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Abstract. Delivering meaningful uncertainty estimates is essential for
a successful deployment of machine learning models in the clinical prac-
tice. A central aspect of uncertainty quantification is the ability of a
model to return predictions that are well-aligned with the actual prob-
ability of the model being correct, also known as model calibration.
Although many methods have been proposed to improve calibration,
no technique can match the simple, but expensive approach of train-
ing an ensemble of deep neural networks. In this paper we introduce a
form of simplified ensembling that bypasses the costly training and in-
ference of deep ensembles, yet it keeps its calibration capabilities. The
idea is to replace the common linear classifier at the end of a net-
work by a set of heads that are supervised with different loss func-
tions to enforce diversity on their predictions. Specifically, each head
is trained to minimize a weighted Cross-Entropy loss, but the weights
are different among the different branches. We show that the result-
ing averaged predictions can achieve excellent calibration without sac-
rificing accuracy in two challenging datasets for histopathological and
endoscopic image classification. Our experiments indicate that Multi-
Head Multi-Loss classifiers are inherently well-calibrated, outperforming
other recent calibration techniques and even challenging Deep Ensem-
bles’ performance. Code to reproduce our experiments can be found at
https://github.com/agaldran/mhml_calibration .
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1 Introduction and Related Work

When training supervised computer vision models, we typically focus on improv-
ing their predictive performance, yet equally important for safety-critical tasks
is their ability to express meaningful uncertainties about their own predictions
[4]. In the context of machine learning, we often distinguish two types of un-
certainties: epistemic and aleatoric [13]. Briefly speaking, epistemic uncertainty
arises from imperfect knowledge of the model about the problem it is trained
to solve, whereas aleatoric uncertainty describes ignorance regarding the data
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used for learning and making predictions. For example, if a classifier has learned
to predict the presence of cancerous tissue on a colon histopathology, and it is
tasked with making a prediction on a breast biopsy it may display epistemic
uncertainty, as it was never trained for this problem [21]. Nonetheless, if we ask
the model about a colon biopsy with ambiguous visual content, i.e. a hard-to-
diagnose image, then it could express aleatoric uncertainty, as it may not know
how to solve the problem, but the ambiguity comes from the data. This distinc-
tion between epistemic and aleatoric is often blurry, because the presence of one
of them does not imply the absence of the other [12]. Also, under strong epistemic
uncertainty, aleatoric uncertainty estimates can become unreliable [31].

Producing good uncertainty estimates can be useful, e.g. to identify test
samples where the model predicts with little confidence and which should be
reviewed [1]. A straightforward way to report uncertainty estimates is by in-
terpreting the output of a model (maximum of its softmax probabilities) as its
predictive confidence. When this confidence aligns with the actual accuracy we
say that the model is calibrated [8]. Model calibration has been studied for a
long time, with roots going back to the weather forecasting field [3]. Initially
applied mostly for binary classification systems [7], the realization that modern
neural networks tend to predict over-confidently [10] has led to a surge of interest
in recent years [8]. Broadly speaking, one can attempt to promote calibration
during training, by means of a post-processing stage, or by model ensembling.

Training-Time Calibration Popular training-time approaches consist of re-
ducing the predictive entropy by means of regularization [11], e.g. Label Smooth-
ing [27] or MixUp [30], or loss functions that smooth predictions [25]. These tech-
niques often rely on correctly tuning a hyper-parameter controlling the trade-off
between discrimination ability and confidence, and can easily achieve better cal-
ibration at the expense of decreasing predictive performance [22]. Examples of
medical image analysis works adopting this approach are Difference between
Confidence and Accuracy regularization [20] for medical image diagnosis, or
Spatially-Varying and Margin-Based Label Smoothing [14,26], which extend and
improve Label Smoothing for biomedical image segmentation tasks.

Post-Hoc Calibration Post-hoc calibration techniques like Temperature Scal-
ing [10] and its variants [6,15] have been proposed to correct over or under-
confident predictions by applying simple monotone mappings (fitted on a held-
out subset of the training data) on the output probabilities of the model. Their
greatest shortcoming is the dependence on the i.i.d. assumption implicitly made
when using validation data to learn the mapping: these approaches suffer to gen-
eralize to unseen data [28]. Other than that, these techniques can be combined
with training-time methods and return compounded performance improvements.

