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Abstract

Weight-Inherited Distillation (WID) is an effec-001
tive distillation method that inherits the weights002
from the teacher’s model, thus achieving bet-003
ter results than traditional distillation meth-004
ods. However, the identity matrix initializa-005
tion used in WID leads to slow model conver-006
gence. In this work, we propose an improved007
WID method named DA-WID that replaces the008
identity matrix initialization with a specialized009
data-aware initialization. Concurrently, we re-010
fine the structural design of WID, enhancing its011
adaptability and flexibility in selecting the com-012
pressed model architecture. Our experiments013
on the GLUE and SQuAD datasets show that014
the model delivered by DA-WID retains 96%015
of the performance with 94% of parameters re-016
moved, showing its effectiveness compared to017
previous pruning and distillation methods. Our018
data and code is available on an anonymous019
repo.020

1 Introduction021

Pre-trained language models (PLMs) (Devlin et al.,022

2018; Radford et al.; Vaswani et al., 2017) have023

gained widespread use in Natural Language Pro-024

cessing due to their remarkable performance. How-025

ever, their considerable storage needs and extended026

inference durations can complicate real-world de-027

ployments. To address these limitations, significant028

efforts have been made to make PLMs both smaller029

and faster. Among these methods, distillation has030

emerged as a popular approach.031

Distillation offers a versatile technique for model032

compression. It permits a custom specification033

of the student model’s structure and facilitates034

the gradual transfer of knowledge from the larger035

teacher model during training. A notable draw-036

back, however, is that distillation often doesn’t037

leverage the full potential of the teacher model’s038

parameters. As a result, student models typically039

require pre-training on a vast, unlabeled dataset040

before being fine-tuned for specific tasks. A novel041

Figure 1: Comparing the fundamental concepts of WID
and DA-WID: (a) In WID, compactor matrix and mask
are used to compress the output dimension of the weight
matrix W . However, initializing with the identity matrix
poses challenges for feature filtering using the mask. (b)
In DA-WID, initializing the compactor matrix using
the unitary matrix derived from SVD simplifies feature
filtering with the mask.

distillation method called weight-inherited distilla- 042

tion (WID) (Wu et al., 2023) has been introduced 043

recently. WID incorporates compactor matrices 044

into the teacher model and achieves compression 045

through re-parameterization. Distinct from tradi- 046

tional distillation techniques, WID allows for a 047

direct inheritance of the teacher model’s parame- 048

ters, eliminating the need to train the student model 049

from scratch. 050

Nonetheless, the WID methodology has its in- 051

herent limitations. The approach employs identity 052

matrices for the initiation of compactor matrices, 053
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which presents challenges in optimization when054

seeking the desired compression. As shown in055

Fig.1 (a), the input feature X is successively passed056

through the weight matrix and the compactor ma-057

trix, while the mask is responsible for pruning the058

useless dimensions from the features. When the059

compactor matrix is initialized with the identity060

matrix, the activation values are dispersed across061

all dimensions of the feature matrix, increasing the062

difficulty of eliminating irrelevant dimensions.063

To address WID’s challenges, we introduce DA-064

WID, a distinct distillation method emphasizing065

Data-Aware initialization for compactor matrices.066

We postulate that the compactor matrix in WID067

should primarily extract the primary components of068

the features. As shown in Fig.1 (b), we expect the069

initialization centers the activation values predomi-070

nantly on select dimensions of the feature matrix,071

considerably simplifying the task of filtering out072

irrelevant dimensions. With this in mind, we initial-073

ize the compactor matrices to inherently possess074

this extraction capability even before the training075

process. Specifically, we innovatively draws a con-076

nection between the WID methodology and the077

low-rank properties of features, setting unique low-078

rank approximation objectives for different PLM079

modules. We then initialize the compactor matrices080

based on these approximation outcomes.081

Moreover, existing pruning work (Xia et al.,082

2022) shows that the structure of various layers083

of the model tends to be different after pruning.084

Thus, we refine WID’s model structure to allow dy-085

namic determination of the student model’s struc-086

ture, guided by the desired sparsity during opti-087

mization. At the same time, we also integrate WID088

with pruning to improve the flexibility of WID.089

We conducted comprehensive experiments on090

the GLUE and SQuAD benchmarks. Our findings091

highlight three primary advantages: (1) Our ap-092

proach compressed 94% of the parameters in the093

BERT-base model, decreasing its size from 85M to094

5M, yet retained an accuracy of over 96%. (2) Com-095

pared to baseline methods, our technique produces096

models with superior accuracy at comparable com-097

pression rates. (3) Ablation studies indicate that098

both data-aware initialization and structural adap-099

tation notably enhance the accuracy of the com-100

pressed model.101

The contributions can be summarized as:102

• We propose a data-aware initialization method103

that reduces the difficulty of optimizing the104

Figure 2: Illustration of the basic structure of WID (Wu
et al., 2023) and DA-WID. (a) WID places the com-
pactor matrices and masks inside the residuals, resulting
in the input and output dimensions being compressed to
the same dimension. (b) DA-WID places the compactor
matrices and masks outside the residuals, thus allowing
the dimensions of the input and output to be compressed
into different dimensions.

