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ABSTRACT

In the rapidly evolving landscape of technological development, privacy protec-
tion in data collection and storage demands heightened attention. While there has
been notable research on releasing functional summaries of interest under Differ-
ential Privacy (DP), the area of learning models with functional observations under
Local Differential Privacy (LDP) is still largely unexplored. This paper seeks to
address this gap by implementing functional projection with a finite basis and in-
troducing aggregation techniques that are well-suited for LDP, thereby contribut-
ing to the advancement of privacy-preserving methodologies in functional data
analysis. Specifically, we propose algorithms for constructing functional classi-
fiers designed for both single-server and heterogeneous multi-server environments
under LDP. In single-server scenarios, we introduce an innovative allocation strat-
egy where fewer samples are used for training multiple weak classifiers, while
the majority are used to evaluate their performance. This enables the construc-
tion of a robust classifier with enhanced performance by model averaging. We
also introduce a novel technique, model reversal, which effectively enhances the
performance of weak classifiers. In multi-server contexts, we employ federated
learning and enable each server to benefit from shared knowledge to improve the
performance of each server’s classifier. Experimental results demonstrate that our
algorithms significantly boost the performance of functional classifiers under LDP.

1 INTRODUCTION

Advances in technologies enable us to collect and process data densely observed over temporal
or spatial domains, which are termed functional data (Ramsay & Silverman, 2005; Ferraty, 2011;
Horváth & Kokoszka, 2012), distinguishing them from traditional multivariate data. It is typically
represented as curves, surfaces, or anything that varies over a continuum. Privacy preservation for
functional data is an important issue, as the data may reveal individual characteristics or preferences
through their temporal or spatial patterns. This is especially relevant in domains such as health
informatics or behavioral science, where medical data of brain scans like DTI (Short et al., 2022)
or fMRI (Logothetis, 2008) can show brain anatomy and activity, and smart devices like phones,
watches, etc. can capture human activity data (Stisen et al., 2015). However, there are only a few
works concerning privacy preservation within the realm of functional data.

Differential privacy (DP, Dwork et al., 2006) is a leading paradigm for privacy-preserving statistical
analyses. It provides a rigorous and interpretable definition of data privacy, and limits the amount
of information that attackers can infer from publicly released database queries. However, in some
scenarios, when the data collector is untrusted or malicious, or when the data is highly sensitive or
personal, DP may not be sufficient. In such cases, we need to consider local differential privacy
(LDP, Kasiviswanathan et al., 2011) instead, which adds noise at the individual data level before
centralization. It has been deployed by major technology companies like Apple (Differential Pri-
vacy Team, 2017), Google (Erlingsson et al., 2014), Windows (Ding et al., 2017). However, LDP
often requires more noise to achieve the same privacy level as DP, which can lead to decreased utility
of the data. Currently, two primary research directions under LDP are statistical queries and private
learning(Yang et al., 2020). For statistical queries, where the aggregator aims to collect user data
to address queries like frequency, mean, and range, there is plenty of research. Conversely, private
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learning, which focuses on training models via specific machine learning algorithms, is compara-
tively less explored. The formal definition of LDP is as follows:

Definition 1 (ε-LDP). A randomized mechanism M satisfies ε-LDP, where ε > 0 is the privacy
budget, if and only if for any pair of input values u1, u2 in the domain ofM and any possible output
v ofM, it holds

P (M(u1) = v) ≤ eεP (M(u2) = v).

Private learning faces significant challenges, largely arising from data correlations and high dimen-
sionality (Wang et al., 2020; Yang et al., 2020; Ye & Hu, 2020). Firstly, challenges arise in pre-
serving correlations among multiple features (Wang et al., 2019b) and between features and their
corresponding labels (Yilmaz et al., 2019). Second, when collecting d-dimensional data under LDP,
common approaches involve either distributing the privacy budget ε across the d dimensions and
reporting every dimension with ε/d-LDP or allowing users to randomly select a single dimension
to report with ε-LDP (Nguyên et al., 2016; Arcolezi et al., 2021; 2022). A challenge emerges as an
increase in d leads to a rapid decay of the privacy budget and a rise in the noise scale.

In this paper, we propose two novel algorithms to construct functional classifiers under LDP, suit-
able for single-server and heterogeneous multi-server settings, respectively. Our contributions are
summarized as follows:

• Present a process of constructing functional classifiers under LDP. We develop and
offer theoretical analysis on a projection-based functional classifier, and measure the infor-
mation loss in classification induced by projection. To the best of our knowledge, this is
the first work that models functional data under LDP.

• Introduce a novel technique model reversal. It improves the performance of weak clas-
sifiers under LDP by inverting their prediction direction (−1× coefficient estimate) when
their accuracy is below a certain threshold. Given a classifier’s accuracy rate distribution,
we measure the improvement that model reversal can bring to this classifier.

• Propose a model average algorithm tailored for LDP. It includes our idea of allocating
a larger proportion of clients to evaluate the performance of weak classifiers instead of
training them. It builds upon our methods of evaluating the performance of weak classifiers
under LDP, and assigning more suitable weights to these classifiers based on the evaluation.

• Extend to heterogeneous multi-server settings. We propose a federated learning ap-
proach under LDP, where each server benefits from the shared knowledge of others.

2 RELATED WORK

Supervised Learning Under LDP. Given challenges arising from data correlations and high dimen-
sionality, existing research on supervised learning under LDP is limited. Both Yilmaz et al. (2019)
and Xue et al. (2019) aimed to train a Naı̈ve Bayes classifier under LDP while preserving the corre-
lation between feature values and class labels. However, their methods did not demonstrate distinct
advantages and suffered from high variance and low utility when the number of features or the size
of the input domain is large. Alternatively, some research focuses on empirical risk minimization
(ERM), treating the learning process as an optimization problem solved through defining a series of
objective functions. Wang et al. (2019a) constructed a class of machine learning models under LDP
that can be expressed as ERM, and solved by stochastic gradient descent (SGD). To address the high
dimensionality issue, Liu et al. (2020) privately selected the top-k dimensions according to their
contributions in each iteration of federated SGD. Additionally, Sun et al. (2020), which trained deep
learning models in federated learning (Konečnỳ et al., 2016) under LDP, proposed data perturbation
with adaptive range and a parameter shuffling mechanism to mitigate the privacy degradation caused
by high dimensionality. However, to the best of our knowledge, no existing research has explored
modeling with functional data, which has infinite dimensionality, within the framework of LDP.

