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ABSTRACT

Achieving fairness in machine learning remains a critical challenge, especially
due to the opaque effects of data augmentation on input spaces within nonlinear
neural networks. Nevertheless, current approaches that emphasize augmenting
latent features, rather than input spaces, offer limited insights into their ability
to detect and mitigate bias. In response, we introduce the concept of the “unfair
region" in the latent space, a subspace that highlights areas where misclassification
rates for certain demographic groups are disproportionately high, leading to unfair
prediction results. To address this, we propose Adversarial Latent Feature Aug-
mentation (ALFA), a method that leverages adversarial fairness attacks to perturb
latent space features, which are then used as data augmentation for fine-tuning.
ALFA intentionally shifts latent features into unfair regions, and the last layer of the
network is fine-tuned with these perturbed features, leading to a corrected decision
boundary that enhances fairness in classification in a cost-effective manner. We
present a theoretical framework demonstrating that our adversarial fairness objec-
tive reliably generates biased feature perturbations, and that fine-tuning on samples
from these unfair regions ensures fairness improvements. Extensive experiments
across diverse datasets, modalities, and backbone networks validate that training
with these adversarial features significantly enhances fairness while maintaining
predictive accuracy in classification tasks. The code is available on GitHub.

1 INTRODUCTION

The issue of fairness in machine learning is a well-recognized and multifaceted challenge. Addressing
fairness often involves manipulating or augmenting data to address inequalities between demographic
groups in the input space, as studied in (Jang et al., 2021; Rajabi & Garibay, 2022). However, the
transparency and efficacy of data augmentation in the input space to foster fairness are not always
clear due to the challenge of determining how transformations affect the nonlinear decision boundary.
This complexity has led to exploring augmentation strategies in the latent space, allowing for a more
nuanced analysis of augmentation’s impact.

The linearity of the last layer in neural networks’ latent space, such as in Multilayer Perceptron
(MLP) and Convolutional Neural Networks (CNNs), facilitates the examination of fairness issues
at the decision boundary. For example, (Buolamwini & Gebru, 2018) highlights how demographic
imbalances, like race, can lead to disproportionately higher misclassification rates, such as higher
false positives for individuals with darker skin tones in facial analysis software (Klare et al., 2015).
This example illustrates how biased data can result in unfair outcomes. In the latent space, the
linear classifier enables a clearer examination of how such imbalances in data distribution impact
the decision boundary. Beyond group-level analysis, exploring the latent space helps to identify
misclassified segments influenced by the linear classifier.

In short, exploring fairness within the latent space of neural networks is crucial for understanding and
mitigating biases. However, existing latent augmentation methods often overlook the fundamental
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Figure 1: A synthetic data example illustrating fairness issues and the identification of unfair regions
within the latent features. Let the demographic group {A = 1} privileged to be predicted as Y = 1.
The misclassification rates of subgroup {A = 1, Y = 0} and {A = 0, Y = 1} are disproportionately
high, indicated as unfair region in the left figure. ALFA generates adversarial perturbations in the
latent space against the fairness constraint, pushing the features towards a biased direction so that
the perturbed features overlap with the unfair region. Fine-tuning the last layer on these perturbed
features adjusts the decision boundary, correcting the unfair region and resulting in fairer predictions.

question of where and how fairness issues originate within the latent distribution. For example,
Fair-Mixup (Mroueh et al., 2021) operates under the assumption that a manifold exists in the latent
space between two demographic groups and advocates for data generation via interpolation on this
manifold. However, this assumption may be overly stringent, and Fair-Mixup does not specifically
address where fairness issues arise in the latent space.

Similarly, FAAP (Wang et al., 2022) attempts to obfuscate sensitive attributes in the latent repre-
sentation by projecting features towards the sensitive decision boundary. The challenge, however,
arises when perturbed features align along this boundary, potentially distorting the original feature
distribution. If these features remain confined to a linear alignment, the resulting decision boundary
can vary significantly, reducing the model’s generalization capacity.

To address these challenges, we propose the concept of the unfair region to analyze the root causes of
fairness issues in the latent space. This region is characterized by disproportionate misclassification
rates between privileged and underprivileged groups. Figure 1 (a) illustrates this concept, highlighting
areas where biased predictions are most prevalent. We further demonstrate the extent of bias within the
unfair region using synthetic data, as shown in Figure 2. Details of the synthetic data are introduced
in Appendix C.

However, examining the high-dimensional latent distribution is not straightforward. To automate the
detection and correction of unfair regions in the latent space, we propose a novel approach called
Adversarial Latent Feature Augmentation (ALFA). This method employs a counter-intuitive use of
adversarial attacks and data augmentation. Specifically, we introduce a fairness attack by perturbing
latent features based on a fairness constraint (Zafar et al., 2017). For instance, the perturbation
pushes privileged groups toward favorable outcomes while directing underprivileged groups toward
unfavorable outcomes, regardless of their true labels. This manipulation strengthens the correlation
between sensitive attributes and decision outcomes. To maintain the semantic integrity of perturbed
features, ALFA minimizes the Sinkhorn distance (Genevay et al., 2018) between the original and
perturbed features.

Consequently, fine-tuning the classifier with these perturbed features helps correct the decision
boundary, directly addressing the unfair regions and achieving more balanced misclassification rates
across demographic groups. Figure 2 (b) illustrates this concept using synthetic data, showcasing the
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(b) Perturbation on Synthetic Data

Unfair Regions

𝛅

𝛅
𝛅

𝛅

Unfair Misclassification Rate

Fair Misclassification Rate

Biased Prediction

Debiased Prediction

(c) Misclassification Rate VS. 𝛅

Figure 2: (a) In the synthetic dataset, regions exhibiting disproportionately high misclassification
rates are identified, indicating potential unfairness in predictions. (b) A fairness attack introduces
perturbations, denoted by δ towards these unfair regions, attempting to balance the misclassification
rate across groups by the corrected decision boundary (red line in (b)). (c) An appropriate δ can
equalize misclassification rates, achieving debiased predictions with a lower ∆EOd (sum of FPR
gap and TPR gap), without significant compromising in accuracy, as shown in the gray line in (c).
The improvement in ∆EOd is theoretically guaranteed as described in Section 3.3

impact of adversarial perturbations on the decision boundary. Furthermore, we provide theoretical
proof that training on perturbed datasets improves fairness in Section 3.3.

Our method is validated through extensive experiments on various datasets, including tabular datasets
such as Adult, COMPAS, German, and Drug; images from CelebA; and text from Wikipedia,
demonstrating its versatility. These experiments confirm that our method preserves accuracy while
significantly enhancing group fairness across diverse datasets and backbone networks.

We summarize our contributions as follows:

1. Introduced a novel latent space data augmentation method aimed at identifying and rectifying
areas of unfairness in classification models.

2. Provided a theoretical foundation that elucidates the counter-intuitive impact of adversarial
perturbations on improving fairness, supported by visual illustrations of the corrected
decision boundary.

3. Demonstrated that our method consistently achieves group fairness without compromising
accuracy through experiments on tabular, image, and text datasets.

2 RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

Diverse approaches have been proposed to secure fairness in the classification tasks. Chai & Wang
(2022) and Li & Liu (2022) proposed data reweighing; allocating weights for all samples according to
their importance. Chai & Wang (2022) balanced the gap between demographic groups weighing error-
prone samples in an adaptive way. Li & Liu (2022) adopted influence function (Koh & Liang, 2017)
to evaluate individual sample’s importance in affecting prediction. As an in-processing approach,
Zafar et al. (2017) and Wu et al. (2019) developed a fairness constraint adopting covariance between
sensitive attribute and classifier, and extending the constraint having convexity, respectively. Jang
et al. (2024) integrated both data and model perspectives to improve fairness.
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Figure 3: Comparison of each data manipulation in latent space for synthetic unfair data, (a) a naive
classifier, (b) FAAP, (c) Fair-Mixup, and (d) ALFA. The solid black line represents the original
decision boundary obtained via Logistic Regression, while the red dashed line shows the updated
decision boundary after feature manipulation. The manipulated features, indicated in cyan and red,
correspond to perturbed features in FAAP and ALFA, and interpolated features in Fair-Mixup. The
blue dashed line in FAAP indicates the sensitive decision boundary. The generated features in FAAP
and Fair-Mixup do not directly consider the region where fairness issue happens, and might not
sufficiently mitigate bias.

Some approaches use data augmentation to improve fairness. Jang et al. (2021) and Rajabi & Garibay
(2022) generated new fair data using VAE and GAN, respectively. Hsu et al. (2022) and Zhao
et al. (2020) adopted adversarial samples as data augmentation to improve accuracy and robustness,
respectively. Similarly, Li et al. (2023) generated antidote data analogous to the original data but
containing the opposite sensitive attribute to enhance individual fairness.

Manipulating features in the latent space becomes popular. Mroueh et al. (2021) proposed to generate
new data in the latent space by interpolation between latent features from different sensitive groups
to optimize fairness constraints. Wang et al. (2022) suggested adversarial perturbation on the latent
features towards the sensitive hyperplane which predicts the demographic group. Sun et al. (2023)
disentangle the latent feature into the sensitive feature and non-sensitive feature and obfuscate the
sensitive feature only. Mao et al. (2023) fine-tune the pre-trained classifier by training the last layer
with the balanced latent features under the designated fairness constraint. We demonstrate in Figure 3
how our latent feature manipulation differs from that of Mroueh et al. (2021) and Sun et al. (2023).

In contrast, there exist attempts to attack fairness. Koh et al. (2018) suggested attacking anomaly
detectors by blending perturbed data with the natural data and by optimizing influence-based gradient
ascent. Mehrabi et al. (2021) extended the idea of (Koh et al., 2018) combining the fairness constraint
suggested by Zafar et al. (2017). Similarly, Solans et al. (2020) developed a gradient-based poisoning
attack on algorithmic fairness. Chhabra et al. (2022) proposed a fairness attack and defense framework
in terms of unsupervised learning and fair clustering.

3 PROPOSED METHOD

Motivation. We use Equalized Odds (EOd) as the criterion for group fairness. Demographic Parity
(DP) requires independence between the predicted outcome and the sensitive attribute A ∈ {0, 1},
such that P (Ŷ |A = 0) = P (Ŷ |A = 1), i.e., Ŷ ⊥⊥ A. However, DP’s usefulness is limited when there
is a correlation between Y and A, where Y ⊥̸⊥ A. EOd overcomes this limitation by conditioning
on the true label Y . It requires that P (Ŷ |A = 1, Y = y) = P (Ŷ |A = 0, Y = y) for all y ∈ {0, 1}.
In other words, EOd ensures that the misclassification rates between the two demographic groups
are equal for each true label. In general, when a classifier is biased, misclassification occurs in
specific regions of the latent space. For instance, if individuals in the privileged group are more
likely to be predicted as positive, i.e., P (Ŷ |A = 1) ≥ P (Ŷ |A = 0), the false positive rate for
group {A = 1} and the false negative rate for group {A = 0} will be disproportionately higher.
Specifically, P (Ŷ = 1|A = 1, Y = 0) ≥ P (Ŷ = 1|A = 0, Y = 0) and P (Ŷ = 0|A = 0, Y =

1) ≥ P (Ŷ = 0|A = 1, Y = 1). To quantify this disparity, we define the evaluation metric as
∆EOd =

∑
y∈{0,1}

∣∣P (Ŷ = 1|A = 1, Y = y)− P (Ŷ = 1|A = 0, Y = y)
∣∣.
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Unfair Region. As shown in Figure 1 and 2, the unfair regions represent areas in the latent space
where certain demographic groups are disproportionately misclassified by the biased classifier.
Definition 3.1. Consider a linear classifier g(z) = sign(wT z + b), where z = f(x) represents
the latent space generated by an encoder f , and w and b are the classifier’s weights and bias. The
classifier g(z) is considered biased if its decision boundary wT z + b = 0 results in significantly
different outcomes (e.g., higher misclassification rates) for the groups defined by the sensitive
attribute A ∈ {0, 1}. We define the unfair region Runfair as the subspace of the latent space where the
classifier’s decision boundary results in disproportionately high differences in error rates between
these groups:

Runfair =
{
z ∈ Rd :

∣∣P (g(z) = y|A = 1)| − P (g(z) = y|A = 0)
∣∣ > τ

}
∀y ∈ {0, 1}, (1)

where τ is a threshold indicating significant bias.