compactor matrix in WID. 105

• We improve the WID structure so that WID 106

can adaptively set the structure of the compres- 107

sion model according to the desired sparsity. 108

2 Background 109

2.1 Pre-trained Language Model 110

A typical PLM (e.g., BERT (Devlin et al., 2018)) 111

comprises a stack of transformer layers, each con- 112

taining a multi-head attention (MHA) block and a 113

feed-forward network (FFN) block. 114

Multi Head Attention (MHA). The MHA block 115

takes x ∈ Rd×N as input and consists of H at- 116

tention heads that facilitate interactions between 117

tokens, with a normalization (Ba et al., 2016) step. 118

xM = LN(x+MHA(x)), (1) 119

MHA(x) =
H∑
i=1

Att(i)(x), (2) 120

Att(i)(x) = W
(i)⊤
O W

(i)
V x · Softmax((W

(i)
K x)⊤(W

(i)
Q x)/

√
dh),

(3)
121

where W
(i)
Q ,W

(i)
K ∈ RdQK×d, W

(i)
V ,W

(i)
O ∈ 122

RdVO×d are the parameters of an MHA block, de- 123

noting the query, key, value, and output matrices, 124

2



Figure 3: Illustration of the DA-WID structure, where the gray rectangles denote the weight matrices, the yellow
rectangles denote the compactor matrices, and the red rectangles denote the masks.

respectively. Here d denotes the hidden dimen-125

sion, dh = d/H denotes the head size, N denotes126

the sequence length, and dQK and dVO denote the127

intermediate dimensions of the MHA block.128

Feed Forward Network (FFN). The FFN block129

takes xM as input and generates xF as output.130

xF = LN(xM + FFN(xM )), (4)131

FFN(xM ) = W⊤
D gelu(WUxM ), (5)132

where gelu is the activation function, and133

WU ,WD ∈ Rdf×d are two weight matrices of the134

FFN block. Here, df indicates the intermediate135

dimension of the FFN block.136

2.2 Weight-Inherited Distillation137

WID is a distillation method that, in contrast to con-138

ventional distillation methods, inherits the teacher139

model’s parameters and compresses them.140

Figure 2 (a) illustrates the core concept of WID’s141

model compression. Initially, WID introduces com-142

pactor matrices WL ∈ Rd×d and WR ∈ Rd×d,143

along with associated masks ML ∈ Rd and MR ∈144

Rd, positioned on either side of the transformer145

block. The compactor matrices are set to the iden-146

tity matrix at the start, while the masks begin as147

vectors filled with ones. After this setup, the model148

undergoes training using a large dataset, and com-149

pactor matrices are progressively pruned based on150

the masks. The final step involves fusing the trans-151

former block with the compactors to produce a152

compressed transformer block. It can be seen that 153

the input and output of the transformer block are 154

compressed from d to d0 dimension. 155

3 Method 156

In this section, we begin by discussing improve- 157

ments made to the WID structure, enabling it to 158

selectively choose the compressed model structure 159

(Section 3.1). We then delve into the data-aware 160

initialization, which can benefit model optimiza- 161

tion compared to identity matrix initialization. Our 162

focus is on explaining how to enhance the com- 163

pactor matrix’s capability to extract primary fea- 164

ture components prior to training (Section 3.2). We 165

conclude by detailing the training (Section 3.3) and 166

fusing (Section 3.4) procedures of DA-WID . 167

3.1 Structure of DA-WID 168

The structure of DA-WID is shown in Fig. 3. On 169

top of the MHA block, we insert the compactor 170

matrices CQ, CK , CV , and CO and the correspond- 171

ing masks MQ,MK ,MV , and MO for compress- 172

ing the intermediate dimensions dQK , dV O of the 173

MHA blocks. At the position of LayerNorm lay- 174

ers, we insert the compactor matrices Cin, Cout 175

and the corresponding masks Min,Mout for com- 176

pressing the hidden dimensions d between layers. 177

At the FFN block, we introduce the mask Mf for 178

compressing the intermediate dimension df of the 179

FFN block. We don’t insert the compactor matrices 180
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in the FFN block because existing pruning work181

