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ABSTRACT

Classifier-Free Guidance (CFG) is widely used in diffusion and flow-based gener-
ative models for high-quality conditional generation, yet its theoretical properties
remain incompletely understood. By connecting CFG to the high-dimensional
framework of diffusion regimes, we show that in sufficiently high dimensions it
reproduces the correct target distribution—a “blessing-of-dimensionality” result.
Leveraging this theoretical framework, we analyze how the well-known artifacts
of mean overshoot and variance shrinkage emerge in lower dimensions, charac-
terizing how they become more pronounced as dimensionality decreases. Build-
ing on these insights, we propose a simple nonlinear extension of CFG, proving
that it mitigates both effects while preserving CFG’s practical benefits. Finally,
we validate our approach through numerical simulations on Gaussian mixtures
and real-world experiments on diffusion and flow-matching state-of-the-art class-
conditional and text-to-image models, demonstrating continuous improvements in
sample quality, diversity, and consistency.
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Figure 1: Qualitative comparison of unguided sampling, standard Classifier-Free Guidance (CFG), and
our proposed non-linear power-law CFG (DiT/XL-2 on ImageNet-1K 256× 256). Standard CFG increases
fidelity at a substantial expense to diversity and semantic meaning compared to unguided CFG. Our power-law
guidance improves fidelity at no cost to semantics or diversity. Each column sample starts from the same seed.

1 INTRODUCTION

Diffusion (Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Ho et al., 2020) and flow-based
methods (Lipman et al., 2022; Albergo et al., 2023; Liu et al., 2022) have emerged as the de facto
state-of-the-art for generating high-dimensional signals. Diffusion relies on Orstein-Uhlenbeck
Langevin dynamics, where noise is progressively added to the data until it becomes completely
random. New samples are generated by reversing this process through a time-reversed Langevin
equation. This backward evolution is steered by a force, the score, estimated from the data. In
contrast, flow matching circumvents the diffusion construction by directly specifying the probability
paths between noise and data. This is done by regressing onto a target vector field which in turn
generates the desired probability paths. An important task for both paradigms is generating data
conditioned on a class label or textual description of the image content. This can be achieved
through conditioning mechanisms in the model architecture, as well as guidance techniques

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

10.0 12.5 15.0 17.5 20.0
0.0
0.1
0.2
0.3
0.4
0.5

De
ns

ity
= 1.00
= 1.00
= 1.00

Stand. CFG, d=200

0 2 4 6

= 1.00
= 0.85
= 0.83

Stand. CFG, d=5

0 2 4 6

= 1.00
= 0.91
= 0.92

Nonlin. CFG, d=5

= 0
= 1.5
= 20

Figure 2: CFG accurately generates the target distribution in high dimensions, causes mean overshoot
and variance shrinkage in low dimensions, which are mitigated by nonlinear CFG. We simulate the back-
ward process using a two-Gaussian mixture with target mean m⃗ = (1, 1, . . . )d and variance σ2 = 1, and
project the generated samples onto the target mean, q(t = 0) = x⃗ · m⃗/|m⃗|. Left: in high dimensions
(d = 200), CFG accurately recovers the target distribution. Center: in low dimensions (d = 5), CFG exhibits
mean overshoot and variance shrinkage. Right: Our proposed nonlinear extension of CFG reduces these arti-
facts, partially restoring the target distribution.

(Dhariwal & Nichol, 2021; Ho & Salimans, 2022) that steer the generation process towards samples
aligned with user intentions or desired properties.

The notion of guidance was first introduced in classifier guidance (Song et al., 2020; Dhariwal &
Nichol, 2021), where a pre-trained classifier is leveraged to induce class conditioning in the sampling
of unconditional models. Relying on a pre-trained classifier is, however, computationally expensive
and requires classifiers robust to noisy samples. Classifier-free guidance (CFG) (Ho & Salimans,
2022) was developed as an alternative, and was quickly adopted as a standard technique (Nichol
et al., 2022; Betker et al., 2023; Saharia et al., 2022; Esser et al., 2024). CFG does not rely on an
auxiliary classifier, instead, the model is trained to generate unconditional and conditional samples,
and at inference extrapolates the denoising path towards the conditional one. Using CFG, however,
the process is no longer guaranteed to sample the original conditional distribution.

CFG affects the generation process mainly in two ways; theoretically, this has been characterized
in case of Gaussian mixtures in one and finite dimensions, where CFG causes mean overshoot,
causing samples more shifted towards the boundary of the class, and variance shrinkage, result-
ing in a sharper distribution than the target one (Chidambaram et al., 2024; Xia et al., 2024; Wu
et al., 2024; Bradley & Nakkiran, 2024). These two effects are linked closely with the effects
that the practicioners have observed, with CFG steering the samples towards the “mode” of high-
quality and input-consistent samples corresponding directly to the well-observed increased satura-
tion/contrast, while also reducing sample diversity in the process (Astolfi et al., 2024; Saharia
et al., 2022).

Theoretically, it is unknown whether the unwanted effects can be dampened and whether in fact
CFG can ever generate the correct distribution. In practice, as CFG has indeed shown beneficial
regardless of these effects, it would be useful if similar guidances existed that reduce these effects,
while keeping the practical benefits of increased quality of the generated samples. In this work, we
provide theoretical analysis of the properties of the distribution generated by CFG, and how they
compare to the target one. We examine how these effects arise, what influences them, and whether
they can be dampened. Our results are backed by numerical simulations, and finally we test how do
our findings extend to real world settings.

In summary, our contributions are the following:

(1) We provide blessing-of-dimensionality result showing that, in infinite and sufficiently high di-
mensions, CFG-guided trajectories generate the correct distribution, one that is generated by un-
guided conditional trajectories. This is established by relating CFG to the emergence of dynamical
regimes (Biroli et al., 2024). In this setting, we show that CFG accelerates convergence of samples
toward the target class.

(2) We demonstrate that, as dimensionality decreases, the commonly-observed artifacts of mean
overshoot and variance shrinkage appear (illustrated on a toy Gaussian example in Fig. 2). We
precisely characterize these effects and support our theoretical analysis with numerical simulations.

(3) Finally, we introduce a simple nonlinear generalization of CFG and prove theoretically that it
mitigates both mean overshoot and variance shrinkage. We further show its superiority in numerical
simulations (as in Fig. 2, right), and validate its practical benefits on state-of-the-art diffusion and
flow-matching models, achieving improved sample quality, consistency, and diversity.
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Figure 3: Dynamical regimes in diffusion. Left: Illustration of the speciation phenomenon using a one-
dimensional Gaussian mixture. Starting from pure Gaussian noise at large time t, the backward diffusion
begins in Regime I, where the class has not been decided yet. After speciation time ts (dashed line), the class
membership is decided. Right: Evolution of the effective potential (conditional potential in Eq. (6)) over time
for high-dimensional Gaussian mixture showcasing the symmetry breaking phenomenon.

Our results can intuitively be described as follows: as the dimension grows, the ”attraction force”
for each class grows exponentially. One can visualize a well-separated class acting as a magnet that
pulls diffusion trajectories towards itself (the attraction force depending on the mean and variance
magnitude). During the backward process this force becomes very strong when the system starts to
approach one class. Unless the magnitude of the CFG guidance scale also grows exponentially with
the dimension (which is not the case in practice), these natural attraction forces completely dominate
the CFG term. The backward dynamics and the attraction forces are portrayed in Figure 3 (left and
right respectively).

2 RELATED WORK

Having introduced CFG, Ho & Salimans (2022) highlighted the trade-off between image quality,
measured by Fréchet inception distance (FID, Heusel et al. (2017)), and diversity, measured by
inception score (Salimans et al., 2016) when adjusting the guidance strength parameter ω. Since
then, a significant body of research has examined CFG from various perspectives.

Theoretical works on CFG. Several works employed Gaussian mixture models (GMMs) to ana-
lyze diffusion and guidance (Shah et al., 2023; Liang et al., 2024; Cui et al., 2023; Bai et al., 2024;
Song et al., 2020). In contrast, Du et al. (2023) explored alternative conditioning, while Bradley &
Nakkiran (2024) characterized CFG as a predictor-corrector (Song et al., 2020). Most relevant to
this work, Chidambaram et al. (2024) demonstrated CFG’s mean overshoot and variance shrinkage
in one-dimensional settings, while Wu et al. (2024) extended the findings to multi-dimensional set-
tings using GMMs. We expand on these by developing a high-dimensional statistical analysis and
precisely characterizing how these effects diminish as dimensionality increases, ultimately demon-
strating that the CFG-generated distribution in fact aligns with the target one for d → ∞.

CFG variants and experimental analyses. Among experimental analyses of CFG, Karras et al.
(2024a) propose guiding generation using a less-trained version of the model, Kynkäänniemi et al.
(2024) apply CFG during a limited interval, and Wang et al. (2024) use weight schedulers for the
classifier strength parameter. Several other CFG alternatives have been proposed, such as rectified
guidance (Xia et al., 2024), projected score guidance (Kadkhodaie et al., 2024), characteristic guid-
ance (Zheng & Lan, 2023), second-order CFG (Sun et al., 2023), CADS (Sadat et al., 2023), CFG++
(Chung et al., 2024), REG (Xia et al., 2024), APG (Sadat et al., 2024) and Feedback Guidance
(Koulischer et al., 2025). In later sections, we demonstrate our proposed nonlinear CFG generalizes
to these methods, consistently enhancing their performance.

Dynamical regimes, statistical physics and high-dimensional settings. Statistical physics meth-
ods have shown particularly useful in analyzing high-dimensional generative models, e.g., data from
Curie-Weiss models (Biroli & Mézard, 2023), high-dimensional Gaussian mixtures (Biroli et al.,
2024), and hierarchical models (Sclocchi et al., 2024). Furthermore, several recent works studied
dynamical regimes diffusion models (Biroli & Mézard, 2023; Raya & Ambrogioni, 2024; Biroli
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et al., 2024; Sclocchi et al., 2024; Yu & Huang, 2024; Li & Chen, 2024; Aranguri et al., 2025),
however none of them analyzed the effects brought by classifier-free guidance.

3 BACKGROUND AND HIGH-LEVEL DISCUSSION

We begin by providing an overview of the standard framework for generative diffusion, serving as
the foundation for our analysis. Our exposition focuses on diffusion, though our findings directly
extend to flow-matching with Gaussian paths (see, e.g., Lipman et al. (2024), Sec. 4.10.2).

3.1 GENERAL SETUP

Let {a⃗i}ni=1 ∈ Rd represent n independent data points sampled from the true underlying data dis-
tribution P0(⃗a). The forward diffusion process, starting from data points {a⃗i}ni=1, is modeled by an
Ornstein-Uhlenbeck process, described by the following stochastic differential equation (SDE):

dx⃗(t) = −x⃗(t) dt+
√
2 dB⃗(t), (1)

where dB⃗(t) denotes the standard Brownian motion in Rd. At any given time t, the state x⃗(t) is
distributed according to a Gaussian with mean a⃗e−t and variance ∆t = 1 − e−2t. The forward
process is terminated at time tf ≫ 1, when x⃗(tf ) is effectively pure Gaussian noise, distributed as
N (0, Id), with Id being the identity matrix in Rd.

The backward diffusion process operates in reverse time τ = tf − t, described with:

dx⃗(τ) = x⃗(τ) dτ + 2S⃗(x⃗, τ) dτ +
√
2 dB⃗(τ), (2)

where S⃗(x⃗, t) = ∇⃗ logPt(x⃗) denotes the score function. The backward diffusion process generates
points x⃗ sampled from the distribution Pt(x⃗) for every time step τ . At the end of the backward
process, i.e., when τ = tf , the process generates points drawn from the original distribution P0.

In this work, we focus on generating data that can be categorized into distinct classes. We begin by
assuming that the underlying data distribution is a d-dimensional probability distribution P0(x⃗, c),
where c represents a discrete class index and x⃗ a d-dimensional vector. The aim is to generate
data conditioned on c, the class label. The procedure that is mathematically guaranteed to generate
the exact conditional target distribution consists of using the true conditional score, S⃗t(x⃗, c) =

∇⃗ logPt(x⃗|c) in Eq. (2). CFG, however, does not do that; it instead further directs diffusion in a
manner proportional to the difference between conditional and unconditional scores:

SCFG
t (x⃗, c) = St(x⃗, c) + ∆SCFG

t , ∆SCFG
t := ω

(
St(x⃗, c)− St(x⃗)

)
. (3)

While CFG has shown practical benefits, such as improved fidelity and classification confidence
(Wu et al., 2024), several key questions remain open: (1) Can one establish a theoretical frame-
work proving that CFG can indeed generate the target distribution? (2) If so, can this framework
also account for the well-documented artifacts of mean overshoot and variance shrinkage? (3) If
these artifacts are indeed inherent to standard CFG, can one design alternative guidance schemes
that provably mitigate them—and, crucially, do such schemes also deliver practical improvements
beyond the theoretical setting? In this paper, we draw on the statistical-physics framework of Biroli
& Mézard (2023); Biroli et al. (2024) to provide affirmative answers to all of the above.

3.2 CONNECTING DYNAMICAL REGIMES OF DIFFUSION TO CLASSIFIER-FREE GUIDANCE

To analyze CFG, we build on the statistical-physics framework of Biroli & Mézard (2023); Biroli
et al. (2024), which identifies three dynamical regimes in diffusion models. Our exposition focuses
on the first two, since we show that CFG has the same effect in the second and third regime. These
regimes are distinguished by the presence or absence of symmetry breaking, characterized via the
leading eigenvalue of the data covariance matrix.

Previous findings: dynamical regimes in diffusion. Using this framework, Biroli et al. (2024)
analyze the dynamical regimes of the backward process in Eq. (2) for two classes in the d → ∞
limit. They identify the speciation time ts as the transition between Regime I and Regime II.
In Regime I, the backward trajectories have not yet committed to a particular data class, while
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in Regime II, they have committed and begin generating the class-specific features necessary to
produce samples. The core structure of these regimes persists (in the infinite-dimensional limit)
well beyond Gaussian mixtures, extending to models such as data lying on manifolds (Ventura
et al., 2024; Bae et al., 2024; George et al., 2025).

Our findings: connecting dynamical regimes to CFG. A central insight of our work is that the
dynamical-regime framework provides a principled perspective for understanding CFG, from which
three main results emerge:

Result I. In sufficiently large and infinite dimensions, CFG generates the correct target distribution.
Specifically: (i) Before speciation time ts, CFG accelerates convergence toward the target class.
(ii) Just before ts, CFG-guided paths realign with the unguided trajectory that produces the correct
distribution. (iii) After ts, CFG has no effect on the generation process.

Result II. In finite dimensions, mean overshoot and variance shrinkage arise. Using Gaussian mix-
tures, we characterize how the overshoot amplitude increases as dimensionality decreases and how
CFG modifies the dynamics’ potential, resulting in reduced variance of the generated distribution.

Result III. There exist many simple guidances that effectively mitigate these effects. Specifically,
we introduce a simple nonlinear extension of CFG that reduces overshoot and variance shrinkage
by multiplying the score difference ∆SCFG

t in (3) with |∆SCFG
t |α, α > 0. This modification is

theoretically justified and effective in simulations on Gaussian mixtures. As shown in Sec. 5, it is
also beneficial in real-world applications.

While this framework provides valuable insights, it has a key limitation: it relies on access to the
exact score. As a result, although it explains how to mitigate overshoot and variance shrinkage and
supports nonlinear guidance schemes that improve practical performance, it does not clarify why
standard CFG—despite these artifacts—often achieves strong empirical results. Addressing this
question is beyond the scope of our current work, as it would require tools or analyses not available
within our framework. Nonetheless, our theoretical analysis and nonlinear guidance show how to
control these effects, providing meaningful theoretical insights and practical improvements.

4 MAIN RESULTS

The framework of Biroli & Mézard (2023); Biroli et al. (2024) characterizes dynamical regimes
using a simple two-GMM. Its strength lies in broad applicability: such regimes appear across diverse
generative models and data modalities (Ventura et al., 2024; George et al., 2025; Bae et al., 2024),
and the framework has been validated on both real data and manifold-supported distributions (Biroli
& Mézard, 2023). We provide its generalizations to non-centered/multi-component mixtures (Appx.
C.1, C.2), heterogeneous variances, and high-dimensional manifold-structured data (Appx. C.3).

We focus here on the simplest case—two Gaussians of equal weight and isotropic variance—which
already captures the essential phenomena and serves as the foundation for our theoretical framework.

