability that
querying each of these strategies independently exactly once (see Sec. 3.5) results in at least one
correct answer, and define pass@k g to be the probability that querying 7 independently k times
results in at least one correct answer. Writing this out mathematically, for each z € [k] we sample
™,z ~ Tam,z(- | @); then

k
passlky = l—Pr<ﬂ{Yx(TM,Z):O}

z=1

x)—l—HPr (tar2) =01]z). (8

While we use the same definition of pass@k for B as in standard literature, we include it for the
sake of completeness; similarly sampling 75 , ~ mp(- | ) independently for each z € [k] we find
that

k
pass@kg = 1— Pr(ﬂ{Yﬁ(TBJ) =0} x) =1—-Pr(Yy(rp1) =0 2)* )
z=1
where we simplify the product into the RHS of equation 9 with the independence of samples. Then
k
pass@kp =1— (1 —a)*, pass@k,, =1— H(l —a).
z=1

We now give the precise statement of the main result.
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Lemma 2 (pass@k Improvement for k-uniform Mixture Models, Full Statement). Let v =
max_ ey a. and let ¢ : R>o +— R be defined as p(z) = le‘iglx forz # 0,1 and p(0) = 0, (1) = 1.
Then

27 (. 2 B .
|- exp _kn°Z(r;z | @) Spass@kM pass@kp <1 exp kI(r;z | @)
2¢(k)? 1 — pass@kp

C.3 DERIVATION OF LOWER BOUND

Using Taylor’s Theorem on f(y) = log(1 — y) gives the equations f(a,) = f(a) + (a. —a)f'(a) +
2(a. — a)f"(&.) where &, lies in between a. and a, for z € [k]. Summing all of these equations,
the linear terms cancel due to equation 7. Then

Zlog 1—a,)=klog(l —a) —I—Z 2f7(E). (10)

z€[k]

Let A be the random variable that takes value a, for each z € [k] with probability % Since
f"ly) = *ﬁ is a decreasing function in the interval [0, 1), we find that " (&) < f”(0) = —1
forall z € [k], i.e
1
Z log(l —a.) < klog(l —a) — Z §(az —a)?
z€[k] z€[k]
kV —
ar(A) N 1 — pass@kpg
2 1 —pass@ky

k
= klog(l —a) Z log(1 > exp (QVar(A))
z€[k]
1 - k
= pass@ky —pass@kp = (1 — pass@kp) (1 - paSS@M)
1 —pass@kp

S ]

We now find a lower bound for Var(A) in terms of the mutual information to finish off the proof. Let
§(-, -) represent the total variation distance between two distributions. We have that Var(A) > E[| A|]?
by Jensen’s Inequality, so using the distributional impact assumption,

k 2
1
Var(A) Z (Esznif{l,Q,... [|az - a| ( Z |az - a|> Z (k ;né(wM,mﬂ—B))

2
=n* (E.ounit(1,2,...k3[0(mar,2, 78)]) " -

Note that by the assumption that 7wy (- | ) = w5 (- | ) we have that 0 < mp (- | ) < knp(- | x)
for all z € [k]. Therefore,

dﬂ'M’z

(1) € [0, k].

Applying Theorem 26 from Sason & Verdid (2016) with 5, = 0, 51 = % where the constants are from
the assumption on bounded likelihood ratio, we have that D (mar,. || 78) < @(k)é(Tar,2, TB).
Summing over z € [k]| and dividing by k yields

dﬂ'B

I(r;z | 2) = E.umitgr2,.. i} [DxL(Tar || 7B)] < 0 (B)E.unit{1,2,... k3 [0 (Tar,2, TB)]-
Putting both bounds together, we finally find that

nZ(r;z | x))2

Var(4) 2 < o)

kT (r: 2
= pass@ky —pass@kp > (1 —pass@kp) (1—exp <_W)>

as desired.
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C.4 DERIVATION OF UPPER BOUND

Let u = max, a, < 1. In the interval [min(a, a1, ag, . .., ax), max(a,ay, as,...,ax)] f” achieves
its minimum at f"'(u) = *ﬁ- Then from equation 10
Z log(1 —a,) > klog(l —a) — 50— a Z
z€[k] z€[k]
: 1
k
= H(lfaz) >(1—a)%exp TimE Z(a -
z=1 z€[k]
—> 1 —pass@ky > (1 —pass@kpg)exp | — 2 Z . (11)
z€[K]

This places an upper bound on how much we can possibly improve pass@k compared to our original
trajectory distributions. Using Pinsker’s Inequality, we find that for all ¢ € [k],

jai —al = | PrlY (mar) = 1) = PrlY (7) = Ul = | Y mua(') = Y wpalr)
Y (r")=1 Y(r")=1
< Y Imwalr) = wpa(r)] < Z ma0,i(7) = 7,4 (7)]
v (=1

1
< (7B, ) < \/QDKL(WM,i | 75.:)

1 k 1
= (a; —a)® < §DKL(7TM,1' | 75,:) = Z (a — <3 % Z L(mai || 7B.4)

z€[k] €[k]
k k

= §Ez~umf{1,2,...,k}[DKL(WM,i | 7B)] = 51(732 | ).

