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ABSTRACT

Sampling from unnormalized target distributions is a fundamental yet challenging
task in machine learning and statistics. Existing sampling algorithms typically
require many iterative steps to produce high-quality samples, leading to high com-
putational costs that limit their practicality in time-sensitive or resource-constrained
settings. In this work, we introduce consistent diffusion samplers, a new class
of samplers designed to generate high-fidelity samples in a single step. We first
develop a distillation algorithm to train a consistent diffusion sampler from a
pretrained diffusion model without pre-collecting large datasets of samples. Our al-
gorithm instead leverages incomplete sampling trajectories and noisy intermediate
states directly from the diffusion process. We further propose a method to train a
consistent diffusion sampler from scratch, fully amortizing exploration by training
a single model that both performs diffusion sampling and skips intermediate steps
using a self-consistency loss. Through extensive experiments on a variety of unnor-
malized distributions, we show that our approach yields high-fidelity samples using
less than 1% of the network evaluations required by traditional diffusion samplers.

1 INTRODUCTION

Sampling from densities of the form prareet = p/Z With p evaluable pointwise but Z intractable, is a
central problem in machine learning (Neal,|1995; Hernandez-Lobato & Adams) 2015) and statistics
(Neall, 2001; |Andrieu et al.,|2003)), and has applications in scientific fields like physics (Wu et al.,
2019;|Albergo et al.,2019; Noé et al.,[2019), chemistry (Frenkel & Smit, |2002;|Hollingsworth & Dror;,
2018; |Holdijk et al.,2024), and many other fields involving probabilistic models. Many established
sampling algorithms are inherently iterative, with the accuracy of the final samples depending heavily
on the number of steps. Classical Markov chain Monte Carlo (MCMC) methods asymptotically
converge to the target distribution as the number of steps goes to infinity(MacKay, 2003; Robert,
1995), while more recent diffusion-based approaches (Zhang & Chenl 2022} [Vargas et al., 2023;
Berner et al., | 2024) guarantee convergence in a finite number of steps but often necessitate hundreds
of iterations to yield high-quality samples. Such iterative samplers tend to suffer from slow mixing,
making them impractical for use in large models and resource-limited scenarios.

Recent work on diffusion generative models (Sohl-Dickstein et al., 2015; Ho et al.l 2020; |Song
& Ermon, [2019; [Song et al., |2021) have proposed fewer-step sampling via knowledge distillation
(Salimans & Hol [2022; [Song et al., 2023). However, directly applying these distillation techniques to
unnormalized distributions is challenging, as it often requires large datasets of samples that may be
expensive to collect. This motivates the following question of wether we can significantly reduce the
steps required by samplers, enabling few-step or even single-step sampling.

In this paper, we propose consistent diffusion samplers to produce high-quality samples in a single
step. We first show that diffusion-based samplers can be consistently distilled into single-step
diffusion samplers. Instead of storing a large dataset of fully diffused samples, our approach exploits
incomplete trajectories and noisy samples encountered during the diffusion process. We further
introduce a self-consistent diffusion sampler that does not require a pretrained diffusion sampler.
Instead, it fully amortizes exploration by jointly learning both diffusion sampling and large cut off
steps that match the outcome of paths of small steps. This enables single-step sampling yet retains
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the option to refine samples through multiple iterations if desired, subsuming existing diffusion-based
approaches.

Our contributions can be summarized as follows:

* We show that diffusion-based samplers for unnormalized distributions can be effectively
distilled into single-step consistent samplers without pre-collecting large datasets of samples.

* We introduce a self-consistent diffusion sampler that learns to perform single-step sampling
by jointly training diffusion-based transitions and large shortcut steps via a self-consistency
criterion. This method only trains one neural network and does not require pretrained
samplers or high-quality data.

» Through extensive evaluations on synthetic and real unnormalized distributions, we demon-
strate that our method delivers competitive sample quality while drastically reducing sam-
pling steps.