has shown that the intermediate dimensions of the182

FFN block can be effectively compressed by us-183

ing only masks. Since the above masks are used184

to compress the input and output dimensions of185

the weight matrix, we refer to the above masks as186

dimension-level masks.187

We also introduce structure pruning to further188

enhance the flexibility of the WID method. At189

the MHA block, we introduce a head-level mask190

Mhead to reduce the attention head size. Finally,191

we introduce layer-level masks MMHA,MFFN for192

removing the entire MHA block or FFN block.193

Compared to WID, we change the position of194

the compactor matrix with respect to the residuals,195

which allows our method to adaptively select the196

hidden dimension of different layers. As shown in197

Fig. 2, since WID places the compactor matrices198

and masks inside the residuals, the input and the199

output dimensions of the compressed MHA/FFN200

block are required to be the same. On the con-201

trary, since DA-WID places the compactor matri-202

ces and masks outside the residuals, the input and203

output dimensions of the compressed MHA/FFN204

block could be different. In addition, we also intro-205

duce the structured pruning into DA-WID , which206

extends the compression granularity and thus in-207

creases the flexibility of the WID method.208

The computation process of DA-WID can be209

expressed as follows:210

Multi Head Attention (MHA).211

xM = CoutMoutLN(MinCin(x+MHA(x))),

MHA(x) =

H∑
i=1

M
(i)
headAtt

(i)(x),

Att(i)(x) = W
(i)⊤
O C

(i)⊤
O M

(i)⊤
O M

(i)
V C

(i)
V W

(i)
V x·

Softmax((W
(i)
K x)⊤C

(i)⊤
K M

(i)⊤
K M

(i)
Q C

(i)
Q (W

(i)
Q x)).

(6)212

Feed Forward Network (FFN).213

xF = CoutMoutLN(MinCin(xM + FFN(xM ))),

FFN(xM ) = W⊤
DMfgelu(WUxM ),

(7)214

where C∗ represents the compactor matrix and M∗215

represents the vectors corresponding to the mask.216

When multiplying a mask vector with a matrix,217

we transfer the mask vector into a diagonal ma-218

trix. Note that the matrices Cin, Cout and masks219

Min,Mout in the MHA block and the FFN block220

use different weights, but for the sake of simplicity,221

we do not distinguish between them in the formula.222

3.2 Data-aware Compactor Initialization 223

WID initializes the compactor matrices to the iden- 224

tity matrices. It makes these compactor matrices 225

hard to optimize for compression. Thus, our target 226

is to find a better way for compactor initialization. 227

We postulate that the compactor matrices in WID 228

should extract the primary components of the fea- 229

tures. Based on this conjecture, we present the 230

initialization of compactors in the MHA block and 231

the FFN layer, which encompasses compression 232

of the intermediate dimensions dQK , dV O in the 233

MHA block and the hidden layer dimension d in 234

both the blocks. 235

Compressing dQK , dV O. The intermediate dimen- 236

sions dQK , dV O are situated within the attention 237

computation (i.e., Eq. 3) of the MHA block. Conse- 238

quently, We formulate the following optimization 239

objective functions to approximate the dot prod- 240

uct result and the weighted average result of the 241

attention component using their respective first k 242

principal components: 243

argmin
Uk,0,Vk,0

∥XW
(i)⊤
Q W

(i)
K X −XW

(i)⊤
Q V

(i)⊤
k,0 U

(i)
k,0W

(i)
K X∥,

(8)

244

argmin
Uk,1,Vk,1

∥W (i)⊤
O W

(i)
V XS −W

(i)⊤
O V

(i)⊤
k,1 U

(i)
k,1W

(i)
V XS∥,

(9)

245

where the feature matrix X ∈ Rd×N is derived 246

from the last transformer layer for a specific cali- 247

bration dataset. In the MHA block, S represents 248

the Softmax of dot-product results. Here, N is the 249

count of sampled tokens in the calibration dataset, 250

while d signifies the feature dimension. Using 251

SVD, we determine all the feature’s principal com- 252

ponents, resulting in matrices U (i), V (i). Here, 253

matrices U
(i)
k, , V

(i)
k, ∈ Rk×d relate to the initial k 254

columns of U (i), V (i). For a detailed breakdown of 255

the SVD decomposition, see Appendix A. Note that 256

while the optimization objective includes the num- 257

ber of principal components k, employing SVD to 258

address this doesn’t necessitate a predefined k—we 259

are primarily interested in U (i), V (i). 260

Since U (i)
∗ , V

(i)
∗ have the property of distinguish- 261

ing between the major and minor components 262

of the features, allowing some dimensions to be 263

pruned more easily, we consider these matrices to 264

be a better choice than identity matrices. Specif- 265

ically, we assign C
(i)
Q = V

(i)
0 , C

(i)
K = U

(i)
0 and 266

C
(i)
O = V

(i)
1 , C

(i)
V = U

(i)
1 . 267
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Compressing d. For compressing the hidden di-268