Model Ensembling A third approach to improve calibration is to aggregate
the output of several models, which are trained beforehand so that they have
some diversity in their predictions [5]. In deep learning, model ensembles are
considered to be the most successful method to generate meaningful uncertainty
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estimates [16]. An obvious weakness of deep ensembles is the requirement of
training and then keeping for inference purposes a set of models, which results
in a computational overhead that can be considerable for larger architectures.
Examples of applying ensembling in medical image computing include [17,24].

In this work we achieve model calibration by means of multi-head models
trained with diverse loss functions. In this sense, our approach is closest to
some recent works on multi-output architectures like [21], where a multi-branch
CNN is trained on histopathological data, enforcing specialization of the differ-
ent heads by backpropagating gradients through branches with the lowest loss.
Compared to our approach, ensuring correct gradient flow to avoid dead heads
requires ad-hoc computational tricks [21]; in addition, no analysis on model
calibration on in-domain data or aleatoric uncertainty was developed, focusing
instead on anomaly detection. Our main contribution is a multi-head model
that I) exploits multi-loss diversity to achieve greater confidence calibration
than other learning-based methods, while II) avoiding the use of training data
to learn post-processing mappings as most post-hoc calibration methods do, and
III) sidesteping the computation overhead of deep ensembles.

2 Calibrated Multi-Head Models

In this section we formally introduce multi-head models [19], and justify the need
for enforcing diversity on them. Detailed derivations of all the results below are
provided in the online supplementary materials.

2.1 Multi-Head Ensemble Diversity

Consider a K-class classification problem, and a neural network Uθ taking an
image x and mapping it onto a representation Uθ(x) ∈ RN, which is linearly
transformed by f into a logits vector z = f(Uθ(x)) ∈ RK. This is then mapped
into a vector of probabilities p ∈ [0, 1]K by a softmax operation p = σ(z), where
pj = ezj/

∑
i e
zi . If the label of x was y ∈ {1, ...,K}, we can measure the error

associated to prediction p with the cross-entropy loss LCE(p, y) = − log(py).
We now wish to implement a multi-head ensemble model like the one shown

in Fig. 1. For this, we replace f byM different branches f1, ..., fM , each of them
still taking the same input but mapping it to different logits zm = fm(Uθ(x)).
The resulting probability vectors pm = σ(zm) are then averaged to obtain a final
prediction pµ = (1/M)

∑
m pm. We are interested in backpropagating the loss

LCE(p
µ, y) = − log(pµy ) to find the gradient at each branch, ∇zmLCE(p

µ, y).

Property 1: For the M-head classifier in Fig. 1, the derivative of the cross-
entropy loss at head fm with respect to zm is given by

∇zmLCE(p
µ, y) =

pmy∑
i p
i
y

(pµ − y), (1)

where y is a one-hot representation of the label y.
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Fig. 1: A multi-head multi-loss model withM=2 heads. An image x goes through
a neural network Uθ and then is linearly transformed by M heads {fm}Mm=1,
followed by softmax operations σ, into probability vectors {pm}Mm=1. The final
loss LMH is the sum of per-head weighted-CE losses Lωm-CE(p

m, y) and the CE
loss LCE(p

µ, y) of the average prediction pµ = µ(p1, ...,pm). We modify the
weights ωm between branches to achieve more diverse gradients during training.

From eq. (1) we see that the gradient in branch m will be scaled depending
on how much probability mass pmy is placed by fm on the correct class relative
to the total mass placed by all heads. In other words, if every head learned to
produce a similar prediction (not necessarily correct) for a particular sample,
then the optimization process of this network would result in the same updates
for all of them. As a consequence, diversity in the predictions that make up the
output pµ of the network would be damaged.