THEORETICAL FRAMEWORK

We examine the case where P0(⃗a) is a superposition of two Gaussians with equal weight, means
±m⃗ and isotropic variance σ2. To ensure the two Gaussians are well separated, we take the large d
limit with fixed values of |m⃗|2/d and σ1. As mentioned above, we assume exact scores are available.

In this setting, the speciation transition between Reg. I and II occurs on timescales ts = 1
2 log(d).

Biroli et al. (2024) showed that ts corresponds to the time at which diffusion paths commit to a
specific class, as determined by changes in the potential of the backward Langevin equation (see
Fig. 3, Appx. A). This speciation time plays a central role in our first contribution: before ts, CFG
guides trajectories toward the target, accelerating convergence, while just prior to ts, guided and
unguided paths become aligned. After ts, trajectories naturally follow unguided paths, ensuring that
CFG produces the correct target distribution in infinite and sufficiently high dimensions.

1The choice |m| =
√
d is standard for modeling data with well-defined classes and has been adopted in

several previous works (Li & Chen, 2024; Wu et al., 2024; Shah et al., 2023; Biroli et al., 2024).
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Building on this foundation, our analysis also reveals two additional phenomena: (i) how finite-
dimensional corrections give rise to mean overshoot and variance shrinkage, which we characterize
exactly, and (ii) how a nonlinear extension of CFG can mitigate these effects.

In practice, our framework generalizes effectively to text-to-image models where one can view T2I
learning as learning a mixture of zero-variance Gaussians corresponding to unique prompt-image
pairs. In the presence of noise or non-unique mappings, this representation evolves into a standard
Mixture of Gaussians (MoG). Given that MoGs are universal approximators, this formulation offers
a strong theoretical basis for not only class-conditional, but also text-to-image training, which we
later show by evaluating on various state-of-the-art models.

In the following, we present the theoretical arguments underlying these three results in a concise,
conceptual manner, with the full derivations and proofs deferred to Appx. B through Appx. E.

4.1 KEY FINDING I: CFG GENERATES THE CORRECT DISTRIBUTION IN INFINITE AND
LARGE DIMENSIONS

To establish our first result, we analyze the distribution of x⃗ at time t, which can be written as

Pt(x⃗) ∝ exp
[
− (x⃗− m⃗e−t)2

2Γt

]
+ exp

[
− (x⃗+ m⃗e−t)2

2Γt

]
,

with Γt = 1 + (σ2 − 1)e−2t. In this setting, the CFG score (Eq. (3)) simplifies to

SCFG
t (x⃗, c) = − x⃗

Γt
+

cm⃗et

Γt
+ ω

m⃗e−t

Γt

{
c− tanh

( x⃗ · m⃗e−t

Γt

)}
, (4)

with c = ±1 and ω > 0. Our analysis develops the first result through three successive steps, all
linked to the speciation time ts =

1
2 log d, the point at which trajectories commit to a specific class.

Step I: CFG guides trajectories before speciation. As we show in Appx. B.1, before ts, CFG
provides an extra push toward the target class, accelerating convergence. Importantly, as seen in
the CFG score formula (4), CFG only affects the m⃗ directions; all directions orthogonal to m⃗ re-
main unaffected. Formally, projecting the backward dynamics onto a vector v⃗ ⊥ m⃗ shows that the
resulting dynamics are independent of ω, confirming only the m⃗ direction is influenced.

Therefore, we project onto m⃗ and define q(t) = x⃗ · m⃗/|m⃗| with |m⃗| =
√
d. Then the backward

evolution guided toward class c = 1 satisfies

dq =
(
q + 2

[
− q + e−(tf−ts−τ)((1 + ω)− ω tanh

(
qe−(tf−ts−τ)

)
)
])

dτ + dη(τ), (5)

where τ = tf − t and dη(τ) denotes
√
2 times Brownian motion (specific theoretical arguments

provided in Appx. B). This can be rewritten in terms of an effective potential V CFG(q, τ):

V CFG =
1

2
q2 − 2e−(t−ts)q︸ ︷︷ ︸
Conditional potential

+ω
[
− qe−(t−ts) + ln cosh

(
qe−(t−ts)

)]
︸ ︷︷ ︸

CFG-induced potential

. (6)

Examining the effective potential in (6), we observe that the CFG-induced term provides an addi-
tional push along the m⃗ direction toward the target class c = 1. This effect is especially significant
for trajectories that deviate from typical paths, correcting those that would otherwise move toward
the wrong class (see Fig. 7 in Section B). These observations allow us to conclude that, prior to the
speciation ts, CFG amplifies the push toward the desired class, establishing Step I.

Step II: CFG paths align before exiting Regime I. At late times in Regime I, q becomes of order√
d (Biroli & Mézard, 2023), and the CFG-added term in Eq. (4) produces only exponentially small

corrections to the dynamics. Although different values of ω may have led to different positions
for q earlier in the backward process, these differences are quickly forgotten. The full theoretical
argument is spelled out in Sec. B.2, i.e., we provide the proof of the dynamics naturally readjusting,
and the trajectories converging toward the same distribution they would follow without CFG.
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Step II is therefore obtained by analyzing the corresponding SDE starting from this late stage of
Regime I: we show its solution no longer depends on the earlier CFG-induced deviations and coin-
cides statistically with the backward evolution of a single Gaussian corresponding to the target class
c = +1, implying the path alignment (see Fig. 8 in Section B for numerical simulations).

Step III: After speciation time ts, CFG paths follow the unguided path. At the end of Regime
I, as we show in Sec. B.3, the projection q diverges, and one has to analyze the rescaled variable
x⃗ · m⃗/d. By this stage, the CFG-guided paths have realigned with the unguided conditional paths.

Specifically, we use results from Biroli et al. (2024) to show that in Regime II the extra CFG term
in Eq. (4) effectively vanishes, since 1 − tanh (x⃗ · m⃗e−t/Γt) → 0 as d → ∞. As a result, the
dynamics as well as the trajectories follow the unguided backward evolution, yielding Step III.

Consistent conclusions in large, finite d. Within Regime I, for large, yet finite dimension, the
CFG-added-term in the score in Eq. (4) remains of the same order as the conditional score of the
unguided path so CFG has the same effect as in the infinite limit. The full proof is provided in
Appx. D; when exiting Regime I and during Regime II, the extra CFG term is exponentially small
in d, so the results from all three steps carry over for large but finite d (we discuss below the strength
of the corrections for finite d).

In summary, during Regime I, CFG accelerates convergence toward the target class. Just before
speciation, the paths realign with the unguided trajectory, subsequently following them throughout
Regime II. This behavior is illustrated in Section B, Fig. 8. This result shows that, contrary to
previous beliefs (Chidambaram et al., 2024; Wu et al., 2024), CFG can indeed generate the correct
distribution, and serves as key guiding principle for the remainder of our work.

4.2 KEY FINDING II: CFG EFFECTS IN FINITE DIMENSIONAL SETTINGS

So far, we have shown that for any value of ω the target distribution is correctly reproduced in the
infinite dimensional limit. We now show that the mean overshoot and variance shrinkage arise as
the dimensionality of the system decreases. Full arguments can be found in Appx. D.

Mean overshoot and variance shrinkage in finite d. In finite dimensions, the paths do not realign
when exiting Regime I. The additional push introduced by CFG within Regime I has an effect on
Regime II, resulting in an overshoot of the target distribution of relative amplitude of order 1/

√
d.

The CFG-added-term also results in a larger second derivative of the potential V CFG(q, t). Thus, the
CFG Langevin equation is associated to a more confining potential, ultimately shrinking the variance
of the CFG-generated distribution. These are in line with previous empirical (Ho & Salimans, 2022)
and theoretical findings (Chidambaram et al., 2024; Wu et al., 2024). In Appendix Figs. 8 and
12, we further analyze how CFG behavior changes with increasing dimensionality and number of
classes both for numerical simulations and real-world scenarios. This concludes our second finding.

4.3 KEY FINDING III: NONLINEAR POWER-LAW CFG MITIGATES FINITE-DIM. EFFECTS

Building on the finite-dim. deviations identified in Key Finding II, we propose Power-Law CFG: a
simple nonlin. extension of standard CFG. Our scheme raises the cond. score difference (3) along
m⃗ to a power α > 0, allowing guidance to scale with the local strength of the conditional signal:

S⃗PL
t (x⃗, c) = S⃗t(x⃗, c) + ω

[
S⃗t(x⃗, c)− S⃗t(x⃗)

] ∣∣∣S⃗t(x⃗, c)− S⃗t(x⃗)
∣∣∣α . (7)

Intuitively, this modification has two complementary effects: (i) When the score difference δSt =

|S⃗t(x⃗, c)− S⃗t(x⃗)| (vector norm) is small and potentially unreliable, guidance is naturally dampened.
(ii) When the signal is strong, guidance is amplified, enhancing the push toward the correct class.

Importantly, as a direct consequence of our large-d theoretical analysis, nonlinear power-law CFG
retains the exact high-dim. guarantees of standard CFG: in the limit of large dimension, it recovers
the correct conditional distribution without distortion, ensuring that the benefits of nonlinear scaling
are confined to the finite-dimensional regime. This is discussed in Appx. H.
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Reduced overshoot and shrinkage. Our analysis in App. E identifiies the key term B(q) :=
de−(tf−t)/Γu(q) as the driver for mean overshoot and variance shrinkage. This term is intrinsically
linked to the Hessian (curvature) of the potential, and the effect of nonlinear guidance is shown
to directly modify B(q), with 0 < B(q) < 1 almost everywhere. Mean Overshoot: Overshoot
is proportional to B(q) and the parameter α controls this through B(q)α: α > 0 suppresses the
overshoot, while α < 0 increases it. Variance Shrinkage is positively correlated with B(q); B(q)
determines the ratio of curvature increments between nonlinear and linear CFG through B(q)α.
Specifically, α > 0 reduces the curvature increase (decreasing shrinkage), while α < 0 amplifies it
(increasing shrinkage). Simulations (see, e.g., Fig. 2 (right) or Fig. 35) confirm this.

Application to flow matching. The power-law formula can be directly applied to flow-matching
as well; in order be fully consistent with our theoretical proposition, we expressed the Power-Law
formula as ϕt(s) = ( 1−t

t )αsα, rather than ϕt(s) = sα. However, even using ϕt(s) = sα (which is a
valid guidance within our framework) yields very similar results and behavior - this is described in
detail in appendix G.2.1.

Magnitude vs. Directional Scaling. Our Power-Law formulation uses the Euclidean norm
∥St(x⃗, c) − St(x⃗)∥ which captures both score direction and magnitude, unlike, e.g., cosine met-
rics that would isolate alignment. While the Euclidean norm is resolution-sensitive, luckily, the
guidance parameter ω acts as a renormalization factor, which ultimately removes the need for an
additional explicit resolution-based adjustments. As detailed in App. G.7, our analyses showed that
this combined signal yields superior performance compared to purely directional metrics, though
alternative cosine-based methods remain a promising avenue for future work.

4.4 DISCUSSION: OTHER NONLINEAR EXTENSIONS

Beyond the power-law modification, our analysis indicates a broad class of theoretically valid, po-
tentially beneficial nonlinear guidances. Our framework and the “blessing of dimensionality”, en-
suring CFG recovers the correct target distribution in high dimensions, are not limited to the specific
construction above: many nonlinear extensions share the same guarantees.

Formally, our results can be extended to nonlinear guidances of the form

SCFG-NL
t (x⃗, c) = St(x⃗, c) +

[
St(x⃗, c)− St(x⃗)

]
ϕt

(∣∣∣S⃗t(x⃗, c)− S⃗t(x⃗)
∣∣∣) , (8)

under the condition lims→0 sϕt(s) = 0, ensuring guidance vanishes smoothly when cond. and
uncond. scores coincide. This condition essentially relies on the part of our proof showing that
scores equalize at low noise levels (as often observed in practice), preventing pathological guid-
ances that break this property). This framework recovers a number of existing methods as special
cases: constant ϕt(s) = ω yields standard CFG; ϕt(s) = ω · I[t1,t2)(t) gives limited-interval CFG
(Kynkäänniemi et al., 2024); and time-varying ϕt(s) = ωt recovers weight schedulers (Wang et al.,
2024; Gao et al., 2023). Other recent proposals (Chung et al., 2024; Xia et al., 2024; Ventura et al.,
2024) can also be expressed as specific, simple choices of ϕt. Importantly, all of these remain linear
in the score difference δSt, whereas our nonlinear power-law scheme S⃗PL

t demonstrates that altering
the score difference in a nonlinear manner is both theoretically natural and practically beneficial.

This perspective opens a larger design space of alternative nonlinear functions ϕt, which could as
well be directly optimized, yielding theoretically sound guidance mechanisms, potentially outper-
forming existing approaches. Building on this, we next evaluate the nonlinear power-law guidance in
both controlled GMM settings and large-scale generative models, validating theoretical predictions,
assessing robustness, and comparing directly to linear CFG and alternative CFG schemes.

5 NUMERICAL SIMULATIONS AND REAL-WORLD EXPERIMENTS

We now turn to experiments, testing nonlinear CFG derived from our large-d theoretical guidelines.
Through num. simulations and real-world experiments, we evaluate if the theoretically motivated
power-law CFG delivers tangible benefits, e.g., in mitigating overshoot and preserving variance.

8
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Figure 4: The flexibility of nonlinear power-law CFG, key ingredient in our theoretical argument, ap-
pears consistently in num. simulations and real-world models. Left: Num. simulations on GMMs. Center:
Class-conditional EDM2-S trained on ImageNet-1K. Right: a text-to-image model with MMDiT architecture.
All exhibit the same hump-shaped behavior of ∥St(x⃗, c)−St(x⃗)∥1+α, consistent with our theoretical analysis.

Experimental details. We examine power-law CFG in GMM simulations and four generative
models: DiT (Peebles & Xie, 2023) and EDM2 (Karras et al., 2024b), trained and evaluated on
ImageNet-1K (res. 256 and 512). We also consider two text-to-image (T2IM) models: first is trained
on ImageNet-1k and CC12M (Changpinyo et al., 2021), evaluated on CC12M, using the diffusion
DDPM training objective (Ho et al., 2020) with MMDiT architecture (Esser et al. (2024), similar to
SD3). The second model, using MMDiT scaled to 1.6B parameters, is trained with flow matching on
YFCC100M (Thomee et al., 2016), CC12M and a proprietary dataset of 320M Shutterstock images,
evaluated on COCO dataset (Lin et al., 2014). Section G contains another T2IM model trained with
DDPM objective with the MDTv2 (Gao et al., 2023) architecture scaled to 800M parameters.

Comparing GMM simulations to real-world experiments. Fig. 4 shows both GMM simulations
and large-scale gen. models exhibit the same characteristic hump-shaped behavior of the amplitude
of the guidance term ∥St(x⃗, c)− St(x⃗)∥1+α, suggesting our theoretical insights might be beneficial
in practice. Crucially, the power-law param. α allows to alter the shape of these curves, offering the
precise flexibility our analysis identifies as necessary for improving guidance. We further examine
this in Fig. 35 in Appx. H, showing nonlin. CFG results in faster convergence, with paths of smaller
Jensen-Shannon divergence to the target (across all time τ ), while also reducing the overshoot.

Figure 5: Sensitivity analysis (EDM2-S, ImageNet-1K
512 × 512). Left: Increasing parameter α consistently
improves FID to standard CFG (α = 0.). Right: Increasing α
yields more stable FID values across a larger range of ω.

Power-law CFG is robust. We per-
form sensitivity analysis, showing that
large values of α consistently yield im-
proved performance, increasing robust-
ness and stability when tuning for ω.2
This is shown in Fig. 5 for EDM2-
S, in Section G for DiT/XL-2, two
T2IM models, together with further ab-
lation studies showing that non-lin. CFG
consistently outperforms standard CFG
when varying number of sampling steps.

Power-law CFG improves image quality and diversity. We quantitatively evaluate our method
using FID (Heusel et al., 2017) measuring image quality, and precision and recall (Sajjadi et al.,
2018) measuring diversity. In Table 1, we compare power-law CFG to state-of-the-art guidance
methods. As power-law is easily combined with other guidances, we test combining it with
CADS (Sadat et al., 2023) and limited-guidance (Kynkäänniemi et al., 2024), the strongest com-
petitors. Power-law CFG improves over standard CFG in most cases and improves results of CADS
and lim.-interval guidance. We provide qualitative results in Fig. 6, observing that power-law im-
proves both quality and diversity, while being more robust to changing ω.

