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Abstract

Weight-Inherited Distillation (WID) is an effec-
tive distillation method that inherits the weights
from the teacher’s model, thus achieving bet-
ter results than traditional distillation meth-
ods. However, the identity matrix initializa-
tion used in WID leads to slow model conver-
gence. In this work, we propose an improved
WID method named DA-WID that replaces the
identity matrix initialization with a specialized
data-aware initialization. Concurrently, we re-
fine the structural design of WID, enhancing its
adaptability and flexibility in selecting the com-
pressed model architecture. Our experiments
on the GLUE and SQuAD datasets show that
the model delivered by DA-WID retains 96%
of the performance with 94% of parameters re-
moved, showing its effectiveness compared to
previous pruning and distillation methods. Our
data and code is available on an anonymous
repo.

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2018; Radford et al.; Vaswani et al., 2017) have
gained widespread use in Natural Language Pro-
cessing due to their remarkable performance. How-
ever, their considerable storage needs and extended
inference durations can complicate real-world de-
ployments. To address these limitations, significant
efforts have been made to make PLMs both smaller
and faster. Among these methods, distillation has
emerged as a popular approach.

Distillation offers a versatile technique for model
compression. It permits a custom specification
of the student model’s structure and facilitates
the gradual transfer of knowledge from the larger
teacher model during training. A notable draw-
back, however, is that distillation often doesn’t
leverage the full potential of the teacher model’s
parameters. As a result, student models typically
require pre-training on a vast, unlabeled dataset
before being fine-tuned for specific tasks. A novel
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Figure 1: Comparing the fundamental concepts of WID
and DA-WID: (a) In WID, compactor matrix and mask
are used to compress the output dimension of the weight
matrix WW. However, initializing with the identity matrix
poses challenges for feature filtering using the mask. (b)
In DA-WID, initializing the compactor matrix using
the unitary matrix derived from SVD simplifies feature
filtering with the mask.

distillation method called weight-inherited distilla-
tion (WID) (Wu et al., 2023) has been introduced
recently. WID incorporates compactor matrices
into the teacher model and achieves compression
through re-parameterization. Distinct from tradi-
tional distillation techniques, WID allows for a
direct inheritance of the teacher model’s parame-
ters, eliminating the need to train the student model
from scratch.

Nonetheless, the WID methodology has its in-
herent limitations. The approach employs identity
matrices for the initiation of compactor matrices,
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which presents challenges in optimization when
seeking the desired compression. As shown in
Fig.1 (a), the input feature X is successively passed
through the weight matrix and the compactor ma-
trix, while the mask is responsible for pruning the
useless dimensions from the features. When the
compactor matrix is initialized with the identity
matrix, the activation values are dispersed across
all dimensions of the feature matrix, increasing the
difficulty of eliminating irrelevant dimensions.

To address WID’s challenges, we introduce DA-
WID, a distinct distillation method emphasizing
Data-Aware initialization for compactor matrices.
We postulate that the compactor matrix in WID
should primarily extract the primary components of
the features. As shown in Fig.1 (b), we expect the
initialization centers the activation values predomi-
nantly on select dimensions of the feature matrix,
considerably simplifying the task of filtering out
irrelevant dimensions. With this in mind, we initial-
ize the compactor matrices to inherently possess
this extraction capability even before the training
process. Specifically, we innovatively draws a con-
nection between the WID methodology and the
low-rank properties of features, setting unique low-
rank approximation objectives for different PLM
modules. We then initialize the compactor matrices
based on these approximation outcomes.

Moreover, existing pruning work (Xia et al.,
2022) shows that the structure of various layers
of the model tends to be different after pruning.
Thus, we refine WID’s model structure to allow dy-
namic determination of the student model’s struc-
ture, guided by the desired sparsity during opti-
mization. At the same time, we also integrate WID
with pruning to improve the flexibility of WID.