2 RELATED WORK

Markov chain Monte Carlo (MCMC). Markov chain Monte Carlo methods are a classical approach
for sampling from unnormalized target densities. The key idea is to construct a Markov chain whose
stationary distribution matches the target distribution (Brooks et al., 2012). Prominent examples
include the Metropolis-Hastings algorithm (Metropolis et al.| {1953 |Hastings, |1970), Gibbs sampling
(Geman & Geman, |1984), and Langevin dynamics (Rossky et al., |1978; [Parisi, | 1981)). By exploiting
geometric structure in the target distribution, Hamiltonian Monte Carlo (Duane et al.l 1987 |[MacKay,
2003} Brooks et al., 2012 |Chen et al.,|2014) often leads to more efficient exploration. To address
scalability challenges in high-dimensional or large-dataset scenarios, stochastic gradient MCMC
variants (Welling & Teh, [2011}; |Chen et al., [2014; Zhang et al., |2020a:b) have been introduced.
Although these MCMC methods reduce per-step computational costs or improve mixing, they remain
inherently iterative, requiring many transitions to yield high-quality samples.

Learning-Based Samplers. Amortized inference shifts the computational overhead from test-time
sampling to a training phase, allowing for faster inference (Gershman & Goodmanl2014). Approaches
such as amortized MCMC (Li et al.|[2017) train a neural network to mimic the distribution of samples
obtained after T transitions of a traditional MCMC process. Similarly, GFlowNets (Bengio et al.,
2021} [2023)) learn to sequentially construct complex discrete objects, effectively learning a sampling
strategy. While GFlowNets amortize the computational challenges of lengthy stochastic searches and
mode-mixing during training, their sampling process remains sequential, as objects are constructed
step-by-step through a series of constructive steps.

An alternative viewpoint casts the sampling problem as an optimal control task (Zhang & Chenl 2022
Berner et al., 2024} Richter & Berner, 2024)), where one trains a controlled stochastic differential
equation to transport an initial distribution to the target via a Schrodinger bridge (Schrodinger, |1931}
1932). This perspective motivates recent efforts to use diffusion-based samplers (Geffner & Domke}
2023}; |Vargas et al., |2023; Zhang et al., |2024; [Phillips et al., |2024; |Chen et al., 2025). While such
diffusion and flow-based frameworks have advanced the state of the art, they require numerical
solvers operating on fine time discretizations.

Consistent Generative Models. Recent work in generative modeling has explored the concept
of consistency: ensuring that large transitions between observed distributions are consistent with
sequences of incremental transformations. Consistency models (Song et al., 2023 |Song & Dhariwal,
2023} |Lu & Song, |2025)) learn a direct mapping from any point in time to the terminal state. Progres-
sive distillation (Salimans & Ho| 2022} Meng et al., 2023)) incrementally distills a trained diffusion
model into a more efficient version that takes half as many until a single-step model is achieved.
Similarly, shortcut models (Liu et al., [2023} |[Frans et al.| 2025) leverage progressive self-distillation
during training to achieve accelerated inference without relying on a pre-trained teacher model.

These methods focus on generative modeling tasks and assume access to a dataset drawn from the
target distribution. Our work introduces the notion of consistency into the setting of sampling from
unnormalized densities. We assume access only to an unnormalized pointwise oracle p for the target
density, without requiring any pre-collected samples.
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3  PRELIMINARIES: DIFFUSION-BASED SAMPLERS

Diffusion-based samplers are controlled stochastic differential equations (SDEs) that transport
samples from a simple prior distribution ppior to the target distribution pgarget. Consider a forward-
time SDE over ¢ € [0, 7] with initial condition Xg ~ Pprior:

dx; = (M(t)xt + g(t)uo(xs, t)))dt + g(t)dwy, (1

where w is a standard Brownian motion, (-)x; is the drift term, g is the diffusion coefficient, and ug
is a learned control term parameterized by a neural network.

Further consider the time-reversal process y of a diffusion that gradually adds noise to samples from
the target distribution:

dy: = (p(t)y: + ¢*(t)V1og py, (v:))dt + g(t)dw,. 2

If we choose yo ~ Pprior and p and g such that yr ~ piarget, then setting ug(xy,t) =
g(t)Vlog py, (x;) in Eq. Would yield px, = py, and thus X7 ~ Piarget (Anderson, |1982). In
practice, however, the score function V log py,, is unknown and must be approximated by training uy.