Latent-space vs Pixel-space. The power-law method consistently showed robust improvements
with the nonlinear parameter α = 0.9 set across all experiments in latent space. For pixel space
(see Table 11 in Appx.), the optimal α seemed to fluctuate slightly more and tuning α as well as

2Although power-law CFG introduces another hyerparameter, α, we did not have to perform extensive
hyperparameter search, and found large values, e.g., α = 0.9 to consistently perform well.
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Table 1: Power-law CFG often improves both fidelity and diversity metrics. We applied power-law to stan-
dard CFG, limited and CADS variants, as the two were strongest competitors. Applying power-law improved
their performance further, achieving competitive results. Best results are bolded, second best underlined. (↑)
indicates power-law CFG improves the guidance method compared to its version with stand. CFG, while (↓)
means the metric deteriorated. T2IM represents text-to-image models, CC class-conditional; FM is short for
flow-matching objective and diff. stands diffusion. Experimental details are provided in Section G.

EDM2-S (CC, IM-1K 512) DiT/XL-2 (CC, IM-1K 256) Diff. MMDiT (T2IM, CC12m) FM MMDiT (T2IM, COCO)

Model FID Precision Recall FID Precision Recall FID Precision Recall FID Precision Recall

Standard (Ho & Salimans, 2022) 2.29 0.751 0.582 2.27 0.829 0.584 8.58 0.661 0.569 5.20 0.629 0.594
Scheduler (Wang et al., 2024) 2.03 0.762 0.591 2.14 0.840 0.614 8.30 0.681 0.559 5.00 0.606 0.623
Limited (Kynkäänniemi et al., 2024) 1.87 0.760 0.598 1.97 0.801 0.632 8.58 0.680 0.553 5.00 0.609 0.602
Cosine (Gao et al., 2023) 2.15 0.770 0.619 2.30 0.861 0.520 8.29 0.659 0.564 5.14 0.630 0.616
CADS (Sadat et al., 2023) 1.60 0.792 0.619 1.70 0.772 0.627 8.32 0.692 0.559 4.91 0.633 0.613
APG (Sadat et al., 2024) 2.13 0.756 0.640 2.11 0.815 0.628 8.49 0.661 0.571 5.23 0.614 0.631
REG (Xia et al., 2024) 1.99 0.761 0.608 1.76 0.799 0.601 8.10 0.673 0.540 5.06 0.619 0.619
CFG++ (Chung et al., 2024) N/A N/A N/A N/A N/A N/A 8.35 0.668 0.552 4.85 0.632 0.629

Power-law CFG (Ours) 1.93 (↓) 0.780 (↑) 0.631 (↑) 2.05 (↓) 0.831 (↑) 0.595 (↑) 8.11 (↓) 0.670 (↑) 0.553 (↓) 4.81 (↓) 0.621 (↓) 0.619 (↑)
Power-law CFG + Limited (Ours) 1.73 (↓) 0.752 (↓) 0.600 (↑) 1.87 (↓) 0.849 (↑) 0.642 (↑) 8.27 (↓) 0.692 (↑) 0.555 (↑) 4.84 (↓) 0.615 (↑) 0.622 (↑)
Power-law CFG + CADS (Ours) 1.52 (↓) 0.770 (↓) 0.622 (↑) 1.63 (↓) 0.754 (↓) 0.639 (↑) 7.98 (↓) 0.690 (↓) 0.573 (↑) 4.71 (↓) 0.640 (↑) 0.624 (↓)

Power-law CFG, strong 𝜔 = 10.

Power-law CFG, weak 𝜔 = 2.

Standard CFG, strong 𝜔=5.

Standard CFG, weak 𝜔 = 2. Increasing 𝛼 increases diversity
𝛼 = 0 (standard CFG)

𝛼 = 0.25

𝛼 = 0.5

𝛼 = 0.9

Figure 6: Qualitative comparison of Standard and Power-Law CFG on DiT/XL-2 trained on ImageNet-1k
(256×256). Left: while standard CFG results in diversity decrease or mode collapse (first image for ω = 5),
power-law CFG (α = 0.9) improves in diversity at no cost to fidelity, showing robustness to varying of ω (note
very large ω = 10). Right: Increasing non-linear parameter α yields larger diversity, while preserving image
quality. Experimental details with further examples (as well as text-to-image) are provided in App. G.

ω resulted in stronger improvement in performance. While Power-Law demonstrates consistent
benefits, its performance relative to other non-linear strategies remains unexplored. There may be
more strategies (particularly for pixel-space), which are worth exploring.

6 CONCLUSION

By connecting CFG to the high-dimensional framework of diffusion regimes, we theoretically
analyzed its behavior and showed that, in sufficiently high dimensions, CFG reproduces the
correct target distribution—a “blessing-of-dimensionality” result. We further demonstrated that
the well-known artifacts of mean overshoot and variance shrinkage emerge as dimensionality
decreases. Finally, we proposed a simple nonlinear extension of CFG, proving that it mitigates
both effects while preserving CFG’s practical benefits, consistently improving sample quality and
diversity across state-of-the-art text-to-image and class-conditional models.

Limitations and future work. Our theory demonstrates that in high-dimensional settings, CFG
generates the correct target distribution, extending previous results showing CFG alters it in finite-
dimensions. In practice, CFG improves fidelity while reducing diversity: although our theory allows
discovery of guidances that maintain strong fidelity while significantly boosting diversity, the reason
why CFG-modified distribution is more effective in practice is not explained by our theory which
relies on perfect score estimation. We hypothesize, therefore, that the practical benefits of (non-
linear) CFG might be tied to the imperfect score estimators used in practice. Investigating how
score approximation errors impact guidance effectiveness is an important area for future research.
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ETHICS STATEMENT

This study contributes to the growing body of research aimed at deepening our theoretical under-
standing of diffusion models and their broader implications for generative modeling. By bridging
the gap between theory and practice, we strive to improve the performance and efficiency of these
models, which have far-reaching applications in various fields.

However, as with any powerful technology, there are also potential risks associated with develop-
ment and deployment of advanced generative models. The increasing sophistication of deepfakes
raises concerns about misinformation, propaganda, and the erosion of trust in digital media. More-
over, the misuse of generative models for malicious purposes, such as creating fake identities or
spreading disinformation, poses significant threats to society as a whole.

In light of these challenges, we hope that our paper, along with many others that aim to improve
understanding of the models, will contribute to a deeper understanding of their strengths and limi-
tations. We believe it is essential for developing effective strategies to mitigate the risks associated
with generative models, and we hope that our work will be a step toward achieving this goal.

REPRODUCIBILITY STATEMENT

We have clearly stated the main assumptions underlying our work, along with their limitations and
how they influence our conclusions. To support our theoretical contributions, Appendices B-E con-
tain the full proofs of our claims, while Appendix G.3 lists all hyperparameter configurations re-
quired to reproduce our experiments exactly. For real-world experiments, we specify the GPUs used
as well as the Gflops of the models, offering transparency in the computational resources required.
Finally, our experiments on class-conditional models rely on and reference publicly available check-
points, enabling straightforward verification and further exploration by the community.
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SUPPLEMENTARY MATERIAL

The supplementary material is structured as follows:

• In Section A, we give a brief introduction to related work, focusing on Biroli et al. (2024).

• In Section B, we give proofs for two equidistant, symmetric Gaussian mixtures.

• In Section C, we present arguments how to extend the proofs to non-centered Gaussian
mixtures (subsec. C.1) and multiple Gaussian mixtures (subsec. C.2).

• In Section D, we present the theoretical and numerical findings for finite dimension (in-
cluding low dimension d).

• In Section E, we provide the arguments showing that the nonlinear Power-Law CFG im-
proves mean overshoot and variance shrinkage.

• In Section F, we present experimental details for Gaussian mixture numerical simulations.

• In Section G, we provide experimental details involving real-world experiments.

• In Section H, we propose another non-linear CFG alternative and provide num. experi-
ments.

A INTRODUCTION TO RELATED WORK: CLASSIFIER-FREE GUIDANCE (CFG)
AND SPECIFICATION TIME IN THE HIGH-DIMENSIONAL LIMIT

We start by briefly introducing the calculation required for estimating the speciation time ts for a case
of two equally weighted Gaussians. This section is a direct adaptation of the framework introduced
by Biroli et al. (2024). The diffusion process, consisting of d independent Ornstein-Uhlenbeck
Langevin equations, reads as follows (using f(t) = −1 and g(t) =

√
2 in Eq. (1)):

dx⃗(t) = −x⃗dt+ dB⃗(t), (9)

where dB⃗(t) equals the square root of two times the standard Brownian motion in Rd. At time
t = 0, the process starts from the probability distribution P0(⃗a), consisting of two Gaussian clusters
that have means at ±m⃗ and share the same variance σ2. To guarantee that these Gaussians remain
distinct in high-dimensional space, we assume that |m⃗|2 = dµ̃2, where both σ and µ̃ are of order 1.

As the process evolves, the emergence of speciation resembles symmetry breaking observed during
thermodynamic phase transitions. A common approach to analyzing this phenomenon is to construct
a perturbative expansion of the free energy as a function of the field. Therefore, Biroli et al. (2024)
derive an expression for logPt(x⃗) using a perturbative expansion in terms of e−t, which is valid for
large time values. This method is justified since speciation occurs at large times.

One can rewrite the probability to be at x⃗ at time t as

Pt(x⃗) =

∫
da⃗P0(⃗a)

1√
2π∆d

t

exp

−1

2

(
x⃗− a⃗e−t

)2
∆t


=

1√
2π∆t

exp

(
−1

2

x⃗2

∆t
+ g(x⃗)

)
,

where the function g(x⃗), defined as

g(x⃗) = log

∫
da⃗P0(⃗a) exp

(
−1

2

a⃗2e−2t

∆t

)
exp

(
e−tx⃗ · a⃗

∆t

)

can be viewed through a field-theoretic (or equivalently, a probabilistic) approach, where it serves
as a generative function for connected correlations among the variables a⃗ (Zinn-Justin, 2021). By
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expanding this function at large times, one can show:

g(x⃗) =
e−t

∆t

d∑
i=1

xi ⟨ai⟩+
1

2

e−2t

∆2
t

d∑
i,j=1

xixj

[〈
aiaj

〉
− ⟨ai⟩

〈
aj
〉]

+O
((

xe−t
)3)

,

where we utilize the brackets ⟨·⟩ to denote the expectation value with respect to the effective distri-
bution P0(⃗a)e

−a⃗2e−2t/(2∆t). Therefore, the expansion can be used to show that at large times:

logPt(x⃗) = C +
e−t

∆t

d∑
i=1

xi ⟨ai⟩ −
1

2∆t

d∑
i,j=1

xiMijxj +O
((

xe−t
)3)

,

where C is an x⃗-independent term and

Mij = δij − e−2t
[〈
aiaj

〉
− ⟨ai⟩

〈
aj
〉]

.

The curvature of logPt(x⃗) is closely linked to the spectral properties of the matrix M . In the large
time regime, M approaches the identity matrix, and consequently, all its eigenvalues are positive.
However, a qualitative shift in shape occurs at the maximum time ts, where the largest eigenvalue
of M transitions through zero. This marks the onset of the speciation time, distinguished by a
change in curvature of the effective potential − logPt(x⃗). In this case, it can be easily computed:
the matrix M is given by Mij =

(
1− σ2e−2t

)
δij − e−2tmimj and its largest eigenvalue is (

1 − σ2e−2t − dµ̃2e−2t ). We get therefore in the large d limit ts = 1
2 log

(
dµ̃2
)

which up to
subleading corrections identifies the speciation timescale as

ts =
1

2
log(d).

B THEORETICAL PROOFS: TWO EQUIDISTANT, SYMMETRIC GAUSSIAN
MIXTURES

ASYMPTOTIC STOCHASTIC PROCESS IN REGIME I AND SYMMETRY BREAKING

In the limit of large dimensions, a comprehensive analytical examination of the dynamics in Regime
I, taking place on time-scales ts + O(1) = (1/2) log d + O(1), can be provided, specifically at the
beginning of the backward process. Assuming no collapse (for further details, refer to Biroli et al.
(2024)), an investigation into diffusion dynamics shows that the empirical distribution P e

t (x⃗) at time
t can be approximated with high accuracy by Pt(x⃗). This approximation represents the convolution
of the initial distribution P0, comprising a mixture of Gaussians centered at ±m⃗, and a diffusion
kernel proportional to e−(x⃗−a⃗e−t)

2
/2. Consequently, the explicit expression for this approximation

is

P0(x⃗) =
1

2
(√

2πσ2
)d [e−(x⃗−m⃗)2/(2σ2) + e−(x⃗+m⃗)2/(2σ2)

]
, and (10)

Pt(x⃗) =
1

2
(√

2πΓt

)d [e−(x⃗−m⃗e−t)
2
/(2Γt) + e−(x⃗+m⃗e−t)

2
/(2Γt)

]

where Γt = σ2e−2t +∆t goes to 1 at large times. The log of this probability is

logPt(x⃗) = − x⃗2

2Γt
+ log cosh

(
x⃗ · m⃗e−t

Γt

)
,
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and hence the score reads

Si
t(x⃗) = −xi

Γt
+mi

e−t

Γt
tanh

(
x⃗ · m⃗e−t

Γt

)
. (11)

As there are two classes: +m⃗ and −m⃗, the score conditioned to one class equals the score associated
to a given Gaussian. Therefore, for the two classes we have:

+ m⃗ : Si
t(x⃗,+) =

−xi +mie
−t

Γt
, and

− m⃗ : Si
t(x⃗,−) =

−xi −mie
−t

Γt
.

(12)

B.1 RESULT I: WHAT IS THE ROLE OF CLASSIFIER-FREE GUIDANCE?

Let us first analyze the “transverse” directions v⃗ ⊥ m⃗. For these directions, for all ω, the score is the
same and equals S⃗CFG

t (x⃗, c) · v⃗ = − x⃗·v⃗
Γt

. Let us project the backward Eq. (2) on a unit vector v⃗ ⊥ m⃗.
We write p = x⃗ · v⃗, and the backward equation now reads dp = p(1− 2/Γtf−τ )dτ +

√
2dB which

is the backward equation for a single Gaussian variable. When τ → tf the projection p = x⃗ · v⃗ is
thus distributed as N (0, σ2), for all values of ω.

Therefore, as all the components except the one in the m⃗ direction are not affected, we can consider
only the component along m⃗:

S⃗tCFG
(x⃗, c) · m⃗

|m⃗|
= − x⃗ · m⃗/|m⃗|

Γt
+ ω

|m⃗|2e−t

|m⃗|Γt
·

c− tanh

(
x⃗ · m⃗e−t

Γt

)+
|m⃗|e−tc

Γt
.

By denoting x⃗·m⃗
|m⃗| = q(t), where |m⃗| =

√
d, we can obtain the backward equation:

dxi = (xi + 2Si
τCFG

)dτ + dηi(τ),

where τ = tf − t, i.e., the backward time. Therefore, we can obtain for Regime I and by projecting
onto the m⃗

|m⃗| direction, we have that:

dq = dxi · m⃗

|m⃗|
=
(
q + 2

[
− q + e−(tf−ts−τ)

(
(1 + ω)− ω tanh

(
qe−(tf−ts−τ)

))])
dτ + dη(τ),

as, in Regime I, we have that Γt ≈ 1, and also
√
d = e−ts .

Again, from this point onward by t(τ) we denote the backward time for ease of notation. This is
like having an effective potential:

dq = −∂V CFG(q, τ)

∂q
dτ + dη(τ),

where

V CFG =
1

2
q2 + 2

[
−(1 + ω)cqe−(t−ts) + ω ln cosh

(
qe−(t−ts)

)]
= (

1

2
q2 − 2e−(t−ts)cq)︸ ︷︷ ︸
Classifier’s potential

+ω

[
−cqe−(t−ts) + ln cosh

(
qe−(t−ts)

)]
︸ ︷︷ ︸

Extra potential Vextra

.
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Figure 7: Effect of CFG on the guiding potential of a Gaussian mixture. The backward diffusion
for the variable q giving the projection of x⃗ on the center m⃗ of the Gaussian where one wants to
guide the backward diffusion. From left to right: Potential within the class, CFG-added-potential
Vextra with ω = 2, and their sum as in Eq. (6). CFG exhibits faster convergence to the target (t = 0),
but results in narrower potential for small t (with t ranging from 0 to 8, as indicated on the right
panel).
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Figure 8: Left: CFG produces the exact target distribution in high dimensions. We simulate the backward
process using a two Gaussian mixture. We project and plot the generated samples onto the target mean +m⃗:
q(t = 0) = x⃗ · m⃗/|m⃗|. For small d = 2, CFG generates a distribution with larger magnitude mean (dashed
line) and smaller variance than the target one (for ω = 0.). This effect diminishes as the dimension increases:
for d = 200 it is practically absent. Right: High-dimensionality of the data allows CFG trajectories to
align. We plot the evolution of the mean of trajectories q(t): starting at large forward times denoted with
t = 1 (noise), for small d = 2, CFG trajectories do not align with the unconditional trajectories at t = 0
(data) causing the CFG overshoot. For large dimension d = 200, the high-dimensionality of the data allows
trajectories to realign with the unguided one at speciation time ts, resulting in the correct target distribution.