The proposed method automatically identifies the unfair regions Runfair and generates perturbed
samples that directly cover the area by over- or under-representing demographic groups for each
label, leveraging a fairness attack. This region highlights where the classifier exhibits significant
discrepancies in outcomes across demographic groups. Notably, this identification does not rely on a
predefined threshold τ but instead uses the attack to pinpoint areas where bias is most pronounced.
Consequently, training the last layer of the network on these perturbed latent features corrects the
decision boundary, reducing the misclassification rates for biased subgroups.

3.1 FAIRNESS ATTACK

In this section, we adopt an objective function suggested in (Zafar et al., 2017) for fairness attack,
Lfair. Zafar et al. (2017) suggested measurement for disparate impact using a covariance between the
sensitive attribute a and the signed distance dθ from x to the decision boundary, i.e. Cov(a, dθ) ≈ 0
means fair where the signed distance dθ obtained by the logit (inverse sigmoid) function from
the predicted probability ŷ, i.e. dθ = σ−1(ŷ). Contrary to (Zafar et al., 2017), we maximize the
covariance between the sensitive feature and the signed distance between the perturbed feature and
the decision boundary of the pre-trained classifier. Therefore, the fairness constraint Lfair is defined

Lfair = |Cov(a, σ−1(ŷ))| = |Cov(a, g(z + δ))|, (2)

where the overall model consists of an encoder f and linear classifier g such that ŷ = g(f(x)) = g(z),
x is the input, z ∈ RN×d is the latent feature, δ ∈ RN×d is the perturbation, N is the number of
samples, and d is the dimension of latent feature. Let z̃ = z + δ and di = g(z̃i), then Eq. 2 becomes

Lfair = |Cov(a, g(z̃))| =
∣∣∣E[(a− ā)

(
g(z̃)− E[g(z̃)])

]∣∣∣ ≈ 1

Np

∣∣∣ Np∑
i=1

(ai − ā)
(
di − d̄

)∣∣∣,
where Np is the number of target samples and d̄ is the mean of all di. In the fairness attack, we
adopt upsampling strategy selecting the same size of samples from each subgroup as an attacking
target such that Np = 4 ·max

(
n00, n01, n10, n11

)
, where nay denotes the number of samples for

each subset such that nay = |Say|, Say = {i|ai = a, yi = y}, a ∈ {0, 1} and y ∈ {0, 1}.
In fact, any type of fairness constraint can be applied for Lfair during the fairness attack. We
demonstrate a convex fairness constraint (Wu et al., 2019) as an alternative to the covariance fairness
constraint, also showing significant improvements in fairness as demonstrated in Appendix L.

A positive covariance between two variables indicates that they tend to increase or decrease together,
while a negative covariance means an inverse relationship. A fairness attack aims to maximize the
covariance to make the sensitive attribute significantly affect the decision of the given classifier.
Instead of |Cov(a, g(z̃))| in Lfair, we follow the sign of covariance (Cov(a, y)) of the clean dataset
to determine Lfair for fairness attack to effectively exacerbate the fairness for the given classifier,

Lfair =

{
Cov(a, g(z̃)) if Cov(a, y) ≥ 0

−Cov(a, g(z̃)) if Cov(a, y) < 0.
(3)

In this way, we observe in Table 3 in Appendix E that the consequent sign of Cov(a, ŷ) also follows
the sign of covariance in clean dataset.
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Algorithm 1 Adversarial Latent Feature Augmentation
Require: Clean dataset (Xc,Yc), hyperparameter α, the number of epochs T , pretrained encoder f

and classifier g.
Ensure: Fair classifier gθ

Obtain (Xp,Yp) by balanced upsampling for (Xc,Yc).
Obtain latent feature set (Zp,Yp) where Zp = f(Xp).
Compute a mean absolute distance ϵ between latent features and the decision boundary.
Fairness attack to obtain δ∗ = argmax∥δ∥2≤ϵ

(
Lfair − αD(z, z + δ)

)
, ∀z ∈ Zp .

for i = 1, · · · , T do
Fine-tune the classifier g with the adversarial latent feature z̃ = z + δ∗.
θ ←− θ∗ = argminθ

1
|Xc|+|Zp|

(∑
xi∈Xc

Lce
(
g(f(xi)), yi, θ

)
+
∑

zj∈Zp
Lce(g(zj + δ∗j ), yj , θ)

)
.

end for

We prove that Lfair is the lower bound of ∆EOd through Proposition B.1 and Theorem B.2 in
Appendix B. Consequently, we can conduct a fairness attack by maximizing Lfair, causing the
perturbed latent features to result in unfair predictions with a high ∆EOd on the given pre-trained
classifier.

3.2 SINKHORN DISTANCE

The goal of an adversarial fairness attack is to lead a pre-trained classifier to predict biased results on
perturbed samples while maintaining the distribution of given data to keep it semantically meaningful.
In order to effectively attack the classifier, we adopt the Wasserstein Distance (Arjovsky et al., 2017)
to minimize the statistical distance between z and z̃, i.e. D(z, z̃). Wasserstein distance is a powerful
tool for measuring the statistical distance between two probability distributions and is sensitive to
small perturbations. One drawback of Wasserstein distance is its burden on computational cost.
However, a faster and more accurate algorithm is developed to approximate the Wasserstein distance
using Sinkhorn iteration, namely Sinkhorn distance (Genevay et al., 2018). Sinkhorn Distance is
an approximate entropy regularized Wasserstein distance using the Sinkhorn algorithm measuring
the distance between two probability distributions in terms of optimal transport problem. A detailed
explanation and cost effectiveness of Sinkhorn distance is in Appendix D.1.

3.3 ADVERSARIAL LATENT FEATURE AUGMENTATION

We propose a novel data augmentation technique in the latent space, Adversarial Latent Fea-
ture Augmentation (ALFA) to mitigate the bias in the binary classification. We pre-train
the encoder and classifier by empirical risk minimization with binary cross entropy loss Lce,
minθ

1
N

∑N
i=1 Lce(g(f(xi)), yi), where xi is the input data and yi ∈ {0, 1} is the class label. The

trained classifier is potentially biased to the particular sensitive attribute due to the imbalance in the
dataset. As shown in Figure 1, unfair regions are identified for each label caused by a given classifier
which we aim to cover by introducing the perturbed latent features having corresponding labels with
the over/underestimated demographic group.

The adversarial latent features are generated by the fairness attack while maintaining their distribution
by the Sinkhorn distance denoted as D(z, z + δ). During the attacking step, parameters of both
encoder f and linear classifier g are frozen. The direction and magnitude of perturbation are
determined by the fairness attack introduced in Section 3.1 and 3.2,

max
∥δ∥2≤ϵ

(
Lfair − αD(z, z + δ)

)
, (4)

where α is a hyperparatmer, and ϵ is the mean absolute distance between latent features and pre-
trained decision boundary. The Sinkhorn distance term is obtained by batch-wise computation.
Finally, the classifier is fine-tuned using both the original and adversarial latent features, with the
encoder f remaining frozen, and only the parameters of the linear classifier g being updated. The
objective function for the fine-tuning is

min
θ

1

|Xc|+ |Zp|

( ∑
xi∈Xc

Lce
(
g(f(xi)), yi, θ

)
+
∑

zj∈Zp

Lce(g(zj + δ∗j ), yj , θ)
)
, (5)
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Figure 4: Fairness-Accuracy trade-off for Logistic Regression (top) and MLP (bottom) on tabular
datasets. The x-axis shows ∆EOd, where smaller values (to the right) indicate better fairness. Thus,
the upper-right region reflects better performance. ALFA consistently outperforms other methods,
achieving lower ∆EOd with minimal impact on accuracy.

where Xc is the original dataset and Zp is the upsampled feature dataset to be attacked, respectively.
Theorem 3.2. Retraining the classifier using Eq. 5 results in a fairer classifier by reducing ∆EOd:

∆EOd(θp) ≤ ∆EOd(θ). (6)

where θ and θp denote the classifier’s parameter when trained on original dataset and combined
dataset, respectively. The detailed proof of Theorem 3.2 is provided in Appendix A.

In the neural networks, the encoder and the last layer are easily defined. However, in the Logistic
Regression, there’s no encoder is defined. As a special case, in the Logistic Regression, the linear
classifier is pre-trained in the same manner to produce adversarial samples and trained again with our
data augmentation, while the perturbation is conducted on the input space. The detailed algorithm is
introduced in Algorithm 1.

4 EXPERIMENTAL DETAIL

4.1 DATASET

In this paper, we use four different tabular datasets Adult (Dua et al., 2017), COMPAS (Jeff Larson &
Angwin, 2016), German (Dua et al., 2017), and Drug (Dua et al., 2017). Also CelebA (Liu et al.,
2018) and Wikipedia Toxicity (Thain et al., 2017) datasets are used for verify the performance of the
proposed method in image and text classification, respectively. All datasets are split into 60:20:20 for
train, validation, and test subset, respectively. The detailed description of datasets is in Appendix I.

4.2 EXPERIMENTAL SETUP

To verify our approach, we apply our method to two base classifiers for tabular datasets, Logistic
Regression and MLP with ReLU activation function and two hidden layers of 128 dimensions. For
the CelebA dataset, we adopt ResNet-50 (He et al., 2016), ViT (Dosovitskiy, 2020), and Swin
Transformer (Liu et al., 2021) as baselines. For the Wiki dataset, we use LSTM (Hochreiter &
Schmidhuber, 1997), BERT (Devlin, 2018), and DistillBERT (Sanh, 2019) as baselines. During
the pre-training, we choose the best parameter when the validation accuracy is the highest. In the
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Figure 5: Fairness-Accuracy trade-off for the CelebA dataset. Each row of subfigures represents a
different backbone network: ResNet, ViT, and Swin Transformer, while each column corresponds
to a different target attribute for classification. Similar to the results on tabular datasets, ALFA
consistently outperforms other methods in fairness without compromising accuracy.

attacking step, parameters of both the encoder and classifier are fixed, while only the last layer is
newly initialized for fine-tuning with the augmented latent features. The different learning rates are
used in each step, Adam optimizer with learning rate 1e−3 in pre-training and fine-tuning, Adam
optimizer with learning rate 0.1 in adversarial attack. For each experiment, we take the result when
the validation accruacy is the highest. For a fair comparison, we train each case 10 times and report
the mean and the standard deviation for tabular datasets and text dataset.

To evaluate the fairness improvement of our method, we compare its performance against other
approaches using data augmentation, fairness constraints, data reweighing, or latent space manipula-
tion methods, such as Covariance Loss (Zafar et al., 2017), Fair-Mixup (Mroueh et al., 2021), FDR
(Mao et al., 2023), Fair-CDA (Sun et al., 2023), Influence-Reweighing (Li & Liu, 2022), FairDRO
(Jung et al., 2023), FAAP (Wang et al., 2022), and TabFairGAN (Rajabi & Garibay, 2022), as
shown in Figure 4. For a fair comparison, we follow each method’s implementations, and adjust
hyperparameters as detailed in Appendix G. For the CelebA and Wiki datasets, we adopt Fair-Mixup,
FAAP, and FDR as comparisons which can operate in the latent space.

Furthermore, we acknowledge the issue of fairness in various tasks, including multi-class, multi-label,
and handling multi-sensitive attributes scenarios. These tasks can be considered variants of binary
classification, making ALFA applicable to them. We present the extension of ALFA and provide
experimental results in Appendix J. Moreover, we discuss the applicability of our framework as input
perturbation on neural networks in Appendix K.

4.3 RESULT ANALYSIS

4.3.1 ACCURACY-FAIRNESS TRADE-OFF

Figure 4,5 and 6 illustrate the trade-off between ∆EOd and accuracy. Since each comparison method,
including ALFA, involves multiple hyperparameters, we conduct extensive experiments for each,

8



Published as a conference paper at ICLR 2025

0.050.060.070.080.09
EOd

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Ac

c.
LSTM

0.030.040.050.060.070.080.09
EOd

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
c.