We conducted comprehensive experiments on
the GLUE and SQuAD benchmarks. Our findings
highlight three primary advantages: (1) Our ap-
proach compressed 94% of the parameters in the
BERT-base model, decreasing its size from 85M to
5M, yet retained an accuracy of over 96%. (2) Com-
pared to baseline methods, our technique produces
models with superior accuracy at comparable com-
pression rates. (3) Ablation studies indicate that
both data-aware initialization and structural adap-
tation notably enhance the accuracy of the com-
pressed model.

The contributions can be summarized as:

* We propose a data-aware initialization method
that reduces the difficulty of optimizing the
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Figure 2: Illustration of the basic structure of WID (Wu
et al., 2023) and DA-WID. (a) WID places the com-
pactor matrices and masks inside the residuals, resulting
in the input and output dimensions being compressed to
the same dimension. (b) DA-WID places the compactor
matrices and masks outside the residuals, thus allowing
the dimensions of the input and output to be compressed
into different dimensions.

compactor matrix in WID.

* We improve the WID structure so that WID
can adaptively set the structure of the compres-
sion model according to the desired sparsity.

2 Background

2.1 Pre-trained Language Model

A typical PLM (e.g., BERT (Devlin et al., 2018))
comprises a stack of transformer layers, each con-
taining a multi-head attention (MHA) block and a
feed-forward network (FFN) block.

Multi Head Attention (MHA). The MHA block
takes z € RN as input and consists of H at-
tention heads that facilitate interactions between
tokens, with a normalization (Ba et al., 2016) step.

zm = LN(z + MHA(z)), (H
H

MHA(z) = Y At (z), 2)
i=1

At (z) = Wg)TW‘(,i>x : Softmax((Wéf)m)T(Wg)m)/\/ dn),

€)

where W(i), Wl((i) € Riaxxd W‘(/i), Wg) €
R%v0*4 are the parameters of an MHA block, de-
noting the query, key, value, and output matrices,
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Figure 3: Illustration of the DA-WID structure, where the gray rectangles denote the weight matrices, the yellow
rectangles denote the compactor matrices, and the red rectangles denote the masks.

respectively. Here d denotes the hidden dimen-
sion, dj, = d/H denotes the head size, N denotes
the sequence length, and dqk and dvo denote the
intermediate dimensions of the MHA block.

Feed Forward Network (FFN). The FFN block
takes x s as input and generates xr as output.

zr = LN(zn + FFN(zar)), S
FFN(zy) = Wpgelu(Woa), ®

where gelu is the activation function, and
Wy, Wp € R4 >4 gre two weight matrices of the
FFN block. Here, d; indicates the intermediate
dimension of the FFN block.

2.2 Weight-Inherited Distillation

WID is a distillation method that, in contrast to con-
ventional distillation methods, inherits the teacher
model’s parameters and compresses them.

Figure 2 (a) illustrates the core concept of WID’s
model compression. Initially, WID introduces com-
pactor matrices Wy, € R%*?¢ and Wi € R,
along with associated masks My, € R% and My €
R?, positioned on either side of the transformer
block. The compactor matrices are set to the iden-
tity matrix at the start, while the masks begin as
vectors filled with ones. After this setup, the model
undergoes training using a large dataset, and com-
pactor matrices are progressively pruned based on
the masks. The final step involves fusing the trans-
former block with the compactors to produce a

compressed transformer block. It can be seen that
the input and output of the transformer block are
compressed from d to dy dimension.

3 Method

In this section, we begin by discussing improve-
ments made to the WID structure, enabling it to
selectively choose the compressed model structure
(Section 3.1). We then delve into the data-aware
initialization, which can benefit model optimiza-
tion compared to identity matrix initialization. Our
focus is on explaining how to enhance the com-
pactor matrix’s capability to extract primary fea-
ture components prior to training (Section 3.2). We
conclude by detailing the training (Section 3.3) and
fusing (Section 3.4) procedures of DA-WID .

