
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCORE-BASED FREE-FORM ARCHITECTURES FOR
HIGH-DIMENSIONAL FOKKER-PLANCK EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning methods, which incorporate the PDE residual as loss function, have
recently emerged to solve Fokker-Planck equations. Without reference solutions,
proper normalization condition is required to avoid a trivial solution. However,
soft constraints require careful balancing of multi-objective loss function, and spe-
cific network architectures may limit representation capacity. In this paper, we
propose a novel framework: Fokker-Planck neural network (FPNN) that adopts
a score PDE loss to decouple the score learning and the density normalization
into two stages. Our method is mesh-free and causality-free, allowing for free-
form network architectures to model the unnormalized density and strictly satisfy
normalization constraints by post-processing. We demonstrate the effectiveness
on various high-dimensional steady-state Fokker-Planck (SFP) equations, achiev-
ing superior accuracy and over a 20× speedup compared to state-of-the-art meth-
ods. Without any labeled data, FPNNs achieve the mean absolute percentage er-
ror (MAPE) of 11.36%, 13.87% and 12.72% for 4D Ring, 6D Unimodal and 6D
Multi-modal problems respectively, requiring only 256, 980, and 980 parameters.
Experimental results highlights the potential as a universal fast solver for handling
more than 20-dimensional SFP equations, with great gains in efficiency, accuracy,
memory and computational resource usage.

1 INTRODUCTION

(a) Real NVP

(b) GMM

Figure 1: Left: Strengths and weaknesses for ex-
isting models. Right: Real NVP and GMM with
16 components fail to learn the ring function.
The former consistently leaves a gap, while the
latter exhibits numerous irregular protrusions.

The Fokker–Planck (FP) equation governs the
time-varying response probability density func-
tion (PDF) of dynamical systems driven by
stochastic processes (Risken & Caugheyz, 1991).
It finds wide applications in statistical physics,
chemistry, biology, mathematical finance, and
structural dynamics (De Decker & Nicolis, 2020;
Tu et al., 2020; Hu et al., 2021; Boghosian
et al., 2017). Solving FP equations presents three
main challenges: high-dimensional variables, un-
bounded spatial domains, and the normalization
condition (NC). Traditional grid-based methods
are constrained by the curse of dimensionality,
while path integral methods and Monte Carlo
(MC) simulations are significantly limited by
noise and computational complexity (Naess &
Moe, 2000; Elman et al., 2014; Chen & Majda,
2017; Natarajan et al., 2021).

Deep learning methods, with their grid-free, causality-free, and feature-learning capabilities, have
demonstrated potential in addressing high-dimensional partial differential equations (PDEs) (Han
et al., 2018; Yu et al., 2018; Sirignano & Spiliopoulos, 2018; Liu et al., 2024). Among these promis-
ing methods, physics-informed neural networks (PINNs) (Raissi et al., 2019) leverage automatic
differentiation to enforce the physical constraints of underlying PDEs and achieve great success in
various problems, such as the Navier-Stokes equation, Burgers’ equation, Schrödinger equation, etc.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, for steady-state Fokker-Planck (SFP) equations, PINN faces a new challenge: the zero so-
lution also satisfies this equation and directly minimizing the plain PDE loss will quickly collapse
the model to a trivial solution.

To mitigate this issue, data-driven methods guide the neural network (NN) to the desired solution by
introducing labeled data or Kullback-Leibler divergence terms (Zhai et al., 2022; Chen et al., 2021).
For 4D Ring problem, FP solver (Zhai et al., 2022) utilizes the direct Monte Carlo method with a
very large number of particles (1010 sample points) to obtain 104 reference points. This method
is computationally intensive and errors in the reference solutions may inversely limit the model’s
performance.

Table 1: Deep learning methods for SFP equations.

Methods Loss function Model Arbitrary
NN?

Whether strictly
satisfy NC?

Data-Driven Jplain + λJlabel pθ(x) = pNN(x; θ) ✓ ✗

Normalization
Condition

Jplain + λJnorm pθ(x) = pNN(x; θ) ✓ ✗

Jplain(pθ) pθ(x) = pKRnet(x; θ), pGMM(x; θ), pTNN(x; θ) · · · ✗ ✓

Jscore(p̃θ) p̃θ(x) = p̃NN(x; θ), pθ(x) =
p̃θ(x)∫
p̃θ(y)dy

✓ ✓

Another strategy that does not require labeled data is to impose normalization constraints in soft or
hard manner. Soft constraints prevent zero solutions by adding a normalization penalty term that
enforces the density integral to unity (Alhussein et al., 2023). While the normalization condition
prevents the approximate solution from being zero across the entire domain, minimizing the plain
PDE loss still has a tendency toward the trivial solution. These conflicting forces result in tortuous
optimization dynamics (Wang et al., 2024; Al-Aradi et al., 2022), requiring delicate balancing of the
multi-objective loss function. Specialized structures, such as normalizing flows (Dinh et al., 2016;
Tang et al., 2022; Feng et al., 2022) and Gaussian mixture model (GMM) (Anderson & Farazmand,
2024), are developed to represent density functions and enforce hard constraints. These methods
shrink the trial solution space and compromise the representation capability, leading to significant
errors and computational burden when learning certain PDFs.

In summary, the former method requires manual balancing of multi-objective losses, while the latter
may constrain the model’s representation capacity. As shown in Figure 1, the ideal method strictly
satisfies normalization constraints without sacrificing representation capacity. To the best of our
knowledge, there is no effective approach to handle this conflict. In this paper, we propose a novel
framework: Fokker-Planck Neural Network (FPNN) to decouple the fitting and normalizing stages
through score PDE loss. FPNN efficiently solves high-dimensional SFP equations and offers the
following advantages:

Adaptive Domain for Complex Systems. High-dimensional state spaces often exhibit intricate
dynamics and interaction patterns. To accurately identify critical features and high-probability
regions, we use the stochastic Runge–Kutta (SRK) method with strong order 1.5 to generate steady-
state training data and adaptively determine the appropriate domain for SFP problems.

Flexible Scaling for Small Solutions. Since the probability density is non-negative and must
integrate to unity over the spatial domain, the solution to high-dimensional problems is typically
quite small and networks struggle to resolve such small yet meaningful scales directly. FPNN
employs a score PDE loss, allowing the network to freely choose an appropriate scale and learn
the unnormalized density. This effect of “data standardization” is infeasible for existing methods
without labeled data or prior knowledge.

Efficient Enforcement of Normalization Constraints. The score loss allows free-form network
architectures to strictly satisfy normalization constraints. FPNN avoids evaluating the density
function integral during training process and instead calculates the normalizing constant by post-
processing.

Scalability and Improvements in Optimization Dynamics. Without any labeled data or the
enforcement of zero boundary conditions, we successfully solve various 4-20 dimensional SFP
equations for complex physical systems. FPNN circumvents the normalization condition in loss
function which causes difficulty in training, and substantially improves optimization dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Therefore, a large learning rate (l = 0.01) is allowed for fast descent and stable convergence, and
FPNN achieves over 20× speedup compared to state-of-the-art methods. We get the MAPE of
11.36%, 13.87% and 12.72% for 4D Ring, 6D Unimodal and 6D Multi-modal problems respec-
tively, requiring only 256, 980, and 980 parameters. Our framework demonstrates substantial gains
in efficiency, accuracy, and memory usage.

2 PRELIMINARIES

Fokker–Planck equation. Consider stochastic differential equations (SDEs) (Oksendal, 2013) of
the form

dX = µ(X)dt+ σ(X)dWt, (1)

where the drift coefficient µ(X) ∈ Rd is a vector field, σ(X) ∈ Rd×M is a matrix-valued function
and Wt is an M -dimensional standard Wiener process. The density function p(x)1 of state variable
X represents an invariant distribution, satisfying the steady-state Fokker-Planck (SFP) equation:

∂p(x)

∂t
= Lp := −

d∑
i=1

∂(pµi)

∂xi
+

d∑
i=1

d∑
j=1

∂2(Di,jp)

∂xi∂xj
= −∇ · (pµ) +∇ · [∇ · (Dp)],

i.e. Lp(x) = 0, p(x) → 0 (||x|| → ∞),

∫
Rd

p(x)dx = 1,

(2)

where x ∈ Rd is the spatial variable, D(x) = 1
2σ(x)σ(x)

T is the diffusion matrix, L denotes the
Fokker-Planck differential operator and ||x|| indicates the ℓ2 norm of x.