BERT

0.040.050.060.070.080.090.10
EOd

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
c.

DistillBERT
Baseline Fair-Mixup FAAP FDR ALFA

Figure 6: Fairness-Accuracy trade-off for Wikipedia dataset. Each column of subfigure represents
different backbone networks, LSTM, BERT and DistillBERT. Similar to the tabular datasets, ALFA
consistently outperfroms other methods in fairness without compromising accuracy.

displaying the results as line plots. For ALFA, the only hyperparameter used to generate the plot is
the weight of the Sinkhorn distance in the fairness attack, denoted by α.

Across datasets with different modalities, including tabular, image, and text, and with various
backbone networks, ALFA consistently outperforms other methods. While ALFA may not always
achieve the top performance, it consistently ranks either first or second across all comparison
methods, with no other approach demonstrates such a high level of overall performance. Notably, in
the COMPAS, German, Drug, CelebA, and Wikipedia datasets, across all backbone networks, ALFA
achieves significant improvement in ∆EOd with minimal impact on accuracy.

In addition to the trade-off plots, detailed experimental results, including the standard deviation of
quantitative outcomes, are presented in Appendix H, further highlighting ALFA’s consistent fairness
improvements. Moreover, Appendix M presents an in-depth analysis of the comparison methods
shown in Figure 3 focusing on the differences in approach between FAAP, Fair-Mixup, and ALFA.

4.3.2 ABLATION STUDY

We visualize the impact of the hyperparameter α, which controls the weight of the Sinkhorn distance
in the fairness attack. Intuitively, a larger α helps preserve the original distribution of the perturbed
features, maintaining the accuracy of the fine-tuned classifier, as shown in Figure 7 (a). On the
other hand, a small or zero α may alter the semantic meaning of the perturbed features, potentially
impacting accuracy, as also shown in Figure 7 (a). While the relationship is not perfectly linear,
smaller values of α generally improve fairness, introducing a trade-off between fairness and accuracy.
This suggests that the Sinkhorn distance helps balance the two objectives, as shown in both subfigures
of Figure 7.

Figure 7: Ablation study varying α from 0 to 10 for the CelebA dataset across different tasks and
backbone networks. While not entirely consistent, smaller α generally improves fairness but may
negatively impact accuracy compared to larger α.
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Figure 8: t-SNE plots for the COMPAS dataset. The black line represents the pre-trained decision
boundary, while the red line represents the newly trained decision boundary on the combined dataset,
where equal weighting is applied to the original and each perturbed dataset.

4.3.3 VISUALIZATION OF DECISION BOUNDARY CORRECTION WITH REAL-WORLD DATASET

For deeper analysis, we provide t-SNE plots for the COMPAS dataset, including the original dataset
and the perturbed datasets (with α = 0 and α = 1, respectively). The visualization in Figure 8
reveals that under the pre-trained decision boundary, the perturbed samples exhibit extremely high
∆EOd, indicating the success of our fairness attack. However, fine-tuning on the concatenated dataset
results in a corrected decision boundary (represented by the red line) that maintains accuracy while
achieving significant improvements in fairness.

Moreover, the effect of α aligns with our intuition. A higher α retains the original distribution
more closely, resulting in a less corrected decision boundary and a less pronounced fairness attack.
Nevertheless, both cases (α = 0 and α = 1) demonstrate significant improvements in fairness after
fine-tuning.

5 CONCLUSION

In this research, we address the critical issue of fairness in machine learning models, specifically
focusing on biases caused by demographic data imbalances. We propose a novel method, Adversarial
Latent Feature Augmentation (ALFA), to effectively identify and mitigate unfairness in classification
models, promoting more equitable decision-making. ALFA generates biased perturbed features using
a fairness attack based on a fairness constraint. Fine-tuning the classifier on these biased samples
reduces discrepancies in misclassification rates across different demographic groups. We provide
theoretical proof of our claims, and our method is validated through extensive experiments on a wide
range of datasets, modalities, and backbone networks. ALFA consistently achieves group fairness
without compromising accuracy, demonstrating its effectiveness in promoting unbiased machine
learning models. As future work, we aim to explore integrating individual fairness metrics and
extending ALFA to larger, more complex datasets to assess its scalability and broader applicability.
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A PROOF FOR THEOREM 3.2

Consider a linear classifier g(z) = sign(wT z + b), where z = f(x) represents the latent space
generated by an encoder f , and w and b are the classifier’s weights and bias. The classifier g(z) is
considered biased if its decision boundary wT z + b = 0 results in significantly different outcomes
(e.g., higher misclassification rates) for the groups defined by the sensitive attribute A ∈ {0, 1}. We
define the unfair region Runfair as the subspace of the latent space where the classifier’s decision
boundary results in disproportionately high differences in error rates between these groups:

Runfair =
{
z ∈ Rd :

∣∣P (g(z) = y|A = 1)| − P (g(z) = y|A = 0)
∣∣ > τ

}
∀y ∈ {0, 1}, (7)

where τ is a threshold indicating significant bias.

Retraining the classifier using Eq. 5 results in a fairer classifier by reducing ∆EOd:

∆EOd(θp) ≤ ∆EOd(θ). (8)

where θ and θp denote the classifier’s parameter when trained on original dataset and combined
dataset, respectively.

Proof. When the classifier exhibits bias, the decision boundary poorly separates classes within Runfair.
To address this, we retrain the classifier by focusing on the unfair region with the generated samples
by fairness attack, minimizing a new loss function:

L(w, b) =
1

N ′

(∑
i∈D

Lce(yi, g(zi)) +
∑

j∈Runfair

Lce(yj , g(zj))
)
, (9)

where D represents the original dataset, Lce is the cross-entropy loss, and N ′ is the size of the
combined dataset. In Eq. 9, the gradient of L is more heavily influenced by the samples in Runfair
than it would be if the model were trained solely on D. This induces an upweighting effect in the
unfair region during retraining, leading to an adjustment of the decision boundary, which can be
specifically approximated by:

∆w = −η∇L(w, b)

where η is the learning rate. The adjustment ∆w, driven by the samples in Runfair, reduces the
misclassification rates in this region, particularly benefiting the disadvantaged group.

Let’s define Ry=1
unfair, the unfair region for y = 1 such that

Ry=1
unfair =

{
z ∈ Rd :

∣∣P (g(z) = 1|A = 1)| − P (g(z) = 1|A = 0)
∣∣ > τ

}
As the decision boundary adjusts to correct misclassifications within Ry=1

unfair, the impact is most
significant for the group with higher error rates. This leads to a reduction in the False Positive Rate
(FPR) within Ry=1

unfair, especially if a sensitive group initially exhibits a disproportionately high FPR
when predictions in Ry=1

unfair result in g(z) = 1. Consequently, this reduces the FPR gap:∣∣P (g(z) = 1|A = 1)| − P (g(z) = 1|A = 0)
∣∣.

Similarly, we can derive the reduction in the TPR gap. When considering the unfair region Ry=0
unfair in

relation to the False Negative Rate (FNR), a sensitive group may exhibit a disproportionately high
FNR, resulting in g(z) = 0:

Ry=0
unfair =

{
z ∈ Rd :

∣∣P (g(z) = 0|A = 1)| − P (g(z) = 0|A = 0)
∣∣ > τ

}
.

A high FNR gap is problematic because it implies a higher gap in True Positive Rate (TPR), given that
TPRa = 1 − FNRa, |TPR0 − TPR1| = |(1 − FNR0) − (1 − FNR1)| = |FNR1 − FNR0|.
Therefore, the unfair region Ry=0

unfair becomes a critical target area to address for fairness. Similar to
Ry=1

unfair for FPR gap, retraining that focuses on Ry=0
unfair also leads to a reduction in the TPR gap.

Therefore, after retraining on samples in Ry=1
unfair and Ry=0

unfair, the following inequalities hold:

|FPR0 − FPR1|retrain ≤ |FPR0 − FPR1|origin
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and
|TPR0 − TPR1|retrain ≤ |TPR0 − TPR1|origin.

Consequently, retraining on samples within the unfair regions identified by the fairness attack leads
to a reduction in both the FPR and TPR disparities across demographic groups.

As the Equalized Odds gap ∆EOd is defined as the sum of the TPR and FPR gaps:

∆EOd = |TPR1 − TPR0|+ |FPR1 − FPR0|,

retraining on samples from the unfair regions ensures a fairer classifier by minimizing these gaps:

∆EOd(θp) ≤ ∆EOd(θ). (10)

where θ and θp denote the classifier’s parameter when trained on original dataset and combined
dataset, respectively. This strategy not only addresses the existing bias but also actively improves the
fairness of the model in a measurable and theoretically grounded manner.

B PROPERTIES

B.1 PROPORTIONALITY OF LFAIR

Proposition B.1. Lfair is proportional to the mean signed distance gap (∆ddp) between two sensitive
attribute groups, and the sum of the mean signed distance gap (∆deod,y) between the sensitive groups
for each ground truth label y ∈ {0, 1},

Lfair =
1

4
∆ddp =

1

8

[
∆deod,1 +∆deod,0

]
,

where ∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di − 1
n0

∑
j∈S0

dj

∣∣∣, ∆deod,1 =
∣∣∣ 1
n11

∑
i∈S11

di − 1
n01

∑
j∈S01

dj

∣∣∣, and

∆deod,0 =
∣∣∣ 1
n10

∑
i∈S10

di − 1
n00

∑
j∈S00

dj

∣∣∣.
Proof. Let di = g(z̃), d̄ is the mean of all di and

∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
∆deod,1 =

∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣
∆deod,0 =

∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣
where Sa is a subset containing each sensitive attributes Sa = {i|ai = a}, a ∈ {0, 1}, and nay

means the number of samples for each sensitive subset for given y, Say = {i|ai = a, yi = y},
a ∈ {0, 1} and y ∈ {0, 1}. In our experiments, we select samples with the same size such that
N
4 = n00 = n01 = n10 = n11, and N

2 = n0 = n1 where n0 = n00 + n01, n1 = n10 + n11, and
N = n00 + n01 + n10 + n11.

The objective function Lfair = |Cov(a, g(z̃))| can be rewritten as

Lfair =
1

N

∣∣∣ N∑
i=1

(ai − ā)(di − d̄)
∣∣∣

=
1

N

∣∣∣∑
i∈S1

(1− ā)(di − d̄) +
∑
j∈S0

(0− ā)(dj − d̄)
∣∣∣

=
1

N2

∣∣∣n0

∑
i∈S1

(di − d̄)− n1

∑
j∈S0

(dj − d̄)
∣∣∣
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=
1

N2

∣∣∣n0

∑
i∈S1

di − n1

∑
j∈S0

dj − n0n1d̄+ n0n1d̄
∣∣∣

=
n0n1

N2

∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
=

1

4
∆ddp. (11)

Similarly, we can conditionize Lfair in terms of y,

Lfair =
1

N

∣∣∣ N∑
i=1

(ai − ā)(di − d̄)
∣∣∣

=
1

N

∣∣∣ ∑
i∈S11

(1− ā)(di − d̄) +
∑
j∈S01

(0− ā)(dj − d̄) +
∑
i∈S10

(1− ā)(di − d̄) +
∑
j∈S00

(0− ā)(dj − d̄)
∣∣∣

=
1

N

∣∣∣ ∑
i∈S11

(n01 + n00)

N
(di − d̄)−

∑
j∈S01

(n11 + n10)

N
(dj − d̄)

+
∑
i∈S10

(n01 + n00)

N
(di − d̄)−

∑
j∈S00

(n11 + n10)

N
(dj − d̄)

∣∣∣
=
∣∣∣n11(n01 + n00)

N2

1

n11

∑
i∈S11

di −
n01(n11 + n10)

N2

1

n01

∑
j∈S01

dj

+
n10(n01 + n00)

N2

1

n10

∑
i∈S10

di −
n00(n11 + n10)

N2

1

n00

∑
j∈S00

dj

∣∣∣
=

n11n0

N2

[∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣+ ∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣]
=

1

8

[
∆deod,1 +∆deod,0

]
(12)

B.2 BOUNDEDNESS OF LFAIR

Theorem B.2. If the cardinalities of subgroups Say = {i|ai = a, yi = y}, a ∈ {0, 1},y ∈ {0, 1}
are equal, Lfair is the lower bound of ∆DP and ∆EOd when we approximate the logit (inverse
sigmoid) function as a piecewise linear function with m segments s.t d = fk(ŷ) = akŷ + bk for
k ∈ {1, 2, · · · ,m}, m > 1,m ∈ N, and amax = max(a1, · · · , ak). Then,

Lfair ≤
1

4

(
amax∆DP + C

)
, (13)

Lfair ≤
1

8

(
amax∆EOd+ C0 + C1

)
. (14)

C = 2
N

∑m
k=1(n

(k)
1 − n

(k)
0 )bk, and Ca = 4

N

∑m
k=1(n

(k)
1 − n

(k)
0 )bk are constants where n

(k)
a is the

number of samples in k-th segment for a ∈ {0, 1}. We set β ≤ ŷ ≤ 1−β when we compute the signed
distance to avoid dθ = ln

(
ŷ

1−ŷ

)
→ (∞ or −∞) so that amax ≤ m

1−2β

[
logit(β + 1−2β

m )− logit(β)
]
,

theoretically. In this work, we set β = 1e−7 and m = 10 for all experiments.