mension d between layers, We formulate the fol-269

lowing optimization objective:270

argmin
Uk

∥X − UkU
⊤
k X∥, (10)271

where the feature matrix X ∈ Rd×N originates272

from either the attention computation (i.e., Eq. 2)273

with residual of the MHA block or the FFN compu-274

tation (i.e., Eq. 5) with residual in the FFN block.275

It also serves as the input for the LayerNorm layer.276

The matrix Uk represents the first k columns of277

matrix U , which is derived from the SVD of matrix278

X , given by U,Σ, V ⊤ = SVD(X).279

With this optimization objective, we can have280

LN(X) = γL̂N(X) + β

= γL̂N(UUTX) + β

≈ γL̂N(UkU
⊤
k X) + β,

(11)281

where LN represents LayerNorm, while L̂N signi-282

fies LayerNorm without any weight or bias. Ide-283

ally, we aim to swap the order of computation be-284

tween the matrices U and L̂N for more effective285

fusion with subsequent weight matrices. Yet, this286

interchange would yield different outcomes, specifi-287

cally, L̂N(UUTX) ̸= U L̂N(U⊤X). Nevertheless,288

experimental observations reveal that in most lay-289

ers, the discrepancies arising from this reordered290

computation can be rectified during model training.291

Thus, we propose the following approximation:292

LN(X) ≈ γU L̂N(U⊤X) + β. (12)293

It’s note that just like U (i) and V (i), the inclusion294

of k in the objective function is merely to illustrate295

the low-rank property and doesn’t necessitate speci-296

fying a value for k during optimization. In essence,297

we derive the matrix U using SVD and use it to298

initialize the compactor matrix on both sides of the299

LayerNorm, including its weight and bias. To be300

specific, we assign Cin = U⊤ and Cout = γU ,301

accompanied by a bias of β.302

3.3 Model Training303

Pruning Objective. Model compression is con-304

trolled by a series of masks that are inserted into305

the model. We compute the sparsity of the model306

based on these masks. During training, all masking307

variables are learned as real numbers. At the end308

of training, masked variables below the threshold309

(determined by the expected sparsity) are mapped310

to 0, resulting in the final pruned structure.311

Following previous work (Xia et al., 2022), we 312

use Lagrangian terms that force the expected spar- 313

sity of the model to be close to the desired sparsity: 314

Lprune = λ1 · (ŝ− t) + λ2 · (ŝ− t)2, (13) 315

where ŝ is the expected sparsity, t is the target 316

sparsity, and λ1, λ2 are two Lagrange multipliers. 317

Please refer to Appendix B for more detail of ŝ. 318

Distillation Objective. We also improve the per- 319

formance of the student model through knowledge 320

distillation. We use both output distillation and 321

layer distillation. For the former one, we use cross- 322

entropy to compare the outputs of the teacher and 323

student models: 324

Lpred = DKL(ps∥pt). (14) 325

For the layer distillation, we dynamically map 326

layers between student and teacher models, com- 327

paring their outputs using MSE loss. Given T as 328

the student model’s layer set and m(·) as its i-layer 329

corresponding to the teacher’s m(i)-th layer, the 330

distillation loss on layer output are defined as: 331

Llayer =
∑
i∈T

MSE(WlayerH
i
s,H

m(i)
t ),

m(i) = argmin
j:j≥i

MSE(WlayerH
i
s,H

j
t),

(15) 332

where Wlayer ∈ Rd×d is a linear transformation 333

maxtrix, initialized as an indentity matrix. Hi
s are 334

hidden states from the i-th FFN block of the stu- 335

dent model, and H
m(i)
t are hidden states from the 336

m(i)-th FFN block of the teacher model. The final 337

distillation loss combines the two types of losses: 338

Ldistill = λLpred + (1− λ)Llayer, (16) 339

where λ controls the contribution of each loss. 340

Multi-stage Training. In DA-WID , we use 3 341

levels of masks: dimension-level mask, head-level 342

mask, and layer-level mask. We find that among the 343

multiple-level masks of the model, the head-level 344

mask and the layer-level mask are prioritized for 345

compressing the model during the training process, 346

while the dimension-level mask may be ignored. 347

In order to fully utilize the mask at each level, 348

we divide the training process into several stages. 349

We first train the model with the distillation objec- 350

tive. Then, we add the pruning objective and use a 351

scheduling program to linearly increase the targert 352

sparsity to the final target sparsity. After adding 353

the pruning objective, we use only dimension-level 354

masks for the first few epochs, after which we add 355

head-level masks and layer-level masks. 356
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3.4 Compactor Matrices Fusing357