Therefore, for class c = +1 (equivalently for c = −1), there is little effect for qe−(t−ts) ≫ 1,
as then −qe−(t−ts) + ln cosh

(
qe−(t−ts)

)
≈ 0. Instead, for qe−(t−ts) ∼ O(1), we have that

−qe−(t−ts) + ln cosh
(
qe−(t−ts)

)
∼ O(1). Therefore, we can conclude our first result:

Result I. In Regime I, before speciation time ts, CFG is effective in aiding class selection and speeds
up the convergence towards the target class c.

The utility of CFG is therefore to ”push” in the right direction in Regime I where arguably the class-
based score/potential is likely not accurate in the rare region (q > 0 for c = −1 and q < 0 for
c = +1). The behavior of the two potentials is displayed in Figure 7.

B.2 RESULT II: PATH ALIGNMENT

The role of CFG in Regime I is to push the trajectories more in the direction of the selected class.
We recall that the SDE verified by q when pushed towards class c = +1 reads:

dq =
(
q + 2

[
− q + e−(tf−ts−τ)

(
(1 + ω)− ω tanh

(
qe−(tf−ts−τ)

))])
dτ + dη(τ), (13)

For large times but still during Regime I, i.e. tf − ts ≪ τ ≪ 1/2 log d, q is very large (positive or
negative). In this regime the CFG term can be neglected as it leads to exponentially small corrections
to the SDE (of order e−2qe−(tf−ts−τ)

) with tf − ts − τ ≫ 1. In consequence, in Regime I at large
times, the SDE just reads:

dq = −q + 2e−(tf−ts−τ) + dη(τ),
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The effect of CFG is to lead to different values of q when entering this late regime of Regime I. We
call these values q(τi) and denote τi the fixed time at which the CFG contribution can be neglected.
The value q(τi) is quickly (exponentially) forgotten when τ departs from τi, i.e., the evolution
readjust to the correct value without CFG. This can be shown by solving the SDE starting from a
given τi:

q(τ) = q(τi)e
−(τ−τi) + e−(tf−ts)

(
eτ − e−τ+2τi

)
+
√
1− e−(2(τ−τi))zτ

where zτ is a Gaussian variable with mean zero and unit variance. When τ ≫ τi but still in Regime
I the solution of the SDE does not depend any longer on q(τi) and it coincides statistically with the
one of the backward process of the single Gaussian corresponding to the class c = +1. This allows
to conclude the second result:

Result II. Just before speciation time ts, CFG-guided paths realign with the unguided path that
generates the correct, unmodified target distribution.

B.3 RESULT III: WHEN DOES CLASSIFIER-FREE GUIDANCE TAKE EFFECT?

We can proceed to answer this question by examining the classifier-free guidance score, as defined
in Ho & Salimans (2022):

Si
tCFG

(x⃗, c) = (1 + ω)Si
t(x⃗, c)− ωSi

t(x⃗), (14)

where c = ±1 and ω > 0. By plugging in the cond. (12) and uncond. scores (11), we can obtain:

Si
tCFG

(x⃗, c) = −xi

Γt
+ (1 + ω)

cmie
−t

Γt
− ω

mie
−t

Γt
tanh

(
x⃗ · m⃗e−t

Γt

)

= −xi

Γt
+ ω

mie
−t

Γt

c− tanh

(
x⃗ · m⃗e−t

Γt

)+
cmie

−t

Γt
. (15)

Now, in Regime II, when the trajectory has committed to a given class, x⃗ · m⃗ ∼ O(d) and sign(x⃗ ·
m⃗) = c. Therefore, c − tanh

(
x⃗·m⃗e−t

Γt

)
≈ 0, and one finds from (15), that Si

tCFG
(x⃗, c) = Si

t(x⃗).
This implies that, within this regime, classifier-free guidance equals the conditional score. There-
fore, Classifier free-guidance only affects Regime I, as Si

tCFG
(x⃗, c) = Si

t(x⃗) for t > ts =
1
2 log(d).

This allows us to conclude the third result:

Result III. In Regime II, after speciation time ts, CFG has no effect on the generation process.

C GENERALIZATIONS OF THE PROOF

In this section, we present arguments for extending our proofs to more general cases. We start by
discussing proof generalization for non-centered Gaussian mixtures (Section C.1) and then move on
to a mixture of four Gaussians (C.2). Finally, we conclude with some remarks on how to further
extend these results to more complex scenarios.

C.1 GENERALIZATION TO NON-CENTERED GAUSSIAN MIXTURES

ASYMPTOTIC STOCHASTIC PROCESS IN REGIME I AND SYMMETRY BREAKING

Here we provide an example on how to generalize the study of Gaussian mixtures to the case where
the two Gaussians are centered in m⃗1 and m⃗2. We take m⃗1, m⃗2 as two arbitrary vectors in d dimen-
sions, on the sphere |m⃗c|2 = d the case where they have different norms, both scaling proportionally
to d, could be studied as well with the same formalism.

The initial probability density is
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P0(x⃗) =
1

2
(√

2πσ2
)d [e−(x⃗−m⃗1)

2/(2σ2) + e−(x⃗−m⃗2)
2/(2σ2)

]
, and (16)

Pt(x⃗) =
1

2
(√

2πΓt

)d [e−(x⃗−m⃗1e
−t)

2
/(2Γt) + e−(x⃗−m⃗2e

−t)
2
/(2Γt)

]

where Γt = σ2e−2t +∆t goes to 1 at large times. The log of this probability is

logPt(x⃗) = − x⃗2

2Γt
+ log

(
ex⃗·m⃗1

e−t

Γt + ex⃗·m⃗2
e−t

Γt

)
+ C,

where C is a constant, and hence the score reads

Si
t(x⃗) = −xi

Γt
+

e−t

Γt

mi
1 ex⃗·m⃗1

e−t

Γt +mi
2 ex⃗·m⃗2

e−t

Γt

ex⃗·m⃗1
e−t

Γt + ex⃗·m⃗2
e−t

Γt

(17)

As there are two classes: m⃗1 and m⃗2, the score conditioned to one class equals the score associated
to a given Gaussian. Therefore, for the two classes we have:

m⃗1 : Si
t(x⃗,+) =

−xi +mi
1e

−t

Γt
, and

m⃗2 : Si
t(x⃗,−) =

−xi −mi
2e

−t

Γt
.

(18)

WHAT IS THE ROLE OF CLASSIFIER-FREE GUIDANCE?

We shall use as basis the vectors m⃗+ = (m⃗1 + m⃗2)/2, m⃗− = (m⃗1 − m⃗2)/2, and we shall denote
by v⃗ the vectors orthogonal to the place generated by m⃗1, m⃗2.

For these “transverse” directions v⃗ ⊥ (m⃗1, m⃗2). for all ω, the score is the same and equals
S⃗CFG
t (x⃗, c) · v⃗ = − x⃗·v⃗

Γt
. Let us project the backward equation on a unit vector v⃗ in the transverse

space. We write p = x⃗ · v⃗, and the backward equation now reads dp = p(1− 2/Γtf−τ )dτ +
√
2dB

which is the backward equation for a single Gaussian variable. When τ → tf the projection p = x⃗·v⃗
is thus distributed as N (0, σ2), for all values of ω.

Therefore, as all the components except the ones in the m⃗+ and m⃗− directions are not affected.

We now project the score on m⃗+ and m⃗−, using m⃗+.m⃗− = 0, m⃗+.m⃗1 = m⃗+.m⃗2 = d2/2 and
m⃗−.m⃗1 = −m⃗−.m⃗2 = d2/2:

S⃗tCFG
(x⃗, c) · m⃗+ =

(m⃗+e
−t − x⃗) · m⃗+

Γt

S⃗tCFG
(x⃗, c) · m⃗− =

(m⃗−e
−t − x⃗) · m⃗−

Γt
+ ω

|m⃗−|2e−t

Γt
·

1− tanh

(
x⃗ · m⃗−e

−t

Γt

)
Inserting these scores into the backward diffusion equation, one finds that:

• x⃗.m⃗+/|m⃗+| evolves as a Gaussian variable. At time τ → tf the distribution of this variable
is N (|m⃗+|, σ2).

• The variable q−(t) = x⃗·m⃗−
|m⃗−| satisfies the same equation as the variable q(t) which we

analyzed in the ’centered’ case where m⃗1 = −m⃗2 = m⃗

Therefore, we can conclude that in this case, CFG has the same effect: it is effective in aiding class
selection, speeding up the convergence toward the correct target class c.
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WHEN DOES CLASSIFIER-FREE GUIDANCE TAKE EFFECT?

We can proceed to answer this question by examining the classifier-free guidance score:

Si
tCFG

(x⃗, c) = (1 + ω)Si
t(x⃗, c)− ωSi

t(x⃗), (19)
where c ∈ {1, 2} and ω > 0. The CFG score guiding to class c = 1 is thus:

Si
tCFG

(x⃗, c) = −xi

Γt
+ (1 + ω)

mi
1e

−t

Γt
− ω

e−t

Γt

mi
1 ex⃗·m⃗1

e−t

Γt +mi
2 ex⃗·m⃗2

e−t

Γt

ex⃗·m⃗1
e−t

Γt + ex⃗·m⃗2
e−t

Γt

(20)

Now, in Regime II, when the trajectory has committed to a given class say class 1∗, x⃗ ·m⃗1− x⃗ ·m⃗2 is
positive and of order O(d). Therefore Si

tCFG
(x⃗, c) = Si

t(x⃗, c). This implies that, within this regime,
classifier-free guidance equals the conditional score. Therefore, Classifier free-guidance only affects
Regime I, as Si

tCFG
(x⃗, c) = Si

t(x⃗) for t > ts =
1
2 log(d). This allows us to conclude that in Regime

II, CFG is innocuous.

Therefore all the results obtained for the centered case m⃗1 = −m⃗2 = m⃗ also hold for the more
general case when the two Gaussians are centered in m⃗1 and m⃗2.

C.2 EXTENSION TO THE MIXTURE OF FOUR GAUSSIANS

Here we present the computation for a mixture of four Gaussians, in order to analyze the behavior of
the system for an increasing number of classes and emphasize the extendability of our framework.
As before, assuming no collapse, we can approximate the empirical distribution P e

t (x⃗) at time t by
Pt(x⃗) with high accuracy. In this case, the approximation represents the convolution of the initial
distribution P0, being a mixture of 4 Gaussians centered at ±µ⃗1±µ⃗2, s.t. µ⃗1 ·µ⃗2 = 0, and a diffusion
kernel proportional to e−(x⃗−a⃗e−t)

2
/2. The explicit expression for the distribution is:

P0(x⃗) =
1

4
(√

2πσ2
)d [e−(x⃗−(µ⃗1−µ⃗2))

2
/(2σ2) + e−(x⃗−(µ⃗1+µ⃗2))

2
/(2σ2)

+e−(x⃗+(µ⃗1−µ⃗2))
2
/(2σ2) + e−(x⃗+(µ⃗1+µ⃗2))

2
/(2σ2)

]
and

Pt(x⃗) =
1

4
(√

2πΓt

)d [e−(x⃗−(µ⃗1−µ⃗2)e
−t)

2
/(2Γt) + e−(x⃗−(µ⃗1+µ⃗2)e

−t)
2
/(2Γt)

+ e−(x⃗+(µ⃗1−µ⃗2)e
−t)

2
/(2Γt) + e−(x⃗+(µ⃗1+µ⃗2)e

−t)
2
/(2Γt)

]
where Γt = σ2e−2t +∆t goes to 1 at large times. This can be rewritten as:

Pt(x⃗) =
1

2
(√

2πΓt

)d e−(x⃗2+µ⃗2
1e

−2t+µ⃗2
2e

−2t)/(2Γt)

e−µ⃗1·µ⃗2e
−2t/Γt cosh

(
x⃗ · (µ⃗1 + µ⃗2)

e−t

Γt

)

+eµ⃗1·µ⃗2e
−2t/Γt cosh

(
x⃗ · (µ⃗1 − µ⃗2)

e−t

Γt

)
The log of this probability is:

logPt(x⃗) =
−x⃗2

2Γt
+ log

e−µ⃗1·µ⃗2e
−2t/Γt cosh

(
x⃗ · (µ⃗1 + µ⃗2)

e−t

Γt

)
+ eµ⃗1·µ⃗2e

−2t/Γt cosh

(
x⃗ · (µ⃗1 − µ⃗2)

e−t

Γt

)
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And the score reads:

Si
t(x⃗) =

−xi

Γt

+
e−t

Γt

(µ⃗1 + µ⃗2)ie
−µ⃗1·µ⃗2e

−2t/Γt sinh
(
x⃗ · (µ⃗1 + µ⃗2)

e−t

Γt

)
+ (µ⃗1 − µ⃗2)ie

µ⃗1·µ⃗2e
−2t/Γt sinh

(
x⃗ · (µ⃗1 − µ⃗2)

e−t

Γt

)
e−µ⃗1·µ⃗2e−2t/Γt cosh

(
x⃗ · (µ⃗1 + µ⃗2)

e−t

Γt

)
+ eµ⃗1·µ⃗2e−2t/Γt cosh

(
x⃗ · (µ⃗1 − µ⃗2)

e−t

Γt

) e

As x⃗ approaches one of the means ±µ⃗1 ± µ⃗2, the second summand reduces to (µ⃗1 ±
µ⃗2) tanh

(
x · (µ⃗1 ± µ⃗2)

e−t

Γt

)
3, resulting in an expression akin to the one for mixture of 2 Gaussians

in (11).

C.3 CONCLUSION AND FURTHER EXTENSIONS

The results above can be generalized to any finite number of Gaussians, centered around m⃗i where
m⃗i is a vector of norm µi

√
d. CFG will only have effect on space spanned by vectors m⃗i and

only in regime I. One can also consider non-isotropic Gaussians. As long as the covariance has
eigenvalues not scaling with d, the backward process displays the two distinct regimes I and II, which
is examined in detail for the mixture of two Gaussians. This result can be obtained by analyzing the
forward process. The key point is that on all times of order one the noised Gaussian mixture still
consists in non-overlapping Gaussian (regime II). On times of order one close to the speciation time
1/2 log d the Gaussians overlap and the center are of the same order of the noise (regime I). Because
of the existence of these two regimes, the general arguments presented at the beginning of the paper
hold and CFG does reproduce the correct distribution in the large d limit.

The results derived for the Gaussian mixture model provide a foundation for broader application.
We also note two key points regarding the robustness and scope of this analysis:

Robustness and Generalization Beyond Gaussian Mixtures: The core features of regimes I and
II persist even in more complex, high-dimensional settings, extending beyond the specific case of
Gaussian mixtures. Several studies Ventura et al. (2024); Achilli et al. (2025); Bae et al. (2024)
have demonstrated that these regimes apply more broadly to models where data is distributed on
manifolds, among other configurations. This robustness is a direct consequence of the infinite-
dimensional limit, a phenomenon also observed in other domains like supervised learning.

Scope and Future Work: The spirit of our approach is twofold: (i) To analyze CFG in the tractable
yet rich setting of infinite dimensions. (ii) To start with the simplest nontrivial case—a mixture of
two Gaussians—to characterize the fundamental mechanisms that can guide future work.

As noted, a natural and straightforward extension is to consider mixtures involving any finite num-
ber of Gaussians. Further generalizations—such as data supported on hidden manifolds—can be
pursued by following the methodologies established in studies like Bae et al. (2024) and George
et al. (2025).

C.4 RELATION TO OTHER MODELS

In this section we briefly note how our theoretical results connect to a broader range of methods
related to diffusion and flow matching, specifically how nonlinear CFG applies to 1-step flow models
(Chen et al., 2025a) and methods that learn optimal source distributions (Lee et al., 2023).

Regarding one-step models. Since the main distinction between regimes lies in whether class
membership is decided, a 1-step flow model effectively jumps from the initial point (part of Regime
I) directly into Regime II (in fact, directly into the third regime described in Chen et al. (2025a)).
However, this does not pose a problem as theoretically the difference between the conditional and
unconditional score equals zero (under the correct score assumption and in sufficiently high di-
mension); thus, regardless whether CFG is applied or not these models obtain the correct target
distribution. In practice, we believe that the models could still benefit from non-linear guidances.