Functional Data Projection. Recent research has begun to employ projection to reduce the di-
mensionality of functional data (Horváth & Rice, 2015; Pomann et al., 2016; Kraus & Stefanucci,
2019). These methods are facilitated by the inherent property of functional data, which allows it to
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be represented by a linear combination of a set of basis functions. Specifically, to test the equal-
ity of two-sample mean functions, Meléndez et al. (2021) and Górecki & Smaga (2015) developed
test statistics using projections with finite random functions and data-independent basis functions,
respectively. For the functional classification problem, Kraus & Stefanucci (2019) and Sang et al.
(2022) constructed classifiers based on projections with estimated finite functions.

Functional Data Under DP and LDP. Previous DP research primarily concentrated on scenar-
ios where a query’s output is a vector. Hall et al. (2013) was a pioneer in providing a framework
for achieving (ε, δ)-DP with infinite dimensional functional objects, yet it focused on a finite grid
of evaluation points. Subsequently, Mirshani et al. (2019); Reimherr & Awan (2019); Jiang et al.
(2023) conducted further extensive work around (ε, δ)-DP. Regarding ε-DP, a series of studies have
been conducted that utilize finite-dimensional representations (Wang et al., 2013; Alda & Rubin-
stein, 2017). More recently, Lin & Reimherr (2023) introduced a novel mechanism for releasing
ε-DP functional summaries, termed the Independent Component Laplace Process, which relaxes as-
sumptions on data trajectories and enhances data utility. However, releasing functional summaries
under DP and collecting functional observations under LDP are significantly different tasks. Under
DP, the server can access all the original data and achieve privacy based on the knowledge of co-
variance function and sensitivity of functional objects. Under LDP, however, each functional object
must be noised before being sent to the server. Moreover, DP focuses on the quality of the functional
summaries, while LDP emphasizes the performance of the models trained on the noised functional
observations from the clients. Thus, using finite basis projection for privacy preservation may have
less impact under LDP than under DP.

3 SINGLE SERVER WITH MODEL REVERSAL AND MODEL AVERAGE

Problem Setup. Suppose there is a server with N clients. Each client has a square-integrable
functional covariate x(t), which is defined over a compact domain I, and the corresponding binary
label y. Without loss of generality, we assume that y ∈ {0, 1} and I = [0, 1]. The primary goal is
to construct a classifier f based on {(xi, yi)}Ni=1 under local differential privacy (LDP), where

f(x) = α+

∫
x(t)β(t)dt,

and for a new sample with functional covariate x(t), we predict its label y as ŷ(x) = I(f(x) > 0).

As pointed by Yang et al. (2020), LDP algorithms typically involve four steps: encoding, pertur-
bation, aggregation, and estimation. In the first two steps, each client encodes his original value
according to the predefined coding scheme, and perturbs encoded value by the randomized algo-
rithm that achieves local differential privacy. Then, in the last two steps, the server collects all the
perturbed value from clients and estimates the query result. In the following, we introduce the pro-
cesses of estimating the functional classifier f under LDP. The overall framework of our algorithm
is summarized in Algorithm 1.

3.1 ENCODING AND PERTURBATION

For a client with functional covariate x(t) and label y, the data he reports is transformed through the
following steps.

Dimensionality Reduction. The infinite dimensionality of functional data is a significant challenge
in functional data analysis, especially under LDP. To address this challenge, we consider mapping
x(t), onto a finite-dimensional functional space, spanned by functions ϕ1, . . . , ϕd, resulting in a
low-dimensional vector z ∈ Rd. This vector is then used as a substitute for x(t) when building the
subsequent classifier.

Specifically, the projection functions, Φ = (ϕ1, . . . , ϕd), are prespecified by the server, and gen-
erally can be taken as B-Spline basis, Fourier basis, etc. The mapping process is equivalent to
representing x(t) by the truncated basis Φ, i.e.,

x(t) =

d∑
k=1

zkϕk(t) + ξ(t), (1)
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where z = (z1, . . . , zd)
⊤ is the coefficient vector of Φ, and ξ(t) is the residual function that can’t

be represented by Φ. Regarding the expressive capacity of a finite basis, we propose that employing
a finite d is feasible, considering the following three aspects:

1. Functional data fitting: In practice, functional observations are vectors observed at differ-
ent time points, i.e., x = (x(t1), . . . , x(tT ))

⊤. When fitting with B-Spline basis of order
m (m = 4 for cubic spline), the estimation risk decays at the optimal rate of T−2m/(2m+1)

as the number of knots grows like T 1/(2m+1) (Eubank, 1999), which indicates a relatively
slow rate of increase. Note that the number of basis d equals the order m plus the number
of knots, so finite B-Spline basis can achieve an effective fitting;

2. Performance of projection-based classifiers: Lemma 1 in Appendix B.1 demonstrates
that, under the assumption that x(t) is from a Gaussian process, classifiers based on pro-
jection with finite basis can achieve the minimum misclassification rate;

3. Functional projection under LDP: Using a finite basis helps to capture population-level
patterns while avoiding overfitting individual differences. Additionally, replacing x(t) with
z significantly improves communication efficiency.

In Appendix B.1, we provide further discussion on the projection-based functional classification and
measure the information loss induced by projection. And we compare the results of d at different
values in Appendix A.2.

Rescaling. Before adding noise, to bound the sensitivity, clipping and truncation are commonly
adopted to rescale the domain of each numeric feature. Here we introduce two types of transforma-
tion of rescaling z ∈ Rd into z∗ = (z∗1 , . . . , z

∗
d)

⊤ ∈ [−1, 1]d, where for k = 1, . . . , d,

(Tanh Transformation) z∗k = tanh(zk),

(Min-Max Transformation) z∗k =
zk −mink′ |zk′ |

maxk′ |zk′ | −mink′ |zk′ |
.

The Tanh transformation introduces non-linearity, whereas the Min-Max transformation maintains
the relative relationships between the original data points. For different types of Φ, the two trans-
formations are suitable for distinct scenarios. For instance, when employing the B-Spline basis as
Φ, the Tanh transformation is generally more appropriate for cases where functions x(t) in different
classes exhibit significant magnitude or value differences. Conversely, the Min-Max transformation
is more fitting for situations where functions x(t) in different classes exhibit distinct shapes or trends
within the [0, 1] range. In Appendix A.2, we compare the performance of these two transformations.