After training, we first prune compactor matrices,358

attention heads, the MHA block, and the FFN block359

based on masks. After that, we merge the com-360

pactor matrices with weight matrices. In addition361

to this, since we adaptively learn different hidden362

dimensions in different layers, we need to add addi-363

tional weight matrices to the residual. For example,364

for a MHA block, we have365

xo =LN(WRx+MHA(x))), (17)366

where WR is a matrix added to the residual, which367

is determined by multiplying the pruned compactor368

matrices before and after the MHA block (refer to369

Figure 3), i.e.,370

W
(i)
R = Prune(C

(next)
in C

(prev)
out ,M

(next)
in ,M

(prev)
out ), (18)371

where C
(prev)
out and M

(prev)
out represent the com-372

pactor matrix and mask before the MHA block,373

and C
(next)
in , M

(next)
in represent those after the374

MHA block; function Prune denotes pruning rows375

and columns of matrix C
(next)
in C

(prev)
out via masks376

M
(next)
in ,M

(prev)
out , respectively. The FFN block fol-377

lows the same way.378

4 Experiments379

4.1 Setup380

Datasets. We evaluate our approach on GLUE381

(Wang et al., 2018) tasks and SQuAD (Rajpurkar382

et al., 2016) v1.1. GLUE tasks include SST-2383

(Socher et al., 2013), MNLI (Kim et al., 2019),384

QQP (Wang et al., 2017), QNLI, MRPC (Dolan385

and Brockett, 2005), STS-B, and RTE. We ex-386

clude CoLA due to their unstable behaviors, and387

we cannot reproduce some baseline results based388

on our device on the CoLA dataset. For the GLUE389

benchmark, we report accuracy for the MNLI, QQP,390

QNLI, SST2, MRPC, and RTE tasks, as well as391

spearman correlation for the STS-B task. For the392

SQuAD benchmark, we report the F1 score. For393

more comprehensive information regarding the ex-394

perimental setup, please refer to Appendix C.395

Baselines. We compare DA-WID with powerful396

distillation methods including TinyBERT (Jiao397

et al., 2020), WID (Wu et al., 2023) and the pruning398

method CoFi (Xia et al., 2022). For TinyBERT,399

we use the experimental results without data aug-400

mentation for a fair comparison.401

4.2 Main Results 402

As shown in Table 1, we compress the BERTbase 403

model and compare the performance of DA-WID 404

with other methods under the similar sparsity. First, 405

compared to the original model, DA-WID retains 406

96% of the model performance while removing 407

94% of the model parameters. Second, compared to 408

other baselines, DA-WID has extra degrees of free- 409

dom. Compared to the pruning method, DA-WID 410

can additionally compress the hidden dimensions 411

and intermediate dimensions of the MHA block. 412

Compared to distillation methods, DA-WID can 413

use different hidden dimensions at different layers 414

with additional head-level and layer-level pruning. 415

Overall, DA-WID obtains the best performance 416

on all datasets, indicating that utilizing these extra 417

degrees of freedom can benefit the performance 418

during compression. 419

4.3 Ablation Study 420

Compactor Initialization. To verify the impor- 421

tance of the data-aware initialization, we initialize 422

the compactor matrices to identity matrices and 423

re-run the experiment. To prevent head-level and 424

layer-level masks from interfering with the role of 425

data-aware initialization, we use only dimension- 426

level masks in our experiments. As shown in Ta- 427

ble 2, on the RTE and MRPC datasets, removing 428

data-aware initialization leads to significant per- 429

formance degradation, while removing data-aware 430

compactor initialization on the SST-2 and STS-B 431

datasets also leads to slight performance degrada- 432

tion. This suggests that data-aware initialization 433

of the compression matrix helps to improve the 434

performance of the compressed model. 435

Data-aware initialization uses calibration data 436

from the training set. We further explored the effect 437

of the number of tokens on the performance of the 438

model. Table 3 shows model accuracy with varying 439

sample tokens. Since increasing the number of 440

samples increases the complexity of computing the 441

SVD, sampling 4,096 tokens offer a good balance 442

between accuracy and computation. 443

Impact of Multi-level Masks. DA-WID uses dif- 444

ferent levels of masks to compress the model. In 445

order to explore the impact of different levels of 446

masks on model performance, we conduct the fol- 447

lowing experiments: (1) Use all levels of masks. 448

(2) Ignore head-level masks. (3) Ignore layer-level 449

masks. (4) Ignore head-level and layer-level masks. 450
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Params. SST-2 QNLI MNLI QQP RTE STS-B MRPC SQuAD Avg.

BERTbase 85M 93.1 91.5 84.8 91.2 70.4 89.1 85.6 88.4 86.76

TinyBERT4 4.7M 89.7 86.7 78.8 90.0 63.2 85.0 81.4 82.1 82.11
WID 5.0M 88.8 85.4 78.4 89.5 60.3 84.5 81.9 81.2 81.25
CoFi ~5.0M 90.6 86.1 80.6 90.1 64.7 83.1 82.6 82.6 82.55

Ours ~5.0M 91.4 87.6 81.6 90.1 66.4 86.1 82.8 83.2 83.65

Table 1: Comparison between our DA-WID and both the distillation methods and pruning methods. Note that,
following previous work (Xia et al., 2022), we do not count the number of parameters in the embedding layer.