2.2 Multi-Head Multi Loss Models

In view of the above, one way to obtain more diverse gradient updates in a multi-
head model during training could be to supervise each head with a different loss
function. To this end, we will apply the weighted cross-entropy loss, given by
Lω-CE(p, y) = −ωy log(pµy ), where ω ∈ RK is a weight vector. In our case, we
assign to each head a different weight vector ωm (as detailed below), in such a
way that a different loss function Lωm-CE will supervise the intermediate output
of each branch fm, similar to deep supervision strategies [18] but enforcing
diversity. The total loss of the complete model is the addition of the per-head
losses and the overall loss acting on the average prediction:

LMH(p, y) = LCE(p
µ, y) +

M∑
m=1

Lωm-CE(p
m, y), (2)

where p = (p1, ...,pM ) is an array collecting all the predictions the network
makes. Since Lω-CE results from just multiplying by a constant factor the con-
ventional CE loss, we can readily calculate the gradient of LMH at each branch.
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Property 2: For the Multi-Loss Multi-Head classifier shown in Fig. 1, the gra-
dient of the Multi-Head loss LMH at branch fm is given by:

∇zmLMH(p, y) =

(
ωmy +

pmy∑
i p
i
y

)
(pµ − y). (3)

Note that having equal weight vectors in all branches fails to break the symmetry
in the scenario of all heads making similar predictions. Indeed, if for any two
given heads fmi , fmj we have ωmi = ωmj and pmi ≈ pmj , i.e. pm ≈ pµ ∀m,
then the difference in norm of the gradients of two heads would be:

‖∇zmiLMH(p, y)−∇zmjLMH(p, y)‖1 ≈ |ωmi
y − ωmj

y | · ‖pµ − y‖1 = 0. (4)

It follows that we indeed require a different weight in each branch. In this work,
we design a weighting scheme to enforce the specialization of each head into a
particular subset of the categories {c1, ..., cK} in the training set.

We first assume that the multi-head model has less branches than the num-
ber of classes in our problem, i.e. M ≤ K, as otherwise we would need to have
different branches specializing in the same category. In order to construct the
weight vector ωm, we associate to branch fm a subset of N/K categories, ran-
domly selected, for specialization, and these are weighed with ωmj = K. Then,
the remaining categories in ωm receive a weight of ωmj = 1/K. For example, in
a problem with 4 categories and 2 branches, we could have ω1 = [2, 1/2, 2, 1/2]
and ω2 = [1/2, 2, 1/2, 2]. If N is not divisible by K, the reminder categories are
assigned for specialization to random branches.

2.3 Model Evaluation

When measuring model calibration, the standard approach relies on observing
the test set accuracy at different confidence bands B. For example, taking all test
samples that are predicted with a confidence around c = 0.8, a well-calibrated
classifier would show an accuracy of approximately 80% in this test subset. This
can be quantified by the Expected Calibration Error (ECE), given by:

ECE =

N∑
s=1

|Bs|
N
|acc(Bs)− conf(Bs)|, (5)

where
⋃
sBs form a uniform partition of the unit interval, and acc(Bs), conf(Bs)

are accuracy and average confidence (maximum softmax value) for test samples
predicted with confidence in Bs.

In practice, the ECE alone is not a good measure in terms of practical usabil-
ity, as one can have a perfectly ECE-calibrated model with no predictive power
[29]. A binary classifier in a balanced dataset, randomly predicting always one
class with c = 0.5 + ε confidence, has a perfect calibration and 50% accuracy.
Proper Scoring Rules like Negative Log-Likelihood (NLL) or the Brier score are
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alternative uncertainty quality metrics [9] that capture both discrimination abil-
ity and calibration: a model must be both accurate and calibrated to achieve a
low PSR value. We report NLL, and also standard Accuracy, which contrary to
ECE can be high even for badly-calibrated models. Finally, we show as summary
metric the average rank when aggregating rankings of ECE, NLL, and accuracy.

3 Experimental Results

We now describe the data we used for experimentation, carefully analyze per-
formance for each dataset, and end up with a discussion of our findings.

3.1 Datasets and Architectures

We conducted experiments on two datasets: 1) the Chaoyang dataset1, which
contains colon histopathology images. It has 6,160 images unevenly distributed in
4 classes (29%, 19%, 37%, 15%), with some amount of label ambiguity, reflecting
high aleatoric uncertainty. As a consequence, the best model in the original
reference [33], applying specific techniques to deal with label noise, achieved
an accuracy of 83.4%. 2) Kvasir2, a dataset for the task of endoscopic image
classification. The annotated part of this dataset contains 10,662 images, and it
represents a challenging classification problem due a high amount of classes (23)
and highly imbalanced class frequencies [2]. For the sake of readability we do not
show measures of dispersion, but we add them to the supplementary material
(Appendix C), together with further experiments on other datasets.