3For large values of x · (µ⃗1 ± µ⃗2)e
−t/Γt, we utilized the log-sum-exp trick to calculate the value of the

fraction.
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Regarding methods that learn an optimal source distribution for flows Methods such as Fas-
tODE (Lee et al., 2023) that successfully map similar inputs to the same class indeed shorten, or
even eliminate Regime I—for example, if the initial distribution is a Gaussian mixture (GM) where
each mixture has successfully been mapped to a distinct class, e.g., by using GM-Flow matching
(Lee et al., 2023), Regime I would be eliminated altogether. One should note that in these cases it is
likely that CFG would not prove as beneficial. In fact, this is exactly the finding of the authors in Lee
et al. (2023), in which an alternative guidance method is proposed as CFG was not found to perform
as well. However, our nonlinear guidance retains an advantage: the flexibility of α > 0 vs. α < 0.
In our experiments (starting from standard Gaussian noise with significant class overlap in the initial
distribution), the former proved beneficial by amplifying guidance when score differences are large
and suppressing CFG when small. It would be interesting future work to test whether indeed α < 0
would be beneficial in settings with prominent separations in the initial distributions, as might occur
in FastODE-like mappings or GM-Flows (Chen et al., 2025a).

D FINITE DIMENSION

In this section, we give exact analyses describing the effect of CFG in finite- (possibly low-) di-
mensional settings, outlined in Section 4.2 in the main manuscript. We start the backward equation
at a time tf large enough that the distribution of x is a isotropic Gaussian with variance one. The
backward equation for x(t) with the CFG score reads:

dxi

dτ
=xi

(
1− 2

Γ(tf − τ)

)
+

2mi

Γ(tf − τ)
e−(tf−τ)

+ 2ωmi
e−(tf−τ)

Γtf−τ

1− tanh

(
x⃗ · m⃗e−(tf−τ)

Γtf−τ

)+ ηi(τ) (21)

where τ = 0 at the beginning of the backward process and τ = tf (≫ 1) at the end.

This can be projected on the evolution of the single parameter q(τ) = x⃗ · m⃗/
√
d. We obtain

dq

dτ
=q

(
1− 2

Γ(tf − τ)

)
+

2
√
d

Γ(tf − τ)
e−(tf−τ)

+ 2ω
√
d
e−(tf−τ)

Γtf−τ

1− tanh

(
q
√
de−(tf−τ)

Γtf−τ

)+ η(τ). (22)

Considering the right-hand side as a force due to a moving external potential −∂qV (q, t), the effect
of CFG is to add an extra term which has two main effects: (1) it adds a positive term to the force
and, in consequence, it pushes q faster away from zero, (2) it increases the value of the Hessian at
any point in q with respect to its ω = 0 counterpart, thus making the potential more confining.

The initial condition is q(τ = 0) ∼ N (0, σ2) and

Γ(tf − τ) = σ2e−2(tf−τ) + 1− e−2(tf−τ). (23)

CASE: ω = 0

The solution of the backward equation is:

q(τ) = q(0)e
τ−2

∫ τ
0

1
Γ(tf−τ′′)dτ

′′

+

∫ τ

0

[
2
√
de−(tf−τ ′)

Γ(tf − τ ′)
+ ηi(τ

′)

]
e
(τ−τ ′)−2

∫ τ
τ′

1
Γ(tf−τ′′)dτ

′′

dτ ′.

(24)
Its probability distribution must coincide with the one of the solutions of the forward equation, which
reads:

q(t) =
√
de−t +

√
1− e−2tzi + e−tσz̃i,
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where zi, z̃i ∼ N (0, 1) and t = tf − τ . Let us now focus on the mean of q. When we consider∫ τ

0

[
2
√
de−(tf−τ ′)

Γ(tf − τ ′)

]
e
(τ−τ ′)−2

∫ τ
τ′

1
Γ(tf−τ′′)dτ

′′

dτ ′,

using that

d

dτ ′
exp

[
−2

∫ τ

τ ′

1

Γ(tf − τ ′′)
dτ ′′

]
=

2

Γ(tf − τ ′)
exp

[
−2

∫ τ

τ ′

1

Γ(tf − τ ′′)
dτ ′′

]
,

one finds that the mean of q for the evolution with ω = 0, starting from any value q(0) at any time
tf , is

q(τ) = q(0)e
τ−2

∫ τ
0

1
Γ(tf−τ′)dτ

′

+
√
de−(tf−τ)

1− exp

(
−2

∫ τ

0

1

Γ(tf − τ ′)
dτ ′

) . (25)

Using ∫ τ

0

1

Γ(tf − τ ′)
dτ ′ = −1

2
log

e−2τ + (σ2 − 1)e−2tf

1 + (σ2 − 1)e−2tf
,

we find that

q(τ) = q(0) eτ
e−2τ + (σ2 − 1)e−2tf

1 + (σ2 − 1)e−2tf
+
√
d e−(tf−τ) 1− e−2τ

1 + (σ2 − 1)e−2tf
. (26)

One can check that, when q(0) is obtained by the equilibrium process with ω = 0, namely q(0) =√
de−tf , then at all times q(τ) =

√
de−(tf−τ).

CASE: INTERRUPTED GUIDANCE

Now let us consider a protocol of interrupted guidance. We start the backward process at tf ≫ 1
with a CFG coefficient ω > 0. Then at time backward time τ1 (forward time t1 = tf − τ1) we
switch to ω = 0. At time t1 the mean of q obtained from the backward process with ω > 0 is larger
than the value

√
de−t1 which would be obtained with the ω = 0 dynamics (the reason is that the

extra force in (22) is positive). Let us write this mean as

q(t1, ω) =
√
d e−t1 + δq(t1, ω).

Let us measure the backward time starting from t = t1. We thus write t = t1 − τ̃ . We can use
formula (26) with tf → t1, τ → τ̃ and q(0) → q(t1, ω). This gives for the mean value of q:

q̃(τ̃ , ω) =
√
de−(t1−τ̃) + δq(t1, ω)

e−τ̃ + (σ2 − 1)eτ̃−2t1

1 + (σ2 − 1)e−2t1
,

which, translated in terms of the forward time t = t1 − τ̃ , gives:

q(t) =
√
de−t + δq(t1, ω) e

t−t1
1 + (σ2 − 1)e−2t

1 + (σ2 − 1)e−2t1
. (27)

In particular at the end of the backward process, for τ̃ = t1 we get

q(t = 0) =
√
d+ δq(t1, ω) e

−t1
σ2

1 + (σ2 − 1)e−2t1

If we choose t1 = ts = (1/2) log d, and assuming that the dynamics at t > t1 has produced an
average q(t1) =

√
de−t1 + δq, we find that

q(t = 0) =
√
d

(
1 + δq

σ2/d

1 + (σ2 − 1)/d

)
.

This shows that the guidance interrupted at ts gives a good result only in the limit σ2/d ≪ 1. Figs.
9 and 10 illustrate the effect of the choice of t1.
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t

Figure 9: Mean value of q obtained from the backward diffusion in a Gaussian mixture model with
d = 16, σ2 = 4 (speciation time ts = 1.38). The CFG is run with ω = 8 from t = 5 to t = t1,
then one switches to the class guidance ω = 0. The top curve is when CFG is kept all the time
(t1 = 0). The bottom curve is the case without CFG (ω = 0). Three values of t1 are studied
t1 = 0.69, 1.38, 3.19 (vertical lines). The dashed curves give the mean value of q for each of these
three cases. They are in perfect agreement with the theoretical prediction (27).

Figure 10: Histograms of q(t = 0) obtained from the backward diffusion in a Gaussian mixture
model with d = 16, σ2 = 4 (the speciation time is 1.38), run with 200, 000 trajectories. Left: CFG
with ω = 8 is applied at all times. The final distribution has a larger mean and a smaller variance than
the desired class distribution (full line). Next three figures: The CFG is run with ω = 8 from t = 5
to t = t1, then one switches to standard CFG ω = 0. From left to right, t1 = 0.69, 1.38, 3.19. The
mean values of q in the four cases are respectively 5.56, 5.51, 5.29, 4.12 and the standard deviations
1.68, 1.74, 1.87, 1.98, with targets µ = 4, σ = 2. In order to minimize the bias due to CFG one must
interrupt it before the speciation takes place in the background diffusion, hence at t1 > ts.

CFG CONTRIBUTION TO THE MAGNETIZATION IN REGIME I

Using Equation (14), one can derive the equation for the average ⟨q(τ)⟩ω:

d⟨q(τ)⟩ω
dτ

= ⟨q(τ)⟩ω

(
1− 2

Γ(tf − τ)

)
+

2
√
d

Γ(tf − τ)
e−(tf−τ)

+ 2ω
√
d
e−(tf−τ)

Γ(tf − τ)

〈
1− tanh

(
q
√
de−(tf−τ)

Γ(tf − τ)

)〉
ω

. (28)

The extra ω term is strictly positive. Therefore, we have:

⟨q(τ)⟩ω ≥ ⟨q(τ)⟩ω=0, ∀τ.

Moreover, using that the right-hand side is less than or equal to:
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⟨q(τ)⟩ω

(
1− 2

Γ(tf − τ)

)
+

2(1 + ω)
√
d

Γ(tf − τ)
e−(tf−τ),

which corresponds to the backward equation one would obtain if ∥m⃗∥2 = (1 + ω)d. We then find:

⟨q(τ)⟩ω=0 < ⟨q(τ)⟩ω <
√
de−t(1 + ω).

We conclude that ⟨q(τ)⟩ω gets an extra contribution due to CFG of the order
√
de−t.

CFG indeed shifts the mean value. The amount of shift is of order
√
de−t in Regime I. However, as

we shall see next the CFG has almost no effect in Regime II, so we can use the result of the previous
section to argue that the total shift due to CFG is the one of CFG in Regime I followed by a switch
at ω = 0 in Regime II, i.e., it is of order one.

CFG CONTRIBUTION TO THE SCORE IN REGIME I VS IN REGIME II

Another interesting inequality can be derived for the difference between the CFG and the standard,
non-guided score, SCFG − SC , evaluated on trajectories corresponding to CFG:

SCFG − SC = ω

√
de−(tf−τ)

Γ(tf − τ)

1− tanh

(
q
√
de−(tf−τ)

Γ(tf − τ)

) . (29)

We use the fact that for the same thermal noise, we have qω(τ) ≥ qω=0(τ) because the CFG force
is always equal or larger than the ω = 0 one. Therefore for a given (the same) thermal history we
have:

− tanh

(
qω(τ)

√
de−(tf−τ)

Γ(tf − τ)

)
≤ − tanh

(
qω=0(τ)

√
de−(tf−τ)

Γ(tf − τ)

)
, (30)

and we can obtain:

SCFG − SC ≤
√
de−(tf−τ)

Γ(tf − τ)

1− tanh

(
qω=0(τ)

√
de−(tf−τ)

Γ(tf − τ)

) . (31)

This inequality tells us, as expected, that the extra CFG contribution to the score is very small at
the beginning of the backward process. Its mean increases, and is of the order of one during the
backward process in Regime I. However, after the speciation time qω=0(τ) is a Gaussian variable
with a mean

√
de−(tf−τ) much larger than the square root of the variance. Therefore, replacing the

fluctuating variable by its mean we obtain

SCFG − SC ≤
√
de−(tf−τ)

Γ(tf − τ)

1− tanh

(
de−2(tf−τ)

Γ(tf − τ)

) . (32)

In Regime II, tf − τ is of order one, and using the asymptotic form of the hyperbolic tangent one
finds that

SCFG − SC ≤
√
de−(tf−τ)

Γ(tf − τ)
exp

(
−2

de−2(tf−τ)

Γ(tf − τ)

)
. (33)

Therefore in Regime II the extra contribution to the score is exponentially small in d and its effect
is completely negligible with respect to the one in Regime I.
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ANALYSIS OF THE CFG EFFECT ON THE VARIANCE

Let us derive the equation for ⟨q2(τ)⟩ω − ⟨q(τ)⟩2ω .

Using Itô calculus, we have (multiplying by q(τ) in the equation for dq(τ)
dτ ):

dq2(τ)

dτ
= 2 + 2q2(τ)

(
1− 2

Γ(tf − τ)

)
+ 2q(τ)

2
√
d

Γ(tf − τ)
e−(tf−τ)

+ 2
2ω

√
d

Γ(tf − τ)
e−(tf−τ)

q(τ)− q(τ) tanh

(
q(τ)

√
de−(tf−τ)

Γ(tf − τ)

)
+ 2q(τ)η(τ). (34)

Taking the average and subtracting 2⟨q(τ)⟩ω d⟨q(τ)⟩ω
dτ , we find the equation for ⟨q2(τ)⟩ω − ⟨q(τ)⟩2ω:

d⟨q2(τ)⟩ω − ⟨q(τ)⟩2ω
dτ

= 2 + 2
(
⟨q2(τ)⟩ω − ⟨q(τ)⟩2ω

)(
1− 2

Γ(tf − τ)

)

+ ω
4
√
de−(tf−τ)

Γ(tf − τ)

⟨q(τ)⟩ω

〈
tanh

(
q
√
de−(tf−τ)

Γ(tf − τ)

)〉
ω

−⟨q(τ) tanh

(
q
√
de−(tf−τ)

Γ(tf − τ)

)
⟩ω

 . (35)

At the beginning of the backward process, one can expand tanh(x) and observe that the term in the
parentheses is proportional to:

−
(
⟨q(τ)2⟩ω − ⟨q(τ)⟩2ω

)
, (36)

which is negative. Therefore, we can conclude that the classifier-free-guidance-added term will
result in shrinkage of the variance.

As for the mean, the main CFG effect on the variance is produced in Regime I, since the CFG score
term is exponentially small in Regime II.

E EFFECT OF NONLINEAR CLASSIFIER-FREE GUIDANCE IN FINITE
DIMENSIONS

E.1 NONLINEAR CFG ALONG M

Recall the useful quantities:

θ ≡ x⃗ · m⃗ e−t

Γt
, ˆ⃗m ≡ m⃗

∥m⃗∥
. (37)

From Eqs. equation 11-equation 12, the score difference is aligned with m⃗:

S⃗t(x⃗, c)− S⃗t(x⃗) =
∥m⃗∥e−t

Γt

(
c− tanh θ

)
ˆ⃗m. (38)

Denote A ≡ ∥m⃗∥e−t

Γt

(
c − tanh θ

)
, so that S⃗t(x⃗, c) − S⃗t(x⃗) = A ˆ⃗m. With the power-law guidance

ϕt(s) = ωsα, the nonlinear CFG score reads

S⃗PL
t (x⃗, c) = S⃗t(x⃗, c) + ω

(
S⃗t(x⃗, c)− S⃗t(x⃗)

) ∣∣S⃗t(x⃗, c)− S⃗t(x⃗)
∣∣α, (39)
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Hence the projection onto ˆ⃗m becomes

S⃗PL
t (x⃗, c) · ˆ⃗m = S⃗t(x⃗, c) · ˆ⃗m+ ωA |A|α (40)

= − x⃗ · ˆ⃗m
Γt

+
∥m⃗∥e−t

Γt
c+ ω

(
∥m⃗∥e−t

Γt

)1+α

(c− tanh θ) |c− tanh θ|α. (41)

Therefore, the SDE for q becomes with ∥m⃗∥ = d and selecting c = +1:

dq

dτ
= q

(
1− 2

Γ

)
+

2d

Γ
e−(tf−τ) + 2ω

d1+α

21+α

( 1
Γ
e−(tf−τ)

)1+α(
1− tanh(βq)

)1+α
+ η(τ).

(42)

Again, setting α = 0 recovers the earlier linear-CFG equation (Eq. 22) exactly.

NONLINEAR VS LINEAR EXTRA-DRIFT

We use the same notation as before. Define

u(q) = 1− tanh(βq), β =
1

Γ
d e−(tf−τ).

(Note that for the “+m⃗” class one has u(q) > 0, hence u|u|α = u1+α.)

The nonlinear extra drift (coming from the power-law CFG, for the +m⃗ class) is

∆F (q) = 2ω
d1+α

21+α

( 1
Γ
e−(tf−τ)

)1+α

u(q)1+α,

while the linear-CFG (α = 0) extra drift is

∆F0(q) = 2ω
d

2Γ
e−(tf−τ) u(q).

Therefore we look at the following identity:

Pointwise ratio (nonlinear / linear):

∆F (q)

∆F0(q)
=

[
d e−(tf−τ)

Γ
u(q)︸ ︷︷ ︸

=:B(q)

]α
= B(q)α, B(q) :=

d e−(tf−τ)

Γ
u(q).