SST-2 RTE STS-B MRPC

DA-WID-10M 91.3 66.8 87.8 85.5
w/o initialize 91.2 52.7 85.0 80.6

DA-WID-5M 91.4 66.4 86.1 82.8
w/o head 90.9 66.1 86.6 82.1
w/o layer 91.2 62.8 86.1 83.5
w/o head & layer 91.1 63.9 86.5 83.8

Table 2: Ablation studies on compactor initialization
and pruning units on SST-2, RTE, STS-B, and MRPC
datasets. For DA-WID-10M, we ignored corse-grained
masks Mhead,MMHA and MFFN and compressed the
model to 10M. For DA-WID-5M, we used masks of all
granularities and compressed the model to 5M.

Number of tokens SST-2 RTE STS-B MRPC

2,048 90.0 58.8 85.9 82.8
4,096 91.4 64.2 86.1 82.8
8,192 90.8 63.5 86.4 83.1

Table 3: Ablation studies on the number of tokens sam-
pled on SST-2, RTE, STS-B, and MRPC datasets.

The findings from the experiment are presented451

in Table 2. Observations indicate superior model452

performance on the SST-2 and RTE datasets when453

all mask levels are utilized. For the STS-B datasets,454

the removal of the head-level mask results in the455

most precise models. Notably, the optimal perfor-456

mance on the MRPC dataset is achieved by a model457

that excludes both the head-level and layer-level458

masks. Given the data volume in each dataset, we459

hypothesize that minor alterations in the head-level460

and layer-level masks can significantly influence461

model outputs compared to the dimension-level462

mask. This implies that the head-level and layer-463

level masks might be more challenging to optimize.464

Consequently, removing either the head-level or465

layer-level mask in smaller datasets can stabilize466

the optimization process, leading to a more pre-467

cise model. As dataset sizes increase, the need468

for model compression flexibility becomes evi-469

dent, with multi-level masking yielding superior 470

outcomes. 471

4.4 Structures of Pruned Model 472

We study the pruned structures produced by DA- 473

WID. Take the MRPC dataset as an example. Fig- 474

ure 4 shows the structural information of the pruned 475

model, and the results of other datasets are shown 476

in Appendix D. 477

From Fig. 4 (b) and (c), as well as related figures 478

for other datasets, it’s evident that the model struc- 479

ture varies across different datasets. However, a 480

consistent observation across these structures is that 481

layers nearer the output are more compressed than 482

those closer to the inputs. Additionally, the inter- 483

mediate dimensions of the FFN block are notably 484

more compressed across all datasets compared to 485

the intermediate dimensions of the MHA block. 486

This distinction is highlighted when comparing the 487

green bars to the blue and red bars in Fig. 4 (b). 488

The observed compression patterns align with 489

models derived from previous pruning efforts as 490

cited in (Xia et al., 2022). Besides these findings, 491

which concur with the pruning method, Fig. 4 (a) 492

and its analogous figures for other datasets reveal 493

that the model’s hidden dimension decreases as the 494

number of layers increases. This suggests that the 495

model progressively compresses features to more 496

compact dimensions throughout its inference pro- 497

cess. 498

5 Related Work 499

Distillation. Knowledge distillation (Hinton et al., 500

2015) is a model compression approach that trans- 501

fers knowledge from a larger teacher model to a 502

smaller student model. Most distillation methods 503

assume a fixed student structure, and at the same 504

time, pre-training of the student model from scratch 505

on unlabeled corpora is important for these dis- 506

7



(a) Hidden dimensions (b) Intermediate dimensions (c) Attention head size

Figure 4: Structural information of the pruned model on the MRPC dataset, where sparsity denotes the ratio of the
remaining dimension or size to the original dimension or size. (a) Output dimensions of each MHA and FFN block.
(b) Intermediate dimensions of each MHA and FFN block. (c) The number of attention heads in each MHA block.