Perturbation. Based on Laplace mechanism (Dwork et al., 2006), the rescaled z∗ can be perturbed
by adding randomized Laplace noise, i.e., reporting z′ = (z′1, . . . , z

′
d) with

z′k = z∗k + ek, (2)

where {ek}dk=1 are independently drawn from a Laplace distribution with scale parameter λ =
d∆/ε1 and ε1 < ε. Please note that ∆ is the sensitivity of z∗k and ∆ = 2 since z∗k ∈ [−1, 1], and
the privacy budget for each dimension is ε1/d. Additionally, through randomized response Warner
(1965), the label y can be perturbed by reporting y′, where

P (y′ = y) = eε2/(1 + eε2), (3)

and ε2 = ε−ε1. Thus, a client with observation (x(t), y) only needs to report (z′, y′). In this paper,
we take ε2 = ε/(d + 1) = ε1/d, while different ways of allocating the privacy budget warrant
further exploration. The following Theorem 1 demonstrates that the encoding and perturbation
process adheres to ε-LDP.

Theorem 1. LetM1 be the privacy mechanism that takes (x(t), y) as input and outputs (z′, y′) as
described above. ThenM1 satisfies ε-local differential privacy.

3.2 AGGREGATION AND ESTIMATION

After collecting all the perturbed values {(z′
i, y

′
i)}Ni=1 from clients, we provide two ways of building

functional classifiers based on the collected data.
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Method I. It’s straightforward to first build a vector classifier with the d-dimensional predictor z′
i

by traditional methods, such as logistic regression and support vector machine (SVM). Record the
estimated intercept and coefficient as α̂ ∈ R and b̂ ∈ Rd, respectively. Then the slope function β(t)
can be estimated by β̂(t) =

∑d
k=1 b̂kϕk(t), and the corresponding functional classifier is

f̂(x) = α̂+

∫
x(t)β̂(t)dt.

Method II. Before building the classifier, we can first perform curve recovery, i.e., treating x′i(t) =∑d
k=1 z

′
i,kϕk(t) as the perturbed functional covariate, where z′i,k represents the kth element of z′

i.
Then, the classifier can be obtained using the functional conjugate gradient algorithm (CG, Kraus
& Stefanucci, 2019) or the functional distance weighted discrimination (DWD, Sang et al., 2022).

With these two ways of constructing classifiers, in the Appendix A.2, we illustrate the effects of
dimensionality reduction, rescaling, and perturbation on the misclassification rate of the classifiers.
Experiment results indicate that the projection of function data and rescaling of coefficient vectors
have a small impact on the classifier’s performance. And the performance of two types of transfor-
mations is similar in our context. Moreover, as the privacy budget ε→ 0, the misclassification rates
of the classifiers based on the perturbed data tend to 50%.

3.3 MODEL AVERAGE

While LDP ensures strong privacy guarantee, it introduces significant noise. Modeling on perturbed
data often leads to poor performance. To address this, we propose to leverage model averaging to
enhance classifier performance. Therefore, to assign appropriate weights for weak classifiers, we
partition N clients into two sets: a training set D with size N0 for constructing weak classifiers and
a validation set Dvalid with size N1 for evaluating their performance, where N0 +N1 = N .

Training. The server collects the perturbed value {(z′
i, y

′
i)}i∈D from the clients in the training set.

Based on this perturbed training data, multiple weak classifiers can be constructed by random sam-
pling. Specifically, we build B weak classifiers, each based on a random sample of n0(< N0)
training instances. Denote the classifiers as {f (b)}Bb=1, and their corresponding coefficients as
{(α̂(b), β̂(b)(t))}Bb=1. Note that the privacy guarantee is not affected by building multiple classi-
fiers based on the same dataset, since each client reports the perturbed value only once.

Validation. For the clients in the validation set, instead of collecting their perturbed observations,
we obtain their perturbed evaluations of a classifier’s performance. Specifically, for the given B
classifiers, we split the validation set into B subsets, denoted as D(b)

valid, b = 1, . . . , B, and evaluate
the performance of the classifier f (b) based on the reports of the clients in the subset D(b)

valid. Each
client in D(b)

valid with observation (xi(t), yi) calculates ŷi = I(f (b)(xi) > 0) and ri = I(ŷi = yi),
and reports r′i with P (r′i = ri) = q and q ∈ (1/2, 1). In Theorem 2, we demonstrate that the
validation process adheres to LDP, and provide an unbiased estimate of the classifier’s accuracy.
Theorem 2. LetM2 be the privacy mechanism that takes (x(t), y) as input and outputs r′ as de-
scribed above. Then for q = eεv/(1+ eεv ),M2 satisfies εv-local differential privacy. Furthermore,
let r(b) be the classification accuracy of the classifier f (b), n(b)1 = |D(b)

valid|, and

r̃(b) =
r̂(b) + q − 1

2q − 1
with r̂(b) =

∑
i∈D(b)

valid

r′i

n
(b)
1

. (4)

Then E(r̃(b)) = r(b) and Var(r̃(b)) ≤ ((eεv + 1)/(eεv − 1))2/(4n
(b)
1 ).

From Theorem 2, it’s evident that as the sample size for classifier evaluation increases, our estimate
under LDP tends to approximate the classifier’s true accuracy. This inspired us to allocate a larger
proportion of clients for evaluating the performance of weak classifiers rather than for training them.
This idea is particularly effective under substantial noise interference, where increasing the training
sample size may yield limited performance gains. Conversely, expanding the validation sample size
enhances the accuracy of assessments, significantly aiding in identifying the most effective weak
classifiers and contributing to the subsequent development of a superior ensemble classifier.
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In the single-server setting, since each client is used to evaluate just one classifier, we set εv = ε
to achieve ε-LDP. If one client is used to evaluate multiple classifiers, the privacy budget must be
shared among them, which will further lower the accuracy of the evaluation.