Physics-informed neural networks. PINN is a deep neural network pθ(x) to approximate the
solution p(x) with the universal approximation theorem (Hornik et al., 1989). The SFP equation in
Eq. (2) can be expressed as,

Lp(x) = 0 x ∈ Ω, Bip(xi) = 0 xi ∈ ∂Ωi, Ip = 1. (3)

Here, Bi are boundary conditions (BCs) for boundaries ∂Ωi ⊂ Ω, and the integral operator I repre-
sents the NC. These physical constraints are incorporated as regularization (typically mean-squared
error terms) in the loss function. To accelerate model training and reduce violations of physical
laws, hard constraints can be used to omit part loss terms.

Score-based generative model. Score matching (Hyvärinen & Dayan, 2005) is a popular method
for learning unnormalized statistical models and score-based generative models have shown promis-
ing performance in both sample quality and sample efficiency, which can be combined with numer-
ical SDE solvers or fast ODE solvers to generate samples (Song et al., 2021; Song & Ermon, 2020;
Lu et al., 2022). Score loss are usually optimized by minimizing the Fisher divergence between
the gradients of log-density functions (i.e., scores) and the ground truth scores from data, without
handling the intractable partition functions (Song et al., 2020; Luo, 2022). This idea serves as the
primary inspiration for our score PDE loss.

3 FOKKER–PLANCK NEURAL NETWORKS

Considering that optimization, data, and model form the cores of deep learning approaches, we
introduce the FPNN framework through these three components. First, we define the score-based
Fokker–Planck loss as the objective function to solve SFP equations. Then, steady-state data from
true distribution is required to evaluate the score loss, for which we simulate SDEs using the SRK
method. Finally, we briefly review the tensor neural network (TNN) and the multi-layer perceptron
(MLP), implementing appropriate modifications to suit our task.

1We mainly focus on the SFP equation, where the stochastic system reaches an invariant equilibrium dis-
tribution and parameters µ, σ are independent of time t. Examples of PDEs, experimental settings, as well as
expressions for µ(x) and σ(x) can be found in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Model

𝑑𝑋 = 𝜇 𝑋 𝑑𝑡 + 𝜎 𝑋 𝑑𝑊𝑡SDE

ℒ𝑝 = −∇ ⋅ 𝑝𝜇 + ∇ ⋅ ∇ ⋅ 𝑝𝐷 = 0SFP

Score PDE Loss

Minimize score loss: 𝔼𝑝(𝒙) ℱ𝑠𝜃

SRK

Data

𝒟train, Ω = −1.8,1.8 4

Prediction

Training process: (𝑥1, 𝑥2, 0, 0)

Time: 1.99s 3.91s 5.79s 7.75s 9.37s 10.99s 12.61s 14.58s 16.50s 18.13s

Initial Step 100 Step 200 Step 300 Step 400 Step 500 Step 600 Step 700 Step 800 Step 900 Step 1k

Model ෤𝑝𝜃

Approximate
solution

Estimate partition
function

S
o

lu
ti

o
n

s
o

f
F

P
N

N

MLP TNN

⋯⋯

Arbitrary
NN

Loss𝑠𝜃: = ∇ log ෤𝑝𝜃

𝑝𝜃 = ෤𝑝𝜃/𝑍𝜃

𝑍𝜃 ≈ න
Ω

෤𝑝𝜃 𝒙 𝑑𝒙

Step

Figure 2: FPNN framework for high-dimensional SFP equations. We use the SRK method to simu-
late SDE for generating training dataset Dtrain and domain Ω. Then, the data is fed into a free-form
architecture to produce the score. Next, we train the model by minimizing the score-based FP loss.
With the trained model p̃θ, we compute the partition function and perform normalization once to
obtain the solution of SFP equation.

3.1 SCORE-BASED PDE LOSS

Score matching is originally designed for estimating unnormalized probability densities in machine
learning, statistics, and signal processing. The score of density p(x) is defined as ∇ log p(x). When
the model learns a density p̃θ(x) with the partition function Zθ, the approximate solution of SFP
equation is a normalized density denoted by,

pθ(x) =
p̃θ(x)

Zθ
, Zθ =

∫
p̃θ(x)dx (4)

Note that since log pθ(x) = log p̃θ(x) − logZθ and ∇ log pθ(x) = ∇ log p̃θ(x), we immediately
conclude that pθ(x) and p̃θ(x) share the same score, which does not depend on the intractable
partition function Zθ.

Inspired by this fact, we directly model the unnormalized density p̃θ and the score function sθ =
∇ log p̃θ using a neural network, and employ sθ to approximate the true score. Once we reformulate
the plain PDE loss of SFP equations into a score-based form, our model can learn the correct score
function and focus on the shape of PDF without handling NC. With the trained model p̃θ(x), we
compute the partition function only once by post-processing and obtain the approximate solution
pθ(x) via Eq. (4).
Theorem 1 (Score-based FP loss). Assume the approximate solution pθ(x) is differentiable and
positive, satisfying regularity conditions2: for a fixed set of (µ(x),D(x)), E[|Lpθ(x)|] is finite for
any θ. Denote the model score function as sθ(x) := ∇ log p̃θ(x) to approximate ∇ log p(x) and
p(x) is the true solution of SFP equation. The plain PDE loss can be expressed as the following up
to a constant factor

Ep(x)[|Fsθ(x)|] := Ex∼p(x)[|sθ(x) · µ̃(x) +∇ · µ̃(x)|] (5)

where µ̃(x) := µ(x)−∇ ·D(x)−D(x)sθ(x) does not explicitly involve the density. F is named
as the score-based FP operator, and the proposed PDE loss solely depends on the score sθ(x).

Proof in Appendix A and we further clarify the connection between the score PDE loss and score
matching. By modeling the unnormalized density, we avoid the computational burden caused by
frequently estimating Zθ at each iteration, and also eliminate the interference of NC during training
process. In this way, FPNN decouples the fitting and normalizing stages, ensuring continuous and
efficient training process.

2Since solving FP equations with PINN is a well-posed problem, this result can be directly inferred from the
loss function setup. Additionally, the loss functions E[|Lpθ(x)|] and Ep(x)[|Fsθ(x)|] share the same minimum
value (zero) and uniqueness conditions for the solution under NC.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 STEADY-STATE DATA GENERATION

To evaluate the score loss, we need training data from the true distribution p(x) of SFP equation,
which can be sampled through the SDE simulation.

Dataset generation. Since the SDE is described by a steady-state equation, the stochastic system al-
ways reaches an invariant equilibrium distribution under the combined effects of drift and diffusion.
Thus, we can freely choose the initial distribution p0(x) and sample an initial point set. These par-
ticles then evolve according to the SDE dynamics over a long time T 3 to produce a training dataset
Dtrain from the target distribution p ≈ pT .