We implement the proposed approach by optimizing several popular neural
network architectures, namely a common ResNet50 and two more recent models:
a ConvNeXt [23] and a Swin-Transformer [23]. All models are trained for 50
epochs, which was observed enough for convergence, using Stochastic Gradient
Descent with a learning rate of l = 1e-2. Code to reproduce our results and
hyperparameter specifications are shared at github.com/withheld.

3.2 Performance Analysis

Notation: We train three different multi-head classifiers: 1) a 2-head model
where each head optimizes for standard (unweighted) CE, referred to as 2HSL
(2 Heads-Single Loss); 2) a 2-head model but with each head minimizing a
differently weighed CE loss as described in section 2.2. We call this model 2HML
(2 Heads-Multi Loss)); 3) Finally, we increase the number of heads to four, and
we refer to this model as 4HML. For comparison, we include a standard single-
loss one-head classifier (SL1H), plus models trained with Label Smoothing (LS
[27]), Margin-based Label Smoothing (MbLS [22]), MixUp [30], and using the
DCA loss [20]. We also show the performance of Deep Ensembles (D-Ens [16]).
We analyze the impact of Temperature Scaling [10] in the appendix B.
1 https://bupt-ai-cz.github.io/HSA-NRL/
2 https://datasets.simula.no/hyper-kvasir/

github.com/withheld
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What we expect to see: Multi-Head Multi-Loss models should
achieve a better calibration (low ECE ) than other learning-based meth-
ods, ideally approaching Deep Ensembles calibration. We also expect
to achieve good calibration without sacrificing predictive performance
(high accuracy). Both goals would be reflected jointly by a low NLL
value, and by a better aggregated ranking . Finally we would ideally ob-
serve improved performance as we increase the diversity (comparing
2HSL to 2HML) and as we add heads (comparing 2HML to 4HML).

Chaoyang: In Table 1 we report the results on the Chaoyang dataset. Overall,
accuracy is relatively low, since this dataset is challenging due to label ambiguity,
and therefore calibration analysis of aleatoric uncertainty becomes meaningful
here. As expected, we see how Deep Ensembles are the most accurate method,
also with the lowest NLL, for two out of the three considered networks. However,
we also observe noticeable differences between other learning-based calibration
techniques and multi-head architectures. Namely, all other calibration methods
achieve lower ECE than the baseline (SL1H) model, but at the cost of a re-
duced accuracy. This is actually captured by NLL and rank, which become much
higher for these approaches. In contrast, 4HML achieves the second rank in
two architectures, only behind Deep Ensembles when using a ResNet50 and a
Swin-Transformer, and above any other 2HML with a ConvNeXt, even outper-
forming Deep Ensembles in this case. Overall, we can see a pattern: multi-loss
multi-head models appear to be extremely well-calibrated (low ECE and NLL
values) without sacrificing accuracy, and as we diversify the losses and increase
the number of heads we tend to improve calibration.

Kvasir: Next, we show in Table 2 results for the Kvasir dataset. Deep Ensembles
again reach the highest accuracy and excellent calibration. Interestingly, methods
that smooth labels (LS, MbLS, MixUP) show a strong degradation in calibra-
tion and their ECE is often twice the ECE of the baseline SL1H model. We at-
tribute this to class imbalance and the large number of categories: smoothing la-
bels might be ineffective in this scenario. Note that models minimizing the DCA