3.1 Structure of DA-WID

The structure of DA-WID is shown in Fig. 3. On
top of the MHA block, we insert the compactor
matrices Cg, C, Cy, and Cp and the correspond-
ing masks Mg, Mg, My, and Mo for compress-
ing the intermediate dimensions dgx, dyvo of the
MHA blocks. At the position of LayerNorm lay-
ers, we insert the compactor matrices Ci,, Cout
and the corresponding masks My, My, for com-
pressing the hidden dimensions d between layers.
At the FFN block, we introduce the mask My for
compressing the intermediate dimension d of the
FFN block. We don’t insert the compactor matrices



in the FFN block because existing pruning work
has shown that the intermediate dimensions of the
FFN block can be effectively compressed by us-
ing only masks. Since the above masks are used
to compress the input and output dimensions of
the weight matrix, we refer to the above masks as
dimension-level masks.

We also introduce structure pruning to further
enhance the flexibility of the WID method. At
the MHA block, we introduce a head-level mask
Mheaq to reduce the attention head size. Finally,
we introduce layer-level masks Myiga, MyrrpN for
removing the entire MHA block or FFEN block.

Compared to WID, we change the position of
the compactor matrix with respect to the residuals,
which allows our method to adaptively select the
hidden dimension of different layers. As shown in
Fig. 2, since WID places the compactor matrices
and masks inside the residuals, the input and the
output dimensions of the compressed MHA/FFN
block are required to be the same. On the con-
trary, since DA-WID places the compactor matri-
ces and masks outside the residuals, the input and
output dimensions of the compressed MHA/FFN
block could be different. In addition, we also intro-
duce the structured pruning into DA-WID , which
extends the compression granularity and thus in-
creases the flexibility of the WID method.

The computation process of DA-WID can be
expressed as follows:

Multi Head Attention (MHA).
M = CoutMoutLN(MinCin (.’L’ + MHA(:U)))7

H
MHA(z) = Y M0, At (2),

i=1 (6)
At (z) = wH T T MY T MP P W
Softmax((WI(;)m)TC’%)TM%)TMS)CS)(Wg)x)).

Feed Forward Network (FFN).

2F = Cout Mout LN(MinCin(xar + FFN(zar))),

T @)
FFN(zn) = Wp MygeluWyzar),

where C, represents the compactor matrix and M,
represents the vectors corresponding to the mask.
When multiplying a mask vector with a matrix,
we transfer the mask vector into a diagonal ma-
trix. Note that the matrices Cj,, Coy¢ and masks
M;y,, Moyt in the MHA block and the FEN block
use different weights, but for the sake of simplicity,
we do not distinguish between them in the formula.

3.2 Data-aware Compactor Initialization

WID initializes the compactor matrices to the iden-
tity matrices. It makes these compactor matrices
hard to optimize for compression. Thus, our target
is to find a better way for compactor initialization.
We postulate that the compactor matrices in WID
should extract the primary components of the fea-
tures. Based on this conjecture, we present the
initialization of compactors in the MHA block and
the FFN layer, which encompasses compression
of the intermediate dimensions dqgxk, dyo in the
MHA block and the hidden layer dimension d in
both the blocks.

Compressing dg, dyo. The intermediate dimen-
sions dg,dyo are situated within the attention
computation (i.e., Eq. 3) of the MHA block. Conse-
quently, We formulate the following optimization
objective functions to approximate the dot prod-
uct result and the weighted average result of the
attention component using their respective first k
principal components:

argmin [ XWS WX - xw§ TV TULw x|,
Uk,0,Vk,0 ’ ’
(3)

arg min HWg)TW‘(,i)XS - Wéi>TV]$i1)TU,EiiW‘(,i)XS||,
Uk,1: Vi1 ’ ’
©))

where the feature matrix X € R is derived
from the last transformer layer for a specific cali-
bration dataset. In the MHA block, S represents
the Softmax of dot-product results. Here, IV is the
count of sampled tokens in the calibration dataset,
while d signifies the feature dimension. Using
SVD, we determine all the feature’s principal com-
ponents, resulting in matrices U@, V(@ Here,

matrices U, ,E,i), Vk(i) € R**4 relate to the initial

)

columns of U™, V(@ For a detailed breakdown of
the SVD decomposition, see Appendix A. Note that
while the optimization objective includes the num-
ber of principal components k, employing SVD to
address this doesn’t necessitate a predefined k—we
are primarily interested in U @, vy,

