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ABSTRACT

Neural message passing on graphs can suffer from the oversmoothing problem,
where repeated aggregation of neighborhood information causes node embeddings
to become indistinguishable. This issue is not confined to discrete Graph Neu-
ral Networks (GNNs); it also arises in continuous-depth GNNs, such as Graph
Neural Diffusion (GRAND), where a diffusion process governs feature evolution.
Current solutions often involve adding auxiliary data-dependent source terms or
employing nonlinear dynamics, rather than relying solely on pure diffusion. In
this work, we propose a simple yet powerful linear alternative: Graph Neural Dif-
fusion with Adaptive Skip Connection (GRAND-ASC). Our framework equips
the standard GRAND model with a skip connection to the initial node features,
which by itself is sufficient to prevent oversmoothing. Furthermore, to increase
our model’s adaptability, we introduce a learnable time-dependent parameter that
dynamically balances the trade-off between integrating neighborhood information
and preserving a node’s initial features. We provide a theoretical foundation for
GRAND-ASC, proving its analytical well-posedness and the numerical stability
of its approximations. Furthermore, we formally demonstrate that our dynam-
ics mitigate oversmoothing by ensuring the Dirichlet energy remains bounded
away from zero. Through a comprehensive set of experiments, we demonstrate
that our model achieves competitive state-of-the-art performance on node classifi-
cation tasks, with particularly strong results on heterophilic benchmarks where
preserving node-specific information is crucial. The source code is available
at: https://tinyurl.com/3n8r6nxn.

1 INTRODUCTION

Neural message passing Gilmer et al. (2017) forms the foundation of modern graph representa-
tion learning, serving as the core mechanism for aggregating neighborhood information in graph-
structured data. The earliest GNN architectures drew inspiration from spectral graph theory Kipf
& Welling (2017); Defferrard et al. (2016), utilizing graph Fourier transforms to extract structural
patterns in the spectral domain. This feature extraction can be performed either discretely, as seen
in GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2017), and GAT Veličković et al.
(2018), or continuously through diffusion processes, such as continuous GNNs Xhonneux et al.
(2020), GRAND Chamberlain et al. (2021a), sheaf diffusion process Bodnar et al. (2022), and re-
cently graph neural Ricci flow Chen et al. (2025).

However, a significant challenge for both types of GNNs is oversmoothing, where repeated aggrega-
tion causes all node embeddings to become indistinguishable Oono & Suzuki (2020); Cai & Wang
(2020). Importantly, this issue is not confined to deep discrete networks; it can also arise in shal-
low ones Wu et al. (2023c). Moreover, continuous models based on pure diffusion processes, such
as GRAND, inevitably converge to a constant vector that is independent of the input Thorpe et al.
(2022), resulting in an oversmoothing problem.

To address this problem, several modifications have introduced mechanisms to preserve node-
specific information. One prominent approach is GRAND++ Thorpe et al. (2022), which incor-
porates source terms derived from labeled node features to GRAND. This method treats the features
of labeled nodes as trustworthy anchors, continuously injecting them into the diffusion dynamics as
corrective signals. The Allen-Cahn Message Passing framework Wang et al. (2023) takes a different
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approach, modeling node interactions through a nonlinear reaction–diffusion equation. This non-
linearity introduces a competing reaction force that counteracts pure diffusion, naturally preventing
oversmoothing and enabling the formation of distinct clusters.

Employing nonlinearity has been claimed as the only solution to resolving the oversmoothing prob-
lem Wang et al. (2025) in continuous message passing. In this work, however, we show that a simple
yet powerful linear alternative exists: equipping the GRAND model with a skip connection to the
initial features. The inclusion of this skip connection is, by itself, sufficient to counteract the conver-
gence to a constant vector of pure diffusion and resolve oversmoothing. Nonetheless, improving the
performance of the continuous models is generally difficult as they must use a single set of weights
throughout the entire integration time. To overcome this limitation, we employ an adaptive mecha-
nism by introducing a learnable, time-dependent parameter that dynamically balances the trade-off
between aggregating information from neighbors and preserving the node’s initial features. In this
way, skip connections effectively resolve oversmoothing, while adaptivity further enhances model
performance. The mechanism is parameter-efficient, as it only requires learning a single scalar
value per layer, resulting in a negligible increase in the total number of parameters in comparison
with GRAND. Our contributions can be summarized as follows:

• Graph Neural Diffusion with Adaptive Skip Connection (GRAND-ASC): We propose
GRAND-ASC. This simple yet powerful continuous architecture mitigates oversmooth-
ing through a skip connection to the initial features. Crucially, we integrate this with a
time-adaptive mechanism that dynamically balances two competing objectives: smoothing
information from neighbors and retaining the node’s original feature. This framework pro-
vides an adaptive and efficient strategy that eliminates the need for data-dependent source
terms Thorpe et al. (2022) or nonlinear dynamics Wang et al. (2023).

• Theoretical Guarantees on Analytical Well-Posedness and Numerical Stability: We
will prove that GRAND-ASC is well-defined, i.e., it admits a unique analytical solution
and the solution remains bounded over time. We also provide the stability analysis for
Euler and the fourth-order Runge-Kutta (RK4) approximation of the proposed diffusion
dynamics. This theoretical foundation guarantees that our model’s predictions are robust
and not subject to wild fluctuations due to numerical errors, a critical assurance for practical
deployment.

Mitigating Oversmoothing: Despite its linearity and simplicity, we prove that the pro-
posed dynamic method mitigates oversmoothing by showing the Dirichlet energy is
bounded away from zero.

• Empirical Validation on Heterophilic Graphs: We demonstrate the effectiveness of
GRAND-ASC through extensive experiments on the node classification task. These results
demonstrate that GRAND-ASC is a robust general-purpose model that excels particularly
in heterophilic settings while maintaining acceptable performance on homophilic graphs.

1.1 GRAPH NOTATION

Let G = (V,E,W) be an undirected, weighted graph with node set V of cardinality |V | = n, edge
setE, and symmetric adjacency matrix W ∈ Rn×n where [W]ij = wij represents the non-negative
edge weight between nodes i and j. The weight wij = 0 if (i, j) /∈ E. We enumerate the nodes
as V = {1, 2, . . . , n}, with the neighborhood of node i denoted by N (i) = {j ∈ V | (i, j) ∈
E}. Each node i has an associated feature vector xi ∈ Rd, and the collective feature matrix is
X = [x1, . . . ,xn]

⊤. The degree matrix D ∈ Rn×n is a diagonal matrix where each entry [D]ii :=
di =