Algorithm 1 SRK method for steady-state data generation

1: Input: terminal time T , number of time steps N , initial
distribution p0, drift term µ(x) and diffusion term σ(x)

2: // Dataset generation phase
3: Select initial points x0 ∼ p0
4: Compute ∆t = T/N
5: for n = 0, 1, . . . , N − 1 do
6: Sample ∆Wn ∼ N (0,∆t)
7: µ0 = µ(xn), σ0 = σ(xn)
8: σ1 = σ(xn + σ0∆Wn/2)
9: σ2 = σ(xn +µ0(3∆t+∆W2

n)/4 + σ1∆Wn/2)
10: σ3 = σ(xn + µ0(3∆t−∆W2

n)/2 + σ2∆Wn)
11: µ1 = µ(xn + µ0(3∆t−∆W2

n)/2 + σ2∆Wn)
12: µ = (µ0 + µ1)/2
13: σ = (σ0 + 2σ1 + 2σ2 + σ3)/6
14: xn+1 = xn + µ∆t+ σ∆Wn

15: end for
16: Generate training dataset Dtrain = xN ∼ pT
17: // Domain selection phase
18: Find the spatial bounds ai = min(xi), bi = max(xi)

(i = 1, . . . , d) for x ∈ Dtrain

19: Determine the domain Ω =
⊗d

j=1[ai, bi]
20: Output: Dtrain, Ω

Figure 3: Left: Cross-sectional views of the training data distributions for SFP equations with com-
plex patterns. Right: The SRK method consisting of two phases: dataset generation and domain
selection.

Domain selection. Based on these samples, we determine an appropriate domain Ω for SFP prob-
lems, as the regions not covered by dataset Dtrain have very low or near-zero probability density. This
implies that the integral of the true density function outside Ω (i.e., 1−

∫
Ω
p(x)dx) is approximately

zero. And this fact provides a theoretical guarantee for calculating the partition function Zθ over
Ω. Additionally, training FPNN on Ω conserves computational resources and avoids the undefined
value of log p̃θ(x) at p̃θ(x) = 0. There is no need to add gated functions or enforce BCs, because
the correct score model will ensure that pθ is close to 0 at ∂Ω.

We use SRK methods for the strong approximation of SDE, and generate trajectories and samples
with the strong order 1.5 Newton scheme (Newton, 1991). The training dataset Dtrain and problem
domain Ω are adaptively provided by Algorithm 1. Other numerical approximations for SDE simu-
lation are alternatives, such as the Euler-Maruyama method and the Milstein method (Bayram et al.,
2018). For FPNN, we do not require the data points to exactly follow the true distribution p(x), and
our loss function offers a degree of tolerance and flexibility. The SRK method and its generated data
for different SFP equations are given in Figure 3.

3Specifically,
∫ T

0
|µ(x(t))|dt needs to be sufficiently large to ensure that the particles thoroughly explore

the spatial space and eventually reach a steady state.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 NETWORK ARCHITECTURE

FPNN separates the score model learning from NC, allowing for unrestricted network architectures.
In our implementation, we focus on two general approximators: TNN and MLP to model the un-
normalized density p̃θ(x). The former is considered for its significant reduction in computational
complexity when performing high-dimensional numerical integration for Zθ. The latter is widely
used in deep learning tasks and the integral over domain Ω can be estimated by Monte Carlo sam-
pling. Both networks are modified to better accommodate complex SFP equations.

3.3.1 TENSOR NEURAL NETWORKS

Inspired by SPINN (Cho et al., 2024) and TNN (Wang et al., 2022), we parametrize each spatial
component using an separated neural network fi : R → Rr, which takes the coordinates of i-th axis
as input and produces a r-dimensional feature representation. We propose the power embedding
(PE) to enhance the representation and better capture high-order drift dynamics. In each dimension,
the input xi is transformed into [xi, x

2
i , · · · , xm

i] before being fed into the network fi (m is a man-
ually specified hyper-parameter). This embedding enables the model to learn complex PDFs more
efficiently and accurately (see Tables 4). The final prediction is obtained by taking an element-wise
product of these r-dimensional features and summing the result:

p̃θ(x) =

r∑
j=1

d∏
i=1

fi,j(xi; θi) (6)

We employ the activation function tanh for all hidden layers and add an additional softplus activa-
tion function before the output layer of the sub-networks fi to make density p̃θ(x) strictly positive. A
k-dimensional TNN can be built with k one-dimensional TNNs and approximate any k-dimensional
vector functions u : Rd → Rk. For details on the approximation properties, refer to Theorem 2.1 of
TNN (Wang et al., 2022) and Appendix D.4 of SPINN (Cho et al., 2024).

Due to the low-rank structure of density representation in TNN, an efficient and accurate quadra-
ture scheme can be designed for high-dimensional integration. Theorem 2 decomposes the high-
dimensional integral of density p̃θ(x) into a series of one-dimensional integrals, and we efficiently
compute it using the piece-wise Gauss-Legendre quadrature rule within 10 subintervals.

Theorem 2 (Partition function calculation). Given the density p̃θ(x) parameterized by TNN, the
partition function Zθ is computed as,

Zθ ≈
r∑

j=1

d∏
i=1

(
Ni∑

ni=1

w
(ni)
i fi,j

(
x
(ni)
i ; θi

))
(7)

where the nodes {x(ni)
i }Ni

ni=1 and weights {w(ni)
i }Ni

ni=1 are used for numerical integration in the i-th
dimension (i = 1, . . . , d).

3.3.2 MULTI-LAYER PERCEPTRON

To illustrate the applicability of our score PDE loss to different network architectures, we parame-
terize the d-dimensional spatial variables using an MLP fθ : Rd → Rr. The tanh function is used
in hidden layers and the softplus function is employed to ensure non-negativity in the output layer.
The r-dimensional features are summed up to produce the final output:

p̃θ(x) =

r∑
j=1

fj(x; θ) (8)

In our experiments, we find that hidden neurons with small activation values are overshadowed and
inadequately trained in the original setup. And the modified MLP demonstrates improved learning
performance.

Efficient numerical integration in Eq. (7) essentially forms high-dimensional grids using tensor prod-
ucts, which imposes certain requirements on the network architecture. More generally, we provide

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the Monte Carlo estimation of partition function:

Zθ ≈
∫
Ω

p̃θ(x)dx = Eq(x)

[
p̃θ(x)

q(x)

]
(9)

For simplicity, we set q(x) as an uniform distribution on Ω, i.e., q(x) = 1
ν(Ω) for x ∈ Ω, where

ν denotes the Lebesgue measure. Since the optimization process does not involve normalization
operations, we are free to choose the quadrature scheme to compute Zθ by post-processing.

4 EXPERIMENT

Consider the challenges of solving high-dimensional SFP equations, we evaluate on several bench-
mark problems with analytical solutions. The 4D Ring is tested in FP solver (Zhai et al., 2022),
while the 6D problems and 10D Multi-modal problem are adapted from TFFN (Wang et al., 2024).
We further construct the 10D Gaussian mixture distribution (Tang et al., 2022) and 20D Gaussian
function to comprehensively test the applicability of our FPNN. Our PDE examples span various
4-20 dimensional steady-state solutions, including ring-shape density, arbitrary potential function,
and Gaussian mixture distribution, with complicated interactions among spatial coordinates.

Notably, few recent works can effectively solve such high-dimensional, challenging and different
types of SFP equations, without the limitations in Table 1. We utilize TFNN as the baseline for
comparison. The models are implemented in PyTorch framework and trained on NVIDIA Quadro
RTX 8000 GPU with 48GB memory. Codes are provided in the supplementary material. We set a
consistent seed across all experiments to ensure the reproducibility of our results.

(a) 4D Ring

(b) 6D Unimodal

(c) 6D Multi-modal

Figure 4: Comparison of efficiency between TFFN and FPNN. The first column displays the true
solution, while columns 2-5 and columns 6-9 show the predicted solutions (top) and corresponding
MAE (bottom) for TFFN and FPNN during training. Both models utilize the same error colorbar for
fair comparison.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 EVALUATION METRICS

Due to the small solutions to high-dimensional problems, mean absolute error (MAE) is insufficient
to accurately evaluate the performance of models in different SFP problems. Even if the network
learns a zero solution, MAE is not noticeable and merely equal the average true density on the test
dataset, making it difficult to identify this error. However, mean absolute percentage error (MAPE)
results in 100%, giving us a great indicator of performance. We incorporate MAPE to measure the
consistency between the predicted and true solutions.