Since U. fi), V*(i) have the property of distinguish-
ing between the major and minor components
of the features, allowing some dimensions to be
pruned more easily, we consider these matrices to
be a better choice than identity matrices. Specif-

ically, we assign C’g) = o(i),C%) = (gi)

) — v ) — g,

and



Compressing d. For compressing the hidden di-
mension d between layers, We formulate the fol-
lowing optimization objective:

argmin || X — UxU, X, (10)
Uk
where the feature matrix X € R originates
from either the attention computation (i.e., Eq. 2)
with residual of the MHA block or the FEN compu-
tation (i.e., Eq. 5) with residual in the FFN block.
It also serves as the input for the LayerNorm layer.
The matrix Uy, represents the first k columns of
matrix U, which is derived from the SVD of matrix
X, givenby U, 2, VT = SVD(X).
With this optimization objective, we can have

LN(X) =~LN(X) + 3
=LNWUUTX)+ 1 an
~ yLN(UUY{ X) + B,

where LN represents LayerNorm, while LN signi-
fies LayerNorm without any weight or bias. Ide-
ally, we aim to swap the order of computation be-
tween the matrices U and LN for more effective
fusion with subsequent weight matrices. Yet, this
interchange would yield different outcomes, specifi-
cally, LN(UUT X) # ULN(U " X). Nevertheless,
experimental observations reveal that in most lay-
ers, the discrepancies arising from this reordered
computation can be rectified during model training.
Thus, we propose the following approximation:

LN(X) ~ yULN(U " X) + 8. (12)

It’s note that just like U ) and V() the inclusion
of k in the objective function is merely to illustrate
the low-rank property and doesn’t necessitate speci-
fying a value for k£ during optimization. In essence,
we derive the matrix U using SVD and use it to
initialize the compactor matrix on both sides of the
LayerNorm, including its weight and bias. To be
specific, we assign Cj, = U Tand Cuy = U,
accompanied by a bias of 3.

3.3 Model Training

Pruning Objective. Model compression is con-
trolled by a series of masks that are inserted into
the model. We compute the sparsity of the model
based on these masks. During training, all masking
variables are learned as real numbers. At the end
of training, masked variables below the threshold
(determined by the expected sparsity) are mapped
to O, resulting in the final pruned structure.

Following previous work (Xia et al., 2022), we
use Lagrangian terms that force the expected spar-
sity of the model to be close to the desired sparsity:

Lprune - A1 . (§ - t) + A2 : (§ - t)27 (13)

where § is the expected sparsity, ¢ is the target
sparsity, and A1, A2 are two Lagrange multipliers.
Please refer to Appendix B for more detail of 5.

Distillation Objective. We also improve the per-
formance of the student model through knowledge
distillation. We use both output distillation and
layer distillation. For the former one, we use cross-
entropy to compare the outputs of the teacher and
student models:

Acpred - DKL(psHpt)~ (14)

For the layer distillation, we dynamically map
layers between student and teacher models, com-
paring their outputs using MSE loss. Given 7 as
the student model’s layer set and m/(-) as its i-layer
corresponding to the teacher’s m(i)-th layer, the
distillation loss on layer output are defined as:

Liayer = Y MSE(Wiaye, H, HI"™),
€T ‘ ‘ (15)
m(i) = arjgjr;ljn MSE(Wiaye: Hy, HY ),

where Wiayer € R4 is a linear transformation
maxtrix, initialized as an indentity matrix. H, are
hidden states from the i-th FFN block of the stu-
dent model, and Hzn(l) are hidden states from the
m(7)-th FEN block of the teacher model. The final
distillation loss combines the two types of losses:

ﬁdistill - Aﬁpred + (1 - )\)Elayer, (16)
where A controls the contribution of each loss.

Multi-stage Training. In DA-WID , we use 3
levels of masks: dimension-level mask, head-level
mask, and layer-level mask. We find that among the
multiple-level masks of the model, the head-level
mask and the layer-level mask are prioritized for
compressing the model during the training process,
while the dimension-level mask may be ignored.
In order to fully utilize the mask at each level,
we divide the training process into several stages.
We first train the model with the distillation objec-
tive. Then, we add the pruning objective and use a
scheduling program to linearly increase the targert
sparsity to the final target sparsity. After adding
the pruning objective, we use only dimension-level
masks for the first few epochs, after which we add
head-level masks and layer-level masks.