ResNet50 ConvNeXt Swin-Transformer

ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓

SL1H 80.71 5.79 53.46 6.0 81.91 6.94 50.98 6.3 83.09 8.73 52.75 5.0

LS 74.81 2.55 64.27 6.7 79.59 6.13 55.65 7.3 79.76 3.98 55.37 6.0

MbLS 75.02 3.26 63.86 6.7 79.53 2.94 53.44 5.3 80.24 5.06 54.18 5.7

MixUp 76.00 3.67 62.72 6.3 79.95 6.20 55.58 7.0 80.25 3.89 54.62 4.7

DCA 76.17 5.75 62.13 6.7 78.28 3.69 57.78 7.3 79.12 7.91 59.91 8.3

D-Ens 82.19 2.42 46.64 1.0 82.98 5.21 46.08 3.3 83.50 6.79 44.80 2.7

2HSL 80.97 4.36 51.42 4.0 81.94 4.30 46.71 4.3 82.90 8.20 54.19 5.7

2HML 80.28 4.49 51.86 5.3 81.97 3.66 45.96 2.7 82.79 5.01 46.12 3.7

4HML 81.13 3.09 49.44 2.3 82.17 1.79 44.73 1.3 82.89 4.80 46.70 3.3

Table 1: Results on the Chaoyang dataset with different architectures and
strategies. For each model, best and second best ranks are marked.
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ResNet50 ConvNeXt Swin-Transformer

ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓

OneH 89.87 6.32 41.88 5.3 90.02 5.18 35.59 5.0 90.07 5.81 38.01 5.7

LS 88.13 14.63 53.96 7.7 88.24 6.97 42.09 6.7 88.74 9.20 43.46 8.7

MbLS 88.20 16.92 57.48 8.0 88.62 8.55 43.07 7.0 89.15 8.19 41.85 7.7

MixUp 87.60 10.28 50.69 7.3 87.58 8.96 48.88 8.7 89.23 2.11 35.52 4.3

DCA 87.14 3.84 40.50 6.0 85.27 4.11 46.78 7.3 87.62 4.38 38.44 7.3

D-Ens 90.76 3.83 32.09 2.3 90.76 3.34 29.74 3.0 90.53 3.94 29.36 3.3

2HSL 89.76 4.52 34.34 4.7 90.21 2.63 28.69 2.7 90.40 3.65 29.14 3.0

2HML 90.05 3.62 31.37 2.0 89.92 1.49 28.15 2.7 90.19 2.73 28.66 2.7

4HML 89.99 2.22 30.02 1.7 90.10 1.65 28.01 2.0 90.00 1.82 27.96 2.3

Table 2: Results on the Kvasir dataset with different architectures and strate-
gies. For each model, best and second best ranks are marked.

loss do manage to bring the ECE down, although by giving up accuracy. In con-
trast, all multi-head models improve calibration while maintaining accuracy. Re-
markably, 4HML obtains lower ECE than Deep Ensembles in all cases. Also,
for two out of the three architectures 4HML ranks as the best method, and
for the other one 2HML reaches the best ranking.

4 Conclusion

Multi-Head Multi-Loss networks are classifiers with enhanced calibration and no
degradation of predictive performance when compared to their single-head coun-
terparts. This is achieved by simultaneously optimizing several output branches,
each one minimizing a differently weighted Cross-Entropy loss. Weights are com-
plementary, ensuring that each branch is rewarded for becoming specialized in
a subset of the original data categories. Comprehensive experiments on two
challenging datasets with three different neural networks show that Multi-Head
Multi-Loss models consistently outperform other learning-based calibration tech-
niques, matching and sometimes surpassing the calibration of Deep Ensembles.
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Appendix A Gradient Derivations

In sections 2.1 and 2.2, we referred to the gradients for the M-head model and
its extension with “deep supervision” on each head by a weighted CE loss. Here
we provide careful step-by-step derivation of these quantities.

We start by going over our notation. We have a neural network Uθ that maps
an image x into a vector of representations in Uθ(x) ∈ RN. In a standard model,
this feature vector would then be passed through a linear classifier, composed
of a linear mapping f : RN → RK followed by a softmax operation σ. The
intermediate vector z = f(Uθ(x)) ∈ RK is often called logits vector, and the final
vector p = σ(z), whose components are pj = e−zj/

∑
i e

−zi , can be regarded as
a “probability vector”, indicating the likelihood of each category.