Model Reversal (MR). To optimize the performance of weak classifiers, we propose the model
reversal technique. For a classifier with estimated accuracy r̃(b) < 50%, we invert the sign of its
estimated coefficients, transforming (α̂(b), β̂(b)(t)) to (−α̂(b),−β̂(b)(t)), which results in a classifier
with an enhanced estimated accuracy 1− r̃(b) > 50%. This approach is underpinned by the principle
that, in classification tasks, the angle between the estimated and true coefficient values is paramount,
unlike in regression where the emphasis is on minimizing their L2 distance. The improvement it
provides relies on our accurate evaluation of the performance of classifiers in Theorem 2.
Theorem 3. For a classifier fε that adheres to ε-LDP, let’s denote its classification accuracy rate
as r(x) = P (sign(fε(x)) = y|x). Additionally, let rδ represent the potential enhancement in
classification accuracy that could be achieved for fε through the application of model reversal.
Then, if r(x) = r0 for all x(t), we have rδ = max{1 − 2r0, 0}. Otherwise, let’s denote the
distribution of classification accuracy rate as pε(r) = P (x(t) ∈ Aε,r) with r ∈ [0, 1], where
Aε,r = {x(t)|r(x) = r}. Then we have

E(rδ) =
∫ 1

0

pε(r)max{1− 2r, 0}dr =
∫ 1/2

0

pε(r)(1− 2r)dr.

Theorem 3 measures the enhancement that model reversal can bring to the classifier fε, which
depends on the privacy budget ε and the distribution pε(r). Simulation results in Figure 1 indicate
that different classifiers vary in their sensitivity to noise and their distribution pε(r). Theoretical
analysis of the distribution pε(r) for different classifiers is beyond the scope of this paper.

Model Selection and Model Average (MA). Given theB weak classifiers, it’s essential to establish
a criterion for selecting the top-performing classifiers and then effectively combine them and get a
more robust model. For a specified cutoff value r0 ∈ (0.5, 1), we assign weight wb to the classifier
f (b), where

wb =
max(r̃(b) − r0, 0)∑B
b=1 max(r̃(b) − r0, 0)

. (5)

Clearly, classifiers with r̃(b) ≤ r0 are excluded. And our final estimated classifier is

f∗(x) = α̂∗ +

∫
x(t)β̂∗(t)dt with α̂∗ =

B∑
b=1

wbα̂
(b), β̂∗(t) =

B∑
b=1

wbβ̂
(b)(t). (6)

In the experiments, we demonstrate the improvements in classification accuracy brought about by
model reversal and model average.

Sample Size Balancing. When the total sample size N is substantial, it stands to reason that in-
creasing both the number of samples used to the estimation and evaluation of each classifier and the
total number of classifiers can be advantageous. Yet, in practical, for a given N , it is imperative to
deliberate on specifying the values ofN0 andB. While larger values ofN0 andB assist in acquiring
more effective weak classifiers, smaller values of N0 and B are preferred to ensure adequate sample
sizes for each validation subset. In the Appendix A.3, we evaluate classifier performance across
varying values of the parameters N0, N1, n0 and B, and further discuss sample allocation.

4 MULTI-SERVER WITH FEDERATED LEARNING

In the previous section, we introduced the construction of classifiers on a single server through Algo-
rithm 1. In real-world scenarios, multi-server environments are common. Thus, federated learning
offers a promising approach. Suppose there are K servers in total, each possessing a classifier, de-
noted by f∗k (x), trained on its own data, and these servers mutually exchange their models. In this
section, we illustrate how each server can enhance classifier performance by effectively integrating
classifiers from various heterogeneous servers under LDP. The details are outlined in Algorithm 2
in Appendix A.6.
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Algorithm 1 Functional Classification under LDP with MRMA

1: procedure SERVER(Φ, N0, N1, n0, B, ε, εv, r0)
Divide clients into a training set D and a validation set Dvalid with |D| = N0, |Dvalid| =

N1, and spilt clients in the validation set into B subsets, D(b)
valid, b = 1, . . . , B.

2: for each client in the training set do
3: (z′

i, y
′
i)← ClientTrain(Φ, ε).

4: end for
5: for b = 1, . . . , B do
6: Randomly draw n0 samples from {(z′

i, y
′
i)}i∈D without replacement and denote asD(b).

7: Build a classifier f (b) based on {(z′
i, y

′
i)}i∈D(b) . ▷ See Section 3.2

8: for each client in the validation set D(b)
valid do

9: r′i ← ClientValid(f (b), εv)
10: end for
11: Estimate r̃(b) by Equation 4.
12: if r̃(b) < 50% then
13: f (b) ← −f (b) ▷ Model Reversal
14: end if
15: end for

Estimate w = (w1, . . . , wB)
⊤ by Equation 5 with cutoff value r0.

return The final estimated classifier f∗ by Equation 6. ▷ Model Average
16: end procedure

1: procedure CLIENTTRAIN(Φ, ε)
2: Estimate z through the functional regression in Equation 1.
3: Rescale z into z∗ ∈ [−1, 1]d by Tanh or Min-Max transformation.
4: Generate z′, y′ by Equation 2 and Equation 3, respectively.

return (z′, y′)
5: end procedure
1: procedure CLIENTVALID(f (b), εv)
2: Calculate ŷ = I(f (b)(x) > 0) and r = I(ŷ = y).
3: Generate r′ by P (r′ = r) = eεv/(1 + eεv ).

return r′
4: end procedure

Perturbation. When a server possesses ample data, the validation set can be partitioned intoB+K
subsets initially, where the latter K subsets are used to evaluate the performance of {f∗k (x)}Kk=1 and
clients report the perturbed evaluations under ϵ-LDP as in Section 3.1. In scenarios where a server’s
data is limited, one may consider the iterative use of the validation set. Initially, the validation set is
partitioned into B subsets, and clients report the perturbed evaluations of the classifiers constructed
from their server under εv = ϵ/2-LDP. Subsequently, the validation set is divided into K subsets,
and clients report the perturbed evaluations of classifiers from different servers under ε∗v = ϵ/2-LDP.

Federated Learning. Each server, upon receiving theK classifiers and obtaining their performance
evaluations, can refer to Section 3.2 to undertake both model reversal and model average, where we
record the cutoff value used here as r∗0 and the obtained classifiers as {f†k}Kk=1. Considering the
heterogeneity across servers, model averaging in this context is similar to transfer learning (Olivas
et al., 2009). To optimize this process, it is crucial to prevent the transmission of information that is
either irrelevant or detrimental, thereby avoiding the negative transfer effect (Li et al., 2022).