3.4 Compactor Matrices Fusing

After training, we first prune compactor matrices,
attention heads, the MHA block, and the FFN block
based on masks. After that, we merge the com-
pactor matrices with weight matrices. In addition
to this, since we adaptively learn different hidden
dimensions in different layers, we need to add addi-
tional weight matrices to the residual. For example,
for a MHA block, we have

Zo =LN(Wgrz + MHA(z))), (17)

where Wr is a matrix added to the residual, which
is determined by multiplying the pruned compactor
matrices before and after the MHA block (refer to
Figure 3), i.e.,

ng{z) _ Prune(ci(rrllext) C(prev) 7 Mi(r?ext) 7 M(prev) )7 (18)

out out

where C’éﬁiev) and Méﬁiev) represent the com-

pactor matrix and mask before the MHA block,
and C"Y | M"Y represent those after the

in
MHA block; function Prune denotes pruning rows

lprev)

and columns of matrix C’i(r?em) sut  via masks
MOV ArPreY) respectively. The FEN block fol-

in » " out
lows the same way.

4 Experiments

4.1 Setup

Datasets. We evaluate our approach on GLUE
(Wang et al., 2018) tasks and SQuAD (Rajpurkar
et al., 2016) vl.1. GLUE tasks include SST-2
(Socher et al., 2013), MNLI (Kim et al., 2019),
QQP (Wang et al., 2017), QNLI, MRPC (Dolan
and Brockett, 2005), STS-B, and RTE. We ex-
clude CoL A due to their unstable behaviors, and
we cannot reproduce some baseline results based
on our device on the CoLLA dataset. For the GLUE
benchmark, we report accuracy for the MNLI, QQP,
QNLI, SST2, MRPC, and RTE tasks, as well as
spearman correlation for the STS-B task. For the
SQuAD benchmark, we report the F1 score. For
more comprehensive information regarding the ex-
perimental setup, please refer to Appendix C.

Baselines. We compare DA-WID with powerful
distillation methods including TinyBERT (Jiao
etal., 2020), WID (Wu et al., 2023) and the pruning
method CoFi (Xia et al., 2022). For TinyBERT,
we use the experimental results without data aug-
mentation for a fair comparison.

4.2 Main Results

As shown in Table 1, we compress the BERT},,5¢
model and compare the performance of DA-WID
with other methods under the similar sparsity. First,
compared to the original model, DA-WID retains
96% of the model performance while removing
94% of the model parameters. Second, compared to
other baselines, DA-WID has extra degrees of free-
dom. Compared to the pruning method, DA-WID
can additionally compress the hidden dimensions
and intermediate dimensions of the MHA block.
Compared to distillation methods, DA-WID can
use different hidden dimensions at different layers
with additional head-level and layer-level pruning.
Overall, DA-WID obtains the best performance
on all datasets, indicating that utilizing these extra
degrees of freedom can benefit the performance
during compression.

4.3 Ablation Study

Compactor Initialization. To verify the impor-
tance of the data-aware initialization, we initialize
the compactor matrices to identity matrices and
re-run the experiment. To prevent head-level and
layer-level masks from interfering with the role of
data-aware initialization, we use only dimension-
level masks in our experiments. As shown in Ta-
ble 2, on the RTE and MRPC datasets, removing
data-aware initialization leads to significant per-
formance degradation, while removing data-aware
compactor initialization on the SST-2 and STS-B
datasets also leads to slight performance degrada-
tion. This suggests that data-aware initialization
of the compression matrix helps to improve the
performance of the compressed model.

Data-aware initialization uses calibration data
from the training set. We further explored the effect
of the number of tokens on the performance of the
model. Table 3 shows model accuracy with varying
sample tokens. Since increasing the number of
samples increases the complexity of computing the
SVD, sampling 4,096 tokens offer a good balance
between accuracy and computation.