For high-dimensional problems, we are limited to visualizing the results using selected slices.
However, only testing errors on cross-sectional data is insufficient to measure the performance of
high-dimensional solutions due to their multi-modal complexity. Thus, we generate a test dataset
Dtest = {p(x) > ϵ,x ∈ Rd} to globally evaluate error metrics. To avoid the ineffective MAPE,
Dtest is generated by the gradient ascent method on analytical solutions, with a threshold ϵ to reject
extremely small probability densities. This approach is more efficient than the traditional method
of randomly sampling spatial points and filtering out those with densities below ϵ. The same test
dataset and evaluation metrics are used for FPNN and TFFN, ensuring a fair comparison.

Table 2: Experimental results of TFFN and FPNN on 4-6 dimensional SFP equations.

SFP equations Domain Ω
TFFN FPNN (Ours)

MAE MAPE MAE MAPE

4D Ring [−1.8, 1.8]4 3.61× 10−3 49.25% 5.56× 10−4 3.84%
6D Unimodal [−1.2, 1.2]6 4.00× 10−2 293% 1.48× 10−3 4.33%
6D Multi-modal [−2, 2]6 1.84× 10−3 92.90% 1.98× 10−4 12.18%

4.2 EXPERIMENTAL ANALYSIS

Figure 5: Plot of score PDE
loss for 4-20 dimensional SFP
equations during training.

Figure 6: Plot of score PDE
loss and plain PDE loss for
4D Ring.

Score PDE loss. Without the interference from NC, score loss sig-
nificantly improves the optimization dynamics, enabling FPNN to
quickly learn the correct scores and successfully capture the shape
of PDF. This is crucial for the post-process of calculating normaliz-
ing constant and is a key factor in the success of our framework. In
Figure 5, we plot the training loss Jscore of FPNN for various SFP
equations. Unlike the vanilla PINN, the magnitude of Jscore hardly
change with increasing dimensionality or decreasing solutions. The
score PDE loss consistently remains within a stable range of 102 to
10−1, demonstrating numerical stability across dimensions. Empir-
ical evidence shows that when Jscore falls below 1, FPNN generally
learns the density function well. Thus, score loss also serves as an
indicator of training progress and guides the network training re-
gardless of dimensionality.

Noting that both FPNN and TFFN strictly satisfy NC, we compare
two PDE losses Jscore and Jplain for 4D Ring problem in Figure 6.
To balance the numerical scale of loss functions, we evaluate the
plain PDE loss for FPNN and TFFN using 10k samples. These
points are uniformly sampled from Ω and not used for training in
both models. FPNN calculates Zθ for normalization based on the
current model at each step. Under the same evaluation, we observe
that Jplain of FPNN drops faster and lower, indicating that our model
trains more efficiently and stably using the score PDE loss. Moreover, although Jplain of TFFN also
decreases to small values, the shape of approximate solution does not match the true density in
Figure 4a. This deviation grows larger in higher-dimensional problems, leading to the failure or
inapplicability of existing methods such as PINN and TFFN in high-dimensional SFP problems.

Network Architecture. Increasing network capacity and width enhances model performance, re-
sulting in fewer training steps and more accurate solutions. In Table 4 and Table 5, PE shows great

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

improvements in learning drift functions with high-order polynomial forms. Surprisingly, MLP-
based FPNN utilizes 256 parameters to handle the complex 4D Ring problem and MAPE is reduced
to 11.36% in only 4.8 minutes. In contrast, TFFN with 33,792 parameters is trained for 27.6 minutes
and still fails to achieve comparable performance, as illustrated in Figure 4a. Given the flexibility in
model, ResNet (He et al., 2016) is also alternative for deeper networks. In Figure 8, we observe that
both TNN-based and MLP-based FPNN correctly capture the two peaks along the x9 axis in 10D
Multi-modal problem, requiring only 200 and 1k steps, respectively.

Table 3: Comparison of network structure for FPNN on high-dimensional SFP equations.

SFP equations Domain Ω Model Parameters MAE MAPE

10D Multi-modal [−1.2, 1.2]10
TNN 84,480 1.26× 10−4 32.00%
MLP 13,184 6.53× 10−5 18.30%

10D Gaussian mixture [−5, 5]10
TNN 126,080 1.84× 10−7 24.50%
MLP 1,480 1.16× 10−7 18.38%

20D Gaussian [−2, 2]20 TNN 252,160 1.22× 10−8 12.79%

(a) MLP-based FPNN

(b) TNN-based FPNN

Figure 7: 10D Gaussian mix-
ture: MAE, MAPE and Zθ at
different |DZ | for FPNN.

Partition Function. For MLP-based FPNN, we employ Monte
Carlo sampling to draw a dataset DZ from the distribution q(x)
and estimate the partition function Zθ in Eq.(9). The size of DZ ,
denoted by |DZ |, determines the accuracy of unbiased estimation
of Zθ, which improves as |DZ | increases. Figure 7a illustrates how
the number of MC samples affects the estimation of Zθ, and subse-
quently, the prediction error of our solution.

Due to the randomness, errors fluctuates significantly with small
dataset DZ , especially in the range |DZ | = 5k ∼ 20k. As |DZ |
increases, the prediction stabilizes. Higher-dimensional densities
require more samples to accurately estimate the partition function.
For all SFP problems, we set |DZ | = 20k, which our experi-
ments show is sufficient for the accuracy of FPNN. However, for
10D Gaussian mixture problem, the expanded domain resulted in a
MAPE of 58.66% with this setting. After increasing |DZ | to 100k,
we get better solution with a MAPE of 18.38%.

For TNN-based FPNN, we also compare the Gauss-Legendre
quadrature scheme in Eq.(7) with the MC sampling method in
Eq.(9). As shown in Figure 7b, with more samples in DZ , the MC
estimation ZMC gradually approaches the numerical integration ZGL
(the rightmost column), and MAPE steadily decreases. More com-
parisons and limitations are provided in Appendix B.

Model Layers Parameters MAE MAPE

TNN

[m, hidden layers, r]
[1, 64, 128] 33,792 7.27× 10−3 99.82%
[3, 20, 20, 20, 20] 5,360 4.25× 10−3 65.41%
[3, 64, 64, 64] 34,304 6.91× 10−4 7.58%
[5, 64, 128] 34,816 8.20× 10−4 5.66%
[8, 64, 128] 35,584 5.56× 10−4 3.84%

MLP

[d, hidden layers]
[4, 8, 8, 8, 8] 256 1.26× 10−3 11.36%
[4, 20, 20, 20, 20] 1,360 9.74× 10−4 8.74%
[4, 64, 64, 64] 8,640 8.81× 10−4 6.48%
[4, 128, 128] 17,152 6.21× 10−4 5.39%

Table 4: 4D Ring: comparison of FPNN with different
networks (10k steps). Figure 8: 10D Multi-modal: predicted

solution of FPNN during training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Layers Parameters Steps MAE MAPE

TNN

[m, hidden layers, r]
[1, 20, 20, 20, 20] 7,800 10k 1.26× 10−2 30.60%
[1, 64, 64, 64] 50,688 2k 1.33× 10−2 31.84%
[3, 64, 64, 64] 51,456 2k 2.94× 10−3 9.49%
[5, 64, 64, 64] 52,224 2k 2.44× 10−3 8.00%
[8, 64, 128] 53,376 2k 2.18× 10−3 7.03%
[8, 64, 128] 53,376 10k 1.48× 10−3 4.33%

MLP

[d, hidden layers]
[6, 8, 8, 8] 200 4k 2.46× 10−2 41.64%
[6, 20, 20, 20] 980 6k 5.40× 10−3 13.87%
[6, 64, 64, 64] 8,768 10k 2.94× 10−3 8.61%

Table 5: 6D Unimodal: comparison of FPNN with
different networks. Figure 9: 10D Gaussian mixture: pre-

dicted solution of FPNN during training.