Let Px denote the path space measure induced by the SDE in Eq. |1} and IP,, the path space measure
for the time-reversed process in Eq.[2| Further, leti/ ¢ C(R? x [0, T],R?) be a space of admissible
controls. From an optimal control and path space perspective (Berner et al.,[2024; Richter & Berner,
2024)), the diffusion sampling problem can be framed as finding an optimal control «* that minimizes
a divergence between these two path measures:

u* € argmin D(Px || Py), 3)
u

where D(-||-) is an appropriate divergence. To evaluate D(Px |/ PPy), one requires the
Radon—Nikodym derivative, which measures how much more likely a given trajectory v is un-
der Py than under Py :

dPy

E(V) = Zexp(R(v) + S(v) + B(v)) 4)

where

T T
R(x) = /0 (3llua(xe, t)[|* = div(p(t)x,)) dt,  S(x) = /0 ug(x¢,t) - dwy,

and B(x) = log PprioriXo) (x0) .

p(XT)
Two widely used divergences in diffusion-based sampling are Dy (Px || Py) = E[R(x) + B(x)] +
log Z and Dyy (P« || Py) = V[R(x)+S(x) + B(x)|. Here, D, is the Kullback-Leibler divergence
(Zhang & Chen, 2022;|Vargas et al.,|2023; Berner et al.,|2024)), and Dy is the log-variance divergence
(Niisken & Richter, 2021} [Richter & Berner, 2024).

Once trained, the control ug allows for generating samples from pearger by simulating the forward
SDE Eq.[1] In practice, numerical discretization 0 = t; < to < ... < tn = T is required, and finer
time steps yield more accurate sampling but at higher computational cost. Thus, a key challenge lies
in balancing step size against the desired accuracy and efficiency.

4 CONSISTENCY DISTILLED DIFFUSION SAMPLERS

In this section, we show how to adapt consistency distillation to the problem of sampling from
unnormalized densities. We name our method the consistency distilled diffusion sampler (CDDS).
The next section will address how to remove the requirement of having a pre-trained diffusion
sampler.

Our goal is to learn a consistency function f : (x¢,t) — x7, which maps any intermediate state
x; directly to a sample xr from the target distribution. Although we lack a dataset of samples
from piarget, if We possess a pre-trained diffusion sampler, we can approximate such a dataset
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Algorithm 1 Data-Free Consistency Distillation

Input: model parameters 6, control u, learning rate 7, distance d, weight A
0«0
repeat
Sample xg ~ Pprior and n ~ U{1, N — 1}
Integrate Eq. (5) to obtain %;, and %y, , ,
‘C(ev 0/; u) — )‘(tn)d<f9’ ()A(tn+1 ’ thrl)v f@ ()A(tn y tn))
0+—60—-—nVOL(O,0;u)
6’ + stopgrad(0)
until convergence

by simulating the generative SDE Eq. |1} producing samples {%%.} . We can then apply either
consistency distillation or consistency training (as in Algorithms 2 and 3 of [Song et al.| [2023)) to learn
f. This approach is expensive as it necessitates pre-collecting and storing a large dataset.

Consider a pre-trained diffusion process whose trajectories X, , X, , - . . , X would normally be used
to create a dataset for distillation. Instead, we directly leverage intermediate states x; during each
training iteration. This reduces storage demands and limits the accumulation of numerical errors that
could arise from fully integrating the numerical solver. If the error per step of an order-p solver is
bounded by O((t,,+1 — t,)P™1), using multiple, shorter intervals can help keep the overall global
error smaller.

To learn a deterministic mapping (x¢,t) — xp, we simulate the associated probability flow (PF)
ODE (Song et al., 2021):

dxi = (u(x ) + So(t), u(xi, 1)) dt, ®)

We minimize the discrepancy between the outputs of the consistency function at consecutive interme-
diate states:

Len(0,0';u) = E[A(tn)d(fe, (Rt 1 tnst), fo(xtn7tn))}, 6)

where d(-,-) is a distance metric, A(-) is a positive weighting function, and 8’ = stopgrad(8)
indicates that the gradients are not passed through the target term. Notably, different to training
consistency generative models, here, both X;, ., and X;, are approximate states obtained by partially
integrating the PF ODE. Training a consistent diffusion sampler via distillation requires a similar
computational cost as training the original diffusion sampler, since both processes involve simulating
trajectories; however, it enables faster inference at test time. The training procedure is summarized in
Algorithm 1]

If the loss in Eq. [6]is driven to zero, the learned consistency function can approximate the true
mapping arbitrarily well, provided the step size of the ODE solver is sufficiently small. We formally
state this in Theorem .11

Theorem 4.1. Let fo(x,t) be a consistency function parameterized by 6, and let f(x;,t;u) denote
the consistency function of the PF ODE defined by the control u. Assume that fg satisfies a Lipschitz
condition with constant L > 0, such that for all t € [0, T and for all x;,y+,

[fo(xt,t) = fo(ye, t)ll2 < Llx: — yill2.
Additionally, assume that for each step n € {1,2,..., N — 1}, the ODE solver called at t,, has a
local error bounded by O((t,+1 — tn)PTY) for some p > 1.