Impact of Multi-level Masks. DA-WID uses dif-
ferent levels of masks to compress the model. In
order to explore the impact of different levels of
masks on model performance, we conduct the fol-
lowing experiments: (1) Use all levels of masks.
(2) Ignore head-level masks. (3) Ignore layer-level
masks. (4) Ignore head-level and layer-level masks.



\ Params. | SST2 QNLI MNLI QQP RTE STS-B MRPC SQuAD | Avg.
BERThase 8M | 931 915 848 912 704 891 85.6 884 | 86.76
TinyBERT4 4.M 89.7 867 788 900 632  85.0 81.4 82.1 | 82.11
WID 5.0M 88.8 854 784 895 603 845 81.9 81.2 | 81.25
CoFi ~50M | 906 8.1 806 90.1 647  83.1 82.6 82.6 | 82.55
Ours | ~5.0M | 914 876 816 901 664  86.1 82.8 832 | 83.65

Table 1: Comparison between our DA-WID and both the distillation methods and pruning methods. Note that,
following previous work (Xia et al., 2022), we do not count the number of parameters in the embedding layer.

SST-2 RTE STS-B  MRPC
DA-WID-10M 91.3  66.8 87.8 85.5
w/o initialize 912 527 85.0 80.6
DA-WID-5M 914 664 86.1 82.8
w/o head 909  66.1 86.6 82.1
w/o layer 912 628 86.1 83.5
w/o head & layer  91.1 63.9 86.5 83.8

Table 2: Ablation studies on compactor initialization
and pruning units on SST-2, RTE, STS-B, and MRPC
datasets. For DA-WID-10M, we ignored corse-grained
masks Myeaq, Myua and Mypy and compressed the
model to 10M. For DA-WID-5M, we used masks of all
granularities and compressed the model to SM.

Number of tokens SST-2 RTE STS-B  MRPC
2,048 90.0 58.8 85.9 82.8
4,096 914 64.2 86.1 82.8
8,192 90.8 63.5 86.4 83.1

Table 3: Ablation studies on the number of tokens sam-
pled on SST-2, RTE, STS-B, and MRPC datasets.

The findings from the experiment are presented
in Table 2. Observations indicate superior model
performance on the SST-2 and RTE datasets when
all mask levels are utilized. For the STS-B datasets,
the removal of the head-level mask results in the
most precise models. Notably, the optimal perfor-
mance on the MRPC dataset is achieved by a model
that excludes both the head-level and layer-level
masks. Given the data volume in each dataset, we
hypothesize that minor alterations in the head-level
and layer-level masks can significantly influence
model outputs compared to the dimension-level
mask. This implies that the head-level and layer-
level masks might be more challenging to optimize.
Consequently, removing either the head-level or
layer-level mask in smaller datasets can stabilize
the optimization process, leading to a more pre-
cise model. As dataset sizes increase, the need
for model compression flexibility becomes evi-

dent, with multi-level masking yielding superior
outcomes.

4.4 Structures of Pruned Model

We study the pruned structures produced by DA-
WID. Take the MRPC dataset as an example. Fig-
ure 4 shows the structural information of the pruned
model, and the results of other datasets are shown
in Appendix D.

From Fig. 4 (b) and (c), as well as related figures
for other datasets, it’s evident that the model struc-
ture varies across different datasets. However, a
consistent observation across these structures is that
layers nearer the output are more compressed than
those closer to the inputs. Additionally, the inter-
mediate dimensions of the FFN block are notably
more compressed across all datasets compared to
the intermediate dimensions of the MHA block.
This distinction is highlighted when comparing the
green bars to the blue and red bars in Fig. 4 (b).

The observed compression patterns align with
models derived from previous pruning efforts as
cited in (Xia et al., 2022). Besides these findings,
which concur with the pruning method, Fig. 4 (a)
and its analogous figures for other datasets reveal
that the model’s hidden dimension decreases as the
number of layers increases. This suggests that the
model progressively compresses features to more
compact dimensions throughout its inference pro-
cess.