Computational Efficiency. Our computational complexity is significantly reduced compared to
existing methods, because the normalization condition does not need to be explicitly considered
during training. For PDE residuals, we only perform an additional logarithmic operation on the
output layer, and the computational costs for Jplain, Jscore and their computational graphs remain
roughly comparable. With the improved optimization dynamics and post-process of normalization,
FPNN reduces both the total number of training epochs and the computational cost per iteration,
achieving faster efficiency and enhanced performance.

Figure 10: 20D Gaussian: predicted solution of FPNN. The first column shows the exact solution and
the changes of MAPE during training. Due to symmetry, the cross-sections of any two dimensions
near the origin exhibit the same shape. The remaining parts display the predicted densities for pairs
of adjacent dimensions, such as (x1, x2, 0, . . . , 0), (0, 0, x3, x4, 0, . . . , 0), and so on.

5 LIMITATIONS AND FUTURE WORK

Despite comprehensive experimental results show the effectiveness of our FPNN framework on
challenging high-dimensional steady-state FP equations, there remain challenges on solving time-
dependent FP equations. Time-varying probability densities are often non-localized and it is difficult
to identify a suitable integration domain at any given time and compute the time-varying normalizing
function. Our exploration is merely a promising start, and we look forward to its applications in
broader fields, such as physics, finance, diffusion models, and mean-field games. In the future, we
aim to extend the score-based FP loss to the time-dependent form and develop a flexible and efficient
solver for general Fokker-Planck equations.

6 CONCLUSION

We propose a novel framework, FPNN, that decouples the normalization condition through score
PDE loss for solving high-dimensional SFP equations. FPNN eliminates the computation and influ-
ence of the partition function for more efficient and stable training. In addition, arbitrary network
architectures are allowed to strictly enforce normalization constraints, without sacrificing represen-
tation power. Our method outperforms existing methods in both training efficiency and prediction
accuracy, demonstrating strong potential and general applicability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ali Al-Aradi, Adolfo Correia, Gabriel Jardim, Danilo de Freitas Naiff, and Yuri Saporito. Extensions
of the deep galerkin method. Applied Mathematics and Computation, 430:127287, 2022.

Hussam Alhussein, Mohammed Khasawneh, and Mohammed F Daqaq. Physics-informed solution
of the stationary fokker-plank equation for a class of nonlinear dynamical systems: An evaluation
study. arXiv preprint arXiv:2309.16725, 2023.

William Anderson and Mohammad Farazmand. Fisher information and shape-morphing modes for
solving the fokker–planck equation in higher dimensions. Applied Mathematics and Computation,
467:128489, 2024.

Mustafa Bayram, Tugcem Partal, and Gulsen Orucova Buyukoz. Numerical methods for simulation
of stochastic differential equations. Advances in Difference Equations, 2018:1–10, 2018.

Bruce M Boghosian, Adrian Devitt-Lee, Merek Johnson, Jie Li, Jeremy A Marcq, and Hongyan
Wang. Oligarchy as a phase transition: The effect of wealth-attained advantage in a fokker–
planck description of asset exchange. Physica A: Statistical Mechanics and its Applications, 476:
15–37, 2017.

Nan Chen and Andrew J Majda. Beating the curse of dimension with accurate statistics for the
fokker–planck equation in complex turbulent systems. Proceedings of the National Academy of
Sciences, 114(49):12864–12869, 2017.

Xiaoli Chen, Liu Yang, Jinqiao Duan, and George Em Karniadakis. Solving inverse stochastic prob-
lems from discrete particle observations using the fokker–planck equation and physics-informed
neural networks. SIAM Journal on Scientific Computing, 43(3):B811–B830, 2021.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Yannick De Decker and Grégoire Nicolis. On the fokker–planck approach to the stochastic thermo-
dynamics of reactive systems. Physica A: Statistical Mechanics and its Applications, 553:124269,
2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Howard Elman, David Silvester, and Andy Wathen. Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics. OUP Oxford, 2014.

Xiaodong Feng, Li Zeng, and Tao Zhou. Solving time dependent fokker-planck equations via tem-
poral normalizing flow. Communications in Computational Physics, 32(2):401–423, 2022.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jingwei Hu, JianGuo Liu, Yantong Xie, and Zhennan Zhou. A structure preserving numerical
scheme for fokker-planck equations of neuron networks: Numerical analysis and exploration.
Journal of Computational Physics, 433:110195, 2021.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

A Naess and V Moe. Efficient path integration methods for nonlinear dynamic systems. Probabilistic
engineering mechanics, 15(2):221–231, 2000.

H Natarajan, PP Popov, and GB Jacobs. A high-order semi-lagrangian method for the consistent
monte-carlo solution of stochastic lagrangian drift–diffusion models coupled with eulerian dis-
continuous spectral element method. Computer Methods in Applied Mechanics and Engineering,
384:114001, 2021.

Nigel J Newton. Asymptotically efficient runge-kutta methods for a class of ito and stratonovich
equations. SIAM Journal on Applied Mathematics, 51(2):542–567, 1991.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

H Risken and TK Caugheyz. The fokker-planck equation: Methods of solution and application.
Journal of Applied Mechanics, 58(3):860, 1991.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Kejun Tang, Xiaoliang Wan, and Qifeng Liao. Adaptive deep density approximation for fokker-
planck equations. Journal of Computational Physics, 457:111080, 2022.

Tongbi Tu, Ali Ercan, and M Levent Kavvas. Probabilistic solution to two-dimensional stochas-
tic solute transport model by the fokker-planck equation approach. Journal of Hydrology, 580:
124250, 2020.

Taorui Wang, Zheyuan Hu, Kenji Kawaguchi, Zhongqiang Zhang, and George Em Karni-
adakis. Tensor neural networks for high-dimensional fokker-planck equations. arXiv preprint
arXiv:2404.05615, 2024.

Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor neural network and its numerical integration.
arXiv preprint arXiv:2207.02754, 2022.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Jiayu Zhai, Matthew Dobson, and Yao Li. A deep learning method for solving fokker-planck equa-
tions. In Mathematical and scientific machine learning, pp. 568–597. PMLR, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A LOSS FUNCTIONS FOR SFP EQUATIONS

We first introduce the loss functions and notations listed in Table 1 to provide the background for
SFP equations. Then, we present the derivation of the score-based FP loss, which constitutes the
core innovation and contribution of our work. Furthermore, we explain the relationship between the
score PDE loss of SFP equations and the score-matching loss of generative models.

A.1 RELATED WORKS

PINN is a general deep-learning framework for solving PDEs and has achieved significant success in
various problems, such as the Navier-Stokes equations, Allen-Cahn equation, Schrödinger equation,
etc. However, PINN faces challenges in Fokker-Planck equations, with the plain PDE loss:

Jplain(pθ) = E [|∇ · (pθµ)−∇ · (∇ · (Dpθ))|] (10)

It is evident that the zero solution pθ = 0 also satisfies this equation. Therefore, directly minimizing
Jplain often leads to network collapse, where pθ converges to a trivial solution. Data-driven methods
rely on reference solutions {(xj , pj)}Nj=1 and introduce the regression loss:

Jlabel =
1

N

N∑
j=1

(pθ(xj)− pj)
2 (11)

Without labeled data, existing strategies generally fall into two categories involving normalization
constraints in soft or hard manner. Soft constraints add a normalization penalty term to enforce Zθ =
1, thereby enabling the use of Eq.(9). This involves sampling a dataset Dnorm from the distribution
q(x), with the number of samples given by |Dnorm|. In our experiments, Ω =

⊗d
j=1[ai, bi] is a

hypercube with the volume of ν(Ω) =
∏d

i=1 |bi − ai|. The normalization loss is defined as:

Jnorm =

(
ν(Ω)

|Dnorm|
∑

x∈Dnorm

pθ(x)− 1

)2

(12)

Hard constraints, on the other hand, develop specific structures to represent the density function,
such as normalizing flows and their variants. The flow-based generative modeling is to seek an
invertible mapping z = f(x) and the PDF of x follows the change of variables formula to strictly
adhere NC.

pX(x) = pZ(z)|det∇xf(x)| (13)

However, the former method requires manual balancing of multi-objective losses, while the latter
may constrain the model’s representation capacity. Furthermore, in terms of computational effi-
ciency, TFFN requires estimating Zθ at every iteration, ”soft” PINN necessitates computing Jnorm at
each step, and density estimation with normalizing flows involves simultaneous tracking the changes
of both x and log-density.