Proof. As we fix the sign of Lfair following the sign of Cov(a, y), the sign of ∆ddp and ∆DP are
particularly defined as

∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
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=
1

n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∆DP =
∣∣∣ 1
n1

∑
i∈S1

ŷi −
1

n0

∑
j∈S0

ŷj

∣∣∣
=

1

n1

∑
i∈S1

ŷi −
1

n0

∑
j∈S0

ŷj

when we assume that Cov(a, y) is positive. In the negative case, the sign of ∆ddp and ∆DP will be
changed simultaneously.

If we assume the logit function as a piecewise linear function with m segments s.t m > 1,m ∈ N,
and recall that ndp = n0 = n1 and N

4 = n00 = n01 = n10 = n11. Let each linear function is
d = fk(ŷ) = akŷ + bk, k = 1, 2, · · · ,m. Then the ∆ddp and ∆DP becomes

∆ddp =
1

n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

=

m∑
k=1

[ 1

n1

∑
i∈S

(k)
1

(akŷi + bk)−
1

n0

∑
j∈S

(k)
0

(akŷj + bk)
]

=
1

ndp

m∑
k=1

ak(
∑

i∈S
(k)
1

ŷi −
∑

j∈S
(k)
0

ŷj)

+
1

ndp

m∑
k=1

(n
(k)
1 − n

(k)
0 )bk

≤ amax

ndp

[ m∑
k=1

(
∑

i∈S
(k)
1

ŷi −
∑

j∈S
(k)
0

ŷj)
]
+ C

=
amax

ndp

[∑
i∈S1

ŷi −
∑
j∈S0

ŷj

]
+ C

= amax∆DP + C (15)

where n(k)
a means the number of samples in k-th segment for a ∈ {0, 1} and C = 1

ndp

∑m
k=1(n

(k)
1 −

n
(k)
0 )bk is a constant. Therefore, maximizing Lfair maximizes ∆DP since

Lfair =
1

4
∆ddp ≤

1

4

(
amax∆DP + C

)
. (16)

Similarly, the same proof can be applied to the relationship between ∆deod,0, ∆deod,1, and ∆EOd
as explained in Eq. 15, such that

∆EOd =
∣∣∣ 1

n11

∑
i∈S11

ŷi −
1

n01

∑
j∈S01

ŷj

∣∣∣+ ∣∣∣ 1

n10

∑
i∈S10

ŷi −
1

n00

∑
j∈S00

ŷj

∣∣∣
=

1

neod

[( ∑
i∈S11

ŷi −
∑
j∈S01

ŷj
)
+
( ∑
i∈S10

ŷi −
∑
j∈S00

ŷj
)]

∆deod,1 =
∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣
=

1

neod

[ ∑
i∈S11

di −
∑
j∈S01

dj

]
≤ amax

neod

[ ∑
i∈S11

ŷi −
∑
j∈S01

ŷj

]
+ C1

∆deod,0 =
∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣
17



Published as a conference paper at ICLR 2025

=
1

neod

[ ∑
i∈S10

di −
∑
j∈S00

dj

]
≤ amax

neod

[ ∑
i∈S10

ŷi −
∑
j∈S00

ŷj

]
+ C0

Therefore,

Lfair =
1

8

[
∆deod,1 +∆deod,0

]
≤ 1

8

[amax

neod

[( ∑
i∈S11

ŷi −
∑
j∈S01

ŷj
)
+
( ∑
i∈S10

ŷi −
∑
j∈S00

ŷj
)]

+ C0 + C1

]
=

1

8

[
amax∆EOd+ C0 + C1

]
(17)

where Ca =
∑m

k=1(n
(k)
1 − n

(k)
0 )bk, a ∈ {0, 1} are constants.

B.2.1 USAGE OF PIECEWISE LINEAR APPROXIMATION

We empirically verify that the naive logit function is feasible as well and effectively attacks the
fairness in terms of ∆DP and ∆EOd. However, the upper bound of Lfair with the naive logit function
is not fully supported mathematically, while the piecewise linear logit function can be proved as
Appendix B.2. Moreover, there’s no significant difference in the fairness performances between the
naive logit function and its piecewise linear approximation. We choose the piecewise linear function
to ensure the upper bound of Lfair.

B.2.2 INSIGHTS

We randomly choose an equal number of samples for each subset for effective fairness attack, i.e.
Np

4 = n00 = n01 = n10 = n11 to satisfy the condition in Theorem B.2. Consequently, since Lfair is
the lower bound of ∆DP and ∆EOd, we can attack fairness by maximizing Lfair as the perturbed
latent features produce unfair prediction with high ∆DP and ∆EOd on given pre-trained classifier.

C SYNTHETIC DATASET

We provide the details of the synthetic data, illustrating the concept of the unfair region and how
the decision boundary is corrected. We simplify the binary classification task with a 2D Gaussian
mixture model, as assumed in (Xu et al., 2021), consisting of two classes y ∈ {0, 1} and two sensitive
attributes A ∈ {0, 1} (indicating unprivileged and privileged groups).

x ∼



group1 : N(

[
µ

µ

]
, σ2) if : y = 1, a = 1

group2 : N(

[
µ

µ′

]
, σ2) if : y = 0, a = 1

group3 : N(

[
0

µ

]
, (Kσ)2) if : y = 1, a = 0

group4 : N(

[
0

0

]
, (Kσ)2) if : y = 0, a = 0

(18)

where µ′ = rµ, 0 < r < 1 and K > 1, where the number of samples in each group is N1 : N2 :
N3 : N4. We arbitrarily set K = 3, r = 0.7, µ = 1, N1 = N2 = 100, and N3 = N4 = 400. From
the synthetic data, we observe a decision boundary like Figure 2 (a) in the paper. Due to dataset
imbalance, the subgroup a = 1, y = 0 is overestimated as label y = 1, and the subgroup a = 0, y = 1
is underestimated as label y = 0. The disparity in misclassification rates is depicted in Figure 2 (c).
We define these disparities as ‘unfair regions’ where the misclassification rate is disproportionately
high.
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D SINKHORN DISTANCE

D.1 DEFINITION

Optimal transport with lowest cost is defined as LC = min
P

∑
i,j CijPij , where C is a cost matrix

(2-Wasserstein Distance), and P is the coupling matrix. Genevay et al. (2018) suggested a regularized
optimal transport scheme which includes entropy term to secure stability and smoothness of P ,
LC = min

P

∑
i,j CijPij − ϵsH(P ) where H(P ) = −

∑
ij Pij logPij . LC can be solved by

Sinkhorn iteration, s.t. Pij = diag(ui)Kijdiag(vj), and updated alternately,

u(k+1) =
a

Kv(k)
,

v(k+1) =
b

KTu(k+1)
,

where P1 = a,P T1 = b, and Gibbs kernel Kij = e−cij/ϵs . Therefore, the distance between clean
data x and perturbed data x̃ can be rewritten as follows,

D(x, x̃) = Sinkhorn Distance(x, x̃)

= min
P (x,x̃)

∑
i,j

Cij(x, x̃)Pij(x, x̃)− ϵsH(P (x, x̃)).

D.2 COMPUTATIONAL COST OF SINKHORN DISTANCE

The Sinkhorn distance involves solving a regularized optimal transport problem using the Sinkhorn-
Knopp algorithm, which benefits from linear convergence rates and efficient GPU execution. This
makes the computation of the Sinkhorn distance tractable even for large-scale problems.

This is further supported by the non-significant empirical time cost observed in ALFA. We report
the attack times for each dataset. Each result represents the mean and standard deviation across 10
runs. Notably, the attack time is proportional to the dataset size, independent of the data type (e.g.,
images), as the attack occurs in the latent space rather than the input space. Note that this attack step
is conducted only once before fine-tuning, enhancing the effectiveness of our framework.

Table 1: Time cost for one-time attacking step

Dataset Number of Samples Feature Dimension Attacking Times (s)

Adult 271,320 512 15.9613±0.3242
COMPAS 43,280 512 2.6102±0.1050
German 6,000 512 0.2692±0.1112

Drug 11,280 512 0.6949±0.1114
CelebA 162,748 768 115.5459±2.4313

Wikipedia 342,528 384 377.0901±75.1673

19



Published as a conference paper at ICLR 2025

E COVARIANCE BETWEEN THE LABEL AND THE SENSITIVE ATTRIBUTE

Table 2: The estimated value of Cov(a, y) and Cov(a, ŷ). We set the sign of Lfair the same as the
covariance.

Cov(a, y) Cov(a, ŷ) Lfair

Adult 0.0439 0.0441 Cov(a, g(z̃))
COMPAS -0.0198 -0.0194 −Cov(a, g(z̃))
German 0.0210 0.0188 Cov(a, g(z̃))

Drug 0.0434 0.0401 Cov(a, g(z̃))

F HYPERPARAMETERS

Table 3: Hyperparameters for the experiments for ALFA

Hyperparameter Search-range

α [0.0, 0.001,0.01,0.1, 1.0, 10]
Total Epoch T 50

Attacking Iteration 10
Batch Size 128

G EXPERIMENTAL SETTINGS FOR FAIR COMPARISON

Fair-Mixup. Fair-Mixup is an in-processing data augmentation using interpolation on manifold
between two sensitive groups. Smooth regularizers for linear interpolation on DP and EOd are as
follows

RDP
mixup =

∫ 1

0

∣∣∣∫ ⟨▽xf(tg(x0) + (1− t)g(x1)), g(x0)− g(x1)⟩dP0(x0)dP1(x1)
∣∣∣dt,

REOd
mixup =

∑
y∈{0,1}

∫ 1

0

∣∣∣∫ ⟨▽xf(tx0 + (1− t)x1), x0 − x1⟩dP y
0 (x0)dP

y
1 (x1)

∣∣∣dt,
where g : X −→ Z is a feature encoder. The final objective function of Fair Mixup is

Lmixup = Lacc + λRmixup(f).

For a fair comparison, we vary the ratio of regularizer adjusting λ ∈ {0.1, 0.3, 0.5, 0.7} for tabular
datasets and λ = 20 for CelebA dataset as suggested in the released implementation.

TabFairGAN. It aims to produce high-quality tabular data containing the same joint distribution
as the original dataset using Wasserstein GAN. The training algorithm in (Rajabi & Garibay, 2022)
consists of two phases, training for accuracy (phase 1) and training for both accuracy and fairness
(phase 2). In both phases, the loss function for critics C adopts gradient penalty (Gulrajani et al.,
2017).

Vc =Ex̂∼Pg
[C(x̂)]− Ex∼Pr

[C(x)] + λcEx̄∼Pg
[(∥▽x̄C(x̄)∥2 − 1)2]

The loss function for the generator differs from each phase.