Combining this with equation 11 yields
k
1 —pass@k, > (1—pass@k3)exp< WI(T;Z |x)) . (12)

As aresult, if Z(7; z | «) is too small, then our theoretical upper bound on improvement in pass@k
between steps 0 and 7" will also be very small.

Rearranging equation 12 to bound the improvement A := pass@k,; — pass@k g, we obtain
A =(1—pass@kp) — (1 —pass@ky)

< (1 —passtkp) <1 — exp (MI(T;Z | w)))

k
5 L(1;2 | @),

< (1 —pass@kp)- m

where the final inequality uses 1 —e™" < x.

D SEMANTIC MUTUAL INFORMATION REWARD

One observation that we made empirically is that token-level differences tend to reflect formatting or
paraphrasing, rather than semantically distinct strategies. To bias toward more meaningful differences,
we test an alternative method for measuring mutual information by embedding completions with a
fixed encoder ¥(7) € R and estimating the mutual information between embeddings and skills for a
single prompt x: R

Z(Y(r);2 ]| 2) (13)
using the KSG k-nearest-neighbor estimator (Kraskov et al., 2004), implemented with the library
NPEET (Steeg, 2025). Concretely, for each « we collect the set of embeddings across strategies
and samples, B(z) = {(¢(7; (z) ),z):z€{l,....,N},i=1,...,C}, and apply KSG to B(x) to
obtain a single scalar TSMI(JU)
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E ARITHMETIC ENVIRONMENT

E.1 TASK

Each problem instance consists of three integers a,b, ¢ € {0,...,9}. A small transformer model
chooses one of the integers to be a target and is required to produce a simple arithmetic expression
with the other two digits that evaluates to this target. Valid operators are {+, —, X, <, mod }, with
division and modulo defined only when results are integer and denominators are nonzero. A latent
skill index z € {0, ..., N—1} is provided as part of the prompt, conditioning the model on which
strategy to adopt.

E.2 PROMPT FORMAT AND CONDITIONING

The input is formatted as
[z] a b c

where [z] encodes the latent skill id and a, b, ¢ are the three digits. The model is required to
generate exactly three tokens in the order (digit, operator, digit). This restriction
enforces that every completion corresponds to a candidate arithmetic expression of the form Lo R
with L, R € {a,b, c}. The verifier deterministically evaluates the completion, awarding a reward of 1
if the output matches the designated target and O otherwise.

E.3 EVALUATION PROTOCOL

At inference, we fix k¥ = min(N, 5) distinct latent skills and generate one completion per skill at a
fixed temperature. We then report:

* pass@1: the fraction of skills (out of k) that yield a correct completion, i.e. the probability that
a single uniformly sampled skill would succeed.

* pass@k: the probability that at least one of the k skills yields a correct completion.

This definition differs from conventional pass@1 (best-of-k) to more closely capture the multi-skill
sampling process we target.

E.4 MODEL AND OPTIMIZATION

The policy is a 2-layer causal Transformer (hidden size 128, 4 attention heads, pre-layer normalization,
GELU activations). Inputs are embedded with learned token and positional embeddings. The output
vocabulary consists of 15 symbols: 0-9, +, -, *, /, %. Training uses GRPO updates without a KL
penalty, comparing runs with and without the MISL reward. Teacher-forced cross-entropy warmup is
applied for 100 steps before switching to RL. Unless otherwise noted: N=5, temperature 0.9, batch
size 32 groups, and C'=>5 completions per update.

E.5 TRAINING OUTCOMES

Table 1 reports pass@1, pass@5, and marginal token entropy H,, at the end of the supervised
warmup (step 0), mid-training (step 1000), and the final step (step 2000). All runs use N = 5 skills
and 2000 training steps.