5 EXPERIMENTS

In this section, we demonstrate the improvements in classification accuracy brought about by model
reversal and model average. The data generation process is given in Appendix A.1. Assuming
the server has a total of N = 3000 clients, we allocate N0 = 500 for training and the remaining
N1 = 2500 for validation. To construct classifiers, we sequentially draw n0 = 50 samples from
the training dataset without replacement, repeating this procedure B = 50 times. At the same
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time, we partition the validation set into B = 50 subsets of equal size, enabling us to evaluate
the classification accuracy of each classifier using n1 = 50 distinct samples. Both the training
and validation of classifiers follow the data processing and privacy protection mechanisms proposed
in Section 3. To assess the performance of the classifiers, we randomly generate a testing dataset
comprising 500 samples during each trial, repeating this procedure 500 times.

Figure 1 showcases the misclassification rates, along with their corresponding error bars, for various
classifiers across different ε levels. In this figure, “Weak” denotes the average misclassification rate
of B = 50 weak classifiers obtained through sampling. “MR” represents the average misclassifi-
cation rate of B weak classifiers after model reversal under LDP. “MA” signifies the results when
using model average on weak classifiers with cutoff value r = 0.4, while “MRMA” illustrates the
results of applying both model reversal and model averaging. To compare with classic aggregation
methods, we train B weak classifiers under LDP. Each classifier is trained with N/B instances from
the combined training and validation set. We then obtain the results through majority voting and
averaging with equal weight, denoted as “Voting” and “Averaging”, respectively. And “All data”
denotes the classifier trained with N clients directly.

The classifier “All data”, even if it is trained with 3000 clients, shows almost no improvement over
the classifier “Weak” when ε is small (indicating substantial noise interference). And classifiers
“Voting” and “Averaging” also perform similarly. However, our proposed techniques, both model
reversal and model average, significantly improve the performance of all types of weak classifiers.
And MRMA further enhances the performance of SVM and CG classifiers substantially. Figure 7
in Appendix A.4 demonstrates that even when allocating more clients for training weak classifiers,
MR and MA can still significantly enhance the classifiers’ performance. For further discussions
regarding distinctions among different types of classifiers, please refer to Appendix A.2.
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Figure 1: The misclassification rates of four types of classifiers with a single server under ε-LDP.

6 REAL APPLICATION

In this section, we employ a phonemes dataset derived from the TIMIT Acoustic-Phonetic Contin-
uous Speech Corpus (Garofolo, 1993). Speech frames in this dataset are extracted from the contin-
uous speech of 50 male speakers, and a log-periodogram is constructed from recordings available

8
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at different equispaced frequencies for the five phonemes: “sh” as in “she”, “iy” as in “she”, “dcl”
as in “dark”, “aa” as in “dark”, and “ao” as in “water”. The log-periodogram data can be viewed
as functions of frequency, rendering them as functional data, and can be fitted using a Fourier basis.
The richness and potential sensitivity of speech data, capable of revealing unique aspects of an indi-
vidual’s identity such as accent, speech patterns, and even native language or regional background,
necessitate the application of LDP.

In our study, we focus on classifying the phonemes “sh” and “iy”, represented by 1163 and 872
log-periodograms, respectively, each of length 256 and with known class memberships. In Figure
8 in Appendix A.5, we visualize 200 randomly selected functional observations from each group,
and the curves reconstructed after finite basis projection and transformation. To construct classifiers,
we adopt a randomized approach to split the dataset into a testing set (535 instances), a training set
(300 instances), and a validation set (1200 instances), and B = 24 weak classifiers are learned. This
entire procedure is replicated 500 times to ensure robustness and reliability of our results.

Figure 2 presents the misclassification rates of classifiers. The results clearly indicate that classifiers
based on model reversal and model averaging show significant improvement compared to other
classifiers, especially when ε is small.
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Figure 2: The misclassification rates of four types of classifiers with a single server under ε-LDP.

7 CONCLUSION

In this paper, we delved into functional data classification under local differential privacy, a domain
that remains relatively underexplored. We introduced innovative algorithms designed for both single
and multi-server environments. Notably, our allocation strategy prioritized a substantial proportion
of clients for performance evaluation over training, paving the way for potential advancements.
Further advancements include the model reversal technique, which enhanced weak classifier perfor-
mance by reversing prediction outcomes, and the adoption of model averaging, which effectively
combined weak classifiers. We also applied federated learning in a multi-server context, allowing
servers to mutually benefit from shared knowledge. Experimental results demonstrated that our al-
gorithms brought significant improvements to classifiers under LDP constraints. Furthermore, the
methodologies we introduced hold promise for broader applications and future exploration.
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A ADDITIONAL RESULTS

This section provides additional results on our experiments.

A.1 DATA GENERATION PROCESS IN EXPERIMENTS

In each experimental trial, the functional covariate X(·) is generated by X(t) =
∑50

j=1 ξj ζjϕj(t)

for t ∈ [0, 1], where ξj’s are independently drawn from a uniform distribution on (−
√
3,
√
3),

ζj = (−1)j+1j−1, j = 1, . . . , 50, ϕ1(t) = 1 and ϕj(t) =
√
2 cos((j − 1)πt) with j ≥ 2. The

binary response variable Y , taking values 1 or 0, is generated using the following logistic model:

f (X) = α0 +

∫ 1

0

X(t)β(t)dt, Pr (Y = 1) =
exp {f (X)}

1 + exp {f (X)}
,

where α0 = 0.1, β(t) is the slope function, and f(X) is referred to as the classification function.
And we generate data for a server using the slope function β(t) =

∑50
j=1 4(−1)j+1j−2ϕj(t).

Results in Appendix A.2 show that the performance with d = 4, 5, 6 cubic B-Spline is comparable,
and the performance based on Tanh or Min-Max transformation is close. Thus in Section 5, we
present results with d = 4, which introduces less noise during perturbation, and employ the tanh
transformation.

A.2 ENCODING AND PERTURBATION

In this section, we discuss the effects of dimensionality reduction, rescaling, and perturbation, as
introduced in Section 3.1, on the misclassification rates of different types of classifiers.

To investigate the impacts of dimensionality reduction and rescaling, we generate data based on the
model described in Section 5, and the sample sizes of the training and testing datasets are 50 and
500, respectively. During the dimensionality reduction, cubic B-spline with equidistant knots are
employed, and we apply the methods for varying numbers of basis functions, d = 4, 5, 6. Table
1 showcases the misclassification rates of classifiers based on the actual data (INI), coefficients
obtained after dimensionality reduction (Coefs), and coefficients rescaled by either the Tanh (Tanh)
or Min-Max (MM) transformation. This is based on the results from 500 repeated experiments.