∑
j∈V wij represents the weighted degree of node i, corresponding to the sum of edge weights

incident to node i. The graph Laplacian matrix, defined as L = D−W, is a fundamental object in
spectral graph theory. Its eigenvalues, denoted µ1 ≤ µ2 ≤ · · · ≤ µn, reveal key structural properties
of the graph. The normalized Laplacian matrix, defined as L = D−1/2LD−1/2, provides a scaled
alternative whose eigenvalue spectrum is constrained. The eigenvalues γ1 ≤ γ2 ≤ · · · ≤ γn of L
satisfy 0 = γ1 ≤ · · · ≤ γn ≤ 2 Chung (1997). The second smallest eigenvalue, γ2, is commonly
known as the algebraic connectivity. This value quantitatively reflects the overall connectivity of the
graph, where a larger γ2 indicates a more strongly connected structure.
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1.2 DIFFUSION ON GRAPHS

The gradient operator ∇ : Rn → R|E| maps node features to edge features

(∇x)ij = xj − xi ∀(i, j) ∈ E,

measuring feature variation across edges. The divergence operator div : R|E| → Rn defines as

(div(X))i =
∑

j∈N (i)

wij Xij ,

and maps edge features back to nodes. The diffusion dynamic is written in standard matrix form as

∂X(t)

∂t
= div [G(X(t), t)∇X(t)] , (1)

where G(X(t), t) = diag
(
a(xi(t),xj(t))

)
∈ R|E|×|E| is diagonal. Each diagonal entry scales the

entire row of ∇X(t) corresponding to its edge. Here a : Rd ×Rd → R+ is a learnable function that
assigns a diffusion strength to each edge.

1.3 GRAND-ASC MESSAGE PASSING

The following equation defines the governing diffusion dynamics of GRAND-ASC:

∂X(t)

∂t
= λ(t) div [G(X(t), t)∇X(t)] + (1− λ(t))(X(0)− X(t)), (2)

where λ(t) is a skip connection strength, shared across all nodes and features, at layer t. This
formulation enables each node to dynamically balance between integrating information from its
neighbors (the diffusion term) and retaining its initial features (the memory term). If λ(t) = 1 for
all layers t, the model simplifies to the standard GRAND diffusion process. This flexible design
allows GRAND-ASC to smoothly transition between pure diffusion and feature preservation via the
learnable function λ(t).

Let X(t) = [x1(t) x2(t) · · · xd(t)] be the feature matrix at layer t, where xk(t) ∈ Rn is the k-
th column representing the feature vector for the k-th dimension across all nodes. For simplicity
of notation, we will drop the subscript k and focus on a single feature vector x(t) ∈ Rn in the
subsequent analysis, with the understanding that the same dynamics apply independently to each
feature dimension. Let xi(t) denote the i-th element of the vector x(t), representing the feature
value at node i. Then, the GRAND-ASC dynamics follow the differential equation

∂xi(t)

∂t
= λ(t)

∑
j∈N (i)

a(xi, xj)(xj(t)− xi(t)) + (1− λ(t))(xi(0)− xi(t)) (3)

To weight the influence between nodes, the diffusivity is modeled with an attention function a(·, ·).
We employ a multi-head scaled dot-product attention mechanism Vaswani et al. (2017), which com-
putes the attention coefficient for an edge (i, j) as

a(xi, xj) =
exp

(
(WQxi)

⊤(WKxj)√
dk

)
∑

k∈N (i) exp
(

(WQxi)⊤(WKxk)√
dk

) ,
where WQ,WK ∈ Rd×dk are learned projection matrices, and dk is the feature dimension per
head. To enhance stability and representational capacity, we use h independent attention heads,
averaging their outputs to form the final attention weights.

Finally, GRAND-ASC architectures consist of three components: an encoder ϕ, a differential
equation solver, and a decoder ψ. The encoder maps the input features to the initial state via
X(0) = ϕ(Xin), while the decoder produces the final node embeddings as Y = ψ(X(T )). Us-
ing the matrix form of Equation (3), the differential equation solver is given as

X(T ) = X(0) +

∫ T

0

[
λ(t)

(
A(X(t))− I

)
X(t) + (1− λ(t))(X(0)−X(t))

]
dt, (4)

where [A(X(t))]ij = a(xi, xj) is the attention matrix.
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1.4 RELATED WORKS

Message Passing in GNNs. The feature extraction in GNNs can be performed either discretely,
as seen in GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2017), and GAT Veličković
et al. (2018), or continuously through diffusion processes, such as continuous GNNs Xhonneux et al.
(2020); Hariri et al. (2025); Eliasof et al. (2021); Finder et al. (2025), fractional differential equa-
tions Maskey et al. (2023), GRAND-based models Chamberlain et al. (2021a); Thorpe et al. (2022);
Wang et al. (2023); Li et al. (2024b), sheaf diffusion process Bodnar et al. (2022); Hevapathige et al.
(2025), and recently neural Ricci flow Chen et al. (2025). Continuous message passing is inspired
by the framework of neural differential equations Chen et al. (2018), which has led to many follow-
up works in the GNN field Avelar et al. (2019); Poli et al. (2019); Wu et al. (2023a); Rusch et al.
(2022); Gallicchio & Micheli (2020); Lin et al. (2024); Yue et al. (2025).

Oversmoothing. A key challenge for GNNs is their depth limitations, as increasing layers of-
ten causes a performance drop in models like GCN Oono & Suzuki (2020) and GAT Wang et al.
(2019); Wu et al. (2023b); Dong et al. (2021). This decline occurs because repeated neighbor-
hood averaging makes node embeddings increasingly similar and eventually indistinguishable from
one another. The problem was first identified by Li et al. (2018), who showed repeated Laplacian
smoothing causes embeddings in a connected graph to converge. Subsequent works Oono & Suzuki
(2020); Cai & Wang (2020) confirmed the energy function of embedding approaches zero with
depth. Oversmoothing also affects continuous models, such as the early GRAND framework Thorpe
et al. (2022). Subsequent approaches have tackled this issue in various ways: GRAND++ Thorpe
et al. (2022) uses auxiliary source terms, and ACMP Wang et al. (2023) introduces nonlinear reac-
tions. A closely related work is Li et al. (2024b), which also combines a fidelity term with a diffusion
process from Fick’s law. However, key differences distinguish our approach. First, we introduce a
time-dependent function to balance these terms dynamically, unlike their fixed coefficients. Second,
our attention mechanism utilizes initial features only, resulting in a linear differential equation that
provides theoretical guarantees, such as numerical stability even for high-order differential equation
solvers and a lower bound on the Dirichlet energy. Finally, our model is simpler, as it omits the
second-order regularization term they use for 2-hop neighbors.

Skip Connection. Motivated by the success of skip connections in deep learning He et al. (2016),
there is growing interest in their use for GNNs. Early work by Kipf & Welling (2017); Li et al.
(2019) demonstrated that skip connections yield significant experimental improvements. Later, Liu
et al. (2021) introduced message passing with adaptive embedding aggregation and skip connections,
while Yang et al. (2022); Chen et al. (2023) proposed difference skip connections to help GNNs
focus on residual information between initial and output features.