Hence whether the nonlinear guidance amplifies (ratio > 1) or suppresses (ratio < 1) the linear-CFG
push at a given q depends only on the sign of α and whether the base B(q) is greater or smaller than
1:

• If B(q) > 1: α > 0 amplifies the push, α < 0 suppresses it.

• If B(q) < 1: α > 0 suppresses the push, α < 0 amplifies it.

Hessian / curvature effect. Recall that the drift (deterministic part) is written F (q, τ) and the
potential V satisfies F = −∂qV . The curvature (Hessian) is ∂2

qV = −∂qF . The nonlinear term
contributes an extra piece to ∂qF through the q-derivative of u1+α. Since u(q) > 0 we have

d

dq

[
u(q)1+α

]
= (1 + α)u(q)α u′(q).

Using u′(q) = −β sech2(βq) we obtain

d

dq

[
u(q)1+α

]
= −(1 + α)β sech2(βq)u(q)α.
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Therefore the additional contribution to ∂qF coming from the nonlinear term is (up to the multi-
plicative prefactors shown above)

∆
(
∂qF

)
= −2ω

d

1 + α

( 1
Γ
e−(tf−τ)

)1+α

(1 + α)β sech2(βq)u(q)α,

which simplifies to

∆
(
∂qF

)
= −2ω d

( 1
Γ
e−(tf−τ)

)1+α

β sech2(βq)u(q)α.

Since ∂2
qV = −∂qF , the corresponding increment in curvature is

∆
(
∂2
qV
)

= +2ω (1 + α)
d

1 + α

( 1
Γ
e−(tf−τ)

)1+α

β sech2(βq)u(q)α,

or, more compactly (omitting positive constants),

∆
(
∂2
qV
)
∝ d

( 1
Γ
e−(tf−τ)

)1+α

β sech2(βq)u(q)α.

Comparison with the linear (α = 0) curvature increment. The ratio of nonlinear vs linear
curvature increments is essentially

∆(∂2
qV )α

∆(∂2
qV )0

≈ B(q)α,

so (for the same reasons as for the drift) whether the nonlinear term increases or decreases the
curvature relative to α = 0 depends on the sign of α and on whether B(q) > 1 or B(q) < 1:

• If B(q) > 1: α > 0 amplifies the curvature increase, α < 0 reduces it.
• If B(q) < 1: α > 0 reduces the curvature increase, α < 0 amplifies it.

SELECTING α IN THE NONLINEAR CFG SCHEME

Consider the projected SDE for the component q = x⃗ · m⃗/
√
d under the nonlinear power-law CFG

scheme equation 42. We claim that, given a fixed dimension d, mean vector m⃗, variance σ2, and
a linear CFG scheme with weight ω, one can always construct a simple nonlinear alternative with
α ∈ {α′, 0}, where α′ > −1. We first develop the argument for α′ > 0. The reasoning extends
directly to −1 < α′ < 0, with the roles of the cases B(q) < 1 and B(q) > 1 reversed. The essential
conclusion is that, in very low dimensions, effective use of nonlinear CFG requires avoiding an
overly strong push, even in the correct direction, since the system is unstable and highly sensitive.
For case α′ > 0 our claims are as follows:

1. The nonlinear term either suppresses the mean push along the conditioning direction (when
the score difference is small, B(q) < 1) or preserves it (when the score difference is large,
B(q) > 1).

2. The confinement of the effective potential is either reduced (when the score difference is
small, B(q) < 1) or kept the same relative to the linear CFG case (when the score difference
is large, B(q) > 1).

Recall that

B(q) =
∥m⃗∥e−t

Γt

(
1− tanhΘ

)
, Θ =

x⃗ · m⃗ e−t

Γt
,

which quantifies the conditional–unconditional score difference projected along m⃗.

In small dimensions, the generative dynamics of diffusion or flow-matching are highly sensitive
to large guidance weights ω when α = 0. In this regime, the system is not “self-correcting” via
high-dimensional averaging, so a large push along m⃗ can cause overshooting or instability.

- When B(q) > 1, the score difference ∆S = St(x⃗, c) − St(x⃗) is already large, meaning that the
conditional signal is strong. In this case, setting α = 0 preserves the linear push exactly, ensuring
that the system is guided correctly without amplification. Choosing α > 0 here would amplify the
already strong signal, risking overshoot.
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- When B(q) < 1, the score difference is small, and the conditional signal is weak. Setting α = α′ >
0 dampens the nonlinear CFG term, preventing small and unreliable differences from producing
disproportionate guidance. The nonlinear term is therefore suppressed where it is least reliable, and
preserved where the signal is sufficiently strong but not too large.

Thus, by selecting α = α′ for B(q) < 1 and α = 0 otherwise, the dynamics retain a stable,
interpretable push along m⃗, while ensuring that curvature is never increased beyond that of the linear
CFG case. In low dimensions, this prevents both over-confinement of the potential and excessive
push, providing a natural safeguard against instability.

Existence of regimes with B(q) < 1. The base factor introduced above was

B(q) =
d e−(tf−τ)

Γ
u(q), u(q) = 1− tanh(βq), Γ = Γtf−τ .

Two simple observations guarantee that the nonlinear scheme will sometimes suppress the linear-
CFG effects (i.e. produce B(q) < 1) and therefore provide a benefit relative to standard CFG.

First, in the long-time limit t≡ tf − τ → ∞ we have e−t → 0 and Γ → 1, hence

lim
t→∞

B(q) = 0 < 1,

for every fixed q. Thus there always exist times during the backward process where B(q) < 1 and
the nonlinear scheme suppresses the linear-CFG push and curvature increase.

Second, at the other endpoint t = 0 (the earliest time in the backward process) one has Γ(0) =
1 + (σ2 − 1)e−0·2 = σ2, so

B(q)
∣∣∣
t=0

=
d

σ2
u(q) ≤ 2d

σ2
.

Consequently, in very small dimension, if the problem parameters satisfy the condition

2d

σ2
< 1 =⇒ B(q)

∣∣
t=0

< 1 for all q,

then B(q) < 1 already at t = 0 (and hence in a neighbourhood of t = 0). Even when 2d/σ2 ≥ 1, the
inequality B(q) < 1 may still hold for most q if u(q) is typically small (i.e. when tanh(βq) ≈ 1).

Combining these remarks we conclude:

• There always exist times (in particular sufficiently large t) for which B(q) < 1, so the
nonlinear scheme will suppress linear-CFG effects at those times.

• For small d or sufficiently large noise variance σ2 (more precisely when 2d/σ2 < 1), one
also has B(q) < 1 near t = 0 for all q, so the nonlinear scheme suppresses CFG uniformly
at early times as well.

• In practice, therefore, the nonlinear power-law CFG will often reduce the unwanted CFG
side-effects (mean overshoot and excessive confinement) across substantial portions of the
trajectory; this is the regime exploited in our experiments.

This means that the proposed simple nonlinear version of the CFG will always be more beneficial
than standard CFG by reducing its unwanted effects. We now proceed to argue about the frequency
of the event B(q) > 1.

In practice, we found that setting α > 0 throughout generation performed well, without explicitly
disabling nonlinear guidance when B(q) > 1. For simplicity, we adopted this approach across all
our experiments. In Fig. 11, we show specifically that for a wide range of data parameters, numer-
ical simulations indicate that the efent B(q) > 1 happens very rarely. Nonetheless, we anticipate
that adaptively switching may provide further improvements in very low-dimensional settings, with
minor gains in higher dimensions.

F EXPERIMENTAL DETAILS: GAUSSIAN MIXTURES

In this section, we present experimental details for the numerical simulations involving Gaussian
mixtures, describing the procedures and the hyperparameter configurations.
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Figure 11: Histograms of the event B(q) > 1 for different values of α ∈ {0.0, 0.25, 0.5, 0.75, 0.9}
and dimensions d = 3, 20, 50, with ω fixed at 2. The red line marks the cutoff B(q) = 1. Across all
settings, the event B(q) > 1 is seen to be rare, confirming that the condition under which α would
be set to zero occurs infrequently in practice.

Numerical simulations. In the case of a mixture of two Gaussian clusters centered on ±m⃗ ∈ Rd

with variance σ2, the score function reads as

StCFG
(x⃗(t), c) = −x(t)

Γt
+ ω

m⃗e−t

Γt

c− tanh

(
x⃗(t) · m⃗e−t

Γt

)+
cm⃗et

Γt
,

where Γt = ∆t + σ2e−2t, with ∆t = 1 − e−2t. We can then discretize the stochastic differential
equation associated to the backward process as

x⃗(t+ 1) = x⃗(t) + η
[
x⃗(t) + 2StCFG

(x⃗(t), c)
]
+ η⃗
√
2τ/L,

where η⃗ ∼ N (0, I), with tf = 8 the time horizon and tf/L = 0.01. We use m⃗ = [1, . . . , 1], σ2 =
1, and each point is obtained by averaging over 100 initial conditions. The speciation time ts is
calculated as ts = − 1

2 log d. Throughout the experiments, we plot the evolution of q(t) = x⃗·m⃗
|m⃗| ,

conditioning the guidance on the positive class with c = 1.
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G EXPERIMENTAL DETAILS: REAL-WORLD ANALYSES

G.1 ASSETS

In Table 2 we list the datasets and models used in our work along with their licensing.

Table 2: Assets used for our work.
Name License/Link

COCO’14 https://www.cocodataset.org
ImageNet https://www.image-net.org
CC12M https://github.com/google-research-datasets/conceptual-12m
YFCC100M https://www.multimediacommons.org
Florence-2 https://huggingface.co/microsoft/Florence-2-large/blob/main/LICENSE

DiT https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt
EDM2 https://github.com/NVlabs/edm2/blob/main/LICENSE.txt
MMDiT https://github.com/lucidrains/mmdit/blob/main/LICENSE
MDTv2 https://github.com/sail-sg/MDT/blob/main/LICENSE

G.2 PERFORMING THE TIME REPARAMETERIZATION

In the second part of the paper, we evaluate the score of DiT models, in discrete time, as intro-
duced by Peebles & Xie (2023). In this context, the forward process has a linear variance schedule{
β′
t

}L
t′=1

, where L is the time horizon given as a number of steps. Here, the variance evolves lin-
early from β1 = 10−4 to β1000 = 2× 10−2. An unguided sample, at timestep t′, denoted x⃗

(
t′
)

can
be expressed readily from its initial state, x⃗(0) = a⃗, as

x⃗
(
t′
)
=

√
ᾱ
(
t′
)
a⃗+

√
1− ᾱ (t′)ξ⃗

(
t′
)

where ᾱ
(
t′
)
=
∏t′

s=1 (1− βs) and ξ⃗ is standard Gaussian noise. This equation corresponds to the
discretization of the Ornstein-Uhlenbeck Eq. (9) under the following timestep t′ reparameterization,

t = −1

2
log
(
ᾱ
(
t′
))

,

where time t is as defined in the main manuscript. This gives the map between our theoretical
timescale used in Gaussian mixtures, and the one used in real-world settings. We note that, as the
neural network predicts the noise, in order to calculate the score, one needs to normalize the output
by the standard deviation (depending on the variance schedule). In this case, this corresponds to
dividing the neural network output by σ(t′) =

√
1− ᾱ(t′). In numerical experiments, we divide

the CFG-added-term by σ(t′) + 1 to avoid numerical errors. This is theoretically justified due to
the fact that, as discussed in main paper, the score difference |St′(x⃗, c) − St′(x⃗)| for large forward
times decays exponentially (as e−t′ ) to zero.

For completeness, we present the full comparison of numerical simulations to real-world using
the time-reparameterization to plot the timesteps on the same time-scale. Our findings are por-
trayed in Figure 12. As each framework uses a separate time reparameterization, the x-axis
needs to be recalculated accordingly. For the EDM2 framework (Karras et al., 2022), this can
be done as follows: given a noise schedule σ(t), the reparameterization can be calculated as
t′(t) = (1/2) log

(
1 + σ2(t)

)
, assuming that s(t) = 1. For the case s(t), one needs to resort to

equation Eq. (2).

G.2.1 APPLYING THE FORMULA TO VELOCITY FLOW-MATCHING.

For velocity-based flow models (Achilli et al., 2025) it follows that: ũt(x|y) = ut(x|y) +
ω[ut(x|y) − ut(x)] and from their Lemma 1, ut(x|y) + bt∇ log pt(x|y). This implies that
|ut(x|y) − ut(x)|α = bαt |∇ log pt(x|y) − ∇ log pt(x)|α. In the case of straight paths, where
αt = tand σt = 1 − t (as used in our experiments), bαt = ( 1−t

t )α. Therefore, Power-Law CFG
with ϕt(s) = ωsα does indeed correspond to scaling the velocity difference according to the afore-
mentioned equations. However, since the score difference δSt = |∇ log pt(x|y) − ∇ log pt(x)|
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decays exponentially, both approaches - simply exponentiating vα and scaling the velocity differ-
ence to determine the score- satisfy the nonlinear guidance condition lims→0 sϕt(s) = 0. Directly
exponentiating vα corresponds to the choice ϕt(s) = ωbαt s

α. In our experiments, to stay consistent
with the definition of Power-Law CFG where ϕt(s) = ωsα, we scaled the velocity difference ac-
cording to formulas above. We also examined directly exponentiating vα: although it did improve
over standard CFG, it underperformed compared to Power-Law CFG.

G.3 HYPERPARAMETER CONFIGURATIONS

Here, we give exact hyperparameters used for reproducing all our experiments. The real-world
experiments are performed using NVIDIA H100 Tensor Core - 80GB HBM3. The EDM2-S model
has a model size of 280 Mparams and 102 Gflops, whereas the DiT-XL/2 model has model size of
675 Mparams and 525 Gflops. Parameter α is tuned in (0.3, 0.95) with an increment of 0.05 and
parameter ω is tuned in (1., 12.) with an increment of 0.05. To tune ω, we first perform a small grid
search of the increment of 1. and then do a further extensive search of the best performing ωprelim

in the range (ωprelim−2., ωprelim+2.) with the 0.05 increment. We begin with the hyerparameters
used in our figures.

In Figure 14, we plot the generation of images starting from 7 initial seeds for the DiT/XL-2 model
trained on ImageNet-1K (256×256) for (1) conditional model without using guidance, (2) standard
CFG with ω = 4., and Power-Law CFG with α = 0.9, ω = 8.

In Figure 2, the plots correspond to the histograms of the samples generated using the backward
process with dimensions d ∈ {200, 5, 5} and guidance parameter ω ∈ {0, 0.2, 15}, with σ2 = 1,
averaged over 10, 000 trajectories. The non-linear parameter has α = 10.

In Figure 4, we use 20-dimensional Gaussian simulation with σ2 = 1 and vary the nonlinear param-
eter as shown in the legend. For the real-world experiments we use the Class-conditional EDM2-S
trained on ImageNet-1K 256x256 and an in-house text-to-image model with MMDiT architecture.

In Figure 5, we perform sensitivity analysis for EDM2-S trained on ImageNet-1K (512 × 512),
taking α from 0. to 0.99 with 20 evenly spaced values, and ω from 1. to 10. with 20 evenly spaced
values as well. The right plot involves α values of 0.2, 0.4, 0.6, 0.8, 0.9 with ω in the range of 1. to
12.5 with evenly spaced 20 points.

In Figure 6 we show generations of DiT/XL-2 trained on ImageNet-1K (256× 256). The red panel
contains generations from weak and strong standard CFG (corresponding to ω = 2. and ω = 5.
respectively). The green panel corresponds to power-law CFG (α = 0.9) with weak and strong
guidance (corresponding to ω = 2. and ω = 10.). The blue panel corresponds to combinations of α
and ω (0, 2.5), (0.25, 4.), (0.5, 6.) and (0.9, 8.).

In Figure 3, we plot the evolution of the 1D backward dynamics with means at ±4 and unit variance.
The potential plotted corresponds to equation V (q, t) = 1

2q
2 − 2 log cosh

(
qe−(t−ts)

)
. For the

derivation of this potential, see Appendix B.2 in Biroli et al. (2024).

In Figure 7, we examine the following functions:

Vclass(q, t; c) =
1

2
q2 − ce−(t−ts)q + 2

Vextra(q, t; c) = −ce−(t−ts)q + log

(
cosh

(
qe−(t−ts)

))
+ log(2),

where the plots correspond to Vclass, Vextr and (Vclass + ωVextr) with ω = 3 respectively. We select
c = 1, and fix the speciation time to ts = .5. The additive constants are added for clarity only.