Table 1: The misclassification rate of classifiers based on actual data (INI), coefficients obtained
after dimensionality reduction (Coefs), and coefficients rescaled by either the Tanh (Tanh) or Min-
Max (MM) transformation

d = 4 d = 5 d = 6
INI Coefs Tanh MM Coefs Tanh MM Coefs Tanh MM

Logistic - 17.81 12.32 11.68 20.66 13.55 12.81 23.19 15.21 13.86
SVM - 10.85 11.20 11.03 11.29 11.67 11.27 11.69 12.07 11.48
DWD 11.01 11.02 10.64 10.61 11.01 10.60 10.58 11.01 10.61 10.59
CG 15.42 11.02 11.47 11.31 11.34 11.86 11.43 11.65 12.00 11.64

Table 1 shows that there are slight variations in the performance of different types of classifiers.
Overall, classifiers with d = 4, 5, 6 exhibit comparable results, and the impact of dimension re-
duction and rescaling on classifier performance is small. Also, the performances based on Tanh
and Min-Max transformations are very similar. Furthermore, the CG classifier based on actual data
and the logistic classifier based on coefficients obtained after dimensionality reduction perform rel-
atively poorer. This may be related to the inherent characteristics of the classifiers, which is beyond
the scope of this paper. Our primary focus is on the changes in classifier performance before and
after consider LDP and the improvements brought about by different techniques.

To further explore the impacts of perturbation, we generate data in accordance with the model in
Section 5, and both the training and testing dataset sample sizes are 500. Table 1 demonstrates
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Figure 3: The boxplot of the misclassification rates of classifiers with Tanh and Min-Max transfor-
mations under ε-LDP.
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Figure 4: The empirical distribution pε(r) of classifiers trained withN = 3000 clients and perturbed
by Tanh transformation, where ϵ = 0.1, 0.5, 1, . . . , 5, 10, and the red dashed line represents the mean
accuracy rate.
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that classifiers with d = 4, 5, 6 exhibit comparable results.Therefore, we employ d = 4 cubic B-
spline with equidistant knots to introduce as little noise as possible. We consider eight distinct
privacy budget levels, specifically, ϵ = 0.1, 0.5, 1, . . . , 5, 10. Figure 3 displays the misclassification
rates of the four types of classifiers mentioned in Section 3.2, based on both un-perturbed rescaled
coefficients (i.e., “Tanh”, “MM”) and perturbed rescaled coefficients across various levels of ϵ.

In Figure 3, with decreasing ε, the misclassification rates of different types of classifiers tend to
50%. At the same time, there is a variation in the performance of classifiers under the influence
of noise. Notably, the misclassification rate of CG classifier remains highly volatile at smaller ε
values, ranging between 10% and 90%, instead of converging around 50% as other methods do.
This indicates that the performance can be enhanced through model reversal and model averaging.
Additionally, it can be observed from Figure 3 that classifiers based on both Tanh and Min-Max
transformations exhibit very similar performances. Therefore, subsequent results will only showcase
those based on the Tanh transformation.

In Theorem 3, we measure the enhancement in classification accuracy that model reversal can con-
tribute to a classifier, characterized by its classification accuracy rate distribution pε(r). The inves-
tigation of distribution pε(r) itself is beyond the scope of this paper. However, we illustrate the
empirical distribution of various classifiers under our experiment settings in Figure 4.

Figure 4 illustrates that different classifiers exhibit varying degrees of sensitivity to noise. Among
them, the DWD classifier is the most affected, followed by logistic and SVM classifiers. In contrast,
the CG classifier is relatively less impacted by noise interference. As ε decreases, which corresponds
to increased noise, the classification accuracy distributions pε(r) for logistic, SVM, and DWD clas-
sifiers gradually converge around 0.5. However, the distribution for the CG classifier remains more
dispersed, indicating greater potential for improvement through model reversal.

A.3 SAMPLE SIZE BALANCING

In this section, we assess the performance of classifiers over varying values of the parameters
N,N0, N1, n0, n1, B. We generate data based on the settings presented in Section 5. Specifically,
we consider five distinct combinations of these parameter values, which are listed in Table 2. Fig-
ures 5 and 6 display the misclassification rates of model-averaged classifiers using the cutoff value
r0 = 0.6, with and without model reversal, respectively, for the different parameter combinations.

Table 2: Five different combinations of parameters N,N0, N1, n0, n1, B

Case N N0 N1 n0 n1 B

1 3000 500 2500 100 100 25
2 5500 500 5000 100 100 50
3 5500 500 5000 50 100 50
4 3000 500 2500 100 50 50
5 3000 500 2500 50 50 50

In Figure 5, the differences arising from various parameter combinations on different types of clas-
sifiers manifest across distinct intervals of ε. Overall, Case 2 performs slightly better than Case 1,
indicating that increasing the number of weak classifiers B and the sample size of the validation set
N1 can enhance the performance. The preference for a relatively smaller n0 is evident as Case 3 out-
performs Case 2, and Case 5 outperforms Case 4. Additionally, Case 2 is distinctly superior to Case
4, and Case 3 is markedly better than Case 5, indicating a preference for a larger n1. Importantly,
by comparing Case 1 and Case 4, we discern that, given N0 and N1, the allocation should favor a
relatively smaller B and a larger n1. This result is consistent with expectations, as a larger n1 aids
in more accurately estimating the performance of individual weak classifiers, thereby facilitating a
more accurate model average.

Compared to Figure 5, Figure 6 incorporates model reversal prior to model averaging. It can be
observed that the results of the various parameter combinations in Figure 6 are consistent with those
in Figure 5. Notably, the introduction of model reversal has significantly enhanced the performance
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Figure 5: The misclassification rates with error bars of classifiers with model average under ε-LDP.
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Figure 6: The misclassification rates with error bars of classifiers with model reversal and model
average under ε-LDP.
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of both SVM and CG classifiers, particularly under more stringent privacy protection levels, charac-
terized by smaller intervals of ε.