FPNN deviates from all existing approaches by changing the loss function directly. Our score PDE
loss allows to model the unnormalized density p̃θ and decouples NC from the training process.
Specifically, we replace Jplain with the following score PDE loss:

Jscore(sθ) = E [|∇ log p̃θ · µ̃(x) +∇ · µ̃(x)|] ,
µ̃(x) = µ(x)−∇ ·D(x)−D(x)∇ log p̃θ

(14)

In this form, the trivial solution p̃θ = 0 no longer satisfies the equation. The score PDE loss
maintains equivalence with the plain PDE loss while avoiding a zero solution and circumventing
Jlabel, Jnorm, or the normalization condition in loss function which causes difficulty in training.

A.2 DERIVATION OF SCORE PDE LOSS

Theorem 1 (Score-based FP loss). Assume the approximate solution pθ(x) is differentiable and
positive, satisfying regularity conditions: for a fixed set of (µ(x),D(x)), E[|Lpθ(x)|] is finite for
any θ. Denote the model score function as sθ(x) := ∇ log p̃θ(x) to approximate ∇ log p(x) and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

p(x) is the true solution of SFP equation. The plain PDE loss can be expressed as the following up
to a constant factor

Ep(x)[|Fsθ(x)|] := Ex∼p(x)[|sθ(x) · µ̃(x) +∇ · µ̃(x)|] (15)

where µ̃(x) := µ(x)−∇ ·D(x)−D(x)sθ(x) does not explicitly involve the density. F is named
as the score-based FP operator, and the proposed PDE loss solely depends on the score sθ(x).

Proof. First, for any positive probability density p(x), note that Lp(x) can be expanded to

Lp(x) = −∇ · (p(x)µ(x)) +∇ · [∇ · (D(x)p(x))]

= −∇ · (p(x)µ(x)−∇ · (D(x)p(x)))

= −∇ · (p(x)µ(x)− (∇ ·D(x))p(x)−D(x)∇p(x))

= −∇ · (p(x)(µ(x)−∇ ·D(x)−D(x)∇ log p(x)))

= −∇ · (p(x)µ̃(x)) (16)

i.e.
= −

d∑
i=1

∂

∂xi
[p(x)µ̃i(x)]

where we define
µ̃(x) := µ(x)−∇ ·D(x)−D(x)∇ log p(x) (17)

For an approximate solution pθ(x), the plain FP loss measures the expectation of PDE residuals
Jplain = Eq(x)[|Lpθ(x)|], where q(x) can be selected as the uniform distribution on Ω. Based on
Eq.(16), we can rewrite this loss to obtain

Jplain(pθ) = Eq(x)[|Lpθ(x)|] =
∫
Ω

1

ν(Ω)
|Lpθ(x)|dx (18)

=
1

ν(Ω)

∫
Ω

|∇pθ(x) · µ̃(x) + pθ(x)(∇ · µ̃(x))|dx

=
1

ν(Ω)

∫
Ω

pθ(x)|∇ log pθ(x) · µ̃(x) +∇ · µ̃(x)|dx

=
1

ν(Ω)
Epθ(x)[|∇ log pθ(x) · µ̃(x) +∇ · µ̃(x)|]

≈ 1

ν(Ω)
Ep(x)[|Fsθ(x)|]

=
1

ν(Ω)
Jscore(sθ) (19)

Our goal is to approximate the solution p(x) and score ∇ log p(x) using pθ(x) and sθ(x). Thus,
we replace the expectation of pθ with the ground truth p, allowing us to train the score model
better. For SFP equations, we easily obtain samples from the invariant distribution p(x) through
SDE simulation. When pθ is close to p, we observe that, up to a constant factor of 1/ν(Ω), the
score-based FP loss is equivalent to the plain FP loss of PINN. But this form circumvents the need
to handle the partition function and normalization condition.

If we sample training data over a large spatial domain without prior knowledge, regions with ex-
tremely low density may fall below machine precision, resulting in pθ = 0 and “Not a Number”
(NaN) errors for log pθ. But it has no impact on the prediction stage, as there is no logarithmic
operation. By using the SRK method to generate high-probability training data of the steady-state
distribution, we define the domain of SFP problems and avoid this issue.

Sometimes, we can enhance training by adding weights w(x) according to the probability density,
and generalize the objective function as Ep(x)[|Fsθ(x)|α], (0 < α ≤ 1). We set α = 1 in our
experiments, i.e., ℓ1 norm for score loss function. Here is the following derivation:

Ep(x)[|Fsθ(x)|α] =
∫
Ω

p(x)|Fsθ(x)|αdx

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

≈ ν(Ω)

∫
Ω

1

ν(Ω)
p(x)1−α[pθ(x)

α|Fsθ(x)|α]dx

= ν(Ω)Eq(x)[p(x)
1−α|Lpθ(x)|α]

= ν(Ω)Eq(x)[w(x)|Lpθ(x)|α] (20)

A.3 CONNECTION BETWEEN SCORE PDE LOSS AND SCORE MATCHING

To illustrate this connection, we consider a special case where D(x) = Id. If minimizing the score
loss Jscore drives µ̃(x) to zero, the training process becomes equivalent to optimizing the objective
function of flow matching:

Epdata [∥µ(x)−∇ log p̃θ∥22] (21)
Thus, FPNN inherently integrates score matching while preserving the original Fokker-Planck equa-
tion and corresponding physical laws.

In Song’s work (Song et al., 2021), the Noise Conditional Score Network (NCSN) uses a weighted
sum of denoising score matching objectives:

θ∗ = argmin
θ

N∑
i=1

σ2
i Epdata(x)Epσi

(x̃|x)[∥sθ(x̃, σi)−∇x̃ log pσi
(x̃|x)∥22] (22)

and Denoising Diffusion Probabilistic Model (DDPM) leverages a re-weighted variant of the evi-
dence lower bound (ELBO):

θ∗ = argmin
θ

N∑
i=1

(1− αi)Epdata(x)Epαi
(x̃|x)[∥sθ(x̃, i)−∇x̃ log pαi

(x̃|x)∥22] (23)

It can be seen that our equivalent score-matching loss:
θ∗ = argmin

θ
Epdata(x)[∥sθ(x)− µ(x)∥22] (24)

shares a similar form with score-based generative models. These generative models gradually learn
the “score” of the perturbed data distribution (i.e., conditional Gaussian distribution), while our
FPNN directly learns the known drift µ(x) for solving FP equations.

(a) Score ∇𝑥𝑥 log𝑝𝑝data 𝑥𝑥

(b) Drift 𝜇𝜇 𝑥𝑥

4D Ring6D Multi-modal

New samplesScoresData samples

Langevin
dynamics

Score
matching

Figure 11: (a) the score in generative models and (b) the drift in SFP equations. Both represent
gradient information of the data distribution and indicate regions of high probability.

We further demonstrate the relationship between “drift” and “score”. Both are vector fields in high-
dimensional spaces that indicate the direction of high-density sampling. The distinction lies in their
domains: the drift function here operates in the physical space, whereas the score is typically defined
in image or feature space and lacks an analytical form.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B COMPUTATION OF PARTITION FUNCTION

The main proof is derived from Section 3 of Wang et al. (2022). Here, we demonstrate the simplified
integral expression relevant to our work, and the conclusion remains valid for the power embedding.
Theorem 2 (Partition function calculation). Given the density p̃θ(x) parameterized by TNN, the
partition function Zθ is computed as,

Zθ ≈
r∑

j=1

d∏
i=1

(
Ni∑

ni=1

w
(ni)
i fi,j

(
x
(ni)
i ; θi

))
(25)

where the nodes {x(ni)
i }Ni

ni=1 and weights {w(ni)
i }Ni

ni=1 are used for numerical integration in the i-th
dimension (i = 1, . . . , d).