E.6 SENSITIVITY TO oty AND CAP

Increasing the clipping parameter cap sustains higher entropy but also introduces more variance
across runs. Raising o strengthens specialization and increases pass@5, though at the expense of
pass@l. A moderate setting of a;=0.5 and cap= 1.0 provided the most consistent balance in our
experiments.
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After Warmup (Step 0) Step 1000 Step 2000
Condition pel p@5 H,, pel pe5 H,, pel p@5 H,,

Control — (a; =0) 0.313 0.665 0.723 0.668 0.673 0.016 0.793 0.793 0.013
(a1 =0.5,cap=1.0) 0313 0.665 0.723 0.353 0.843 0.755 0.390 0.897 0.768
(g =0.5,cap=1.5) 0.313 0.665 0.723 0.338 0.833 0.764 0.399 0.830 0.852
(ap =1.0,cap=1.0) 0.313 0.665 0.723 0.281 0.813 0.813 0.373 0.897 0.844

Table 1: Arithmetic environment training outcomes. Accuracy is reported as pass@1 and pass@5;
H,, is marginal token entropy. MISL prevents entropy collapse and sustains diverse skill-conditioned
strategies.

E.7 ADDITIONAL DISTRIBUTION DATA
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Figure 6: Learned distribution over first response digit with a3 = 0.5 and cap = 1.0

F ABLATED ARITHMETIC ENVIRONMENT

Here we ablate model capacity by varying the number of warmup steps and by adding a KL penalty.
Warmup 50 corresponds to a weaker base model, while warmup 100 produces a stronger base model.
This manipulation allows us to study how UpSkill interacts with correctness-oriented pretraining
and how much headroom remains for diversity improvements. We also include a KL penalty with
coefficients k1_coef € {0.05,0.10}, completions per group C € {5,10}, and MIs weights
a1 € {0.0,0.1,0.3,0.5} (token MI only).

Warmup Steps pass@1 pass@k

50 0.235 0.540
100 0.313 0.665

Table 2: Performance of the base model after warmup only (no RL). Warmup 50 yields a weaker
base capacity, while warmup 100 yields a stronger base capacity.
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Tables 3 and 4 report pass@1l and pass@5 after RL across settings. Columns aX.Y denote
a1 = XY.

kl_coef warmup C pass@Ql,oo passQlao1 passQlyos passQlaos

0.050 50 5 0.779 0.780 0.561 0.457
0.050 50 10 0.845 0.817 0.655 0.439
0.100 50 5 0.813 0.801 0.557 0.366
0.100 50 10 0.833 0.860 0.629 0.437
0.050 100 5 0.908 0.897 0.749 0.521
0.050 100 10 0914 0.897 0.767 0.521
0.100 100 5 0911 0.895 0.788 0.568
0.100 100 10 0.917 0.901 0.844 0.614

Table 3: pass@1 after RL with KL penalty in the arithmetic environment.

kl_coef warmup C pass@5,00 pass@5,01 pass@Q5,03 pass@5,05

0.050 50 5 0.793 0.807 0.840 0.870
0.050 50 10 0.867 0.833 0.867 0.817
0.100 50 5 0.840 0.843 0.840 0.847
0.100 50 10 0.857 0.893 0.850 0.820
0.050 100 5 0.940 0.917 0.863 0.883
0.050 100 10 0.927 0.903 0.903 0.887
0.100 100 5 0.927 0.907 0.910 0.917
0.100 100 10 0.944 0.931 0.940 0.923

Table 4: pass@5 after RL with KL penalty in the arithmetic environment.

Overall, a modest KL penalty (0.05-0.10) prevents entropy collapse and supports higher multi-
attempt accuracy, especially when the warmup baseline is stronger (100 vs. 50). With warmup 50,
larger o7 increases pass@5 substantially (e.g., 0.793 — 0.870), though often at the expense of
pass@l. With warmup 100, the base capacity is already high, and further MISL gains are more
limited, reflecting our theoretical expectation that improvements in pass@k depend on the available
headroom for diversity.

G GSMS8K EXPERIMENTAL DETAILS

G.1 SETUP

We evaluate our method on GSM8K (Cobbe et al., 2021), a grade-school arithmetic dataset with
2,000 training and 100 held-out evaluation problems. Prompts are provided in a zero-shot format with
a maximum sequence length of 1024 tokens. For inference, we fix k distinct latent skill identifiers
and sample one completion per skill at fixed temperature.

G.2 MODELS

We attach LoRA adapters (about 80M parameters) to three open-weight backbones: Llama 3.1-8B,
Qwen 2.5-7B, and R1-Distilled—Qwen2.5-Math—1.5B. Training uses GRPO with correctness reward
only (control) or correctness and token-level MISL (experimental) with ai; = 5.0. Each experiment
is run for 2000 steps on a single H100 GPU with 80 GB of memory.

G.3 EVALUATION DETAILS

We train and evaluate the model with the prompting format of: "Strategy [z] | Question".