VG =− Ex̂∼Pg
[C(x̂)] (phase 1)

VG =− Ex̂,ŷ,â∼Pg
[C(x̂, ŷ, â)]− λf (Ex̂,ŷ,â∼Pg

[ŷ|â = 0]− Ex̂,ŷ,â∼Pg
[ŷ|â = 1]) (phase 2)

where λf is hyperparameter. We excute TabFairGAN with various λf ∈ {0.1, 0.3, 0.5, 0.7} for fair
comparison since the implementation uses λf = 0.5.
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FAAP FAAP aims to generate a perturbation using GANs, while the generator makes perturbation
and the discriminator predicts the perturbed features’ sensitive attributes. In formula,

LD = Lce(D(f(x̂), a))

Lfair
G = −LD − αH(D(f(x̂), a))

LT
G = Lce(g(f(x̂)), y))

where G is a generator, D is a discriminator, x̂ is the perturbed samples,H is the entropy, g is label
predictor (classifier), and f is an encoder. The final formulation becomes

argmax
G

min
D
Lce(D(g(x̂)), a) + αH(D(g(x̂))− βLT

G

where g(x̂) = g(x+G(x)). As the architectures for the generator and discriminator are not provided,
we set a generator as an MLP model with two hidden layers with 128 nodes, having a ReLU activation
function. For the discriminator, we adopt the same network with the label predictor in each tabular
dataset and image dataset. For the fair comparison, we grid search α and β by α ∈ {0.1, 1.0, 10} and
β ∈ {0.1, 1.0, 10} since the value is not given in the original paper.

FDR FDR is a simple fine-tuning method, including balanced sampling in the latent features, and use
fairness constraint as a objective function. In detail, the Equalized-odds-based fairness constraint is

fpr =
∣∣∣∑i pi(1− yi)ai∑

i ai
−
∑

i pi(1− yi)(1− ai)∑
i(1− ai)

∣∣∣
fnr =

∣∣∣∑i(1− pi)yiai∑
i ai

−
∑

i(1− pi)yi(1− ai)∑
i(1− ai)

∣∣∣
where pi denotes the predicted probability. The final objective function for the fine-tuning is

min
θ

[
Lce(g) + α(fpr + fnr)

]
.

As suggested in the original paper, we search α ∈ {0.5, 1, 2, 5, 10}.
Fair-CDA Fair-CDA aims to disentangle latent features into ‘sensitive feature’ and ‘non-sensitive
feature’, and obfuscate the sensitive features to obtain a fairer classifier. Fair-CDA consists of three
extractor, h, hy , and ha as

zi = h(xi), z
y
i = hy(zi), z

a
i = ha(zi)

hy should extract features only related to the label predictions, while ha is related to the sensitive
attribute only. The regularization becomes

β(Ly
i + L

a
i + L⊥

i )

and

Ly
i = Lce(gy(z

y
i ), yi)

La
i = Lce(ga(z

a
i ), ai)

L⊥
i =

⟨∇ziL
y
i ,∇ziLa

i ⟩2

∥∇ziL
y
i ∥2 · ∥∇ziLa

i ∥2
.

where gy and ga are two classifier for y and a, respectively. In stage 1 for the first 450 epochs, the
objective function is

1

n

n∑
i=1

Li + β(Ly
i + L

a
i + L⊥

i ),

where Li = Lce(g([z
y
i , z

a
i ]), yi). For stage 2, Fair-CDA conducts semantic augmentation to make

the sensitive features along the direction to increase the attribute loss,

z̃ai = zai + αi

∇za
i
Lce(ga(z

a
i ), ai)

∥∇za
i
Lce(ga(zai ), ai)∥
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Based on the obtained z̃ai and the solution of the task model in stage 1; ĝ, obtain two loss functions
for stage 2 for 50 epochs,

L̃i = Lce(g([z
y
i , z̃

a
i ]), yi)

L̂i = Lce(g([z
y
i , z̃

a
i ]), ĝ([z

y
i , z̃

a
i ])).

Then, the final objective function for stage 2 becomes

1

n

n∑
i=1

γL̃i + (1− γ)L̂i + β(Ly
i + L

a
i + L⊥

i ).

Fair-CDA requires five hyperparameters, perturbation size αi randomly drawn by U(0, λ) where
λ ∈ {0, 1, 10, 100, 1000}. γ = 0.9 as written in the paper, and β is the initial loss value. As the
learning rate for stages 1 and 2 are not given, we grid search η1, η2 ∈ {0.0001, 0.001, 0.01} as well
as λ.

LAFTR LAFTR (Madras et al., 2018) includes a classifier model named adversary, aiming to predict
the sensitive attribute, while an encoder wants to deceive the adversary. It is also an adversarial
training, but is different from ours as LAFTR does not involve perturbation, data augmentation, or
fairness attack. Because of the architecture of LAFTR, it is only applicable to MLP baseline.

H DETAILS IN EXPERIMENTAL RESULTS

In this appendix, we quantitatively demonstrate the superiority of ALFA across all datasets and
backbone networks. We also include results for a ResNet-like architecture applied to tabular datasets
(Gorishniy et al., 2021) to show versability of ALFA. The results compare accuracy, ∆DP , and
∆EOd with other fairness approaches. For the tabular and text datasets, the mean and standard
deviation from 10 experiments are reported. In each table, Blue indicates the best result for each
dataset, and Cyan represents the second and third best results. The results for each method are
obtained by varying the hyperparameters, and for each method, we report the result corresponding to
the point closest to the upper right in Figures 4, 5, and 6. The findings show that ALFA consistently
ranks as either the best or second-best in terms of ∆EOd across all comparison methods, without
compromising accuracy—a distinction not achieved by any other approach. This highlights ALFA’s
superiority over the alternatives.

H.1 EXPERIMENTAL RESULTS OF TABULAR DATASETS

Table 4: Experimental Results for Adult dataset with Logistic Regression

Adult Logistic Regression
Accuracy ∆DP ∆EOd

Baseline 0.8470±0.0007 0.1829±0.0020 0.1982±0.0077
Influence-Reweight 0.8359±0.0000 0.1815±0.0000 0.1190±0.0000

Covariance-Loss 0.8427±0.0008 0.1174±0.0042 0.1001±0.0065
Convex-Concave-Loss 0.8296±0.0056 0.1194±0.0186 0.0687±0.0235

Fair-DRO 0.8012±0.0023 0.2123±0.0029 0.1261±0.0116
Fair-Mixup 0.8376±0.0022 0.1311±0.0125 0.0963±0.0103

FAAP 0.8461±0.0012 0.1822±0.0116 0.1937±0.0235
FDR 0.8465±0.0007 0.1797±0.0041 0.1685±0.0190

TabFairGAN 0.8327±0.0007 0.1488±0.0035 0.1112±0.0117
Fair-CDA 0.8469±0.0005 0.1839±0.0021 0.2013±0.0054

Ours (ALFA) 0.8464±0.0004 0.1555±0.0013 0.0616±0.0022
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Table 5: Experimental Results for Adult dataset with MLP

Adult MLP
Accuracy ∆DP ∆EOd

Baseline 0.8525±0.0010 0.1824±0.0114 0.1768±0.0411
LAFTR 0.8470±0.0020 0.1497±0.0191 0.1117±0.0443

Influence-Reweight 0.8470±0.0020 0.1497±0.0191 0.1117±0.0443
Covariance-Loss 0.8518±0.0015 0.1568±0.0159 0.1114±0.0454

Convex-Concave-Loss 0.8455±0.0024 0.1219±0.0272 0.1050±0.0366
Fair-DRO 0.8211±0.0026 0.1795±0.0111 0.1044±0.0077

Fair-Mixup 0.8516±0.0018 0.1515±0.0153 0.0912±0.0399
FAAP 0.8524±0.0015 0.1695±0.0166 0.1416±0.0432
FDR 0.8253±0.0001 0.1830±0.0002 0.1677±0.0010

TabFairGAN 0.8516±0.0022 0.1752±0.0151 0.1674±0.0392
Fair-CDA 0.8515±0.0012 0.1786±0.0055 0.1711±0.0161

Ours (ALFA) 0.8244±0.0150 0.1012±0.0283 0.0660±0.0434

Table 6: Experimental Results for Adult dataset with ResNet-like network

Adult ResNet-like
Accuracy ∆DP ∆EOd

Baseline 0.8565±0.0012 0.1800±0.0083 0.1825±0.0341
Covariance-Loss 0.8557±0.0015 0.1834±0.0127 0.1916±0.0483

Convex-Concave-Loss 0.8305±0.0029 0.1064±0.0331 0.1155±0.0482
Fair-DRO 0.6627±0.0048 0.3154±0.0166 0.2991±0.0228

Fair-Mixup 0.8528±0.0015 0.1889±0.0121 0.1888±0.0399
FAAP 0.8558±0.0022 0.1724±0.0131 0.1631±0.0377
FDR 0.8472±0.0001 0.1930±0.0002 0.1765±0.0005

TabFairGAN 0.8544±0.0007 0.1699±0.0114 0.1317±0.0316
Fair-CDA 0.8529±0.0012 0.1921±0.0040 0.1714±0.0100

Ours (ALFA) 0.8262±0.0014 0.1956±0.0056 0.1304±0.0149

Table 7: Experimental Results for COMPAS dataset with Logistic Regression

COMPAS Logistic Regression
Accuracy ∆DP ∆EOd

Baseline 0.6578±0.0034 0.2732±0.0129 0.5319±0.0245
Influence-Reweight 0.6791±0.0000 0.2874±0.0000 0.5374±0.0000

Covariance-Loss 0.6565±0.0036 0.0243±0.0105 0.0671±0.0210
Convex-Concave-Loss 0.6462±0.0050 0.0194±0.0118 0.0825±0.0192

Fair-DRO 0.6427±0.0155 0.0989±0.0576 0.2106±0.1308
Fair-Mixup 0.6352±0.0109 0.0536±0.0345 0.0911±0.0576

FAAP 0.6577±0.0033 0.2670±0.0225 0.5184±0.0464
FDR 0.6677±0.0039 0.0377±0.0464 0.1001±0.0683

TabFairGAN 0.6403±0.0120 0.1506±0.0761 0.3005±0.1384
Fair-CDA 0.6288±0.0149 0.1629±0.0969 0.3265±0.1881

Ours (ALFA) 0.6694±0.0036 0.0193±0.0156 0.0876±0.0354
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Table 8: Experimental Results for COMPAS dataset with MLP

COMPAS MLP
Accuracy ∆DP ∆EOd

Baseline 0.6711±0.0049 0.2059±0.0277 0.3699±0.0597
LAFTR 0.6397±0.0284 0.1164±0.0183 0.2089±0.0252

Influence-Reweight 0.6424±0.0000 0.1513±0.0000 0.2810±0.0000
Covariance-Loss 0.6729±0.0018 0.0820±0.0255 0.1121±0.0420

Convex-Concave-Loss 0.6631±0.0054 0.0641±0.0261 0.1026±0.0566
Fair-DRO 0.6782±0.0036 0.0457±0.0222 0.0690±0.0136

Fair-Mixup 0.6661±0.0033 0.0634±0.0331 0.0978±0.0537
FAAP 0.6741±0.0060 0.1976±0.0513 0.3495±0.1149
FDR 0.6559±0.0010 0.0771±0.0027 0.1104±0.0055

TabFairGAN 0.6767±0.0019 0.1616±0.0339 0.2726±0.0727
Fair-CDA 0.5886±0.0155 0.1088±0.0291 0.2131±0.0582

Ours (ALFA) 0.6702±0.0021 0.0204±0.0151 0.0410±0.0188

Table 9: Experimental Results for COMPAS dataset with ResNet-like network

COMPAS ResNet-like
Accuracy ∆DP ∆EOd

Baseline 0.6753±0.0037 0.2055±0.0307 0.3683±0.0700
Covariance-Loss 0.6793±0.0034 0.0957±0.0342 0.1349±0.0599

Convex-Concave-Loss 0.6671±0.0060 0.0856±0.0707 0.1795±0.1099
Fair-DRO 0.6699±0.0043 0.0376±0.0262 0.0546±0.0236

Fair-Mixup 0.6729±0.0049 0.2069±0.0355 0.3752±0.0774
FAAP 0.6718±0.0038 0.2020±0.0256 0.3626±0.056
FDR 0.6725±0.0006 0.1288±0.0018 0.1984±0.0034