In Figure 8, the first two plots correspond to the histograms of the samples generated using the
backward process with dimensions d ∈ {2, 200} and guidance parameter ω ∈ {0, 0.2, 15}, with
σ2 = 1, averaged over 10, 000 trajectories. The last two plots correspond to the actual trajectories
projected onto the target mean +m⃗ for values of ω ∈ {0., 5., 10., 15., 20.}.

4We expect that the images of bees on yellow flowers correspond to a high-likelihood mode of the bee
class distribution. A similar trend appears for jellyfish, where stronger guidance produces images with more
extensive blue backgrounds (Figure 6, left panel). This likely reflects stronger guidance pushing samples toward
higher-likelihood regions—a connection also noted in the Autoguidance paper [(Karras et al., 2024a), Sec. 3],
linking optimal score matching to ML estimation.
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Figure 12: Evolution of the score differences for numerical simulations and real-world exper-
iments projected onto the same time-scale for direct comparison. First: Numerically simulating
mixture of two, four, and eight Gaussians with equidistant means on a sphere (r =

√
d), with vary-

ing dimension d, with ω = 4, σ2 = 1, averaged over 10,000 trajectories. As d increases, the score
difference starts to increase at an earlier backward time τ . Additionally, as the number of classes
increases, the magnitude of the score difference grows, as well as the duration of large difference
between the scores. Second: Three DiT/XL-2 models trained on ImageNet-1K using 2, 500, and
1000 classes (image size 512 × 512). We observe a similar pattern: as d increases, the score dif-
ference becomes larger at an earlier time. Furthermore, as the number of classes increases, the
magnitude of the score difference increases, together with the duration for which the difference re-
mains large. Third: evolution of the remaining models used in our experiments (EDM2-S, MMDiT
and MDTv2). We observe a similar behavior to theory and the DiT/XL-2 models.

Table 3: Hyperparameter configurations used throughout the experiments.
(α, ω) DiT/XL-2 EDM2-S Diff. MMDiT CC12m Diff. MDTv2 IMN-1K FM MMDiT COCO FM MMDiT CC12M

Standard (0., 1.5) (0., 1.4) (0., 1.55) (0., 1, 2) (0., 2.) (0., 2.1)
Non-linear (0.75, 4.85) (0.85, 11.4) (0.6, 7.0) (0.8, 8.5) (0.7, 10.15) (0.6, 8.05)

Non-lin. + Limited (0.8, 4.95) (0.9, 12.05) (0.55, 8.25) (0.85, 8.25) (0.75, 10.05) (0.65, 7.85)
Non-lin. + CADS (0.7, 4.75) (0.80, 11.75) (0.75, 8.15) (0.80, 8.40) (0.75, 10.75) (0.55, 7.90)

In Figure 9, we plot the backward diffusion in a Gaussian mixture model with d = 16, σ2 = 4, ω =
8. The CFG is either run at all times (top curve), stopped at times t1 or not used at all (bottom curve).

In Figure 10, we perform linear CFG with ω = 8 from t = 5 to t = t1, after which we turn CFG
off (ω = 0) at times t1 = 0.69, 1.38, 3.19.

In Figure 12, we use DiT/XL-2 model trained on 2, 500 and 1000 classes. For 2 classes, we have
selected the same classes as in Biroli et al. (2024), and for the 500 classes we selected the first 500
classes in ImageNet-1K. The x-axis represents the Forward time t, where the parameterization is
obtained as explained in Section G.2.

In Figures 33-34, we perform the same experimenet as in Figure 12 and use d = 16 and σ2 = 4.

Finally, in the first column of Figure 35, we plot the estimated Jensen-Shannon Divergence between
the target samples corresponding to a randomly selected class and the diffusion particles throughout
the backward trajectory. Note that this is performed in latent space. For obtaining the middle
column, we first take all data samples from one class, embed them into the latent space and calculate
the centroid corresponding to this class. Then, we normalize the centroid (making it unit norm) and
plot the dot product of the particles throughout the backward diffusion process with the calculated
centroid. The right column corresponds to the score difference. Across all experiments, we selected
ω = 4, sampled using DDPM (Ho et al., 2020) using 250 sampling steps, averaged over 25 samples.
All other hyperparameter configurations are set to the default.

Table 3 displays the hyperparameters used to obtain the results given in Table 1. The evaluation
code relied on EvalGIM library by Hall et al. (2024).

G.4 FURTHER RESULTS

Here, we detail the remaining experiments conducted. We provide the following:

• Diversity and coverage metrics corresponding to experiments in Table 1 (see Table 4)
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Figure 13: Evolution of the CFG score difference, from noise (t = 1) to data (t = 0). Left (stand. CFG):
Numerically simulating mixture of two Gaussians: as d increases, the score difference becomes substantial
earlier (this happens during Regime I). Middle and Right (stand. CFG): Real-world experiments using
advanced models show consistent behavior with theory: monotonically increasing score difference followed
by decay after a certain point.

• Ablation studies showing that Power-Law CFG outperforms standard linear CFG when
changing the number of steps (see Tables 5-10)

• Sensitivity analysis showing the FID benefit for increasing value of α (see Section G.4.1,
Figures 14-16)

• Further qualitative analyses of power-law CFG for either fixed ω and varying α or varying
ω and varying α (see Sections G.8.1 and G.8.2)

• Further generation examples of DiT/XL-2 and MMDiT diffusion model (see Sections G.8.3
and G.8.4)

Diversity and coverage metrics. In Table 4 present additional quantitative evaluations of our
method, focusing on diversity and coverage metrics (as described in Hall et al. (2024)), which com-
plement the results shown in Table 1. Our analysis compares power-law CFG to standard CFG
and state-of-the-art guidance methods, including combinations with CADS (Sadat et al., 2023) and
limited-guidance (Kynkäänniemi et al., 2024), which proved to be the most competitive approaches.
As demonstrated in the main manuscript, power-law CFG generally outperforms standard CFG (in-
dicated by arrows in the table). Moreover, when combined with CADS and limited-interval guid-
ance, it yields improved results over existing methods in many cases.

Ablation studies. In Tables 5 through 10, we conduct ablation studies on two class-conditional
and four text-to-image models, demonstrating that non-linear power-law CFG consistently surpasses
standard CFG across varying sampling steps. The results show improved FID performance and en-
hanced outcomes across multiple metrics when using the non-linear approach compared to standard
CFG.

Sensitivity analysis. In Section G.4.1, we present additional sensitivity analyses that build on
Section 5 and Figure 5, demonstrating that high values of α consistently enhance performance, im-
proving robustness and stability during ω tuning. As noted in the main manuscript, while power-law
CFG introduces an additional hyperparameter, α, extensive hyperparameter tuning was unnecessary,
with large values like α = 0.9 consistently performing well. This is evidenced in Section G.4.1,
Figures 14 to 16, which show that higher α values reliably improve FID scores. Class-conditional
models (Figure 14) exhibit greater benefits than text-to-image models (Figures 15 and 16), though
both show improved performance with Power-Law CFG compared to standard CFG.

Further qualitative analyses. In Sections G.8.1 and G.8.2, we provide additional qualitative ex-
amples for DiT-XL/2. Specifically, we conduct two studies: one varying the guidance parameter ω
with a fixed α, and another varying α with a fixed ω. When α is fixed, increasing ω can lead to
issues such as complete mode collapse (e.g., for the jellyfish class), oversaturation (e.g., for the bee
class), or a significant loss of diversity (e.g., for the dung beetle class), which are common artifacts
of standard classifier-free guidance. These effects are mitigated when using a non-linear power-law
guidance approach. The second study explores the impact of increasing α while keeping ω con-
stant, demonstrating enhanced diversity as α strength increases. In Figure 13, we plot how the score
difference evolves for other CC and T2IM models used in our analyses.
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Further generation examples. In Sections G.8.3 and G.8.4, we present additional generation
examples for class-conditional (DiT/XL-2) and text-to-image (MMDiT) models, demonstrating how
power-law CFG enhances image details, thereby improving image quality and fidelity for individual
images, and increases diversity when examining a set of images for a specific class.

Table 4: Comparison of EDM2-S on ImageNet-1K 512x512 data, Diffusion trained text-to-image
MMDiT on CC12m data, and Flow-matching trained text-to-image MMDiT on COCO data. Bolded
are the best results and underlined are the second best.

Model EDM2-S (CC, IM-1K 512) DiT/XL-2 (CC, IM-1K 256) Diff. MMDiT (T2IM, CC12m) FM MMDiT (T2IM, COCO)
Density Coverage Density Coverage Density Coverage Density Coverage

Standard (Ho & Salimans, 2022) 0.850 0.764 0.951 0.801 1.091 0.840 0.902 0.772
Scheduler (Wang et al., 2024) 0.867 0.780 1.117 0.790 1.266 0.860 0.908 0.795
Limited (Kynkäänniemi et al., 2024) 0.845 0.777 1.130 0.840 1.258 0.857 0.915 0.808
Cosine (Gao et al., 2023) 0.850 0.769 1.102 0.822 1.106 0.840 0.920 0.802
CADS (Sadat et al., 2023) 0.854 0.765 0.999 0.853 1.222 0.860 0.923 0.779
APG (Sadat et al., 2024) 0.845 0.760 1.033 0.867 1.095 0.858 0.915 0.797
REG (Xia et al., 2024) 0.850 0.771 1.112 0.833 1.091 0.855 0.903 0.783
CFG++ (Chung et al., 2024) N/A N/A N/A N/A 1.265 0.859 0.919 0.784

Power-law CFG (Ours) 0.845 (↓) 0.760 (↑) 0.986 (↑) 0.844 (↑) 1.128 (↑) 0.850 (↑) 0.918 (↑) 0.778 (↑)
Power-law CFG + Limited (Ours) 0.850 (↑) 0.778 (↑) 1.115 (↓) 0.835 (↓) 1.286 (↑) 0.860 (↑) 0.920 (↑) 0.795 (↓)
Power-law CFG + CADS (Ours) 0.862 (↑) 0.782 (↑) 1.071 (↑) 0.876 (↑) 1.279 (↑) 0.862 (↑) 0.924 (↑) 0.804 (↑)

Table 5: Ablation study: Changing the number of sampling steps for Class-conditional: DiT
ImageNet-1K 256x256

Version Num. steps α ω FID (↓) IS (↑) Precision (↑) Recall (↑) sFID (↓)

Stand. CFG

50 0 1.5 3.33 259.88 0.8163 0.5474 7.406
100 0 1.4 2.64 233.72 0.8027 0.5831 5.720
150 0 1.3 2.38 233.52 0.8032 0.5936 5.462
200 0 1.35 2.29 234.92 0.8031 0.5950 5.331
250 0 1.5 2.27 278.30 0.8291 0.5840 4.601

Non-lin. CFG

50 0.6 4.35 3.03 284.55 0.8215 0.5757 7.110
100 0.6 3.4 2.32 274.36 0.8199 0.6012 5.432
150 0.6 3.4 2.19 274.39 0.8202 0.6071 5.512
200 0.75 4.8 2.17 276.98 0.8204 0.5956 5.567
250 0.75 4.85 2.05 279.90 0.8310 0.5950 4.670

Table 6: Ablation study: Changing the number of sampling steps for Class-conditional: EDM2-S
ImageNet-1K 512x512

Version Num. Steps α ω FID (↓) α ω FIDDINO (↓)

Stand. CFG

8 0 1.95 4.78 0 2.3 103.33
16 0 1.50 2.52 0 2.3 57.47
32 0 1.40 2.29 0 2.3 54.78
64 0 1.50 2.25 0 2.15 54.39

Non-lin. CFG

8 0.05 2.30 4.74 -0.25 1.5 100.81
16 0.25 2.30 2.32 -0.05 2.15 56.92
32 0.85 11.40 1.93 0.35 2.5 52.77
64 0.85 11.30 1.89 0.35 2.1 52.56
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Table 7: Ablation study: Changing the number of sampling steps for Diffusion text-to-image:
MMDiT CC12m

Version Num. Steps α ω FID (↓) Clip score (↑) Coverage (↑) Density (↑) Precision (↑) Recall (↑)

Stand. CFG

20 0 1.75 8.98 22.581 0.8392 1.104 0.6623 0.5545
35 0 1.75 8.79 22.532 0.8450 1.124 0.6717 0.5590
50 0 1.55 8.58 22.111 0.8401 1.109 0.6612 0.5692
100 0 1.75 8.38 22.298 0.8462 1.117 0.6765 0.5698

Non-lin. CFG

20 0.25 3.05 8.94 22.773 0.8424 1.114 0.6619 0.5495
35 0.65 7.5 8.40 22.590 0.8491 1.126 0.6638 0.5582
50 0.60 7.0 8.11 22.415 0.8503 1.128 0.6703 0.5532
100 0.75 9.5 8.02 22.563 0.8472 1.115 0.6747 0.5723

Table 8: Ablation study: Changing the number of sampling steps for Diffusion text-to-image:
MDTv2 ImageNet-1K 512x512

Version Num. Steps α ω FID (↓) Clip score (↑) Coverage (↑) Density (↑) Precision (↑) Recall (↑)

Stand. CFG

20 0 1.55 5.30 23.949 0.8218 1.167 0.7475 0.5133
30 0 1.55 4.09 23.998 0.8292 1.233 0.7492 0.5264
40 0 1.6 3.85 24.011 0.8311 1.178 0.7602 0.5294
50 0 1.2 3.68 24.306 0.8318 1.150 0.7510 0.5989

Non-lin. CFG

20 0.6 6.0 4.88 24.154 0.8251 1.236 0.7503 0.4916
30 0.6 6.0 4.03 24.033 0.8344 1.205 0.7583 0.5332
40 0.7 7.0 3.73 23.367 0.8353 1.181 0.7557 0.5546
50 0.8 8.5 3.57 25.339 0.8361 1.170 0.7513 0.5609

Table 9: Ablation study: Changing the number of sampling steps for Flow-Matching text-to-image:
MMDiT on COCO

Version Num. Steps α ω FID (↓) Clip score (↑) Coverage (↑) Density (↑) Precision (↑) Recall (↑)

Stand. CFG

20 0 2.85 6.84 26.373 0.7529 0.8820 0.6121 0.5604
30 0 1.95 5.84 25.948 0.7581 0.8668 0.6051 0.5879
40 0 2.05 5.62 25.817 0.7651 0.8798 0.6091 0.5978
50 0 2.00 5.20 25.714 0.7726 0.9026 0.6299 0.5940

Non-lin. CFG

20 0.5 9.75 6.47 25.981 0.7241 0.7762 0.5719 0.5851
30 0.5 9.45 5.62 26.003 0.7577 0.8457 0.6105 0.5874
40 0.6 9.05 5.45 25.113 0.7633 0.8549 0.6149 0.6030
50 0.7 10.15 4.81 25.848 0.7782 0.9183 0.6208 0.6191

Table 10: Ablation study: Changing the number of sampling steps for Flow-Matching text-to-
image: MMDiT on CC12m

Version Num. Steps α ω FID (↓) Clip score (↑) Coverage (↑) Density (↑) Precision (↑) Recall (↑)

Stand. CFG

20 0 2.75 10.75 25.224 0.8289 1.069 0.6396 0.5803
30 0 1.95 9.85 24.935 0.8318 1.068 0.6946 0.6000
40 0 2.0 9.50 25.018 0.8461 1.103 0.7064 0.5907
50 0 2.1 9.46 25.133 0.8520 1.145 0.7159 0.5946

Non-lin. CFG

20 0.2 3.25 10.68 25.585 0.8301 1.075 0.7101 0.5815
30 0.5 10.0 9.81 25.002 0.8338 1.085 0.6968 0.5909
40 0.6 9.35 9.17 24.794 0.8352 1.087 0.6909 0.6030
50 0.6 8.05 9.00 24.723 0.8397 1.087 0.6911 0.6023

G.5 LOW-DIMENSIONAL EXPERIMENTS

In the following experiments, we have trained a U-ViT-like model (Bao et al., 2022) on lower-
dimensional datasets to confirm that nonlinear CFG provides further improvemenets to standard
CFG in lower-dimensional settings. For CIFAR10 the architecutre closely mimics that of U-ViT-
S/2 and for ImageNet64x64 and Imagenet32x32 U-ViT-M/4. We have obtained ImageNet32x32 by
using bilinear downsampling on ImageNet64x64.