If, additionally, Lcp(0,0;u) = 0, then:
sup (| fo(Xt,stn) = f(Xe,, tni w) |2 = O((AL)"),

X,

where At := max,e(1,2,..N—1} [tnt1 — tnl|- A complete proof is provided in Appendix[?]

While our distillation approach builds upon the core principles of consistency models, it differs in
setting and requirements. Consistency generative models assume direct access to real samples from
the target distribution. In contrast, our consistency distilled diffusion samplers address the problem
of sampling from unnormalized target densities, where no dataset of target samples is available.
Our method extends consistency distillation to sampling from unnormalized distributions, making it
applicable beyond generative modeling tasks.
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5 SELF-CONSISTENT DIFFUSION SAMPLERS

In this section, we introduce self-consistent diffusion sampler (SCDS) that achieves single-step
sampling without requiring a pre-trained diffusion sampler. Our motivation stems from merging two
complementary perspectives.

First, diffusion-based samplers learn a time-dependent control function that steers an SDE from a
simple prior distribution to the target distribution. Typically, the control is trained on a fixed schedule
(e.g., N small increments of length T'/N along a discretized time axis), requiring multiple steps.
Second, consistency models learn a direct mapping from any intermediate state on an ODE to the
terminal state. In other words, at time ¢ the model is implicitly taught to jump a large step of length
T—1t.

Our idea is to unify these approaches in a single model. Specifically, we condition a control function
ug(X¢, t, d) on both the current time ¢ and the desired step size d. By adjusting d, the model can adapt
between short incremental steps (as in standard diffusion samplers) and large jumps (as in consistency
models). This design amortizes the learning of both small and large transitions into one network and
recovers consistency models’ single-step sampling by setting d = T' — ¢ and diffusion sampling by
setting d = T'/N. In doing so, we avoid training two separate models.

Enforcing Self-Consistency. To ensure that the step-size-conditioned control function ug(x¢, t, d)
remains accurate across varying step sizes, we introduce a self-consistency loss. The key idea is that
taking a large step should yield the same result as taking multiple smaller steps. To do so, we impose
a consistency condition on the Euler discretization of the PF ODE Eq.[5] Specifically, a single large
step of size 2d,

Xiiod = X¢ + (u(t)xt + %g(t)ua(xt, t, 2d)) 2d, @)
must equal two smaller steps of size d. The intermediate state is computed as

X;H—d = Xt + (/,L(t)Xt + %g(t)ue/(xt, t, d)) d
and the final state after two steps is
Xyy0q = Xppq+ (0t + d)xipq + 39(t + d)ue (x40, t + d, d)) d, (8)

where 0’ = stopgrad(0). The self-consistency objective is a simple least square minimization
problem:

2
Lsc = E [[[Xt420 = Xer24]|’] ©
where the expectation is taken over time indices and step sizes drawn from the simulated trajectories.

This loss encourages the model to correct for numerical errors when taking large steps, allowing it
to “skip” multiple smaller steps while remaining consistent with the dynamics of the PF ODE. To
initiate this recursive training, we must define and learn the behavior at the base case d = T'/N.

Learning the Base Case d = T /N. In standard generative modeling scenarios (where a dataset is
available), the base case d = T//N can be learned directly from data using deterministic trajectories
(Lipman et al., [2023} [Frans et al., [2025)). These trajectories provide explicit guidance toward high-
density regions of the target distribution.

However, when working with an unnormalized density, the key challenge is discovering high-
probability regions (modes). In such cases, exploration is necessary to locate and model these regions
effectively (Chen et al.,2025)). Diffusion-based samplers facilitate exploration through their stochastic
dynamics: Brownian motion helps probe different parts of the space, allowing the model to learn and
adapt itself to the target distribution.

Thus, diffusion-based sampling is particularly well-suited for learning the base case. The running
term R in the Radon-Nikodym derivative []requires simulating the stochastic process in Eq. [T}
allowing it to learn the structure of high-density regions. In this work, we adopt the log-variance
divergence as our base sampling objective:

Ls = Diy(Px || Py). (10)

By optimizing ug(x¢, t,d = T'/N) under this loss, we ensure that the model can generate meaningful
transitions from the prior to these regions of interest, forming a strong foundation for self-consistent
learning at larger step sizes.
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Figure 1: Graphical illustration of the training procedure for SCDS over the path space. First, the
SDE trajectory (white) is simulated to compute the sampling loss Lg. Next, a timestep ¢ and a step
size d are randomly sampled. From x; on the simulated SDE trajectory, we execute two consecutive
steps of size d (red) along the PF-ODE trajectory (pink), obtaining the target x; , ,;. Finally, the
shortcut step of size d (orange) predicts x; o4 directly from x;, and the self-consistency loss Lgc
minimizes the squared difference between x;, 24 and the two-step target X; , , ;, ensuring multi-scale
consistency.