The use of initial skip connections was popularized by PPNP Gasteiger et al. (2019), which incorpo-
rated them into a GCN framework. This idea was later extended by GCNII Chen et al. (2020), which
combined initial skip connections with identity mapping to enable deeper architectures. Recent
work by Scholkemper et al. (2025) shows initial skip connections in PPNP mitigate oversmooth-
ing, and Zhang et al. (2023) studies adaptive initial skip connections with layer-wise learnable skip
strengths.

Similar methods that incorporate skip connections not only to the initial node features but also to
combinations of intermediate layer embeddings have demonstrated strong performance, as seen in
Jumping Knowledge Networks (JKNets) Xu et al. (2018), DeepGCN Li et al. (2019), Higher-Order
Graph Convolutional Architectures (Mixhop) Abu-El-Haija et al. (2019), Deep Adaptive Graph
Neural Networks (DAGNNs) Liu et al. (2020), and at R–SoftGraphAI Li et al. (2024a).

2 THEORETICAL FOUNDATION

We establish the theoretical analysis of the GRAND-ASC framework in two steps. First, in Subsec-
tion 2.1 we show that the dynamics Equation (3) are well posed and satisfy a min–max principle,
which guarantees bounded solutions over time. Then, in Subsection 2.2 we analyze two numerical
solvers, explicit Euler and the RK4, and prove that both are stable under practical step-size con-
straints. Lastly, Subsection 2.3 is devoted to showing that the Dirichlet energy of the GRAND-ASC
is strictly positive for any depth.
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2.1 WELL-POSEDNESS ANALYSIS OF GRAND-ASC

The existence and uniqueness of solutions to the GRAND-ASC dynamic follows from Picard’s
existence and uniqueness theorem for ordinary differential equations (see Perko (2013) for more
details). The right-hand side of Equation (3) is Lipschitz continuous in xi. This Lipschitz condition
holds because: (1) the attention mechanism a(xi, xj) is typically smooth (often softmax-based), and
(2) the residual term (1− λ(t))(xi(0)− xi(t)) is linear in xi. Therefore, by Picard’s theorem, there
exists a unique solution xi(t) over the interval [0, δT ] for some δT > 0. The Min-Max principle
established in Theorem 1 further guarantees that solutions remain bounded for all t ≥ 0, allowing
the unique solution to be extended indefinitely. The proofs of all theorems are provided in detail
in Appendix A.

Theorem 1. (Min–Max Principle) The solution to the GRAND-ASC satisfies the following
bounds for all i ∈ V and t ≥ 0

argmin
j
xj(0) ≤ xi(t) ≤ argmax

j
xj(0).

2.2 NUMERICAL APPROXIMATION OF GRAND-ASC

Since obtaining an analytic solution for GRAND-ASC is challenging due to its time-dependent
dynamics, we next turn our attention to numerical solvers. The goal here is to ensure that practical
discretizations not only approximate the dynamics accurately but also preserve stability. We analyze
two schemes. First, the explicit Euler method in 2.2.1, the most straightforward time approximation,
whose special case recovers the classical GAT with an adaptive initial skip connection. We then
analyze the RK4 method in 2.2.2, a higher-order solver with improved accuracy and a larger stability
region. We show that both approximations remain stable for time steps ∆t ∈ (0, 1].

2.2.1 EXPLICIT EULER: REVISITING THE INITIAL SKIP CONNECTION IN GAT

Applying the explicit Euler method with step size ∆t to Equation (3) gives the following update rule

xi(t+ 1) = xi(t) + ∆t

(
λ(t)

∑
j∈N (i)

a(xi, xj)(xj(t)− xi(t)) + (1− λ(t))(xi(0)− xi(t))

)
. (5)

The following proposition proves the numerical stability of this solver. This result guarantees control
over the norm of the discrete solution and ensures that the method preserves the well-posedness of
the continuous model.

Theorem 2. Assuming for some δ > 0, λ(t) ≤ 1 − δ for any t ≥ 0, the approximation (5)
of GRAND-ASC is asymptotically stable for ∆t ∈ (0, 1], i.e., the sequence {∥x(t)∥}t≥0 is
bounded by

lim sup
t→∞

∥x(t)∥ ≤ 1

δ
∥x(0)∥ (6)

The assumption λ(t) ≤ 1 − δ, for some δ > 0, is not practically limiting. In practice, these
parameters are learned without restrictions, and we can apply a sigmoid transformation to ensure
their values lie strictly between zero and one. This transformation naturally prevents the values
from approaching too closely to either 0 or 1, making the assumption λ(t) ≤ 1 − δ both realistic
and achievable.

Setting ∆t = 1 in Equation (5) and noting that the attention weights are normalized such that∑
j∈N (i) a(xi, xj) = 1, the diffusion term simplifies as∑

j∈N (i)

a(xi, xj)(xj(t)− xi(t)) =
∑

j∈N (i)

aijxj(t)− xi(t).

5
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Thus, the explicit Euler scheme Equation (5), further simplifies to

xi(t+ 1) = λ(t)
∑

j∈N (i)

a(xi, xj)xj(t) + (1− λ(t))xi(0). (7)

This recovers the GAT architecture with an initial skip connection (and if we set λ(t) = 1, then
GAT Veličković et al. (2018) will be recovered), effectively forming a variant of initial skip connec-
tion (APPNP) Gasteiger et al. (2019); Scholkemper et al. (2025), where a GAT-based propagation
mechanism replaces the original GCN and also λ(t) = λ for all t ≥ 0.

Remark 1. The time complexity of explicit Euler Equation (5) is O(T · |E| · d+ T · n · d2),
where T is the number of time steps, |E| is the number of edges, n is the number of nodes,
and d is the feature dimension. The O(|E| · d) term arises from the edge-wise attention
score computations and feature aggregations, while the O(n · d2) term comes from the linear
transformations applied at each node. Additional skip connections only contribute O(n · d),
which is dominated by the O(n · d2) term.

2.2.2 FOURTH-ORDER RUNGE KUTTA APPROXIMATION

We now turn to a more accurate solver. In Theorem 4, we demonstrate that RK4 maintains stability
while offering significantly higher accuracy than Euler. To this end, we begin by rewriting the
continuous-time GRAND-ASC dynamics as

dx(t)

dt
= Bx(t) + c(t), where B = λ(t)A− I, c(t) := (1− λ(t))x(0). (8)

The corresponding RK4 discretization with step size ∆t is then given by (see e.g., Butcher (2016)
for details)

k1 = Bx(t) + c(t), k2 = B
(
x(t) + ∆t

2 k1

)
+ c(t), k3 = B

(
x(t) + ∆t

2 k2

)
+ c(t), (9)

k4 = B
(
x(t) + ∆tk3

)
+ c(t), x(t+ 1) = x(t) +

∆t

6

(
k1 + 2k2 + 2k3 + k4

)
.

Before proving the main theorem, we introduce a key theorem that will serve as the foundation for
our stability analysis. This result establishes the exponential decay of matrix powers for matrices
with spectral radius strictly less than one. This property is essential for bounding the cumulative
error in the RK4 iteration. The proof, which appears in Appendix A, relies on Gelfand’s formula to
construct the decay rate γ and the accompanying constant C.