Regarding sampling, for CIFAR10 we used ’euler maruyama sde’ sampler with a maximum of 1000
steps (we did not find further improvement by further increasing step size). For ImageNet32x32 and
ImageNet64x64 we used ’dpm solver’ with a maximum number of sampling steps equal to 100 (we
did not find improvements by further increasing it from 100).
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G.4.1 SENSITIVITY ANALYSIS

Figure 14: Class-conditional diffusion: image quality benefits from non-linear scheme, yielding
lower FID for larger values of α.

Figure 15: Text-to-image diffusion models: image quality benefits from non-linear scheme, yield-
ing lower FID for larger values of α.

Figure 16: Text-to-image flow matching: image quality benefits from non-linear scheme, yielding
lower FID for larger values of α.

The results from the first experiment, showing the lower-dimensional improvements in FID can be
seen in Tables 10-12, whereas the experiment of choosing very small guidance scale can be seen
in Table 13. The findings are as follows: as the dimension decreases and the unwanted effects of
CFG get stronger, the benefit from applying non-linear CFG further increases, as can be seen from a
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Table 11: Comparison of CFG variants on ImageNet-1K (pixel space) for Matryoshka Diffusion and
Pixelflow Flow Matching. Second row represents the performance with fixed α = 0.9, last row with tuned α.

Matryoshka Diffusion (Gu et al., 2023) Pixelflow Flow Matching (Chen et al., 2025b)
Version FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑

Standard CFG 3.51 0.81 0.54 2.43 0.83 0.56
Nonlinear CFG (α=0.9) 3.39 0.82 0.55 2.29 0.83 0.58
Nonlinear CFG (α=0.65/0.45) 3.17 0.83 0.56 2.12 0.85 0.59

more pronounced improvemenet in FID. Secondly, for very small ω, the performance of linear and
non-linear CFG equals that of the conditional, unguided model.

G.6 NUMERICAL SIMULATIONS: MIXTURES OF GAUSSIANS WITH DIFFERENT MEANS,
VARIANCES AND MIXTURE PROBABILITIES

In this section, we present experimental results comparing standard Classifier-Free Guidance (CFG)
and Nonlinear CFG on Gaussian mixtures with 3 and 4 components.

Experiment 1: 3-Component Gaussian Mixture (d = 2) We first investigate a two-dimensional
(d = 2) setting using a Gaussian mixture model composed of 3 components with assignment prob-
abilities of 30%, 40%, and 30%.

The results align with our two-mixture Gaussian analysis:

• Standard CFG, especially with strong guidance parameters, can induce unwanted effects
(as shown in Figure 17).

• By selecting Nonlinear Guidance with α ̸= 0, these negative effects can be dampened (as
shown in Figure 18).

Experiment 2: 4-Component Gaussian Mixture (d = 2 vs. d = 1000) The second experi-
ment examines the improvements offered by Nonlinear Guidance over standard CFG, as well as
the mitigating effect of high dimensionality on CFG’s unwanted behaviors. We use a 4-component
Gaussian mixture for a small-dimensional experiment (d = 2) and a large-dimensional experiment
(d = 1000).

The findings are consistent with the two-Gaussian component analysis (and can be seen in Figures
19 and 20:

1. Nonlinear CFG effectively dampens the effects of mean overshoot and variance shrink-
age induced by standard CFG.

2. As the dimensionality (d) increases, the mean overshoot and variance shrinkage effects
associated with standard CFG diminish.

G.7 RESULTS FOR PIXEL-SPACE VS LATENT SPACE

Here, we provide the table for the experiment conducted in Section 5.3. We show that the benefit
of power-law CFG can also be observed when applying non-linear guidance in pixel space, and not
just latent space.

G.8 ROBUSTNESS ANALYSIS: RESOLUTION, SCHEDULING, AND ALTERNATIVE METRICS

In this section, we discuss the robustness of the Power-Law formulation across different vector
norms (resolution), noise schedules, and distance metrics.

Resolution and Vector Norms. In high-dimensional spaces, the vector norm of the score difference
is sensitive to the dimensionality of the data (e.g., a 5122 pixel-space image vs. a 322 latent).

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 12: Comparison of Standard CFG, Cosine-based variants, and Power-Law (Nonlinear) CFG
on EDM-2/S ImageNet-1K (512× 512).

Version FID ↓ FID DINO ↓
Standard CFG 2.29 54.76
Cosine CFG 2.26 54.28
Cosine CFG w. α 2.21 54.09
Nonlinear CFG (Ours) 1.93 52.77

While the intrinsic manifold dimensionality may remain similar, the Euclidean norm scales with
resolution. Theoretically, the overall shape of the score difference curve remains consistent (hump-
shaped behavior tending to zero at t → 0 and t → 1), but the absolute scale changes. In the context
of Power-Law CFG, this resolution-based scaling is effectively managed by the renormalization
provided by the hyperparameters; Specifically, choosing the optimal guidance scale ω renormalizes
the score difference for the given resolution regime. We validated this by evaluating Power-Law
CFG on pixel-space methods (Matryoshka-diffusion (Gu et al., 2023) and PixelFlow (Chen et al.,
2025b)), confirming that the method generalizes robustly to high-resolution pixel space without
requiring explicit resolution-based formulation changes.

Noise Schedule Scaling. The magnitude of the score difference is naturally influenced by the dif-
fusion time t (and consequently σt). While one could theoretically define a schedule-specific non-
linear guidance of the form ϕt(s, σt) = sαf(σt) to decouple these effects, we find that the standard
Power-Law formulation is sufficient to improve upon standard CFG. The exponential decay of the
score difference at boundary times theoretically mitigates the need for complex, schedule-dependent
scaling functions f(σt) in high dimensions, but we suspect further empirical improvements might
be observed by tuning for optimal f(σt.

Euclidean Difference vs. Cosine Distance. Finally, we investigated whether the performance
gain of Power-Law CFG stems purely from directional alignment or if the magnitude of the score
difference is essential. We compared our method against ”Cosine CFG,” where the guidance is
scaled based on the cosine distance (purely directional), and ”Cosine CFG w. α,” where the cosine
distance is raised to a power α.We evaluated these variants using EDM-2/S on ImageNet (512×512
latent space). As shown in Table 12, while using Cosine distance improves over standard CFG,
it does not match the performance of Power-Law CFG. This suggests that the ”built-in” scaling
provided by the Euclidean norm—which accounts for both the angular difference and the relative
magnitude of the conditional and unconditional scores—is a critical component of effective non-
linear guidance.
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Version Num. steps α ω FID (↓) Precision (↑) Recall (↑)

Lin. CFG

100 0 1.55 3.50 0.6569 0.5932
250 0 1.40 2.77 0.6938 0.6115
500 0 1.35 2.03 0.6894 0.6262

1000 0 1.45 1.80 0.7071 0.6186

Nonlin. CFG

0 100 0.9 3.90 2.94 0.6653 0.6111
250 0.9 4.35 2.16 0.6688 0.6298
500 0.9 4.35 1.62 0.6688 0.6298

1000 0.9 4.75 1.48 0.7228 0.6506

Table 13: CIFAR-10 Results

Version Num. steps α ω FID (↓) Precision (↑) Recall (↑)

Lin. CFG

25 0 1.55 5.81 0.3842 0.4632
50 0 1.40 4.01 0.4161 0.4750
75 0 1.60 3.81 0.4120 0.4724

100 0 1.65 3.35 0.4306 0.4967

Nonlin. CFG

25 0.9 3.40 4.97 0.4022 0.4564
50 0.9 3.35 3.90 0.4241 0.4672
75 0.9 3.40 3.33 0.4431 0.5050

100 0.9 3.85 2.88 0.4539 0.5263

Table 14: IMNET-32 Results

Version Num. steps α ω FID (↓) Precision (↑) Recall (↑)

Lin. CFG

25 0 1.60 5.32 0.3996 0.4845
50 0 1.80 4.48 0.4484 0.4962
75 0 1.70 4.37 0.4576 0.5137

100 0 1.75 4.34 0.4511 0.5267

Nonlin. CFG

25 0.9 3.80 4.76 0.4212 0.4718
50 0.9 4.00 4.02 0.4656 0.5183
75 0.9 4.20 3.75 0.4734 0.5512

100 0.9 4.15 3.71 0.4883 0.5563

Table 15: IMNET-64 Results

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Method CIFAR-10 FID (↓) IMNET-32 FID (↓) IMNET-64 FID (↓)
Uncond. 3.142 3.891 5.930
Cond. 2.401 3.167 4.277

Lin. CFG w. ω + ϵ 2.400 3.176 4.299
Nonlin. CFG w. ω + ϵ 2.399 3.194 4.285

Table 16: FID Comparison Across Datasets
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GMM Diffusion Sampling with Standard Classifier-Free Guidance

Figure 17: Numerical simulation of Standard CFG in a mixture of 3 Gaussians
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GMM Diffusion Sampling with Nonlinear Classifier-Free Guidance

Figure 18: Numerical simulation of Nonlinear CFG in a mixture of 3 Gaussians
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Figure 19: Numerical simulation of Standard CFG in a mixture of 4 Gaussians
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Figure 20: Numerical simulation of Nonlinear CFG in a mixture of 3 Gaussians
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G.8.1 QUALITATIVE ANALYSIS: VARYING ω, FIXED α.
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(f) Class 305: dung beetle with α = 0.9

Figure 21: Generated images for different classes for varying values of ω and α. Each panel shows
the effect of changing α from 0 to 0.9, demonstrating the impact on diversity and image quality.
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G.8.2 QUALITATIVE ANALYSIS: FIXED ω, VARYING α.
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(b) Prompt a bouquet of roses
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(c) Prompt a bowl of citrus fruit
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Prompt: a simple drawing of a smiling sun

(d) Prompt a simple drawing of a smiling sun

Figure 22: T2IM generated images for different prompts with ω = 4. and varying value of α.
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(b) Class 305: dung beetle
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(d) Class 959: carbonara

Figure 23: CC generated images for different classes with ω = 4. and varying value of α.
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G.8.3 GENERATED IMAGES BY DIT/XL-2 (256X256)

Figure 24: Additional examples generated by DiT/XL-2 using Standard CFG (ω = 4) and Power-
Law CFG (ω = 8., α = 0.7). Image pairs start from the same noise (same seed). The resulting pairs
represent Standard CFG on the left and Power-Law CFG on the right.

Figure 25: Gen. images conditioned on the class pineapple with Standard CFG
(ω = 4).

Figure 26: Gen. images conditioned on class pineapple with Power-Law CFG
(ω = 8, α = 0.7).
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Figure 27: Gen. images conditioned on the class water ouzel, dipper using Standard CFG with
ω = 4.

Figure 28: Gen. images conditioned on the class water ouzel, dipper using Power-Law CFG
with ω = 8., α = 0.7.

Figure 29: Gen. images conditioned on the class vine snake using Standard CFG with ω = 4..

Figure 30: Gen. images conditioned on the class vine snake using Power-Law CFG with ω =
8., α = 0.7.
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G.8.4 GENERATED IMAGES BY MMDIT MODEL (DIFFUSION OBJECTIVE, RESOLUTION
512X512)

Figure 31: Images generated conditioned on the textual prompt Glowing mushrooms in a
dark forest. using Standard CFG with ω = 3 (top two rows) and Power-Law CFG with
ω = 10, α = 0.8 (bottom two rows).

Figure 32: Images generated conditioned on the textual prompt Stunning, breathtaking view of a
galaxy or nebula using Standard CFG with ω = 3 (top two rows) and Power-Law CFG with ω =
10, α = 0.8 (bottom two rows).
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H FURTHER NOTES ON NON-LINEAR CFG
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Figure 33: ⟨q⟩ versus time in the Gaussian binary mixture with d = 16 and σ2 = 4. The dashed
line are obtained by the standard linear CFG with ω = 0, 8, 16 from bottom to top. The dotted line
are obtained with the Power-Law non-linear scheme f(x) = ωx−.75 with ω = .5, 1.5 from bottom
to top. The full lines are obtained with the non-linear guidance of Eq.(44) with γ = 4 and ω = 8, 16
from bottom to top. The Rescaled Power-law non-linear scheme departs from q = 0 at large time
on a trajectory similar to the linear scheme and to the Power-Law non-linear scheme. But it gives a
smaller bias at t = 0.

The first non-linear CFG proposal, the power-law CFG with ϕt(s) = ωsα and α > −1 (in main
paper we focus on α > 0 but the guidance can be applied in fact for any α > −1) results in the
following guidance scheme:

S⃗PL
t (x⃗, c) = St(x⃗, c) + ω

[
St(x⃗, c)− St(x⃗)

] ∣∣∣S⃗t(x⃗, c)− S⃗t(x⃗)
∣∣∣α . (43)

As mentioned, the ℓ2 distance between scores δSt = |S⃗t(x⃗, c) − S⃗t(x⃗)| is exponentially small
both at the beginning of the backward process (as both conditional and unconditional distributions
are standard Gaussian clouds) and before exiting Regime I (as shown in Section 4), after which it
remains zero. This non-linear scheme automatically switches off in Regime II and has the following
properties: choosing α < 0 provides guidance which speeds up convergence to the target at early
times, while α > 0 dampens the guidance for small δSt and strengthens it for large δSt. In practice,
we found positive values for α to perform best. In numerical experiments for finite dimension it
biases the distribution obtained at t = 0 (see Fig.35).

One would like to have different non-linearities applying to the regimes t ≫ ts and t < ts. One
possibility is to use the following version, which extends to more general effective distributions
P0(⃗a)e

−a⃗2s(t)/(2s(t)2σ(t)2) with non-standard s(t) and σ(t).

Rescaled Power-law CFG. Here, by denoting with ⟨·⟩ the expectation w.r.t. the effective distri-
bution P0(⃗a)e

−a⃗2s(t)/(2s(t)2σ(t)2), the score difference can be expressed as |S⃗t(x⃗, c) − S⃗t(x⃗)| =
(1/(s(t)σ(t)2) |⟨⃗a⟩x⃗,c − ⟨⃗a⟩x⃗|, where s(t) and σ(t) are related to the functions f(t) and g(t) by
s(t) = exp

∫ t

0
dτf(τ) and σ(t) =

∫ t

0
dτg(τ)2/s(τ)2. Therefore the non-linear function depends

on the difference between the estimators of the initial value a⃗, given x⃗(t), in the class and in the
full distribution. This difference is typically a function that decreases with the time of the backward
process. This suggests to use a non-linear CFG of the form

S⃗RPL
t (x⃗, c) = S⃗t(x⃗, c) + ω

[
S⃗t(x⃗, c)− S⃗t(x⃗)

] ∣∣⟨⃗a⟩x⃗,c − ⟨⃗a⟩x⃗
∣∣γ

= S⃗t(x⃗, c) + ω
[
S⃗t(x⃗, c)− S⃗t(x⃗)

] ∣∣∣S⃗t(x⃗, c)− S⃗t(x⃗)
∣∣∣γ s(t)γσ(t)2γ , (44)

with positive γ. As we will show in Figures 33-34, this non-linear guidance term has interesting
performance in terms of combining a rapid drift toward the desired class c at early stages of the
backward process together with small bias in the finite distribution in finite dimensional problems.
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The behavior of both versions is portrayed in Figure 35: both non-lin. versions yield smaller bias
at t = 0. Furthermore, Figure 35 also displays additional experiments highlighting the benefits of
non-linear versions.
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Figure 34: We perform the same experiment as in Fig. 33. Left: the value of |⟨⃗a⟩x⃗=0⃗,c − ⟨⃗a⟩x⃗=0⃗|.
Right: the value of |St(x⃗, a)− St(x⃗)|, with the same linestyle and color code as in Fig. 33.
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Figure 35: Real-world experiments using DiT/XL-2 (Peebles & Xie, 2023) trained on ImageNet-
1000 (Deng et al., 2009): randomly selected class with ω = 4, using DDPM (Ho et al., 2020)
with 250 sampling steps, averaged over 25 samples. First column: Power-Law CFG. Second
column: Rescaled Power-Law CFG (44). Left column: Jensen-Shannon Divergence between the
embedded data points corresponding to randomly selected class and the generated samples as a
function of reverse time τ . Middle column: mean dot product of the normalized class centroid
and the diffusion trajectories x⃗ · c⃗i/∥c⃗i∥ (both in the latent space) as a function of reverse time τ .
Right column: Evolution of the distance between conditional and unconditional scores. From all
three plots, we can see that using first (second) version of non-linear CFG with α < 0 (γ > 0)
results in paths that have smaller JSD, estimated as in Wang et al. (2009), throughout the whole
trajectory and smaller overshoot of the distribution’s mean at τ = 0. We can also see that the
score difference |Sτ (x, c)−Sτ (x)| has the same qualitative behavior as in numerical simulations of
Gaussian mixtures.
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