A.4 SAMPLE SIZE OF WEAK CLASSIFIER

To demonstrate how the number of clients used to train weak classifiers influences the efficacy of
MRMA in improving classifier performance, we consider four distinct settings, which are listed in
Table 3. Figure 7 shows how the misclassification rates of the classifier CG vary with different
parameter settings.

We can see from the results of cases 5, 6, and 7 in Figure 7 that using more clients to train weak
classifiers improves their performance when ε is large, implying low noise levels. However, when ε
is small, which is our primary concern, increasing the sample size has little effect on the weak clas-
sifiers. In contrast, the classifiers based on MRMA consistently achieve significant improvements
under different cases. Moreover, when we compare cases 7 and 8 in Figure 7, where the training and
validation datasets have different proportions, we find that allocating more data for validation, i.e.,
for MRMA, leads to better results than using it to enhance weak classifiers.

Table 3: Four different combinations of parameters N,N0, N1, n0, n1, B

Case N N0 N1 n0 n1 B

5 3000 500 2500 50 50 50
6 5000 2500 2500 250 50 50
7 7500 5000 2500 500 50 50
8 7500 2500 5000 250 100 50
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Figure 7: The misclassification rates of classifier CG with a single server under ε-LDP.

A.5 VISUALIZATION OF FUNCTIONAL OBSERVATIONS

In this section, we visualize 200 randomly selected functional observations from groups “sh” and
“iy” in the phonemes dataset. Figure 8 shows the raw functional observations and the curves re-
constructed after finite basis projection (and transformation). The figure demonstrates that despite
some loss of individual observational details due to finite basis projection and transformation, the
fluctuating pattern of individual curves and the population-level group differences are still retained.
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Figure 8: Visualization of 200 randomly selected functional observations from groups “sh” and “iy”
in the phonemes dataset. The two black lines in each figure represent the mean functions of the two
groups of curves.

A.6 MULTI-SERVER WITH FEDERATED LEARNING

In this section, we provide the details of building functional classifier under LDP with MRMA in
heterogeneous multi-server settings in Algorithm 2. And we showcase the improvements in clas-
sification accuracy achieved through federated learning for individual servers. We consider three
groups of servers, each characterized by a distinct slope function, to introduce heterogeneity among
the servers. Of a total of K = 25 servers:

• Group 1: for k = 1, . . . , 10, βk(t) =
∑50

j=1 γj(−1)j+1j−2ϕj(t) with γj
i.i.d.∼ U(−8,−2).

• Group 2: for k = 11, . . . , 15, βk(t) ∼ GP(0,K(s, t)) with K(s, t) = exp(−15|s− t|).

• Group 3: for k = 16, . . . , 25, βk(t) =
∑50

j=1 γj(−1)j+1j−2ϕj(t) with γj
i.i.d.∼ U(2, 8).

Here, U(a, b) denotes a uniform distribution over the interval (a, b), and GP(0,K(s, t)) represents
a Gaussian process with zero mean and kernel K(s, t). It is essential to highlight that the slope
functions of servers within the same group are not identical. Moreover, the directions of the slope
functions in groups 1 and 3 are opposite, serving as a test to assess the potential negative transfer
impact during federated learning. In group 2, the slope function is randomly generated, resulting in
an approximate 50% misclassification rate for classifiers built on servers in this group. This design
is purposefully implemented to gauge its potential disruption to the federated learning process.

For each server, we generate N = 3000 clients for both training and validation, with an additional
500 clients designated for testing. Each server employs algorithms with the parameters N0 = 500,
N1 = 2500, n0 = 50, and B = 50. Initially, in the single-server context, each server independently
runs Algorithm 1, setting the parameters εv = ε and r0 = 0.7. Subsequently, to deploy federated
learning, servers execute Algorithm 2. Parameters for this phase are designated as εv = ε∗v = ε/2.
And we set r0 = 0.7 to ensure the existence of weak classifiers satisfying this criterion, along with
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Algorithm 2 Functional Classification under LDP with MRMA and Federated Learning

1: procedure MULTI-SERVER
2: for each server do
3: f∗k (x)← Server(Φ, N0, N1, n0, B, ε, εv = ε/2, r0).
4: end for
5: for each server do
6: Spilt clients in the validation set into K subsets, D(k)

valid, k = 1, . . . ,K.
7: for k = 1, . . . ,K do
8: for each client in the validation set D(k)

valid do
9: r′k ← ClientValid(f∗k , ε

∗
v = ε/2)

10: end for
11: Estimate r̃(k) by Equation 4.
12: if r̃(k) < 50% then
13: f∗k ← −f∗k ▷ Model Reversal
14: end if
15: end for

Estimate w = (w1, . . . , wK)⊤ by Equation 5 with cutoff value r∗0 .
return The final estimated classifier f†k by Equation 6. ▷ Model Average

16: end for
17: end procedure
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Figure 9: The misclassification rates of four types of classifiers with multi-server under ε-LDP.

r∗0 = 0.8 to counteract the potential negative transfer effect. As expected, servers in group 2 exhibit
misclassification rates around 50%. The average misclassification rates for classifiers of servers in
groups 1 and 3 under these two scenarios are illustrated in Figure 9. The results show that federated
learning significantly improves the performance of both logistic and DWD classifiers, even with
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server heterogeneity. While SVM and CG classifiers already perform well within a single server
setting, federated learning shows comparable or slightly better performance.

B THEORETICAL ANALYSIS

B.1 FUNCTIONAL PROJECTION AND INFORMATION LOSS

In this section, we provide further discussion on the projection-based functional classification, and
measure the information loss induced by projection.

We regard functional observations x(t) as random elements of the separable Hilbert space L2(I)
of square-integrable functions on a compact domain I equipped with inner product ⟨f, g⟩ =∫
I f(t)g(t)dt and norm ∥f∥ = ⟨f, f⟩1/2. We consider classification of a Gaussian random func-

tion, X(t), into one of two classes of Gaussian random functions with mean function µ0 and µ1,
respectively. Both classes have covariance operator K defined as the integral operator

(Kf)(·) =
∫
I
ρ(·, t)f(t)dt

with kernel ρ(s, t) = cov{X(s), X(t)}.
Under the assumption that µ0,µ1 andK are known, Delaigle & Hall (2012) and Kraus & Stefanucci
(2019) consider the class of centroid classifiers that are based on one-dimensional projections of the
form ⟨X,ψ⟩, where ψ is a function in L2(I). In this section, we study the classifier based on
multi-dimensional projections.
Lemma 1. If K−1(µ1 − µ0) is in the span of projection function Φd = (ϕ1, . . . , ϕd)

⊤, then Φd is
optimal in the sense that the classifier CΦd

can achieve the lowest possible misclassification rate

1−G
(
⟨µ,K−1µ⟩1/2

2

)
among all possible classifiers, where G is the standard normal cumulative distribution function.