TabFairGAN 0.6769±0.0022 0.1751±0.0421 0.3046±0.0872
Fair-CDA 0.6701±0.0016 0.1850±0.0139 0.3244±0.0306

Ours (ALFA) 0.6756±0.0032 0.0124±0.0137 0.0659±0.0316

Table 10: Experimental Results for German dataset with Logistic Regression

German Logistic Regression
Accuracy ∆DP ∆EOd

Baseline 0.7220±0.0131 0.1186±0.0642 0.3382±0.1268
Influence-Reweight 0.6650±0.0000 0.0665±0.0000 0.2475±0.0000

Covariance-Loss 0.7410±0.0218 0.0758±0.0459 0.1247±0.0792
Convex-Concave-Loss 0.7625±0.0144 0.0590±0.0373 0.0979±0.0458

Fair-DRO 0.6805±0.0223 0.0627±0.0401 0.1419±0.0610
Fair-Mixup 0.7385±0.0103 0.0778±0.0174 0.1694±0.0533

FAAP 0.7295±0.0250 0.1128±0.0810 0.3083±0.1518
FDR 0.7640±0.0049 0.0398±0.0178 0.2382±0.0523

TabFairGAN 0.7460±0.0189 0.0677±0.0341 0.2762±0.0587
Fair-CDA 0.7115±0.0219 0.0662±0.0302 0.2191±0.1178

Ours (ALFA) 0.7940±0.0058 0.0470±0.0199 0.0469±0.0276
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Table 11: Experimental Results for German dataset with MLP

German MLP
Accuracy ∆DP ∆EOd

Baseline 0.7800±0.0150 0.0454±0.0282 0.2096±0.0924
LAFTR 0.7308±0.0270 0.0419±0.0410 0.1677±0.1433

Influence-Reweight 0.8000±0.0000 0.0297±0.0000 0.1347±0.0000
Covariance-Loss 0.7800±0.0116 0.0588±0.0185 0.1175±0.0375

Convex-Concave-Loss 0.7570±0.0150 0.0318±0.0217 0.0793±0.0459
Fair-DRO 0.7405±0.0096 0.0661±0.0222 0.1190±0.0705

Fair-Mixup 0.7545±0.0154 0.0641±0.0235 0.1378±0.0778
FAAP 0.7785±0.0148 0.0191±0.0221 0.1788±0.0638
FDR 0.7650±0.0000 0.0284±0.0000 0.2036±0.0000

TabFairGAN 0.7615±0.0123 0.0361±0.0227 0.1799±0.0889
Fair-CDA 0.7325±0.0288 0.0408±0.0253 0.1651±0.0976

Ours (ALFA) 0.7570±0.0024 0.0053±0.0064 0.0813±0.0110

Table 12: Experimental Results for German dataset with ResNet-like network

German ResNet-like
Accuracy ∆DP ∆EOd

Baseline 0.7595±0.0224 0.0524±0.0368 0.2193±0.1224
Covariance-Loss 0.7605±0.0149 0.0360±0.0263 0.1086±0.0479

Convex-Concave-Loss 0.7500±0.0210 0.0493±0.0271 0.1076±0.0601
Fair-DRO 0.7475±0.0214 0.0629±0.0248 0.1015±0.0432

Fair-Mixup 0.7280±0.0189 0.0693±0.0367 0.1907±0.0719
FAAP 0.7330±0.0147 0.0459±0.0438 0.1883±0.1198
FDR 0.7190±0.0020 0.1224±0.0027 0.3487±0.0080

TabFairGAN 0.7535±0.0256 0.0407±0.0247 0.2278±0.0527
Fair-CDA 0.7395±0.0119 0.0457±0.0288 0.1858±0.0958

Ours (ALFA) 0.7325±0.0186 0.0309±0.0147 0.0665±0.0228

Table 13: Experimental Results for Drug dataset with Logistic Regression

Drug Logistic Regression
Accuracy ∆DP ∆EOd

Baseline 0.6626±0.0135 0.2938±0.0761 0.5064±0.1616
Influence-Reweight 0.6446±0.0000 0.1245±0.0000 0.1694±0.0000

Covariance-Loss 0.6491±0.0078 0.0736±0.0436 0.2060±0.0549
Convex-Concave-Loss 0.6225±0.0138 0.0781±0.0316 0.1429±0.0317

Fair-DRO 0.6403±0.0091 0.0710±0.0441 0.1789±0.0515
Fair-Mixup 0.6533±0.0077 0.0979±0.0482 0.1787±0.0793

FAAP 0.6729±0.0117 0.3220±0.0486 0.5576±0.0998
FDR 0.6599±0.0011 0.3008±0.0128 0.5397±0.0268

TabFairGAN 0.6650±0.0113 0.2796±0.0527 0.4668±0.1101
Fair-CDA 0.6615±0.0021 0.3085±0.0078 0.5417±0.0156

Ours (ALFA) 0.6554±0.0067 0.0909±0.0261 0.1170±0.0255
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Table 14: Experimental Results for Drug dataset with MLP

Drug MLP
Accuracy ∆DP ∆EOd

Baseline 0.6674±0.0096 0.2760±0.0415 0.4718±0.0838
LAFTR 0.6195±0.0352 0.1848±0.1035 0.3235±0.1715

Influence-Reweight 0.6525±0.0000 0.1610±0.0000 0.2362±0.0000
Covariance-Loss 0.6488±0.0099 0.0695±0.0361 0.1410±0.0354

Convex-Concave-Loss 0.6467±0.0074 0.0529±0.0294 0.1040±0.0251
Fair-DRO 0.6528±0.0112 0.0841±0.0158 0.1198±0.0216

Fair-Mixup 0.6499±0.0126 0.0723±0.0318 0.1168±0.0359
FAAP 0.6732±0.0095 0.2792±0.0410 0.4707±0.0860
FDR 0.6366±0.0000 0.1296±0.0000 0.1956±0.0000

TabFairGAN 0.6828±0.0122 0.2132±0.0245 0.3258±0.0421
Fair-CDA 0.5263±0.0479 0.1250±0.0950 0.2608±0.1844

Ours (ALFA) 0.6350±0.0082 0.0511±0.0356 0.0640±0.0528

Table 15: Experimental Results for Drug dataset with ResNet-like network

Drug ResNet-like
Accuracy ∆DP ∆EOd

Baseline 0.6541±0.0150 0.2556±0.0316 0.4366±0.0638
Covariance-Loss 0.6467±0.0189 0.0817±0.0474 0.1233±0.0847

Convex-Concave-Loss 0.6491±0.0124 0.0733±0.0584 0.1258±0.0808
Fair-DRO 0.6281±0.0074 0.0829±0.0228 0.1460±0.0267

Fair-Mixup 0.6363±0.0063 0.1906±0.0423 0.1785±0.0634
FAAP 0.6637±0.0124 0.2186±0.0397 0.3577±0.0792
FDR 0.6313±0.0000 0.2146±0.0000 0.3625±0.0000

TabFairGAN 0.6759±0.0120 0.2143±0.0401 0.3358±0.0646
Fair-CDA 0.6655±0.0106 0.2311±0.0261 0.3749±0.0479

Ours (ALFA) 0.6557±0.0132 0.0763±0.0419 0.0966±0.0553
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H.2 EXPERIMENTAL RESULTS OF IMAGE DATASET

Table 16: Experimental results for CelebA dataset with various backbones. The best results are
marked in Blue, and the second best results are marked by Cyan.

CelebA ResNet-50 ViT Swin-Transformer
Attractive Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd

Baseline 0.8196 0.4374 0.4457 0.8208 0.4675 0.4934 0.8301 0.4692 0.4817
FairMixup 0.8032 0.4035 0.4188 0.8192 0.4536 0.4822 0.8261 0.4526 0.4804

FAAP 0.8098 0.4146 0.4218 0.8210 0.4633 0.4865 0.8287 0.4616 0.4852
FDR 0.8142 0.4269 0.4382 0.8071 0.3983 0.3867 0.8249 0.4452 0.4666

ALFA (Ours) 0.8092 0.4137 0.4209 0.8051 0.3956 0.3777 0.8005 0.3796 0.3698
CelebA ResNet-50 ViT Swin-Transformer

Wavy Hair Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd

Baseline 0.8339 0.3141 0.4112 0.8532 0.391 0.5579 0.8483 0.3391 0.4877
FairMixup 0.8052 0.2486 0.3432 0.8502 0.3521 0.4683 0.8581 0.3712 0.4935

FAAP 0.8352 0.3170 0.4126 0.8528 0.3931 0.5623 0.8478 0.3376 0.4864
FDR 0.8432 0.3353 0.3981 0.8490 0.3367 0.2969 0.8607 0.3779 0.4638

ALFA (Ours) 0.8391 0.3457 0.3419 0.8449 0.3425 0.2809 0.8600 0.3750 0.4022
CelebA ResNet-50 ViT Swin-Transformer
Smile Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd Accuracy ∆DP ∆EOd

Baseline 0.9275 0.1566 0.0403 0.9239 0.1642 0.0587 0.9340 0.1629 0.0491
FairMixup 0.9281 0.1566 0.0384 0.9219 0.1592 0.0482 0.9338 0.1609 0.0453

FAAP 0.9273 0.1563 0.0400 0.9243 0.1647 0.0602 0.9326 0.1593 0.0427
FDR 0.9276 0.1558 0.0395 0.9234 0.1446 0.0361 0.9286 0.1399 0.0380

ALFA (Ours) 0.9284 0.1509 0.0271 0.9219 0.1552 0.0402 0.9269 0.1234 0.0344

H.3 EXPERIMENTAL RESULTS OF TEXT DATASET

Table 17: Experimental Results for Wiki dataset with LSTM

Wiki LSTM
Accuracy ∆DP ∆EOd

Base 0.9384±0.0006 0.1764±0.0046 0.0779±0.0089
Fair-Mixup 0.8737±0.0290 0.1831±0.0618 0.0701±0.0347

FAAP 0.9395±0.0002 0.1801±0.0016 0.0807±0.0063
FDR 0.9256±0.0014 0.2110±0.0022 0.0715±0.0040

Ours (ALFA) 0.9360±0.0000 0.1974±0.0011 0.0548±0.0029

Table 18: Experimental Results for Wiki dataset with BERT

Wiki BERT
Accuracy ∆DP ∆EOd

Base 0.9384±0.0003 0.2042±0.0041 0.0742±0.0068
Fair-Mixup 0.9106±0.0041 0.1858±0.0164 0.0537±0.0249

FAAP 0.9512±0.0018 0.2128±0.0177 0.0639±0.0145
FDR 0.9142±0.0029 0.2427±0.0089 0.0680±0.0166

Ours (ALFA) 0.9145±0.0006 0.2214±0.0019 0.0321±0.0035
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Table 19: Experimental Results for Wiki dataset with DistillBERT

Wiki DistillBERT
Accuracy ∆DP ∆EOd

Base 0.9562±0.0003 0.2103±0.0040 0.0856±0.0058
Fair-Mixup 0.9332±0.0067 0.1561±0.0131 0.0588±0.0273

FAAP 0.9547±0.0046 0.2240±0.0240 0.0977±0.0222
FDR 0.9113±0.0026 0.1922±0.0111 0.0592±0.0163

Ours (ALFA) 0.9242±0.0003 0.2278±0.0005 0.0397±0.0015

I DATASET DETAILS

We follow the existing data pre-processing, (Mroueh et al., 2021) for the Adult and CelebA dataset,
and (Mehrabi et al., 2021) for other datasets.

Table 20: Features used from the Adult, COMPAS, German Credit, and Drug Consumption datasets.

Adult

age workclass education-num marital-status
occupation relationship race sex
capital-gain capital-loss hours-per-week

COMPAS

sex age_cat race juv_fel_count
juv_misd_count juv_other_count priors_count c_charge_degree

German

Checking Account Duration Credit history Purpose
Credit amount Savings account Employment Installment rate

Gender Debtors/guarantors Residence Property
Age Installment plans Housing Existing credits
Job Liability Telephone Foreigner credits

Drug

Age Gender Education Country
Ethnicity Nscore Escore Oscore
Ascore Cscore Impulsive SS

UCI Adult Dataset. Adult dataset (Dua et al., 2017) contains 48,842 individuals’ information about
income obtained from the 1994 US Census database. The target label is binarized to determine
whether the income exceeds $50K/yr. Similar to (Mroueh et al., 2021) and (Yurochkin et al., 2019),
samples including missing values are dropped so that the number of available samples is 45,222. The
sex feature is used as a sensitive attribute.