Suppose x has a label y ∈ {1, ...,K}. In order to measure the classification
error of the above model, we can use the Cross-Entropy (CE) loss, given by
LCE(p, y) = − log(py), that is, we attempt to maximize the probability assign-
ment at the y-th component in p, regardless of the values elsewhere in p. We are
interested in the gradient that reaches the linear mapping in this model when
we backpropagate the CE loss. Since this only depends on that component, we
consider only the partial derivative at py, which we can find by application of
the chain rule:

∂LCE(py, y)

∂zj
=
∂LCE(py, y)

∂py
· ∂py
∂zj

=
−1
py
· py · (δjy − pj) = pj − δjy,

where δjy = 0 unless we are computing the partial derivative with respect to the
logit of the correct class, in which case δjy = 1. Therefore the complete gradient
can now be written as:

∇zLCE(p, y) = [ p1, p2, ..., py − 1, ..., pK ] = p− y (6)

where y = [ 0, ..., 1(k), ...0 ] ∈ RK is a one-hot representation of label y. In what
follows, to avoid cumbersome notation, we will omit the point at which the
partial derivatives are evaluated, hoping it will be clear from the context.

Next, we want to extend this basic architecture into a multi-head ensemble. In
this case, the single linear classifier above is replaced by M branches f1, ..., fM
that map x into M logit vectors z1, ..., zM , which are then passed through a
softmax layer that turns them into “probability vectors” pm = σ(zm). In this
multi-head architecture, these vectors are then averaged into a single prediction
pµ = µ(p1, ...,pM ) = (p1 + ... + pM )/M and the loss LCE(p

µ, y) is computed.
An example of this model is shown in Fig. 2 below.

We can now derive the gradient reaching a linear layer fm (with respect
to the logits zm) when we backpropagate the loss. Again the loss at pµ only
depends on the component pµy of the correct category, as follows:

∂LCE

∂zmj
=
∂LCE

∂pµy
·
∂pµy
∂pmy

·
∂pmy
∂zmj

=
−1
pµy
· 1

M
· pmy · (δjy − pmj ) =

pmy∑
i p
i
y

· (pmj − δjy),
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Fig. 2: Schematic illustration of a multi-head model for M=2 heads.

so the gradient would be given by eq. (1) in the paper, this is:

∇zmLCE(p
µ, y) =

pmy∑
i p
i
y

(pm − y),

which tells us that the gradient in eq. (6) is scaled, for branch fm, by how high
is pmy relative to the sum over all heads of the probability of the correct class.

In addition to using only supervision on the average prediction pµ by back-
propagating LµCE(p

µ
y , y), we can add supervision to each individual head via an

additional CE loss LmCE at each branch’s prediction pm, as shown in Fig. 3.
In this case, the final loss to be backpropagated is the addition of all losses:

Lall(p, y) = LµCE(p
µ, y) +

∑
m

LmCE(p
m, y), (7)

where p = [p1, ...,pM ] is an array gathering the predictions of all M heads.

Fig. 3: Multi-head model (M=2 heads) with additional supervision at each head.
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We can then apply the sum rule to quickly find out the derivative of this loss
at branch fm with respect to the logits zm, since only the loss on the average
prediction pµ and the one on pm will contribute to it:

∂Lall

∂zmj
=
∂LµCE
∂zmj

+
LmCE
∂zmj

= (
pmy∑
i p
i
y

+ 1) · (pmj − δjy),

or in other words:

∇zmLall(p, y) = (1 +
pmy∑
i p
i
y

)(pm − y).

In the paper we use the weighted variant of the CE loss for supervising the
predictions of each head. This loss is given by Lω-CE(p, y) = −ωy log(py), where
we have a weight vector ω ∈ RK , so the greater the magnitude of a compo-
nent ωj , the larger the loss assigned to mistakes in category j. The Lω-CE loss
is typically used to penalize errors in minority categories of imbalanced classi-

fication datasets. Since Lω-CE(p, y) = −ωyLCE(p, y), then
∂

∂zj
Lω-CE(p, y) =

ωy · (pj − δyj ) and ∇zLω-CE(p, y) = ωy · (p− y). Introducing weighted losses in
eq. (7) with different vectors ωm, our final loss function is given by:

LMH(p, y) = LCE(p
µ, y) +

M∑
m=1

Lωm-CE(p
m, y),

At this point, it is easy to see that the gradient of LMH is indeed:

∇zmLMH =

(
ωmy +

pmy∑
i p
i
y

)
(pµ − y).