tillation methods, but this results in high compu-507

tational costs. In addition to the above methods,508

DynaBERT (Hou et al., 2020) tries to distill the509

student model with adaptive width and height, and510

WID (Wu et al., 2023) inherits the parameters of511

the teacher model and tries to directly compress512

the teacher model into the student model through513

the re-parameterization method. Other methods,514

such as DistillBERT (Sanh et al., 2019), initial-515

ize the student model through the teacher model516

to avoid the pre-training phase, but these methods517

limit the possible model structures of the student518

model. In contrast to the above methods, our ap-519

proach eliminates the need for a pre-training phase520

while allowing for adaptive determination of the521

student model structure.522

Pruning. Existing pruning methods can be broadly523

divided into two categories: unstructured prun-524

ing and structured pruning. Unstructured pruning525

(Gale et al., 2019; Frankle and Carbin, 2018; Kurtic526

et al., 2022; Louizos et al., 2018; Sanh et al., 2020)527

aims to remove unimportant scalar values from the528

model’s parameters. Although unstructured prun-529

ing algorithms can remove many redundant param-530

eters while ensuring accuracy, compressed models531

require specific sparse data structures and hardware532

support to take advantage of unstructured prun-533

ing. For this reason, structure pruning approaches534

(Kwon et al., 2022; Lin et al., 2020; Lagunas et al.,535

2021; Sajjad et al., 2023; Wang et al., 2020; Xia536

et al., 2022) are proposed to remove weight blocks537

in PLM, including the entire layer (Fan et al., 2019;538

Prasanna et al., 2020; Sajjad et al., 2020), attention539

heads of the MHA block (Michel et al., 2019; Voita540

et al., 2019), and filters of the FFN block (McCar-541

ley et al., 2019). Structure pruning can accelerate542

inference speed and reduce memory overhead with-543

out specialized data structures and hardware. We 544

introduce structured pruning to our approach to 545

increase the model structure’s flexibility. 546

Low-Rank Factorization. Some low-rank fac- 547

torization work compresses PLM directly by de- 548

composing the weight matrix (Liu and Ng, 2022; 549

Yin et al., 2022; Zhou et al., 2019; Hua et al., 550

2022). Other works (Ma et al., 2019; Xiao et al., 551

2023) have considered the model structure of PLM 552

while performing matrix decomposition, and these 553

works are mainly used for the compression of MHA 554

blocks. In our approach, instead of compressing 555

PLMs directly using low-rank factorization, we ini- 556

tialize the parameters of the model by low-rank 557

factorization. Besides initializing the compactor 558

matrices in the MHA block through low-rank fac- 559

torization, we also contemplate initializing com- 560

pactor matrices to reduce the hidden dimensions 561

between layers. 562

6 Conclusion 563

This study introduces DA-WID , an enhanced WID 564

approach tailored for compressing PLMs. DA- 565

WID employs a data-aware initialization, facilitat- 566

ing easier optimization of the compression model, 567

thereby boosting its performance. Concurrently, 568

DA-WID refines the WID-based structure and in- 569

tegrates it with a pruning technique. This allows 570

the model to selectively determine its architecture 571

in line with the desired sparsity. When applied 572

to BERTbase and evaluated on the GLUE and 573

SQuAD benchmarks, DA-WID notably achieves 574

a 94% sparsity with only a minor 4% reduction in 575

accuracy. 576
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7 Limitations577

Our proposed DA-WID introduces extra weight578

matrices in the residual parts when merging the579

inserted compactor matrices with the weight matri-580

ces. When the model is compressed to 5M, these581

extra parameters account for more than half of the582

model. This predominance hinders further com-583

pression. In future research, we aim to explore584

strategies to eliminate these extraneous parameters.585
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A Data-aware Compactor Initialization 781

A.1 Compactor matrices W (i)
Q ,W

(i)
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Initialization 783
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Q and C

(i)
K in 784

Eq. 6 based on the solution of Eq. 8. The solving 785

process for Eq. 8 can be found in DRONE (Chen 786

et al., 2021). Assume that 787
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Q ,Σ

(i)
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(i)⊤
Q = SVD(W
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(i)⊤
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Q U
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Q U
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K Σ
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(i)
M ,Σ

(i)
M , V
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M = SVD(M (i)),

(19)788

then we define789

U (i) = Σ
(i) 1

2
M U

(i)⊤
M Σ

(i)−1
Q U

(i)⊤
Q ,

V (i) = Σ
(i) 1

2
M V

(i)
M Σ

(i)−1
K U

(i)⊤
K ,

(20)790

and let C(i)
Q = U (i), C

(i)
K = V (i).791

A.2 Compactor matrices V,O Initialization792

We initialize compactor matrices C(i)
V and C

(i)
O in793

Eq. 6 based on the solution of Eq. 9. Eq. 9, which794

can be solved in the same way as Eq. 8. However,795

we also find a sub-optimal but more easily imple-796

mentable way of solving this equation. Assume797

that798

U (i),Σ(i), V (i)⊤ = SVD(W
(i)
V XS), (21)799

then we let C(i)
V = U (i)⊤, C

(i)
O = U (i).800

B Sparity801

The expected sparsity ŝ is computed as follow802

ŝ =
1

M
(

L∑
i

H∑
j

d∑
k

dh∑
l

M
(i)
MHA ·M (i,j)