COMPAS Dataset. COMPAS dataset (Jeff Larson & Angwin, 2016) contains 7,214 samples about
criminal defendants and risk of recidivism with 8 attributes. It aims to classify whether a person
commits a crime in the two years after they were scored. The sex feature is used as a sensitive
attribute.

German Credit Dataset. German dataset (Dua et al., 2017) contains the credit profiles for 1,000
individuals with 20 attributes such as accounts, income, properties, and gender. The prediction goal
is to classify whether a person has good or bad credit risks. The gender feature is used as a sensitive
attribute.

Drug Consumption Dataset. Drug Consumption dataset (Dua et al., 2017) contains records from
1,885 respondents about drug consumption. Each data point has 12 attributes including the level of
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education, age, gender, and so on. The original task is multi-classification for 7 classes of whether
and when respondents experienced drugs, but our prediction goal is abridged whether they consumed
cocaine or not. The gender feature is used as a sensitive attribute.

CelebA Dataset. CelebA dataset (Liu et al., 2018) contains more than 200,000 celebrity face
images, each coupled with 40 human-annotated binary characteristics such as gender. From these
characteristics, we specifically choose attractive, smile and wavy hair, utilizing them to establish three
binary classification assignments, with gender regarded as the sensitive attribute following (Zhang
et al., 2017). We select these particular attributes as, in every task, a sensitive group is present which
has a higher number of positive samples compared to the other.

Wikipedia Talk Toxicity Dataset. Moreover, we further explore the adaptability of the proposed
method to the Natural Language Processing (NLP) dataset. We utilize Wikipedia Talk Toxicity
Prediction (Thain et al., 2017) which is a comprehensive collection aimed at identifying toxic content
within discussion comments posted on Wikipedia’s talk pages, produced by the Conversation AI
project. In this context, toxicity is defined as content that may be perceived as “rude, disrespectful, or
unreasonable.” It consists of over 100,000 comments from the English Wikipedia, each meticulously
annotated by crowd workers, as delineated in their associated research paper. A challenge presented
by this dataset is the underrepresentation of comments addressing sensitive subjects such as sexuality,
religion, gender identity, and race. In this paper, the existence of sexuality terms such as ‘gay’,
‘lesbian’, ‘bisexual’, ‘homosexual’, ‘straight’, and ‘heterosexual’ is used as the sensitive attribute, 1
for existing, and 0 for absence.

J ADDITIONAL EXPERIMENTS

J.1 MULTI-LABEL CLASSIFICATION SCENARIO

We clarify that ALFA can be applied to the multi-label classification with binary-protected features
as it can be seen in multiple binary classification scenarios having individual decision boundaries. In
this case, the fairness loss is newly defined as covariance between a sensitive attribute and the mean
of the signed distances, Lfair = Cov(a, 1

T

∑T
t=1 gt(zt + δt)) where T is the number of targeted

prediction.

Luckily, one of our datasets, the Drug Consumption dataset (Dua et al., 2017) has multiple labels.
To further investigate the feasibility of our framework for the multi-label classification, we conduct
additional experiments on the Drug Consumption dataset choosing four prediction goals, Cocaine,
Benzodiazepine, Ketamine, and Magic Mushrooms while only Cocaine is considered as a prediction
goal in the manuscript. The experimental result shows that ALFA effectively mitigates biases in the
multi-label classification.

Table 21: Experimental results for multi-label classification

Accuracy Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.7057 ± 0.0099 0.6689 ± 0.0113 0.6989 ± 0.0267 0.7223 ±0.0094
Logistic Regression + ALFA 0.6816 ± 0.0114 0.6643 ± 0.0122 0.7505 ± 0.0023 0.7307 ±0.0082

MLP 0.6802 ± 0.0144 0.6527 ± 0.0138 0.7551 ± 0.0094 0.7053 ±0.0114
MLP + ALFA 0.6701 ± 0.0057 0.6138 ± 0.0036 0.7343 ± 0.0031 0.6587 ±0.0057

∆DP Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.2691 ± 0.0232 0.3597 ± 0.0298 0.2478 ± 0.1140 0.4151±0.0372
Logistic Regression + ALFA 0.0986± 0.0289 0.2666 ± 0.0424 0.0248 ± 0.0070 0.3993±0.0425

MLP 0.2183 ± 0.0222 0.3179 ± 0.0278 0.0903 ± 0.1320 0.4072±0.0206
MLP + ALFA 0.0760 ± 0.0114 0.1808 ± 0.0137 0.0368 ± 0.0103 0.2384±0.0099

∆EOd Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.4411 ± 0.0483 0.6448 ± 0.0635 0.5184 ± 0.2320 0.7096 ±0.0732
Logistic Regression + ALFA 0.1234 ± 0.0471 0.4498 ± 0.0858 0.0689 ± 0.0158 0.6621±0.0911

MLP 0.3505 ± 0.0449 0.5601 ± 0.0597 0.2492 ± 0.0385 0.6912±0.0441
MLP + ALFA 0.0963 ± 0.0249 0.2971 ± 0.0193 0.1215 ± 0.0153 0.3628±0.0185
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J.2 MULTIPLE SENSITIVE ATTRIBUTE SCENARIO

In the binary classification with multi-protected features, the Differential Fairness (DF) is measured
by binarization of each multi-protected features. For example, Foulds et al. (2020) defined DF

DF = max
i∈S

max
j∈S\{i}

(∣∣∣∣log P (y = 1 | a = i)

P (y = 1 | a = j)

∣∣∣∣
)

where i, j ∈ S, and S denotes the set of multiple sensitive attributes. Therefore, in the multi-protected
feature case, we can define ‘unfair region’ by finding a particular sensitive attribute provoking the
maximum mistreatment and reducing the misclassification rate of the unfair region as well as the
binary sensitive attribute case.

For the multiple sensitive attribute setting, we adopt COMPAS dataset and MEPS dataset. MEPS
(Bellamy et al., 2018) data consists of 34,655 instances with 41 features(e.g. demographic information,
health services records, costs, etc.) Among all the features, only 42 features are used. The sum of
total medicare visiting is used as a binary target label. When the total number of visiting is greater or
equal to 10, a patient is labeled as 1, otherwise 0. And ‘race’ is used as multiple sensitive attributes, 0
for White, 1 for Black, and 2 for others. The experimental result shows that ALFA is also applicable
to the multiple sensitive attributes scenario.

Table 22: Experimental results for multiple sensitive attributes fairness

COMPAS Accuracy DF

MLP 0.6875±0.0048 1.7500±0.5794
MLP + ALFA 0.6895±0.0023 1.3960±0.0892

MEPS Accuracy DF

MLP 0.6208±0.0137 0.2900±0.0700
MLP + ALFA 0.6860±0.0024 0.1985±0.0226

J.3 MULTI-CLASS CLASSIFICATION SCENARIO

For the multi-class classification, the decision boundaries are not linear, so our framework might not
be directly applicable. However, multi-class classification can indeed be conceptualized as multiple
binary classifications in a certain strategy called One-Vs-All. In this approach, for a problem with N
classes, we can create N different binary classifiers. Each classifier is trained to distinguish between
one of the classes and all other classes combined.

As each classifier can be seen as a binary classification task, we can utilize ALFA for the multi-class
classification scenario by detecting unfair regions and covering the region by fairness attack. The
evaluation metric for multi-class fairness takes maximum Demographic Parity across the classes
(Denis et al., 2021). In details,

∆DPmulti = max
k∈[K]

∣∣P (Ŷ = k|a = 1)− P (Ŷ = k|a = 0)
∣∣

where Ŷ is the predicted class, and k ∈ [K] denotes each class k in the multi-class classification.

Among existing datasets for fairness research, Drug dataset can be used for multi-class classification.
In fact, the original labels of the Drug dataset are multi-class settings, from ‘CL0’ to ‘CL6’ indicating
the frequency of drug abuse. We have binarized them as ‘never used’ and ‘ever used’ regardless of
the frequency in the main paper. However, for the multi-class classification setting, we adopt the
original multi-class setting and report the mean accuracy and ∆DPmulti with MLP.
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Table 23: Experimental results for multi-class classification

Drug Multi-class Accuracy ∆DPmulti

MLP 0.5196±0.0032 0.1930±0.0132
MLP + ALFA 0.4960±0.0219 0.1733±0.0287

K INTERPRETABILITY OF THE AUGMENTED FEATURE AND INPUT
PERTURBATION

In this work, we can consider interpretability from two aspects: interpretability on decision boundary
(latent space), and interpretability on original feature (input space). While we have focused on the
first aspect, we argue that the proposed method can cover the second aspect as well.

At first, we are focusing on the interpretability of decision boundaries, which is a common approach
to understand the classifier’s behavior (Guidotti et al., 2020; Bodria et al., 2022). By manipulating
features in the latent space by the fairness attack, we can interpret the decision boundary by discover-
ing an unfair region and adjusting the decision boundary. In this case, it is true that it can’t analyze
how the changes in input features affect the decision boundary. On the other hand, the interpretability
of the input feature might make it possible to analyze how the fairness attack perturbs input data.
However, it may lose the interpretability of decision boundary, such as discovering unfair regions and
understanding the last layer’s behavior.

Fortunately, our framework is applicable to the input space by deploying the fairness attack and
perturbation in the input space. In this case, the entire model will be fine-tuned, while offering input-
level interpretability. We conducted additional experiments with MLP to show the validity of our
framework on the input space in Table 24. Consequently, our method can offer either interpretability
on latent space or input space. In both cases, we can maintain the accuracy level while mitigating the
fairness issue. We opt to freeze the pretrained encoder and deploy perturbations in the latent space, as
this approach generally leads to greater improvements in fairness compared to perturbation in input
space in various datasets.

Table 24: Experimental results for input and latent perturbation with MLP.

Adult Accuracy ∆DP ∆EOd

MLP 0.8525 ± 0.0010 0.1824 ± 0.0114 0.1768 ± 0.0411
MLP + Latent Perturb. 0.8380 ± 0.0045 0.1642 ± 0.0261 0.0971 ± 0.0098
MLP + Input Perturb. 0.8473 ± 0.0016 0.1588 ± 0.0135 0.1016 ± 0.0394

COMPAS Accuracy ∆DP ∆EOd

MLP 0.6711 ± 0.0049 0.2059 ± 0.0277 0.3699 ± 0.0597
MLP + Latent Perturb. 0.6701 ± 0.0020 0.0207 ± 0.0142 0.0793 ± 0.0418
MLP + Input Perturb. 0.6629 ± 0.0051 0.0610 ± 0.0389 0.1086 ± 0.0649

German Accuracy ∆DP ∆EOd

MLP 0.7800 ± 0.0150 0.0454 ± 0.0282 0.2096 ± 0.0924
MLP + Latent Perturb. 0.7570 ± 0.0024 0.0053 ± 0.0064 0.0813 ± 0.0110
MLP + Input Perturb. 0.7465 ± 0.0067 0.0188 ± 0.0106 0.1700 ± 0.0400

Drug Accuracy ∆DP ∆EOd

MLP 0.6674 ± 0.0096 0.2760 ± 0.0415 0.4718 ± 0.0838
MLP + Latent Perturb. 0.6382 ± 0.0061 0.0820 ± 0.0259 0.1068 ± 0.0476
MLP + Input Perturb. 0.6188 ± 0.0146 0.0571 ± 0.0365 0.1893 ± 0.0809
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L ANOTHER FAIRNESS CONSTRAINT

In this part, we show that ALFA can adopt any types of fairness constraint during the fairenss attack.
As an alternative of (Zafar et al., 2017), we present (Wu et al., 2019) below.

Let’s say f(X) is a logit of binary classifier given data X and define indicator functions 1(·) where ·
denotes each condition for the indicator function.