Algorithm 2 SCDS Training

Input Model parameters 6, loss weightings As(-) and Asc(+)

60 <0

repeat
Sample X0p ™~ Pprior and (da t) ~ Pd,t-
Compute x < (x;)L_, by simulating Eq.
Compute x; , ,,; from Eq.
Compute x;24 from Eq. 3]
Compute Lg using Eq.[10]
Compute Lgc using Eq.[9]
0+ Vo (Ns(t)Ls + /\SC(t)LSC)
0’ < stopgrad 6

until convergence

End to End Training Algorithm. Our training procedure jointly optimizes two objectives: (1) the
sampling loss Eq.[10|for the base case d = T'/N, which ensures exploration and score approximation
by simulating the SDE Eq. [I] and (2) the self-consistency loss Eq.[0]enforced on the PF-ODE Eq. 3]
for larger d, which enforces consistency across multiple time scales.

To enable the recursive halving of steps, we discretize the time interval [0, 7] into N + 1 points,
where N is chosen as a power of two. The sampling loss is computed by simulating the forward SDE
along this time grid. For self-consistency training, we sample step sizes d and times ¢ such that d are
powers of two (multiplied by T'/N) dividing the remaining time 7" — ¢. This ensures that from any
time ¢, we can take exactly k steps of size d to reach the terminal state for some integer k. This way,
training focuses on time sequences that are applicable during inference.

To compute the self-consistency loss, we extract x; from the simulated forward SDE. Using x; and
the sampled step size d, we compute the shortcut step x;24 using Eq. [7|and the two-step target
trajectory X; , 5, using Eq. [8|on the PF ODE. We then optimize their squared difference via Eq. EI,
ensuring that larger steps remain consistent with fine-grained trajectories. The training procedure
is summarized in Algorithm [2] and illustrated in Figure [T} Compared to previous diffusion-based
samplers, our method only incurs 3 additional network function evaluations per training iteration.

Few-step Sampling. With a well-trained control ug, sampling can be performed in a single step by
drawing from the prior and applying a single Euler update with step size d = T'. This accelerates
generation compared to traditional diffusion-based samplers. Alternatively, our method provides
a flexible tradeoff between computational efficiency and sample quality, allowing for multi-step



Published as a conference paper at ICLR 2025

Algorithm 3 Multi-Step Sampling with SCDS

Input: Trained model ugy, number of sampling steps N

Sample X0 ™~ Pprior

Initialize d <~ T'/N and ¢ < 0

fork=1,...,Ndo
Compute x4 = x¢ + (p(t)xe + 1g(t)ug(xs,t,d)) d
Update t <t +d

end for

Return x

Table 1: Comparison of different methods in terms of Sinkhorn distances (lower is better). We present
results on tasks where ground-truth samples are available for evaluation. “NFE” refers to the number
of function evaluations.

Sinkhorn () Target Distribution
Sampler NFE | GMM (2d) Image (2d) Funnel (10d) MW54 (5d) MW52 (50d)
SCDS 128 0.0204 0.0169 5.2569 0.1191 7.4557
(Ours) 2 0.0279 0.0294 5.3488 0.1955 11.5200
1 0.0330 0.0322 5.3729 0.2102 7.4925
CDDS 2 0.0241 0.0309 7.1329 0.1570 6.5010
(Ours) 1 0.0224 0.0309 7.2159 0.1569 6.5285
PIS 128 0.6656 0.9168 5.9956 0.1223 7.2955
DDS 128 0.0709 1.5818 6.0467 0.1190 7.2842
DIS 128 0.0203 0.0170 5.1578 0.1197 7.3668
DIS 1 0.0551 0.2781 10.4033 6.4679 31.7883

refinement when needed, thus recovering standard diffusion-based sampling. This iterative procedure
is detailed in Algorithm 3]

Approximating Z. A benefit of SCDS is the ability to estimate the intractable normalizing constant
Z. By leveraging the relationship established in the RN derivative (Eq. @), we can approximate
log Z. Specifically, when the optimal control u* = g(¢)V log py, (x;) is attained, the KL divergence
D1 (Px || Py) reaches zero. This implies — log Z = min, ey E[R(x) + B(x)]. Unlike CDDS and
consistency models, which focus on solely sample generation, SCDS leverages the control-based
formulation to handle both sampling and the normalizing constant, making it applicable to a broader
range of probabilistic tasks.