Proof. For the unnormalized density p̃θ(x) represented by TNN, the computation of Zθ can be
decomposed into d one-dimensional integrals:

Zθ ≈
∫
Ω

p̃θ(x)dx

=

∫
Ω

r∑
j=1

d∏
i=1

fi,j(xi)dx

=

r∑
j=1

∫
Ω

d∏
i=1

fi,j(xi)dx (26)

=

r∑
j=1

∫ bd

ad

· · ·
∫ b1

a1

f1,j(x1) · · · fd,j(xd)dx1 · · · dxd

=

r∑
j=1

(∫ b1

a1

f1,j(x1)dx1

)
· · ·

(∫ bd

ad

fd,j(xd)dxd

)
(27)

For simplicity, we omit the parameters θi in network fi. Eq.(26) holds due to the linearity of integral
and Eq.(27) follows the fact that the sub-network fi solely depends only on xi (i = 1, . . . , d). With-
out loss of generality, for the i-th dimension, we use a piece-wise Gauss–Legendre quadrature rule
to compute the one-dimensional integral

∫ bi
ai

fi,j(xi)dxi and then compute Zθ in Eq.(27). Specifi-

cally, we select Ni Gauss points {x(ni)
i }Ni

ni=1 and corresponding weights {w(ni)
i }Ni

ni=1, introducing
the index n = (n1, · · · , nd) ∈ N := {1, . . . , N1} × · · · × {1, . . . , Nd}. Hence, Gauss points and
weights for numerical integration over the high-dimensional domain Ω are represented as:

{x(n)}n∈N =
{
(x1, · · · , xd)|xi = x

(ni)
i , i = 1, . . . , d

}
{w(n)}n∈N =

{
d∏

i=1

wi|wi = w
(ni)
i , i = 1, . . . , d

} (28)

The partition function is computed by numerical integration:

Zθ ≈
∫
Ω

p̃θ(x)dx

≈
∑
n∈N

w(n)p̃θ(x
(n))

=
∑

(n1,··· ,nd)∈N

w
(n1)
1 · · ·w(nd)

d

r∑
j=1

d∏
i=1

fi,j

(
x
(ni)
i

)

=

r∑
j=1

∑
(n1,··· ,nd)∈N

(
w

(n1)
1 f1,j

(
x
(n1)
1

))
· · ·
(
w

(nd)
d fd,j

(
x
(nd)
d

))

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

=

r∑
j=1

(
N1∑

n1=1

w
(n1)
1 f1,j

(
x
(n1)
1

))
· · ·

(
Nd∑

nd=1

w
(nd)
d fd,j

(
x
(nd)
d

))
(29)

Since the cost of each one-dimensional integral is independent of the dimensionality, the overall
computational complexity for the high-dimensional integration is the linear scale of dimension d.
And we only calculate the partition function once in FPNN.

The advantages and differences between two computations of Zθ are summarized as follows:

• MLP-based FPNN. The advantages of MLP lie in simpler feature fusion of spatial vari-
ables and faster computation of partition functions Zθ using MC sampling:

Zθ =
ν(Ω)

|Dnorm|
∑

x∈Dnorm

p̃θ(x) (30)

However, in particularly high-dimensional settings or the large range of each interval in Ω,
the volume of Ω, i.e., ν(Ω) =

∏d
i=1 |bi−ai| may exceed machine limits. This issue can be

addressed by narrowing the intervals of interest or using higher numerical precision, such
as ‘float64’.

• TNN-based FPNN. TNN achieves high precision in numerical integration for estimating
Zθ, making it more suitable for higher-dimensional problems. Unlike MLP, TNN can
maintain appropriate values for the integral in each spatial dimension (i.e.,

∫ bi
ai

fi,j(xi)dxi),
regardless of the dimensionality or the interval length. Introducing regularization terms to
guide the learning of smaller unnormalized density is an effective strategy to alleviate the
numerical difficulties associated with the partition function.

C EXPERIMENTAL DETAILS OF PDES

We remark that FPNN is adaptable to a wide range of SFP equations, but most problems are difficult
to obtain analytical solutions for performance evaluation. Inspired by Wang et al. (2024), we use
gradient systems to construct test PDE cases with exact solutions. Given any potential function
H(x) and diffusion term σ(x), we calculate the diffusion matrix D(x) = 1

2σ(x)σ(x)
T and set

the drift term as follows:
µ(x) = −D(x)∇H(x) +∇ ·D(x) (31)

Then the solution to the SFP equation Lp(x) = 0 with respect to (µ,D) reads

p(x) =
1

Z
e−H(x), Z =

∫
e−H(x)dx (32)

It can be easily verified that

Lp(x) = −∇ · (p(x)µ(x)) +∇ · [∇ · (D(x)p(x))]

= ∇ · (−p(x)µ(x) + (∇ ·D(x))p(x) +D(x)∇p(x))

= ∇ · (−p(x)µ(x) + (∇ ·D(x))p(x)−D(x)∇H(x)p(x))

= 0

(33)

The stochastic system is given by dX = µ(X)dt + σ(X)dWt. We adopt this form to design SFP
equations C.2-C.4. For exact solutions in our experiments, we use the SymPy library to compute
the partition function in Eq.(32). SymPy is a powerful and versatile tool for symbolic mathematics
and provides computer algebra system (CAS) capabilities directly in Python. We point out that
appropriate simplifications (e.g., completing the square and variable substitution) and the choice of
integration order significantly impact the accuracy of results.

In Table 6, we list the network settings used for plotting experimental results, where TNN and MLP
represent the architectures in FPNN framework using score PDE loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Network structure settings used for visualizing experimental results.

SFP equations Model Layers Parameters Steps

4D Ring
TFFN 4×[1, 64, 64, 64] 33,792 20k
TNN 4×[8, 64, 128] 35,584 10k
MLP [4, 20, 20, 20, 20] 1,360 10k

6D Unimodal
TFFN 6×[1, 64, 64, 64] 50,688 20k
TNN 6×[5, 64, 64, 64] 52,224 5k
MLP [6, 20, 20, 20] 980 20k

6D Multi-modal
TFFN 6×[1, 64, 64, 64] 50,688 20k
TNN 6×[5, 64, 64, 64] 52,224 5k
MLP [6, 32, 32, 32] 2,336 5k

10D Multi-modal TNN 10×[1, 64, 64, 64] 84,480 1k
MLP [10, 64, 64, 64, 64] 13,184 5k

Gaussian mixture TNN 10×[1, 64, 64, 64, 64] 126,080 5k
MLP [10, 20, 20, 20, 20] 1,480 5k

Gaussian TNN 20×[1, 64, 64, 64, 64] 252,160 3k

C.1 4D RING

Consider a stochastic gradient system in four dimensional state space from Zhai et al. (2022). The
deterministic part is a gradient system plus a perpendicular rotation term r(x) = [x2,−x1, 0, 0]

T ,
where the potential function of the gradient flow is H(x) = 2(||x||22−1)2. We use the SFP equation
(2) with the following drift µ(x) and diffusion D:

µ(x) = −∇H(x) + r(x), D =
σ2

2
I4, σ = σI4 (34)

Since r(x) is orthogonal to the equipotential lines of H(x), the rotation term does not change the
invariant probability density function. The invariant probability measure has density function

p(x) =
1

Z
e−H(x)/σ2

, Z = π2

∫ ∞

−1

(t+ 1)e−2t2/σ2

dt (35)

Here, we utilize the polar coordinates, variable substitution, and the surface area formula of a 4D
hypersphere S = 2π2r3. We set σ = 1 and calculate the infinite integral for Z using SymPy library.