At inference, we fix NV distinct latent skills and generate one completion per skill, with N = 5 except
in ablations. To determine correctness, we extract the final word containing digits in the model’s

20



Under review as a conference paper at ICLR 2026

output, remove characters not in 0123456789 . —, and compare the resulting value against the
reference answer. We then report:

* pass@1: the fraction of skills (out of V) that yield a correct completion; i.e., the probability
that a single uniformly sampled skill would succeed

* pass@k: the probability that at least one of the k skills yields a correct completion
* plurality@k: the probability that there is a unique mode response, and that it is correct
* consensus@k: the probability that a strict majority of the completions are correct.

H ABLATION STUDIES

H.1 SCALING THE NUMBER OF STRATEGIES.

We investigated the effect of increasing the number of latent skills /N beyond the default N=5.
In particular, we trained models with N € {10, 20} while holding other hyperparameters fixed.
The gains were mixed: although we continued to see improvements in consensus@k relative to
baselines without MISL, the magnitude of these gains was reduced compared to the N =5 case, and
we did not see a gainin pass@k or plurality@k. Many GSMS8K problems admit only one or two
broad solution approaches, so forcing the model to partition its capacity into ten or twenty strategies
may lead to fragmentation into modes that were either redundant or unhelpful.

H.2 SEMANTIC MI IS PROMISING BUT UNSTABLE.

We also evaluated the addition of a semantic mutual information reward, using the KSG estimator
of Z(1(7);z | ) in the embedding space of 7. In principle, this should encourage the learned
strategies to differ not only at the token level but also in their higher-level semantics. In practice,
however, training with a nonzero ay proved challenging. Optimizing against the KSG estimator often
destabilized learning, likely due to estimator variance in high dimensions. KSG requires multiple
points per class to be well-behaved. In our experiments (Section 5), we use N = 5 strategies and
C = 6 completions per strategy (30 points per x) when the semantic term is enabled; for larger N we
disable the semantic term to avoid excessive compute and estimator variance. We include this test in
our ablation.

On R1-Distilled-Qwen, combining semantic MI with token MI occasionally yielded additional
improvements, but these were not consistent and were offset by instability in other runs. On Qwen2.5-
7B, semantic MI frequently caused degeneracy, with certain strategies collapsing to incoherent or
repetitive outputs.

These results suggest that semantic MI is promising but fragile. The occasional positive signal
points to the potential of semantic surrogates for enforcing genuine strategy diversity, but the current
estimator is too noisy to be reliable in practice. We conjecture that improved semantic objectives
could offer a more stable alternative. For the purposes of this work, we therefore report token-MI
only as the main result, with semantic MI left for future exploration.

I FuLL EXAMPLE OUTPUTS

The following contains the full output of the summarized items in Figure 1:

Strategy 1: Problem: If Raymond does half as much laundry as Sarah, and Sarah does 4 times as
much laundry as David, calculate the difference in the amount of laundry Raymond and David do if

Sarah does 400 pounds of laundry.

SOLUTION: To find the solution, let’s break it down step by step:

1. Sarah does 400 pounds of laundry.

2. David does 1/4 of the laundry Sarah does because Sarah does 4 times as much laundry as
David. So David does 400 / 4 = 100 pounds of laundry.
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3. Raymond does half as much laundry as Sarah does, so Raymond does 400 / 2 = 200 pounds
of laundry.

4. Now, we need to calculate the difference between the amount of laundry Raymond does and
David does.

The difference is 200 - 100 = 100 pounds
The difference in the amount of laundry Raymond and David do is 100 pounds.

Strategy 3: Problem: If Raymond does half as much laundry as Sarah, and Sarah does 4 times as
much laundry as David, calculate the difference in the amount of laundry Raymond and David do if
Sarah does 400 pounds of laundry.

SOLUTION: To solve this problem, let’s break it down step by step.

Given information:

* Raymond does half as much laundry as Sarah.
* Sarah does 4 times as much laundry as David.

* Sarah does 400 pounds of laundry.

Step 1: Determine the amount of laundry David does. Since Sarah does 4 times as much laundry as
David, and Sarah does 400 pounds of laundry, we can set up the following equation to find out how
much David does:

Let D be the amount of laundry David does. 4D = 400

To find D, we divide both sides by 4.
D=400/4
D =100

Step 2: Determine the amount of laundry Raymond does.
Since Raymond does half as much laundry as Sarah, and Sarah does 400 pounds of laundry, we can
find out how much Raymond does:

Let R be the amount of laundry Raymond does.
R=400/2
R =200

Step 3: Calculate the difference between the amount of laundry Raymond and David do.
Difference = Amount of laundry Raymond does - Amount of laundry David does
Difference = 200 - 100

Difference = 100

Therefore, the difference in the amount of laundry Raymond and David do is 100 pounds.
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