Learning Shortcuts Without Data. SCDS shares conceptual similarities with progressive distillation
(Salimans & Ho, [2022) and shortcut models (Frans et al.| [2025]), both of which enforce that a large
time step transition should be consistent with two half-sized transitions. However, these methods rely
on access to a dataset or to a pre-trained teacher model. In contrast, SCDS learns both the diffusion
process and shortcut connections directly from an unnormalized density.

6 EXPERIMENTS

Experimental Setup. We evaluate our CDDS and SCDS on multiple sampling benchmarks: a
9-mode Gaussian mixture model in 2d (GMM), a 2d image of a labrador (Image), a 10d Funnel
distribution, and two 32-mode many-well tasks (MW54 in 5d and MW52 in 50d). We also consider a
high-dimensional log Gaussian Cox Process (LGCP) problem in 1600d. We compare to path integral
sampler (PIS) (Zhang & Chen 2022)), denoising diffusion sampler (DDS) (Vargas et al., 2023)), and
time-reversed diffusion sampler (DIS) (Berner et al.,|[2024)). We also show a single-step version of
DIS as a naive baseline to gauge how single-step sampling might upper-bound the Sinkhorn distance
if we remove shortcuts. In our experiments, CDDS is a distilled version of DIS. We use Fourier
features network to condition SCDS on the stepsize d (Tancik et al., 2020). When ground-truth
samples are available, we measure performance via the Sinkhorn distance (Cuturi, 2013) between
generated samples and samples from the target distribution. For the LGCP task, we report the relative
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Figure 2: Comparison of Sinkhorn distance for a range of NFEs between the proposed consistency
samplers (CDDS, SCDS) and diffusion-based samplers (PIS, DDS, DIS). For most targets, CDDS
and SCDS show competitive Sinkhorn values with baselines with much lower NFEs.

error of the estimated normalizing constant log Z. Additionally, we quantify the number of function
evaluations (NFE) (Karras et al.l [2022)). For more details on the training of the various samplers,
along with evaluation details and target distribution settings, see Appendix [C]

Sinkhorn Results and Analysis. Table[I|shows that both CDDS and SCDS maintain competitive
sinkhorn distances in single- and two-steps generations compared to existing diffusion-based samplers
with 128 steps. With only one step, SCDS ans CDDS consistently outperform single-step DIS by
a clear margin on every task, highlighting the benefits of enforcing consistency. As with other
consistency-based methods |Song et al.[ (2023)) we find CDDS’s multi-step performance typically
saturates after 23 steps, indicating minimal gains from iterative refinements. In contrast, SCDS’s
accuracy steadily improves with increasing step counts in most tasks (see Figure [2), except for minor
dips at 4 steps in Funnel and at 2/4 steps in MW52. The general upward trend demonstrates that
SCDS effectively recovers standard multi-step diffusion behaviors.

Log Gaussian Cox Process. Table |2| compares log Z estimation errors for each method on the
1600d LGCP task. Multi-step PIS and DIS achieve smaller errors then SCDS, but SCDS re-
mains viable even at reduced NFEs. Notably, as expected, single-step DIS fails catastrophically,
whereas single-step SCDS remains stable. Since SCDS learns a time-dependent control function,
it retains a connection to the Radon-Nikodym derivative in Eq. @] allowing for partition func-
tion estimation. In contrast, CDDS (and consistency models in general) lack an explicit con-
trol representation, meaning they cannot directly estimate Z. This is a key advantage of SCDS
in applications where unnormalized densities must be integrated, such as Bayesian inference.