Lemma 1 clearly demonstrates that the classifier based on finite projection functions can be optimal.
Specifically, in the case where d = 1, the function ϕ1 = K−1(µ1 − µ0) serves as an optimal
projection function, efficiently reducing functional observations to a scalar.

Proof of Lemma 1. For any function x(t) and a set of basis functions denoted as Φd =
(ϕ1, . . . , ϕd)

⊤, we define Φdx = (⟨ϕ1, x⟩, . . . , ⟨ϕd, x⟩)⊤ ∈ Rd, and ΦdKΦ⊤
d as a d × d matrix,

where the (k1, k2)th element is ⟨ϕk1
,Kϕk2

⟩. With a slight abuse of notation, we represent Φd as Φ
in the following text. For any given d-dimension vector θ, record ψ = Φ⊤θ =

∑d
k=1 θkϕk. Let the

mean function of class i be represented as µi for i = 0, 1. The optimal classifier based on ⟨X,ψ⟩
assigns X to the class CΦ,θ(X) given by

CΦ,θ(X) = I
(
⟨X − µ0, ψ⟩2 − ⟨X − µ1, ψ⟩2 > 0

)
= I (TΦ,θ(X) > 0) ,

where TΦ,θ(X) = ⟨X−µ̄, ψ⟩⟨µ, ψ⟩with µ̄ = (µ0+µ1)/2 and µ = µ1−µ0. The misclassification
rate of this classifier is

D(Φ,θ) = P0 (CΦ,θ(X) = 1) /2+P1 (CΦ,θ(X) = 0) /2 = 1−G
(

|⟨µ,Φ⊤θ⟩|
2⟨Φ⊤θ,KΦ⊤θ⟩1/2

)
, (B.1)

where Pi is the distribution of curves in class i, i = 0, 1.

By minimizing Equation B.1, we can find the optimal selection of the projection functions Φ and its
corresponding θ. Firstly, for a given Φ, by the Cauchy–Schwarz inequality, if ∥(ΦKΦ⊤)−1/2Φµ∥ <
∞, we have

⟨µ,Φ⊤θ⟩2

⟨Φ⊤θ,KΦ⊤θ⟩
≤ ∥(ΦKΦ⊤)−1/2Φµ∥2.

If ∥(ΦKΦ⊤)−1Φµ∥ < ∞, the equality is achieved for θ = (ΦKΦ⊤)−1Φµ := θ0. And the
corresponding misclassification rate is

D(Φ,θ0) = 1−G
(
∥(ΦKΦ⊤)−1/2Φµ∥

2

)
. (B.2)
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This implies that for any given Φ with d > 1, ψ0 =: Φ⊤θ0 is the most efficient projection function
among all the linear combinations of Φ. Similarly, by minimizingD(Φ,θ0), we find that the optimal
projection functions Φ∗ is the Φ that satisfies

Φ⊤θ0 = K−1µ, (B.3)
and the corresponding misclassification rate is

D(Φ∗,θ0) = 1−G
(
⟨µ,K−1µ⟩1/2

2

)
, (B.4)

which is the lowest possible misclassification rate for this problem among all possible classifiers
(Berrendero et al., 2018). □

In practice, selecting a projection function Φ that satisfies Equation B.3 is difficult since both µ and
K are unknown. For a general projection function Φ, the misclassification rate of the classifier based
Φ is given in Equation B.2. We can measure the information loss caused by Φ relative to the optimal
one, Φ∗, by

⟨µ,K−1µ⟩ − ∥(ΦKΦ⊤)−1/2Φµ∥2

=µ⊤K−1/2(I − PK1/2Φ⊤)K−1/2µ =: ∥δ∥2 ≥ 0,

where PK1/2Φ⊤ = K1/2Φ⊤(ΦKΦ⊤)−1ΦK1/2. The loss ∥δ∥2 is exactly the sum of squares error of
the regression model

K−1/2µ = K1/2Φ⊤θ,

when the coefficient θ = θ0.

B.2 PROOF OF THEOREMS

Proof of Theorem 1. Let u = (x(t), y) represent the possible observation of a client, and v =
(z′, y′) represent the possible report of a client. Let fv|u(v|u) be the conditional density of v given
u. Then for any possible output v ofM1(u), by the sequential composition theorem (McSherry &
Talwar, 2007), we have

fv|u(v|u1)
fv|u(v|u2)

=
P (y′|y1)
P (y′|y2)

d∏
k=1

f(z′k − z∗1,k)
f(z′k − z∗2,k)

≤max(1,
q

1− q
,
1− q
q

)

d∏
k=1

exp(
ε1
d∆

(|z′k − z∗1,k| − |z′k − z∗2,k|))

≤eε2
d∏

k=1

exp(
ε1
d
) = eε1+ε2 = eε,

where q = eε2/(1 + eε2). ThusM1 satisfies ε-local differential privacy.

Proof of Theorem 2. Let u = (x(t), y) represent the possible observation of a client, and w = r′

represent the possible report of a client. Let fw|u(w|u) be the conditional density of w given u.
Then for any w ∈ {0, 1}, we have

fw|u(w|u1)
fw|u(w|u2)

=
P (r′|r1)
P (r′|r2)

≤ eεv .

ThusM2 satisfies εv-local differential privacy. Note that r(b) is the classification accuracy of the
classifier f (b), then

E(r̂(b)) = qr(b) + (1− q)(1− r(b)),
where q = eεv/(1 + eεv ). Thus we have E(r̃(b)) = r(b), and Var(r̃(b)) = Var(r̂(b))/(2q − 1)2 ≤
((eεv + 1)/(eεv − 1))2/(4n

(b)
1 ). This concludes the proof.

Proof of Theorem 3. For any r ∈ [0, 1], we have rδ = max(1− 2r, 0), thus

E(rδ) =
∫ 1

0

pε(r)max(1− 2r, 0)dr =

∫ 1/2

0

pε(r)(1− 2r)dr.
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