Theorem 3. Let M be a matrix with ρ(M) < 1. Then there exist constants C > 0 and
0 < γ < 1 such that for any j ∈ N, ∥Mj∥ ≤ Cγj .

The stability of RK4 approximation follows in three steps: first, the discrete system Equation (9) is
expressed via the RK4 stability function R(z) =

∑4
k=0 z

k/k! applied to the matrix ∆tB. Second,
we show that for any eigenvalue µ of B, the scaled value ν = ∆tµ lies within the disk D = {ν ∈
C : |ν+1| < 1}, which is contained in the RK4 stability region (verified at key points). This ensures
the spectral radius ρ(R(∆tB)) < 1. Finally, Theorem 3 guarantees the exponential decay of the
matrix power, leading to a bounded solution. Thus, we will have the following theorem.

Theorem 4. The RK4 discretization of GRAND-ASC dynamics is asymptotically stable for
any step size ∆t ∈ (0, 1].

Hence, both the explicit Euler and RK4 methods are stable for ∆t ∈ (0, 1]. Although RK4 requires
four intermediate function evaluations per step compared to the single evaluation of Euler’s method,
it achieves a superior fourth-order accuracy of O(∆t4), as opposed to Euler’s first-order accuracy
of O(∆t). This enhanced efficiency, combined with RK4’s significantly larger stability region (as

6
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shown in Subsection 3.1), makes it a superior choice. Although higher-order methods like fifth-
order RK (RK5) or DOPRI5 are also applicable, their stability analysis and implementation follow
the same principles as RK4. However, our focus as solver is on the RK4 scheme, as this solver
is often regarded as the optimal trade-off between speed and accuracy for multi-step solvers, see
e.g., Butcher (2016).

2.3 OVERSMOOTHING MITIGATION

In this section, we prove that the dynamics described in Equation (3), which form the core solver
for the architecture in Equation (4), mitigate oversmoothing. This result is formalized in Theorem 6.
Our analysis employs the Dirichlet energy as a measure of feature smoothness. For a node feature
vector x(t), this energy is defined as E(x(t)) = x(t)⊤Lx(t). A key property of this energy is given
in the following theorem, which provides a lower bound based on the spectral gap γ2.

Theorem 5. Let L be the symmetric normalized Laplacian of a connected graph, with eigen-
values 0 = γ1 < γ2 ≤ · · · ≤ γn. Let x(t) ∈ Rn such that x(t)⊤D1/21 = 0 (i.e., x(t) is
centered). Then

E(x(t)) ≥ γ2∥x(t)∥2.

This result follows from spectral graph theory by expanding x(t) in the orthonormal eigenbasis of L.
The centering condition ensures orthogonality to the first eigenvector v1 = D1/21 (corresponding
to γ1 = 0), forcing the expansion to use only eigenvectors with eigenvalues greater than γ2.

The following theorem shows that the energy function of the GRAND-ASC is lower-bounded by a
strictly positive value.

Theorem 6. Assuming for any t ≥ 0, ⟨x(0), x(t)⟩ > m for some m > 0 and, 1 − λ(t) ≥ δ
for some δ > 0, then for any mean-centered vector x(t), the Dirichlet energy of GRAND-ASC
Equation (3) satisfies

E(x(t)) ≥ δmγ2
2dmax + 1

,

where dmax is its maximum degree of the graph.

The proof is established by transforming the node-wise system Equation (3) into an expression
involving graph edges and the memory term. The diffusion component is then bounded by relating
the sum over edges to the quadratic form of the graph Laplacian and applying the Gershgorin Circle
Theorem to connect its influence to the maximum degree dmax. Concurrently, the memory term is
controlled via the inner product ⟨x(0),x(t)⟩. These bounds are synthesized into a key differential
inequality for the squared ℓ2-norm, which is solved explicitly using an integrating factor technique
to derive a time-dependent lower bound for ∥x(t)∥. Finally, asymptotic analysis of this solution,
combined with Theorem 5, yields the desired uniform lower bound on the Dirichlet energy. It
should be noted that requiring a positive inner product ⟨x(0),x(t)⟩ in Theorem 6 ensures the angle
between initial and propagated embeddings lies in (−π/2, π/2). This aligns with homophily by
maintaining node similarity over time, whereas a negative value would imply divergence.

In the special case where λ(t) = λ is constant for all t, we obtain the following result.

Corollary 1. For GRAND-ASC dynamics with constant λ(t) = λ ∈ (0, 1), then

x(t) → (1− λ)
(
λL+ (1− λ)I

)−1
x(0) as t→ ∞.

This result indicates that the solution does not converge to a constant vector but instead depends
on both the graph structure (through the Laplacian L), the parameter λ, and also the initial feature.
Consequently, the node features will not become identical across all graph nodes under the GRAND-
ASC dynamics.

7
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3 EXPERIMENTS

In Subsection 3.1, we employ a synthetic graph structure to demonstrate that GRAND-ASC miti-
gates oversmoothing (and to illustrate the larger stability region of the RK4 numerical solver). Then,
in Subsection 3.2, we focus on node classification tasks and compare GRAND-ASC against several
well-known discrete and continuous GNNs.

3.1 SYNTHETIC SETUP

We analyze the Dirichlet energy on a synthetic undirected stochastic block model with 100 nodes
divided into two classes. Node features are two-dimensional, drawn from normal distributions with
means µ1 = −0.5, µ2 = 0.5, and standard deviation σ = 1. The connection probabilities are
p = 0.9 (within-class) and q = 0.1 (between-class), a setup also employed in Wang et al. (2023). As
shown in Figure 1, standard GNNs (GCN, GAT, SAGE) and GRAND suffer from oversmoothing,
with their Dirichlet energy decaying to zero quickly. In contrast, GRAND-ASC’s energy stabilizes
at a positive level, validating Theorem 6. This figure also illustrates the stability regions for explicit
Euler, RK4, and RK5 solvers for ∆t = 0.5, a behavior representative of other datasets. A larger
stability region (for the same time step constraints) for RK schemes is a reason for their superiority
over the explicit Euler method.

Figure 1: (Left) Mean Dirichlet (log scale) across layers for various models; the shaded region
denotes the standard deviation. (Right) Stability regions for the Explicit Euler, RK4, and RK5
solvers, plotted in the complex plane where µB is an eigenvalue of B.