Appendix B Comparison to Temperature Scaling

In this section we analyze the impact of applying temperature scaling as a post-
processing step to each of the learning-based calibration methods described in the
main paper. It should be noted that our multi-head multi-loss architecture is not
directly amenable to this kind of post-processing. This is because Temperature
Scaling operates by learning a transformation on the logits space, whereas our
models are optimized over average softmax probabilities of their heads. This
means that in our approach we first pass each heads’ logits through a softmax
operation and then average them. Attempting to find a temperature parameter
for each individual head did not result in a performance improvement, and so we
decided to modify the output of our model so that it would first average the logits
and then pass the result through a softmax layer, which enabled temperature
fitting in the logit space. This came at the cost of a slightly reduced performance
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ResNet50 ConvNeXt Swin-Transformer

ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓

SL1H 80.71 5.79 53.46 4.7 81.91 6.94 50.98 5.7 83.09 8.73 52.75 4.3

+TS " 2.15 49.96 2.7 " 2.24 45.47 3.7 " 1.86 42.54 1.3

2HSL 80.24 5.81 53.40 5.3 81.92 5.19 47.31 4.3 82.74 6.94 48.73 4.3

+TS " 2.00 50.82 3.7 " 2.41 45.23 3.0 " 2.00 43.48 3.7

4HML 81.15 4.03 50.71 2.7 82.22 4.37 46.39 3.0 82.93 7.86 51.22 4.3

+TS " 2.67 49.69 2.0 " 1.54 44.94 1.3 " 2.05 43.42 3.0

Table 3: Results on the Chaoyang dataset with/out Temperature Scaling
(+TS). For each model, best and second best ranks are marked.

both in terms of accuracy and calibration, since there was a reason to first apply
softmax to each head and only then average: this ensures that the average is
taken over similarly-scaled vectors. This process explains why the performance
of our models in the two tables below is slightly worse than in the main paper.
Still, it remains interesting to analyze the impact of Temperature Scaling on our
models, as compared to the post-processing of other methods.

Tables 3 and 4 show results for the Chaoyang and Kvasir datasets when
considering a single-head model and multi-head counterparts trained with the
proposed multi-loss strategy. We add the result of calibrating the temperature
of each model just below the unprocessed probabilities for an easy comparison
of post-processing impact. We can quikcly see that regardless of the disadvan-
tage, explained above, that Multi-Loss Multi-Head models face when adding
a post-hoc calibration layer, they are still a better choice over a standard one-
head model with tempered probabilities. In the Chaoyang dataset, the four-head
model 4HML achieves the best average ranking for two of the three backbone
architectures, and the second average ranking for the other one, and the same

ResNet50 ConvNeXt Swin-Transformer

ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓ ACC↑ ECE↓ NLL↓ Rank↓

SL1H 89.87 6.32 41.88 5.7 90.02 5.18 35.59 5.0 90.02 5.18 35.59 5.0

+TS " 1.80 32.01 4.3 " 1.48 29.26 4.0 " 1.48 29.26 4.0

2HSL 90.07 4.16 32.12 3.7 89.90 1.94 28.37 4.7 89.90 1.94 28.37 4.7

+TS " 1.45 29.82 1.3 " 1.45 28.17 3.3 " 1.45 28.17 3.3

4HML 90.00 3.48 31.21 3.3 90.11 1.87 28.20 2.7 90.11 1.87 28.20 2.7

+TS " 1.71 30.11 2.7 " 1.30 27.97 1.3 " 1.30 27.97 1.3

Table 4: Results on the Kvasir dataset with/out Temperature Scaling. For each
model, best and second best ranks are marked.
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happens with the Kvasir dataset. Noticeably, the 4HML architecture was al-
ready well-calibrated prior to any post-processing. In both datasets, the non-
tempered 4HML probabilities had the second average rank in two occasions,
only improved by its own temperature calibration.

Appendix C Further Experimental Results

In the main paper we reported results without dispersion measures to save space.
Here we provide expanded tables that contain standard deviation over 5 runs of
experiments. In addition, we add results for PathMNIST [32], a simple dataset
containing 107,180 28× 28 histopathological colon images evenly distributed in
nine classes. Because this is a relatively easy dataset, most methods achieve a
similar, high accuracy, which obfuscates a bit the rankings in Table 7. Nonethe-
less, we can still appreciate how the observations made in section 3.2 hold also
here: both of our models (2HML and 4HML) are among the top performers
in terms of ECE and NLL, rivaling Deep Ensembles, with 4HML scoring most
of the times above its two-headed counterpart.
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