The empirical DP Gap is

∆DP (f) =
1

|1(a = 1)|
∑
a=1

1(f(X) > 0)− 1

|1(a = 0)|
∑
a=0

1(f(X) > 0).

and can be rewritten in the expected form as

∆DP (f) = E
[1(a = 1)

p1
1(f(X) > 0)− (1− 1(a = 0)

1− p1
1(f(X) < 0))

]
where p1 = p(a = 1).

Moreover, the relaxed form replacing the indicator function to real-valued function is written as

∆DP (f) = E
[1(a = 1)

p1
f(X)− (1− 1(a = 0)

1− p1
f(X))

]
.

In (Wu et al., 2019), f(X) is replaced again to construct a convex form using two different surrogate
functions to use ∆DP as a fairness constraint,

∆DPκ(f) = E
[1(a = 1)

p1
κ(f(X))−

(
1− 1(a = 0)

1− p1
κ(−f(X))

)]
∆DPδ(f) = E

[1(a = 1)

p1
δ(f(X))−

(
1− 1(a = 0)

1− p1
δ(−f(X))

)]
where κ is a convex surrogate function κ(z) = max(z + 1, 0) and δ is a concave surrogate function
δ(z) = min(z, 1) as proposed in (Wu et al., 2019). If ∆DP (f) ≥ 0, we directly use ∆DPκ(f) as a
fairness constraint, otherwise use ∆DPδ(f),

Lfair =


∆DPκ(f) if ∆DP ≥ 0

∆DPδ(f) if ∆DP < 0.

Also, it can be extended to use ∆EOD directly as a fairness constraint, by conditioning ∆DP for
each y ∈ {0, 1}.

∆EOD =
[ 1

|1(a = 1, y = 1)|
∑

a=1,y=1

1(f(x) > 0)− 1

|1(a = 0, y = 1)|
∑

a=0,y=1

1(f(x) > 0)
]

+
[ 1

|1(a = 1, y = 0)|
∑

a=1,y=0

1(f(x) > 0)− 1

|1(a = 0, y = 0)|
∑

a=0,y=0

1(f(x) > 0)
]
,

and can be rewritten in the expected form as

∆EOD(f) = E
[1(a = 1, y = 1)

p1,1
1(f(X) > 0)−

(
1− 1(a = 0, y = 1)

π − p1,1
1(f(X) < 0)

)]

+E
[1(a = 1, y = 0)

p1,0
1(f(X) > 0)−

(
1− 1(a = 0, y = 0)

1− π − p1,0
1(f(X) < 0)

)]
since 1 = E[1(a=0,y=1)

p0,1
] = E[1(a=0,y=1)

π−p1,1
] = E[1(a=0,y=1)

π−p1,1
1(f(X) < 0) + 1(a=0,y=1)

π−p1,1
1(f(X) >

0)] and 1 = E[1(a=0,y=0)
p0,0

] = E[1(a=0,y=0)
1−π−p1,0

] = E[1(a=0,y=0)
1−π−p1,0

1(f(X) < 0) + 1(a=0,y=0)
1−π−p1,0

1(f(X) >
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0)], π = p(y = 1) and p(y = 0) = 1− π where p1,1 = P (a = 1, y = 1) and p1,0 = P (a = 1, y =
0). ∆EOD can be expressed as a convex form,

∆EODκ(f) = E
[1(a = 1, y = 1)

p1,1
κ(f(X))−

(
1− 1(a = 0, y = 1)

π − p1,1
κ(−f(X))

)]
+E
[1(a = 1, y = 0)

p1,0
κ(f(X))−

(
1− 1(a = 0, y = 0)

1− π − p1,0
κ(−f(X))

)]

∆EODδ(f) = E
[1(a = 1, y = 1)

p1,1
δ(f(X))−

(
1− 1(a = 0, y = 1)

π − p1,1
δ(−f(X))

)]
+E
[1(a = 1, y = 0)

p1,0
δ(f(X))−

(
1− 1(a = 0, y = 0)

1− π − p1,0
δ(−f(X))

)]
.

where

Lfair =


∆EODκ(f) if ∆EOD ≥ 0

∆EODδ(f) if ∆EOD < 0.

Therefore, different from the covariance (Zafar et al., 2017) between prediction and sensitive attribute,
the convex fairness constraint takes into account the empirical outputs considering all potential
dependencies, not focusing on a particular attribute.

We report the experimental results in the table below by comparing the baseline, the covariance-base
fairness attack (suggested in the paper), and the convex fairness attack. The experiment shows that our
method can adopt any type of fairness constraint during the attacking step, both showing improvement
in fairness.

While our framework has wide adaptability in the choice of fairness constraint during the fairness
attack, the reason we chose covariance instead of convex fairness constraint is it doesn’t depend on
the empirical outputs and offers clear proof illustrated in Proposition B.1 and Theorem B.2.

M ANALYSIS FOR THE COMPARISONS

We analyze how such approaches, FAAP, Fair-Mixup, and ALFA improve fairness on a synthetic
dataset as shown in Figure 3. In FAAP, the author generates adversarial perturbation using GAN
model towards the sensitive hyperplane to make the sensitive attributes not recognizable, while trying
to maintain the accuracy. In the simplified form the objective function becomes,

min
θ

(
Lce(fθ,x+ δ, y)− Lce(fθ,x+ δ, a)

)
.

However, in FAAP, the perturbations are not necessarily towards the sensitive hyperplane as shown in
Figure 3 (b), especially in the tabular dataset. There could potentially be two reasons for the observed
discrepancies: the variations in the population sizes of each demographic group and the possible
unsuitability of GAN-based perturbation for tabular datasets. Moreover, although the perturbed
samples are correctly projected to the sensitive hyperplane, it doesn’t necessarily lead to the fairer
classifier. In Fair-Mixup, the author uses an interpolation strategy to generate data in the manifold.
However, the manifold assumptions could be too strict. Moreover, although the interpolated data may
compensate for the imbalance in the dataset, it doesn’t take into account the unfair regions, where the
misclassification rates are disproportionately high, as shown in Figure 3 (c). On the other hand, as
discussed in Section 3 and Figure 1, ALFA directly discovers and covers the unfair regions to correct
the classifier to become fairer.
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Table 25: Experimental results with different fairness attack objective function.

Adult Accuracy ∆DP ∆EOd

Logistic 0.8470 ± 0.0007 0.1829 ± 0.0020 0.1982 ± 0.0077
Logistic + ALFA (Covariance) 0.8464 ± 0.0004 0.1555 ± 0.0013 0.0616 ± 0.0022

Logistic + ALFA (Convex) 0.8227 ± 0.0026 0.0852 ± 0.0078 0.1547 ± 0.0133
MLP 0.8525 ± 0.0010 0.1824 ± 0.0114 0.1768 ± 0.0411

MLP + ALFA (Covariance) 0.8380 ± 0.0045 0.1642 ± 0.0261 0.0971 ± 0.0098
MLP + ALFA (Convex) 0.8324 ± 0.0031 0.1400 ± 0.0166 0.0904 ± 0.0184

COMPAS Accuracy ∆DP ∆EOd

Logistic 0.6578 ± 0.0034 0.2732 ± 0.0129 0.5319 ± 0.0245
Logistic + ALFA (Covariance) 0.6682 ± 0.0040 0.0210 ± 0.0167 0.0931 ± 0.0323

Logistic + ALFA (Convex) 0.6740 ± 0.0034 0.0470 ± 0.0180 0.1444 ± 0.0379
MLP 0.6711 ± 0.0049 0.2059 ± 0.0277 0.3699 ± 0.0597

MLP + ALFA (Covariance) 0.6701 ± 0.0020 0.0207 ± 0.0142 0.0793 ± 0.0418
MLP + ALFA (Convex) 0.6624 ± 0.0010 0.0130 ± 0.0075 0.0738 ± 0.0150

German Accuracy ∆DP ∆EOd

Logistic 0.7220 ± 0.0131 0.1186 ± 0.0642 0.3382 ± 0.1268
Logistic + ALFA (Covariance) 0.7660 ± 0.0189 0.0397 ± 0.0261 0.1596 ± 0.0354

Logistic + ALFA (Convex) 0.7410 ± 0.0130 0.0240 ± 0.0179 0.1030 ± 0.0360
MLP 0.7800 ± 0.0150 0.0454 ± 0.0282 0.2096 ± 0.0924

MLP + ALFA (Covariance) 0.7570 ± 0.0024 0.0053 ± 0.0064 0.0813 ± 0.0110
MLP + ALFA (Convex) 0.7575 ± 0.0087 0.0181 ± 0.0120 0.1960 ± 0.0079

Drug Accuracy ∆DP ∆EOd

Logistic 0.6626 ± 0.0135 0.2938 ± 0.0761 0.5064 ± 0.1616
Logistic + ALFA (Covariance) 0.6554 ± 0.0067 0.0909 ± 0.0261 0.1170 ± 0.0255

Logistic + ALFA (Convex) 0.6509 ± 0.0072 0.0596 ± 0.0198 0.1284 ± 0.0286
MLP 0.6674 ± 0.0096 0.2760 ± 0.0415 0.4718 ± 0.0838

MLP + ALFA (Covariance) 0.6382 ± 0.0104 0.0820 ± 0.0259 0.1068 ± 0.0476
MLP + ALFA (Convex) 0.6329 ± 0.0173 0.1002 ± 0.0826 0.1955 ± 0.0956

N BALANCING ACCURACY AND FAIRNESS WITH A NEW HYPERPARAMETER

In the paper, we intentionally designed the framework with only one hyperparameter, α, to maintain
simplicity. Under our cost-effective setup, where fine-tuning is applied only to the last layer in the
latent space, we rely on grid search to find the optimal α to control accuracy and fairness. However,
we consider adding more control factors to balance accuracy and fairness to enhance the framework’s
flexibility.

To address this, we introduce an additional hyperparameter, λ, to control accuracy in ALFA by
modifying Eq.5 as follows:

min
θ

1

|Xc|+ |Zp|

(
(1− λ)

∑
xi∈Xc

Lce
(
g(f(xi)), yi, θ

)
+ λ

∑
zj∈Zp

Lce(g(zj + δ∗j ), yj , θ)
)
.

In this setting, a lower λ reduces the contribution of perturbed samples, resulting in higher accuracy.
In the original configuration, λ = 0.5 serves as the default value. λ = 0.0 corresponds to the baseline
without any fairness constraints or data augmentation.

In the COMPAS dataset, accuracy remains stable across varying λ, aligning with baseline results. In
contrast, for the German and Drug datasets, accuracy decreases with increasing λ, as expected, since
perturbed samples contribute more to the training objective. On the other hand, small λ is sufficient
to improve fairness, with the improvement remaining consistent across λ. However, controlling
fairness purely through λ is challenging. As demonstrated in Figures 4, 5, and 6, varying α provides
an alternative way to influence fairness.
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Figure 9: The impact of λ on accuracy and fairness performance ∆EOd for the COMPAS, German,
and Drug datasets.

O IMPACT OF REPRESENTATION SIZE

We conduct an additional ablation study to analyze the impact of representation dimensionality on
fairness performance. In practice, the representation size is typically pre-defined in foundational
models for computer vision and NLP tasks. However, for tabular datasets, it is feasible to train
custom encoders with varying output dimensions. Specifically, for the Adult and COMPAS dataset,
we vary the dimension size d across [32, 64, 128, 256, 512, 1024, 2048] both for the encoder’s output
z ∈ Rn×d and perturbation δ ∈ Rn×d.

The results in Figure 10 indicate that while accuracy remains consistent, larger dimensions result in
improved fairness. We analyze this that larger dimensions allow for greater perturbation capacity,
enabling richer representations that can more effectively attack the fairness constraint. Furthermore,
richer representations provide the re-trained classifier with more detailed information, enhancing the
overall fairness performance.
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Figure 10: The impact of representation size on accuracy and fairness performance ∆EOd for the
Adult and COMPAS datasets.
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P COMPUTATIONAL RESOURCE

Table 26: Compute Resources Used for Experiments

Component Details

CPU AMD Ryzen Threadripper 3960X 24-Core Processor
GPU NVIDIA GeForce RTX 3090
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