Table 2: Relative error of Log Z estimates for

Discussion. A key advantage of SCDS lies in ) (Lol
various samplers on LGCP target distribution.

its ability to learn both the diffusion sampling
process and the self-consistency shortcuts simul-

taneously. In contrast to consistency models, LGCP (1600d)
which require a pre-trained sampler or high- Sampler NFE \ Log Z (LB) Error ({)
fidelity trajectories for distillation, SCDS for- 128 0.9968
goes such prerequisite. SCDS is often com- 64 1.0506
petitive with well-established diffusion sam- 32 1.5976
plers and consistency-distilled approach CDDS SCDS 16 22378
that benefit from a carefully tuned, pre-trained (Ours) 8 2.7931
teacher. Moreover, SCDS adapts seamlessly 4 3.9660
from single-step to many-step sampling without 2 6.2420
retraining. 1 99877
PIS 128 0.2910
7 CONCLUSION DDS 128 2.8545
We introduced two novel approaches for effi- DIS }28 3(?9'4317732696

cient sampling from unnormalized target dis-
tributions: consistency-distilled diffusion sam-
plers (CDDS) and the self-consistent diffusion
sampler (SCDS). CDDS uses consistency distil-
lation without generating a large dataset of samples. SCDS requires no pre-trained samplers and
simultaneously learns to sample high-density regions and to take large steps across the path space. Our
empirical results across a range of benchmarks demonstrate that both methods achieve competitive
accuracy with as few as one or two steps. These findings highlight the potential of consistency-based
methods for sampling from unnormalized densities.
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A APPENDIX

B CONSISTENCY DISTILLATION PROOF

Theorem 4.1. Let fo(x,t) be a consistency function parameterized by 6, and let f(x;,t;u) denote
the consistency function of the PF ODE defined by the control u. Assume that fg satisfies a Lipschitz
condition with constant L > 0, such that for all t € [0, T| and for all x;,y+,

| fo(xt,t) — fo(ye, t)ll2 < Lilxt — yill2-

Additionally, assume that for each stepn € {1,2,..., N — 1}, the ODE solver called at t,, has a
local error bounded by O((t, 11 — tn)PT1) for some p > 1.

If, additionally, Lcp (0, 0;u) = 0, then:
sup || fo (X, tn) — F(Xt,, tnsu)ll2 = O((At)P),

,Xtn

where At := maxX,er12,.. N-1} [tni1 — tnl-

Proof. The proof is similar to the one presented by|Song et al.|(2023)), with the key difference that
we must account for the global integration error introduced by the ODE solver.

If the ODE solver, when called at t,, 1, has a local error uniformly bounded by O((t,, — t,,_1)P*1),

then the cumulative error across all steps is approximately the sum of n + 1 local errors and is
bounded by O((At)P).

We are interested in e,,, the error between the learned consistency function and the consistency
function of the PF ODE defined by the control u at x;, ~ p:, (X¢,, ),

€n = f@(xtn,tn) - f(thvtn;u)'

If £(6,0;u) = 0, we deduce that
Atn)d(fo(Xt, 1> tns1), fo(Xe,,tn)) = 0.
Since A(t,) > 0, this implies:
fo(Xt,iistnt1) = fo(Xe,,tn). (11)

‘We can derive a recurrence relation for e,,:
fe(th7 n) = Fo(Xt, tn) + fo(Xt, tn) — F(Xtn sy tnt1;u)
(u

= fo(Xt,,tn) — fo(Xt, tn) + fo(Xtnirstni1) — F(Xtpprstng1w)
= fo(Xt,,tn) — fo(Xt,,tn) + Fo(Xt, 1 tnt1) — fo(Xt, s tnt1)
+ fo(Xt, 1stni1) = F(Xtprstny1u)
= fo(xt,.tn) — fo(Xt, tn) + fo(Xt, 1 tnt1) — fo(Xt, . rstnt1) + €0t

““)fe(xtn, tn) = fo(%i,tn) + fo(xr, T) — fo(%r,T) + er.

Here, step (i) follows from the definition of the consistency function, step (i) is due to Eq. (11)), and
step (i47) leverages the telescoping nature of the sum.

Furthermore, since fy is parameterized such that fg(xr,T) = x1, we have

er = fo(x7,T) — f(xr,T;u)
= X7 —XT

=0.
Finally, given that fg is Lipschitz and considering the bound on the global error of the ODE solver:

lenlle < ller(ls + Lilxi, —%q,ll2 + Lilxr — X7[ls = O((A#)?).

tn ‘

O
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C EXPERIMENTAL DETAILS

C.1 TARGET DISTRIBUTIONS

GMM. Here we discuss the parameterization for the Gaussian mixture model with well separated
modes. We follow the same setting as|Zhang & Chen|(2022); Berner et al.| (2024), defining the target
distribution as follows:

M
p(x) = Z amN(X§ Homs Em)
m=1

Following their prarameterization, we set M = 9, 0, = .31, and (u)M_, = {-5,—,5} x
{-5,0,5} C R%

Image. We use a normalized grayscale image to create a two-dimensional probability density,
following the setup from Wu et al.| (2020).