5 Related Work

Distillation. Knowledge distillation (Hinton et al.,
2015) is a model compression approach that trans-
fers knowledge from a larger teacher model to a
smaller student model. Most distillation methods
assume a fixed student structure, and at the same
time, pre-training of the student model from scratch
on unlabeled corpora is important for these dis-
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tillation methods, but this results in high compu-
tational costs. In addition to the above methods,
DynaBERT (Hou et al., 2020) tries to distill the
student model with adaptive width and height, and
WID (Wu et al., 2023) inherits the parameters of
the teacher model and tries to directly compress
the teacher model into the student model through
the re-parameterization method. Other methods,
such as DistillBERT (Sanh et al., 2019), initial-
ize the student model through the teacher model
to avoid the pre-training phase, but these methods
limit the possible model structures of the student
model. In contrast to the above methods, our ap-
proach eliminates the need for a pre-training phase
while allowing for adaptive determination of the
student model structure.

Pruning. Existing pruning methods can be broadly
divided into two categories: unstructured prun-
ing and structured pruning. Unstructured pruning
(Gale et al., 2019; Frankle and Carbin, 2018; Kurtic
et al., 2022; Louizos et al., 2018; Sanh et al., 2020)
aims to remove unimportant scalar values from the
model’s parameters. Although unstructured prun-
ing algorithms can remove many redundant param-
eters while ensuring accuracy, compressed models
require specific sparse data structures and hardware
support to take advantage of unstructured prun-
ing. For this reason, structure pruning approaches
(Kwon et al., 2022; Lin et al., 2020; Lagunas et al.,
2021; Sajjad et al., 2023; Wang et al., 2020; Xia
et al., 2022) are proposed to remove weight blocks
in PLM, including the entire layer (Fan et al., 2019;
Prasanna et al., 2020; Sajjad et al., 2020), attention
heads of the MHA block (Michel et al., 2019; Voita
et al., 2019), and filters of the FFN block (McCar-
ley et al., 2019). Structure pruning can accelerate
inference speed and reduce memory overhead with-

out specialized data structures and hardware. We
introduce structured pruning to our approach to
increase the model structure’s flexibility.

Low-Rank Factorization. Some low-rank fac-
torization work compresses PLM directly by de-
composing the weight matrix (Liu and Ng, 2022;
Yin et al., 2022; Zhou et al., 2019; Hua et al.,
2022). Other works (Ma et al., 2019; Xiao et al.,
2023) have considered the model structure of PLM
while performing matrix decomposition, and these
works are mainly used for the compression of MHA
blocks. In our approach, instead of compressing
PLMs directly using low-rank factorization, we ini-
tialize the parameters of the model by low-rank
factorization. Besides initializing the compactor
matrices in the MHA block through low-rank fac-
torization, we also contemplate initializing com-
pactor matrices to reduce the hidden dimensions
between layers.

6 Conclusion

This study introduces DA-WID , an enhanced WID
approach tailored for compressing PLMs. DA-
WID employs a data-aware initialization, facilitat-
ing easier optimization of the compression model,
thereby boosting its performance. Concurrently,
DA-WID refines the WID-based structure and in-
tegrates it with a pruning technique. This allows
the model to selectively determine its architecture
in line with the desired sparsity. When applied
to BERT},.se and evaluated on the GLUE and
SQuAD benchmarks, DA-WID notably achieves
a 94% sparsity with only a minor 4% reduction in
accuracy.



7 Limitations

Our proposed DA-WID introduces extra weight
matrices in the residual parts when merging the
inserted compactor matrices with the weight matri-
ces. When the model is compressed to 5SM, these
extra parameters account for more than half of the
model. This predominance hinders further com-
pression. In future research, we aim to explore
strategies to eliminate these extraneous parameters.
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A Data-aware Compactor Initialization

W

A.1 Compactor matrices 0

Initialization
We initialize compactor matrices Cg) and C;? in
Eq. 6 based on the solution of Eq. 8. The solving
process for Eq. 8 can be found in DRONE (Chen

et al., 2021). Assume that
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A.2 Compactor matrices V, O Initialization
We initialize compactor matrices C‘(/Z) and C’g) in
Eq. 6 based on the solution of Eq. 9. Eq. 9, which
can be solved in the same way as Eq. 8. However,
we also find a sub-optimal but more easily imple-
mentable way of solving this equation. Assume
that
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where M denotes denotes the total number of pa-
rameters of PLM.