3.2 NODE CLASSIFICATION

3.2.1 OTHER METHODS AND SETUP

We conduct a comprehensive evaluation of GRAND-ASC, comparing it against a range of base-
line methods across multiple categories. This includes classical discrete GNNs such as GCN Kipf
& Welling (2017), GAT Veličković et al. (2018), GraphSAGE Hamilton et al. (2017); skip
connection-based architectures like Mixhop Abu-El-Haija et al. (2019), JKNet Xu et al. (2018), GC-
NII Chen et al. (2020), and APPNP Gasteiger et al. (2019); other state-of-the-art models including
GraphGPS Rampášek et al. (2022) and the heterophily-focused DIRGNN Rossi et al. (2024); and
finally, continuous message passing models such as CGCN Xhonneux et al. (2020), GRAND Cham-
berlain et al. (2021a), GRAND++ Thorpe et al. (2022), ACMP Wang et al. (2023), BLEND Cham-
berlain et al. (2021b), and NSD Bodnar et al. (2022).

We assess our models on the 10 fixed data splits provided by Pei et al. (2020), reporting the mean
accuracy and standard deviation. Each split allocates 48%, 32%, and 20% of the nodes per class
to the training, validation, and test sets, respectively. All models are evaluated on the same set of
splits. To ensure robust performance estimates and account for randomness in initialization and data
splits, each hyperparameter configuration is evaluated using 10 Monte Carlo repetitions. The set of
hyperparameters is reported in Appendix B.1.
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3.2.2 DATASETS

To evaluate model performance across diverse scenarios, we conduct experiments on homophilic
graphs such as Cora McCallum et al. (2000), Citeseer Sen et al. (2008), and Pubmed Namata et al.
(2012), and on heterophilic graphs such as Texas, Wisconsin, and Cornell from WebK, as well as
Chameleon, Squirrel, and Film Rozemberczki et al. (2021); Tang et al. (2009). These datasets exhibit
a wide range of homophily ratios, from 0.11 (highly heterophilic) to 0.81 (highly homophilic).

3.2.3 PERFORMANCE

Table 1 summarizes the performance of GRAND-ASC against other models. Our method demon-
strates strong performance across both heterophilic and homophilic datasets, achieving state-of-the-
art results on multiple benchmarks. On heterophilic datasets, GRAND-ASC achieves top perfor-
mance on Texas, Wisconsin, Squirrel, and Cornell, while securing second place on Chameleon
with a narrow margin of just 0.50%. On the Film dataset, GRAND-ASC remains highly competi-
tive with 36.14%, placing within 0.75% of the top performer. Notably, GRAND-ASC also delivers
strong results on homophilic datasets, achieving top-three performance on Citeseer (second best)
and Cora (third best). The overall superiority of GRAND-ASC is reflected in its best-in-class mean
rank of 2.6, calculated by assigning each model a positional score on every dataset (1 for best, 2 for
second best, etc.) and averaging across all nine datasets. This consistent performance across diverse
graph types highlights the effectiveness of the adaptive skip connection mechanism in handling het-
erophilic datasets while maintaining acceptable performance on homophilic graph structures.

Table 1: Test accuracy and standard deviation over 10 experiments on each dataset. Red is the best,
Blue the second best, and Violet the third best.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer PubMed Cora Mean Rank
Homophily 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81 –
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708 –
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,429 –
#Classes 5 5 5 5 5 5 7 3 6 –

GCN 60.54 ±5.57 54.90 ±5.95 28.13 ±1.14 27.26 ±1.33 37.94 ±2.43 45.14 ±5.28 75.47 ±1.55 87.31 ±0.55 86.52 ±1.14 10.5
GAT 61.89 ±5.85 55.10 ±3.45 28.69 ±0.99 32.02 ±2.10 45.02 ±2.13 47.84 ±7.84 74.83 ±1.08 86.15 ±0.49 85.77 ±1.09 9.7
SAGE 78.38 ±3.63 78.63 ±4.25 34.95 ±1.17 37.09 ±1.35 51.12 ±1.89 72.16 ±3.83 75.31 ±1.46 88.95 ±0.47 86.78 ±0.99 5.1
Mixhop 70.81 ±7.23 80.20 ±7.52 36.89 ±0.72 33.86 ±1.72 48.62 ±1.85 67.03 ±6.60 74.94 ±1.81 89.81 ±0.35 85.05 ±0.57 6.1
GPS 71.62 ±6.76 76.47 ±5.61 34.66 ±0.64 33.28 ±1.29 43.25 ±1.92 67.84 ±7.20 74.54 ±2.19 88.92 ±0.33 84.65 ±1.27 8.0
DIRGNN 84.59 ±7.93 80.00 ±4.94 36.66 ±1.08 48.06 ±2.87 62.83 ±2.00 70.27 ±4.36 73.97 ±1.81 89.83 ±0.35 84.39 ±1.00 5.2
Jknet 61.89 ±4.59 58.43 ±5.74 30.64 ±0.93 30.72 ±1.44 41.67 ±3.05 50.00 ±8.48 76.13 ±1.32 88.63 ±0.52 86.78 ±1.11 8.0
GCNII 67.57 ±10.1 80.78 ±5.39 36.77 ±0.65 35.13 ±1.72 48.93 ±1.72 64.05 ±8.11 76.09 ±1.68 89.80 ±0.43 87.67 ±0.98 4.6
APPNP 61.08 ±4.22 56.08 ±5.28 30.40 ±1.01 29.00 ±1.19 42.63 ±3.04 47.03 ±8.48 75.92 ±1.56 88.33 ±0.44 87.71 ±1.16 8.5
GRAND++ 81.62 ±6.14 80.78 ±4.45 34.05 ±1.23 52.83 ±2.99 71.27 ±2.21 71.35 ±5.16 75.16 ±1.97 86.71 ±0.63 85.69 ±1.23 5.4
ACMP 74.32 ±6.42 81.57 ±2.93 35.36 ±0.90 38.00 ±1.73 53.05 ±2.83 71.62 ±3.25 76.78 ±1.82 89.31 ±0.32 86.94 ±1.66 3.5
GRAND-ASC 86.76 ±3.91 85.49 ±5.13 36.14 ±1.23 62.09 ±5.96 70.77 ±1.65 73.51 ±3.78 76.18 ±1.24 87.92 ±0.50 87.12 ±1.00 2.6

We also compare our model to other continuous models, such as CGCN Xhonneux et al. (2020),
GRAND Chamberlain et al. (2021a), BLEND Chamberlain et al. (2021b), and NSD Bodnar et al.
(2022), with the results provided in Appendix B.2.