Funnel. Following the methodology of |Berner et al.|(2024), we use the funnel distribution intro-
duced from |Neal| (2003)). The distribution is defined as follows:

d
p(X) = N(‘rh 07 vz) HN(IH 07 6I1)
i=1
We setd = 10,v = 3.
We include this benchmark as this is a canonical distribution used for comparing MCMC methods

and has been used extensively within the growing field of learned diffusion samplers (Berner et al.}
2024} Zhang & Chen, |2022; |Vargas et al., [2023} Richter & Berner, 2024).

Many-Well. We use the many-well target distribution following the methodology of Berner et al.

(2024):
m d
p(x) = exp ( 2(3322 —9) — % Z x?) .

i=1 i=m+1
For the target distribution labeled as MW-54, we set d = 5, m = 5, and § = 4; for the target
distribution labeled as MW-52, we set d = 50, m = 5,4 = 2.

Log Cox Gaussian Process (LGCP). The log cox Gaussian process is a popular target distribution
for benchmarking sampling methods due to its complexity and high-dimensionality. As discussed in
Zhang & Chenl (2022); |Chen et al.|(2025)), the LGCP distribution is defined as follows:

d
p(x) = N(z; 1, X2) H exp (l’tyl _ eXpé@)) .

Here, y is a given dataset, and p, > are mean and covariance for some given prior. We follow the
methodology of Zhang & Chen| (2022)); |Arbel et al.| (2021)) for both the dataset and prior distribution.

C.2 TRAINING DETAILS

For GMM, image, funnel, and MW54, we train all diffusion samplers until convergence or for 30,000
training iterations. For MW52d, we train all samplers for 10,000 training iterations. For LGCP, we
train all samplers for 5,000 training iterations.

For a complete specification of sampler details, see Table 3| For details on the global configurations
used across all samplers, see Table E}
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SCDS
Terminal Time 1
SDE VP SDE
Terminal Time 1
Time Schedule Linear
Initial Distribution N(0,I) with Truncation
Quartile of 1e — 4
Loss Function Log-Variance, Time Rever-

sal (Berner et all, 2024}
Richter & Berner, [2024)),
Self-Consistency

CDDS

Pretrained Generative Ctrl DIS
Consistency Model Train 18

Timesteps
Loss Function Equation equationEI
DIS (Berner et al., 2024)
SDE VP SDE
Loss Function Log Variance, Time Reversal
Terminal Time 1
Time Schedule Linear
Initial Distribution N(0,I) with Truncation
Quartile of 1e — 4
PIS (Zhang & Chen| 2022)
SDE VE SDE

Loss Function Log Variance
1

Time Schedule Linear

Terminal Time

Initial Distribution Dirac-Delta

DDS (Vargas et al., 2023)

SDE VP SDE

Loss Function Log Variance

SDE Exponential SDE

Time Schedule Cosine

Terminal T 12.8

At 1

Initial Distribution N(0,I) with Truncation

Quartile of 1e — 4

Table 3: Diffusion Sampler Configurations
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Optimizer Settings
Optimizer Adam
Learning Rate .005
Weight Decay le—7
Gradient Clipping 1
B1, Bo .9,.999
Training Settings
Total Iterations GMM, Image, Fun-
nel, MW54=30,000;
MW52=10,000;
LGCP=5,000
Train Time Steps 128
Batch Size 2048
Model Settings
Number of Layers 4
Channels 64
Time Conditioning Fourier Time Embeddings
Tancik et al.|(2020)
Activation GeLU

Evaluation Settings

Batch Size 10000
Weight Decay le—7

Table 4: Global Configurations
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CDDS (ours) SCDS (ours) PIS DDS DIS
1.0 1.0 1.0 1.0 1.0
= Sampling Loss
0.8 ~— SC Loss 0.8 0.8 0.8
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0.2 0.2 0.2 0.2
hemama e
0.0 0.0 A 0.0 0.0 0.0
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0.6 0.6
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0.0 L 0.0 L
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Figure 3: Loss curves for the samplers studied in this paper. SCDS and CDDS exhibit stable
learning across most settings, except for the image target distribution, where all samplers—except
CDDS—show instability. Notably, the self-consistency loss and the sampling loss remain relatively
independent.
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