head ·M (i,k)
out,FFN,i−1 ·M

(i,l)
Q +

L∑
i

H∑
j

d∑
k

dh∑
l

M
(i)
MHA ·M (i,j)

head ·M (i,k)
out,FFN,i−1 ·M

(i,l)
K +

L∑
i

H∑
j

d∑
k

dh∑
l

M
(i)
MHA ·M (i,j)

head ·M (i,k)
out,FFN,i−1 ·M

(i,l)
V +

L∑
i

H∑
j

d∑
k

dh∑
l

M
(i)
MHA ·M (i,j)

head ·M (i,k)
in,MHA,i ·M

(i,l)
O +

L∑
i

d∑
k

df∑
l

M
(i)
FFN ·M (i,k)

out,MHA,i ·M
(i,l)
f +

L∑
i

d∑
k

df∑
l

M
(i)
FFN ·M (i,k)

in,FFN,i ·M
(i,l)
f +

L∑
i

d∑
k

M
(i,k)
out,FFN,i−1 ·M

(i,k)
in,MHA,i+

L∑
i

d∑
k

M
(i,k)
out,MHA,i ·M

(i,k)
in,FFN,i),

(22)

803

where M denotes denotes the total number of pa-804

rameters of PLM.805

C Experiment Details 806

C.1 Experiment Setup 807

We implemented our method on top of PyTorch 808

(Paszke et al., 2019) and used a single 3090 GPU 809

for all experiments. To establish the baseline mod- 810

els, we first download the pre-trained checkpoints 811

from the HuggingFace (Wolf et al., 2019) Trans- 812

formers repository. For the BERT model, we con- 813

duct fine-tuning on the pre-trained model for 3 814

epochs, employing a batch size of 16, 24, and 32 815

and a learning rate of 1e-5 and 2e-5 for tasks in 816

the GLUE benchmark and SQuAD dataset. Then, 817

we sample 512 instances from the training data 818

and sample 8 tokens for each instance to initial- 819

ize compactor matrices. Finally, we fine-tune the 820

model using the same settings utilized during the 821

fine-tuning of the baseline models for 20 epochs. 822

We start dimension-level pruning at the 2nd epoch; 823

after that, we start head-level and layer-level prun- 824

ing at the 8th epoch. Other parameters are set to the 825

default parameters provided by the HuggingFace 826

framework. To reduce memory usage we freeze the 827

Embedding layer and the weight matrices in the 828

MHA block and FFN block. 829

C.2 Datasets 830

GLUE (Wang et al., 2018) benchmark consists of 831

various tasks related to sentence similarity calcu- 832

lation, sentence classification, textual entailment, 833

and natural language inference. It includes 10 tasks, 834

namely AX, COLA, QQP, MNLI, MRPC, QNLI, 835

QQP, RTE, SST-2, STS-B, and WNLI. The number 836

of training examples for each task is as follows: 837

1.1k, 10.7k, 432k, 5.8k, 105k, 364k, 3k, 70k, 67k, 838

and 852, respectively. SQuAD 1.1 (Rajpurkar et al., 839

2016) dataset involves question and answer tasks, 840

containing 88K training examples. 841

D Structures of Pruned Model 842

The structure of pruned models on RTE, SST-2, 843

STS-B, MNLI, QNLI, QQP and SQuAD are shown 844

in Fig. 5 and Fig. 6. We show the model structure 845

in terms of dimension-level and head-level spar- 846

sity. Instead of directly showing the layer-level 847

sparsity, we indirectly show the layer-level sparsity 848

by dimension-level and head-level sparsity in the 849

histograms, and if the value of a certain position 850

is 0, it can be assumed that layer-level pruning has 851

occurred at that position. 852
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(a) RTE: Hidden dimensions (b) RTE: Intermediate dimensions (c) RTE: Attention heads size

(d) SST-2: Hidden dimensions (e) SST-2: Intermediate dimensions (f) SST-2: Attention heads size

(g) STS-B: Hidden dimensions (h) STS-B: Intermediate dimensions (i) STS-B: Attention heads size

Figure 5: Pruned model structures on RTE, SST-2 and STS-B datasets
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(a) MNLI: Hidden dimensions (b) MNLI: Intermediate dimensions (c) MNLI: Attention heads size

(d) QNLI: Hidden dimensions (e) QNLI: Intermediate dimensions (f) QNLI: Attention heads size

(g) QQP: Hidden dimensions (h) QQP: Intermediate dimensions (i) QQP: Attention heads size

(j) SQuAD: Hidden dimensions (k) SQuAD: Intermediate dimensions (l) SQuAD: Attention heads size

Figure 6: Pruned model structures on MNLI, QNLI, QQP and SQuAD datasets
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