4 CONCLUSION

In this work, we introduced GRAND-ASC, a simple yet powerful linear continuous GNN that ad-
dresses the oversmoothing problem through an adaptive skip connection to the initial features. We
provided a solid theoretical foundation, proving the model is well-posed, numerically stable, and
formally bounds the Dirichlet energy away from zero. Our empirical results demonstrated that
this approach is not only theoretically sound but also highly effective, achieving competitive state-
of-the-art performance, particularly on heterophilic graphs. This indicates that complex nonlinear
dynamics are not a prerequisite for preventing oversmoothing and that a carefully designed linear
mechanism can yield powerful and robust graph learning. However, for simplicity, this paper con-
siders the case where the attention matrix remains fixed during learning (i.e., time-independent). At
the same time, the nonlinear version (where attention dynamically depends on node features) and the
nonlinear version with rewiring (where the graph structure is adaptively pruned) can also be adapted
to enhance the performance of GRAND-ASC. Another adaptive architecture worth studying is the
case where different nodes are allowed to have different residual strengths, λi(t); that is, the term
λ(t) in Equation (4) becomes Λ(t) = diag(λ1(t), . . . , λn(t)).
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Statement on Large Language Model Usage. During the preparation of this work, the author(s)
used ChatGPT to assist with proofreading and polishing the language of the manuscript. This was
limited to correcting grammatical errors, improving sentence flow, and enhancing readability.
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A APPENDIX: PROOFS

A.1 THE PROOF OF THEOREM 1

Proof. For k ∈ argmaxi xi(t) we have

dxk(t)

dt
= λ(t)

∑
j∈N (k)

a(xk, xj)
(
xj(t)− xk(t)

)
+ (1− λ(t))

(
xk(0)− xk(t)

)
.

Since xj(t) ≤ xk(t) for every j ∈ N (k), the first (neighbor) term is non-positive, so

dxk(t)

dt
≤ (1− λ(t))

(
xk(0)− xk(t)

)
.

Rearrange the inequality as

dxk(t)

dt
+ (1− λ(t))xk(t) ≤ (1− λ(t))xk(0).

Multiplying by the integrating factor µ(t) := e
∫ t
0
(1−λ(s))ds gives

d

dt

(
µ(t)xk(t)

)
≤ (1− λ(t))µ(t)xk(0) =

dµ(t)

dt
xk(0).
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Integrating from 0 to t and using µ(0) = 1 yields

µ(t)xk(t)− xk(0) ≤ xk(0)
(
µ(t)− 1

)
.

Hence µ(t)xk(t) ≤ xk(0)µ(t), which implies xk(t) ≤ xk(0). A similar argument applies to the
minimum case. Choose l ∈ argmini xi(t). Because xj(t) ≥ xl(t) for every j ∈ N (l), the neighbor
term is nonnegative and

dxl(t)

dt
≥ (1− λ(t))

(
xl(0)− xl(t)

)
.

Multiplying by the same µ(t) and integrating yields µ(t)xl(t) ≥ xl(0)µ(t), which implies xl(t) ≥
xl(0).

A.2 THE PROOF OF THEOREM 2

Proof. The system can be written in matrix form as

x(t+ 1) = M(t)x(t) + c(t)

where M(t) = (1−∆t)I+∆tλ(t)A and c(t) = ∆t(1−λ(t))x(0). Unrolling the recurrence gives

x(t+ 1) =

(
t∏

k=0

M(t− k)

)
x(0) +

t−1∑
j=0

(
j∏

k=0

M(t− k)

)
c(t− j − 1) + c(t).

Taking norms and applying submultiplicativity

∥x(t+1)∥ ≤

(
t∏

k=0

∥M(t− k)∥

)
∥x(0)∥+

t−1∑
j=0

(
j∏

k=0

∥M(t− k)∥

)
∥c(t− j − 1)∥+ ∥c(t)∥.

Using the fact that ∥A∥ = 1 (since A is stochastic), and for any t ≥ 0, ∥M(t)∥ ≤ 1−∆t+∆tλ(t) ≤
1−∆tδ = 1− ξ where ξ = ∆tδ > 0. Also, for any t ≥ 0, ∥c(t)∥ ≤ ∆t∥x(0)∥. Thus, we obtain

∥x(t+1)∥ ≤ (1− ξ)t+1∥x(0)∥+∆t∥x(0)∥
t−1∑
j=0

(1− ξ)j+1 +∆t∥x(0)∥

=

[
(1− ξ)t+1 +∆t

(
(1− ξ)

1− (1− ξ)t

1− (1− ξ)
+ 1

)]
∥x(0)∥.

Taking limsup (since we are not certain that the limit exists) from both sides, as t→ ∞, (1−ξ)t → 0,
leaving

lim sup
t→∞

∥x(t)∥ ≤ ∆t

(
1− ξ

ξ
+ 1

)
∥x(0)∥ =

∆t

ξ
∥x(0)∥,

which concludes the proof.

A.3 THE PROOF OF THEOREM 3

Proof. By Gelfand’s spectral radius formula (see e.g., Horn & Johnson (2012))

lim
j→∞

∥Mj∥1/j = ρ(M) < 1.

Choose γ := ρ(M)+1
2 , so ρ(M) < γ < 1. For ϵ := γ − ρ(M) > 0, there exists N0 ∈ N such that

for all j ≥ N0, ∥Mj∥1/j ≤ ρ(M) + ϵ = γ. Thus for all j ≥ N0,

∥Mj∥ ≤ γj . (10)

For j < N0, define
C ′ := max

0≤k<N0

∥Mk∥γ−k.

Then, for all j < N0,
∥Mj∥ =

(
∥Mj∥γ−j

)
γj ≤ C ′γj . (11)

Combining Equation (10) and Equation (11) and letting C := max(1, C ′) proves the claim.
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A.4 THE PROOF OF THEOREM 4

Proof. The discrete system Equation (9) can be expressed in closed form as

x(t+ 1) = R(∆tB)x(t) +Ψ(t), (12)

where R(z) = 1 + z + z2

2! +
z3

3! +
z4

4! is the stability function of the RK4 method, and Ψ(t) is a
constant term that accumulates the effect of the memory term over one time step, which is given by

Ψ(t) =
∆t

6

(
6I+ 3∆tB+ (∆t)2B2 + (∆t)3

4 B3
)

c(t).

Unrolling the recurrence relation Equation (12) over t+ 1 time steps yields

x(t+ 1) = Rt+1(∆tB)x(0) +

t∑
j=0

Rj(∆tB)Ψ(t− j).

Taking the norm on both sides and applying the triangle inequality and submultiplicativity of the
norm, we obtain

∥x(t+ 1)∥ ≤ ∥R(∆tB)∥t+1∥x(0)∥+
t∑

j=0

∥R(∆tB)∥j∥Ψ(t− j)∥. (13)

To ensure asymptotic stability, we must show that ∥x(t)∥ remains bounded as t→ ∞. This requires
that the spectral radius ρ(R(∆tB)) < 1, so that the first term vanishes exponentially.

Let µ be an eigenvalue of B. Since B = λ(t)A − I, we have µ = λ(t)α − 1, where α is an
eigenvalue of A. Given that ∥A∥2 ≤ 1, and 0 ≤ λ(t) ≤ 1, it follows that |µ + 1| = |λ(t)α| ≤
λ(t)|α| ≤ λ(t) < 1. Now, consider the scaled eigenvalue ν = ∆tµ, with ∆t ∈ (0, 1]. Then

|ν + 1| = |∆tµ+ 1| = |∆t(µ+ 1) + (1−∆t)| ≤ ∆t|µ+ 1|+ (1−∆t) < 1.