C Experiment Details
C.1 Experiment Setup

We implemented our method on top of PyTorch
(Paszke et al., 2019) and used a single 3090 GPU
for all experiments. To establish the baseline mod-
els, we first download the pre-trained checkpoints
from the HuggingFace (Wolf et al., 2019) Trans-
formers repository. For the BERT model, we con-
duct fine-tuning on the pre-trained model for 3
epochs, employing a batch size of 16, 24, and 32
and a learning rate of le-5 and 2e-5 for tasks in
the GLUE benchmark and SQuAD dataset. Then,
we sample 512 instances from the training data
and sample 8 tokens for each instance to initial-
ize compactor matrices. Finally, we fine-tune the
model using the same settings utilized during the
fine-tuning of the baseline models for 20 epochs.
We start dimension-level pruning at the 2nd epoch;
after that, we start head-level and layer-level prun-
ing at the 8th epoch. Other parameters are set to the
default parameters provided by the HuggingFace
framework. To reduce memory usage we freeze the
Embedding layer and the weight matrices in the
MHA block and FEN block.

C.2 Datasets

GLUE (Wang et al., 2018) benchmark consists of
various tasks related to sentence similarity calcu-
lation, sentence classification, textual entailment,
and natural language inference. It includes 10 tasks,
namely AX, COLA, QQP, MNLI, MRPC, QNLI,
QQP, RTE, SST-2, STS-B, and WNLI. The number
of training examples for each task is as follows:
1.1k, 10.7k, 432k, 5.8k, 105k, 364k, 3k, 70k, 67k,
and 852, respectively. SQuAD 1.1 (Rajpurkar et al.,
2016) dataset involves question and answer tasks,
containing 88K training examples.

D Structures of Pruned Model

The structure of pruned models on RTE, SST-2,
STS-B, MNLI, QNLI, QQP and SQuAD are shown
in Fig. 5 and Fig. 6. We show the model structure
in terms of dimension-level and head-level spar-
sity. Instead of directly showing the layer-level
sparsity, we indirectly show the layer-level sparsity
by dimension-level and head-level sparsity in the
histograms, and if the value of a certain position
is 0, it can be assumed that layer-level pruning has
occurred at that position.



Sparsity (%)

Sparsity (%)

Sparsity (%)

Bl d of the MHA block
[ d of the FFN block

1 2 3 4 s

& 9 10 1 12

# Iﬁ.ay7ers
(a) RTE: Hidden dimensions

. dox B dvo . dr

Sparsity (%)

12 3 4 8 9 10 1 12

e 7
# Layers

(b) RTE: Intermediate dimensions

Il d of the MHA block
- d of the FFN block

1 2 3 4 s &8 9 10 1 12

# Iﬁ.ay7ers
(d) SST-2: Hidden dimensions

. dox m dvo . dr

Sparsity (%)

102 3 4 8§ 9 10 1 12

56 7
# Layers

SST-2: Intermediate dimensions

Sparsity (%)

Sparsity (%)

&

1 2 3 4 5 & 9 10 1 12

e 7
# Layers

(c) RTE: Attention heads size

&

1 2 3 4 s & 9 10 1 12

e 7
# Layers

(f) SST-2: Attention heads size

Bl d of the MHA block
W d of the FFN block

12 3 4

8 9 10 1 12

5# Ie_ay7ers
(g) STS-B: Hidden dimensions

. dox mm dvo . dr

Sparsity (%)

12 3 4 8 9 10 1 1

5 6 7
# Layers

(h) STS-B: Intermediate dimensions

Sparsity (%)

100

80

3
3

&

1 2 3 a4 s 8

5

6 7
# Layers

(i) STS-B: Attention heads size

Figure 5: Pruned model structures on RTE, SST-2 and STS-B datasets
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Figure 6: Pruned model structures on MNLI, QNLI, QQP and SQuAD datasets
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