We now show that the RK4 stability functionR(z) satisfies |R(ν)| < 1 for all ν such that |ν+1| < 1.
Note that the stability region of RK4 includes the disk {ν ∈ C : |ν + 1| ≤ 1}. This can be verified
by checking key points. At ν = −1: R(−1) = 3

8 < 1; at ν = −1 ± i: R(−1 ± i) = 1
6 ± i

3 , so
|R(−1 ± i)| =

√
5
6 < 1; at ν = −2: R(−2) = 1

3 < 1. Since R(z) is analytic and the boundary of
the disk is mapped inside the unit circle, by the maximum modulus principle, |R(ν)| < 1 for all ν
with |ν+1| < 1. Hence, ρ(R(∆tB)) < 1, and the first term in Equation (13) vanishes exponentially
as t→ ∞.

We now bound the second term. First, note that

∥Ψ(t)∥ ≤ ∆t

6

∥∥∥6I+ 3∆tB+ (∆t)2B2 + (∆t)3

4 B3
∥∥∥ ∥c(t)∥ ≤ 3∥x(0)∥,

where we used ∥B∥ ≤ ∥λ(t)A − 1∥ ≤ 2, ∆t ≤ 1, and ∥c(t)∥ = ∥(1 − λ(t))x(0)∥ ≤ ∥x(0)∥.
Also, as ρ(R(∆tB)) < 1, by Theorem 3, there exist constants C > 0 and 0 < γ < 1 such that
∥R(∆tB)j∥ ≤ Cγj for all j ≥ 0. Substituting into the second term of Equation (13)

t∑
j=0

∥R(∆tB)∥j∥Ψ(t− j)∥ ≤ 3∥x(0)∥
t∑

j=0

∥R(∆tB)∥j

≤ 3∥x(0)∥
t∑

j=0

Cγj ≤ 3C∥x(0)∥
∞∑
j=0

γj =
3C∥x(0)∥
1− γ

.

Thus, from Equation (13)

∥x(t+ 1)∥ ≤ ∥R(∆tB)∥t+1∥x(0)∥+ 3C∥x(0)∥
1− γ

.

As t→ ∞, the first term vanishes and the proof is done.
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A.5 THE PROOF OF THEOREM 5

Proof. Since L is symmetric positive semi-definite, it admits an orthonormal eigenbasis
{v1,v2, . . . ,vn} where Lvi = γivi. The first eigenvector is v1 = D1/21, corresponding to
γ1 = 0. Next, expand x(t) in this eigenbasis. The centering condition x(t)⊤D1/21 = 0 implies
orthogonality to v1, so the expansion becomes

x(t) =

n∑
i=2

civi where ci = x(t)⊤vi.

Compute the quadratic form as

E(x(t)) =
n∑

i=2

γic
2
i ≥ γ2

n∑
i=2

c2i = γ2∥x(t)∥22,

where the equality follows from Parseval’s identity and the inequality holds because γi ≥ γ2 for all
i ≥ 2.

A.6 THE PROOF OF THEOREM 6

Proof. We begin by multiplying both sides of the dynamics Equation (3) by xi(t) and summing over
all nodes i, which gives us
n∑

i=1

xi(t)
∂xi(t)

∂t
= λ(t)

n∑
i=1

∑
j∈N (i)

a(xi, xj)(xj(t)−xi(t))xi(t)+(1−λ(t))
n∑

i=1

(xi(0)−xi(t))xi(t).

The left-hand side simplifies to the time derivative of the squared ℓ2-norm
n∑

i=1

xi(t)
∂xi(t)

∂t
=

1

2

∂

∂t
∥x(t)∥22.

For the right-hand side, we analyze the two terms separately. The diffusion term can be rewritten
as a sum over graph edges. For each undirected edge (i, j), the contributions from both endpoints
combine as follows

λ(t)

n∑
i=1

∑
j∈N (i)

a(xi, xj)(xj(t)− xi(t))xi(t)

= λ(t)
∑

(i,j)∈E

[a(xi, xj)(xj(t)− xi(t))xi(t) + a(xj , xi)(xi(t)− xj(t))xj(t)]

= λ(t)
∑

(i,j)∈E

a(xi, xj) [(xj(t)− xi(t))xi(t) + (xi(t)− xj(t))xj(t)]

= λ(t)
∑

(i,j)∈E

a(xi, xj)
[
xj(t)xi(t)− xi(t)

2 + xi(t)xj(t)− xj(t)
2
]

= −λ(t)
∑

(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2.

The memory term simplifies directly

(1− λ(t))

n∑
i=1

(xi(0)− xi(t))xi(t) = (1− λ(t))
(
⟨x(0),x(t)⟩ − ∥x(t)∥22

)
.

Combining these results, we obtain

1

2

∂

∂t
∥x(t)∥22 = −λ(t)

∑
(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2 + (1− λ(t))

(
⟨x(0),x(t)⟩ − ∥x(t)∥22

)
.

(14)
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Consider the diffusion term in the last expression. The attention function a(xi, xj) is bounded
by some maximum value amax ≤ 1 (a standard property of common attention mechanisms like
softmax). Thus, ∑

(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2 ≤ amax

∑
(i,j)∈E

(xj(t)− xi(t))
2. (15)

The resulting expression
∑

(i,j)∈E(xj(t) − xi(t))
2 is a well-known quadratic form that can be ex-

pressed using the graph Laplacian. Specifically, for any vector x(t), we have the identity∑
(i,j)∈E

(xj(t)− xi(t))
2 = x(t)⊤Lx(t).

Combining this result with Equation (15), gives us∑
(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2 ≤ amax x(t)

⊤Lx(t).

Since L is a symmetric positive semi-definite matrix, its quadratic form is bounded by its maximum
eigenvalue, by the Rayleigh-Ritz theorem, as

x(t)⊤Lx(t) ≤ µmax(L)∥x(t)∥22.

The Gershgorin Circle Theorem provides a practical bound on this maximum eigenvalue. For the
Laplacian L, the Gershgorin discs are centered at Lii = di (the degree of node i) with radius
Ri =

∑
j ̸=i |Lij | = di. This implies that all eigenvalues µ of L satisfy |µ − di| ≤ di for some i,

and consequently 0 ≤ µ ≤ 2di ≤ 2dmax. Therefore

µmax(L) ≤ 2dmax.

Applying this eigenvalue bound and the fact that amax ≤ 1 yields the final sequence of inequalities∑
(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2 ≤ amax x(t)

⊤Lx(t) ≤ amax · 2dmax∥x(t)∥22 ≤ 2dmax∥x(t)∥22.

Finally, as λ(t) < 1, we have

λ(t)
∑

(i,j)∈E

a(xi, xj)(xj(t)− xi(t))
2 ≤ 2dmax∥x(t)∥22.

Substituting these bounds into Equation (14) yields the differential inequality

∂

∂t
∥x(t)∥22 ≥ −2 (2dmax + (1− λ(t))) ∥x(t)∥22 + 2(1− λ(t))⟨x(0),x(t)⟩.

Let us define η(t) := 2dmax + (1− λ(t)) and C(t) := 2(1− λ(t))⟨x(0),x(t)⟩. This simplifies our
inequality to

∂

∂t
∥x(t)∥22 + 2η(t)∥x(t)∥22 ≥ C(t).

Multiplying both sides of the last inequality by the integrating factor µ(t) = exp
(
2
∫ t

0
η(s)ds

)
gives

µ(t)
∂

∂t
∥x(t)∥22 + 2η(t)µ(t)∥x(t)∥22 ≥ µ(t)C(t).

As the left-hand side is the derivative of µ(t)∥x(t)∥22, we have

∂

∂t

[
µ(t)∥x(t)∥22

]
≥ µ(t)C(t).

Integrating both sides from 0 to t yields

µ(t)∥x(t)∥22 − µ(0)∥x(0)∥22 ≥
∫ t

0

µ(s)C(s)ds.
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Since µ(0) = 1, we have

µ(t)∥x(t)∥22 ≥ ∥x(0)∥22 +
∫ t

0

µ(s)C(s)ds.

Dividing through by µ(t)

∥x(t)∥22 ≥ exp

(
−2

∫ t

0

η(s)ds

)
∥x(0)∥22 +

∫ t

0

C(s) exp

(
−2

∫ t

s

η(r)dr

)
ds.

We now apply the theorem’s assumptions: 1−λ(s) ≥ δ > 0 and ⟨x(0),x(s)⟩ > m > 0. This gives
us C(s) ≥ 2δm. Also, since 1− λ(t) ≤ 1, we have η(r) ≤ 2dmax + 1. These bounds give us

exp

(
−2

∫ t

0

η(s)ds

)
≥ exp (−2(2dmax + 1)t) , exp

(
−2

∫ t

s

η(r)dr

)
≥ exp (−2(2dmax + 1)(t− s)) .

Substituting these bounds yields

∥x(t)∥22 ≥ ∥x(0)∥22e−2(2dmax+1)t +

∫ t

0

2δme−2(2dmax+1)(t−s)ds.

Evaluating the integral as∫ t

0

2δme−2(2dmax+1)(t−s)ds = 2δme−2(2dmax+1)t

∫ t

0

e2(2dmax+1)sds =
δm

2dmax + 1

(
1− e−2(2dmax+1)t

)
.

Thus, we obtain the following explicit lower bound

∥x(t)∥22 ≥ ∥x(0)∥22e−2(2dmax+1)t +
δm

2dmax + 1

(
1− e−2(2dmax+1)t

)
.

Taking the limit as t→ ∞, the exponential terms vanish, yielding the asymptotic lower bound

lim
t→∞

∥x(t)∥22 ≥ δm

2dmax + 1
.

Since x(t) is mean-centered by assumption, we apply Theorem 5, which states E(x(t)) ≥
γ2∥x(t)∥2. Combining these results completes the proof

E(x(t)) ≥ γ2 ·
δm

2dmax + 1
=

δmγ2
2dmax + 1

.

A.7 THE PROOF OF COROLLARY 1

In this section, we analyze the asymptotic behavior of GRAND-ASC under the assumption that
λ(t) = λ is constant. We demonstrate that, unlike the standard GRAND, the solution does not
converge to a constant vector. Instead, it depends on both the graph structure (via the Laplacian) and
the parameter λ. We begin by rewriting the GRAND-ASC dynamics as

dx(t)

dt
= −Mx(t) + b, (16)

where M = λL + (1 − λ)I and b = (1 − λ)x(0). Note that for λ ∈ (0, 1), and since L is the
normalized Laplacian matrix, the eigenvalues of M are strictly positive. This follows because M
shifts the eigenvalues of L by 1 − λ > 0, ensuring that M is strictly positive definite and hence
invertible.

The solution to Equation (16) is given by

x(t) = e−Mtx(0) +
∫ t

0

e−M(t−s)bds

Evaluating the integral yields ∫ t

0

e−M(t−s)bds = M−1(I − e−Mt)b.

Thus, the solution simplifies to

x(t) = e−Mtx(0) + M−1(I − e−Mt)b
As t→ ∞, e−Mt → 0 (since M is strictly positive definite), and therefore x(t) → (1−λ)M−1x(0).
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B APPENDIX: EXPERIMENTS

B.1 HYPERPARAMETER SETUP

We evaluate the performance of our model across a comprehensive range of hyperparameters within
a predefined search space. Specifically, we consider learning rates of {10−1, 10−2}, weight decays
of {10−3, 10−4, 10−5, 10−6, 10−7}, hidden dimensions of {8, 16, 32, 64}, and numbers of hidden
layers from {3, 5, 7}. The dropout rate is varied among {0.0, 0.1, 0.2, 0.4}. For our model, we
use a fixed number of 4 attention heads, and the integration time T is chosen from {1, 2}. All
models are trained for a maximum of 300 epochs with an early-stopping patience of 30 epochs. For
heterophilic datasets, we employ a one-layer MLP as the encoder and decoder in GRAND-ASC,
whereas for homophilic datasets, we use a single-layer GCN.

B.2 MORE EXPERIMENTS

Table 2 compares GRAND-ASC with leading continuous models, where baseline results are taken
from Bodnar et al. (2022). Despite employing a more constrained hyperparameter search, GRAND-
ASC demonstrates highly competitive performance and achieves state-of-the-art results on four of
the six heterophilic datasets: Texas, Wisconsin, Squirrel, and Chameleon. On the Film dataset, it
delivers the second-best performance, trailing the top model by only 1.14%. On homophilic datasets
(Cora, Citeseer, PubMed), where performance is already high across many methods, GRAND-ASC
remains competitive, with differences from the best model being marginal (less than 1% in ab-
solute accuracy, as shown in Figure 2). These results demonstrate that GRAND-ASC is a robust
general-purpose model that excels particularly in heterophilic settings while maintaining accept-
able performance on homophilic graphs.

Table 2: Test accuracy and standard deviation over 10 experiments on each dataset with continuous
models, using different train/validation/test splits. Red is the best, Blue the second best.

Texas Wisconsin Film Squirrel Chameleon Cornell

NSD 83.78±6.62 85.29±3.31 37.28±0.74 52.57±2.76 66.40±2.28 84.60±4.69
BLEND 83.24±4.65 84.12±3.56 35.63±0.89 43.06±1.39 60.11±2.09 85.95±6.82
GRAND 75.68±7.25 79.41±3.64 35.62±1.01 40.05±1.50 54.67±2.54 82.16±7.09
CGNN 71.35±4.05 74.31±7.26 35.95±0.86 29.24±1.09 46.89±1.66 66.22±7.69
GRAND-ASC 86.76 ±3.91 85.49 ±5.13 36.14 ±1.23 62.09 ±5.96 70.77 ±1.65 73.51 ±3.78

Figure 2: Accuracy of the continuous GNNs on hemophilic datasets.
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