We generated a training dataset Dtrain with 20k samples using the 1.5-order SRK method, setting the
terminal time T = 1, the number of time steps N = 500 and a 4-dimensional standard Gaussian dis-
tribution p0(x). Based on the range of the dataset Dtrain, the domain is selected as Ω = [−1.8, 1.8]4.

For the test dataset generation, we sample 10k initial points uniformly within Ω. Then we perform
the gradient ascent using the true solution p(x), with a learning rate of 1 × 10−3 and the threshold
ϵ = 1 × 10−3. For fair comparison, we use the same test dataset Dtest for TFNN and FPNN with
TNN/MLP architectures.

For all SFP equations in our experiments, FPNNs are trained under consistent settings: we use Adam
optimizer with a learning rate of 0.01 and a batch size of 2k, resulting in 10 iterations per epoch.
The network structure and prediction performance are detailed in Table 4. TFFN consists of four
sub-networks of 3 hidden layers with 64 hidden feature size, updated for 20k steps using the Adam
optimizer with a learning rate of 0.01, as shown in Table 6. Training data are uniformly sampled
from Ω, with 2k points resampled per iteration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 12: 4D Ring: the exact solution and predicted solutions of different models. First row: the
exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row: TFFN.

Figure 13: 4D Ring: MAE between the exact solution and predicted solutions of different models.
First column: the exact solution. Second column: TNN-based FPNN. Third column: MLP-based
FPNN. Last column: TFFN.

C.2 6D UNIMODAL

In this case, the diffusion D = I6 and the drift µ(x) = −∇H(x) take the form in Eq.(31), where
the potential function H(x) is written as:

H(x) = 3((x4
1 − x2)

2 + 2x2
2 + (x4

3 − x4)
2 + 2x2

4 + (x4
5 − x6)

2 + 2x2
6) (36)

The variables (x1, x2), (x3, x4), and (x5, x6) have distinct interactions in the form of (x4
i −xi+1)

2+
2x2

i+1, i = 1, 3, 5. The specific term results in µ(x) being a polynomial function of degree up to 7,
introducing significant nonlinearity and challenges for training model. Our proposed PE is inspired

19

Highlight

Highlight

Highlight

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

by this complexity, and the goal is to alleviate the difficulty of fitting such high-order functions. The
density function is more concentrated with steep gradients, and decays rapidly away from the origin.
Although the density is unimodal, it remains a challenging problem for solving this SFP equation.

Figure 14: 6D Unimodal: the exact solution and predicted solutions of different models. First row:
the exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row: TFFN.

Figure 15: 6D Unimodal: MAE between the exact solution and predicted solutions of different
models. First column: the exact solution. Second column: TNN-based FPNN. Third column: MLP-
based FPNN. Last column: TFFN.

We set the terminal time T = 1 and the number of time steps N = 500. The initial distribution is a
6-dimensional Gaussian distribution with zero mean and covariance matrix 0.01I6. And we generate
20k training points and select the domain Ω = [−1.2, 1.2]6. The test dataset is created by applying
gradient ascent to 10k initial points from uniform distribution within Ω, with a learning rate of
1×10−3 and a threshold ϵ = 1×10−5. We use the same training settings for FPNN, and comparisons

20

Highlight

Highlight

Highlight

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

of different network architectures are shown in Table 5. Notably, PE significantly accelerates the
learning of higher-order densities for TNNs. With appropriate embedding size m, TNN achieves
MAPE below 10% with fewer steps, while MLP demonstrates its advantage by solving the 6D
Unimodal problem with only 980 parameters.

C.3 6D MULTI-MODAL

We consider the potential H(x) with a quadratic form, where the SFP equation is given by the
diffusion D = I6 and the drift µ(x) = −∇H(x) in Eq.(31). H(x) involves interactions among
(x1, x2, x3) and (x4, x5, x6), which possesses the following form:

H(x) =2(x2
1 + x2

2 + x2
3 + 0.5(x1x2 + x1x3 + x2x3))− ln(x2

1 + 0.02)

− ln(x2
2 + 0.02) + 0.5(x2

4 + x2
5 + x2

6 + 0.2(x4x5 + x4x6 + x5x6))
(37)

The density function has four modes and we plot the slices of high-density regions from different
dimensions to illustrate the performance.

Figure 16: 6D Multi-modal: the exact solution and predicted solutions of different models. First
row: the exact solution. Second row: TNN-based FPNN. Third row: MLP-based FPNN. Last row:
TFFN.

We set the terminal time T = 1 and the number of time steps N = 200. The initial distribution
is a 6-dimensional Gaussian distribution with zero mean and covariance matrix 0.1I6. We generate
20k training points and determine domain Ω = [−2, 2]6 for 6D Multi-modal problem. We use a a
learning rate of 1× 10−3 and a threshold ϵ = 1× 10−5 to generate the test dataset with 10k samples
by gradient ascent method.

From the numerical results in Table 7, MLP outperforms TNN in terms of parameter efficiency,
training speed and prediction accuracy, achieving a MAPE of 12%. This may be attributed to the
architectural characteristics of TNNs, which is more suitable for the solutions align with the variable
separation form and quickly learns discrete low-rank features (see Table 5). Conversely, MLP is
better at fusing features across spatial coordinates in hidden layers. FPNN allows the use of free-
form network architectures, providing greater flexibility in handling SFP equations with diverse
characteristics.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: 6D Multi-modal: comparison of FPNN with different networks (5k steps).

Model Layers Parameters MAE MAPE

TNN

[m, hidden layers, r]
[1, 64, 64, 64] 50,688 4.20× 10−4 35.76%
[5, 64, 64, 64] 52,224 3.25× 10−4 23.11%
[8, 64, 128] 53,376 2.30× 10−4 21.59%

MLP

[d, hidden layers]
[6, 20, 20, 20] 980 2.00× 10−4 12.72%
[6, 32, 32, 32] 2,336 2.05× 10−4 12.72%
[6, 64, 64] 4,608 1.98× 10−4 12.18%

Figure 17: 6D Multi-modal: MAE between the exact solution and predicted solutions of different
models. First column: the exact solution. Second column: TNN-based FPNN. Third column: MLP-
based FPNN. Last column: TFFN.

C.4 10D MULTI-MODAL

To evaluate the performance in high dimensions, we conduct experiments using a 10-dimensional
probability density function with two modes. The SFP equation has the diffusion D = I10, and the
potential function H(x) for the drift µ(x) as follows:

H(x) =2.5(x2
1 + x2

2 + x2
3 + 0.1(x1x2 + x1x3 + x2x3)) + 2(x2

4 + x2
5 + x2

6 + 0.2(x4x5 + x4x6

+ x5x6)) + 3(x2
7 + x2

8 − 0.01x7x8)) + 3(x2
9 + x2

10 − 0.01x9x10))− ln(2x2
9 + 0.02)

(38)

Here, H(x) exhibits complex interactions across the coordinates (x1, x2, x3), (x4, x5, x6), (x7, x8)
and (x9, x10). Due to the component ln(2x2

9 + 0.02), there are two peaks along variable x9. By
plotting the cross-sectional view of the last two dimensions, we can observe this shape.

We generate a training dataset of 20k points using the SRK method, with a terminal time T = 1
and N = 100 time steps. The initial distribution p0(x) is a 10-dimensional standard Gaussian
distribution and the domain is defined as [−1.2, 1.2]10. The test dataset is created using a learning
rate of 1×10−3 and a threshold of ϵ = 1×10−8 to ensure that densities of all 10k points exceed ϵ. In
FPNN, both TNN and MLP architecture successfully learn the two peaks in the x9 axis, while PINN
and TFFN fail to capture this feature. It is evidenced by the divergence between model predictions
and true solutions for TFFN in Figure 4. The normalization condition influence the representational
capacity and optimization process of models, as discussed in Sec. 1. This results in poor performance
of existing methods for 4-6 dimensional SFP equations and failure in higher-dimensional problems.

22

Highlight

Highlight

Highlight

Highlight

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 18: 10D Multi-modal: the exact solution and predicted solutions of FPNN. Top: the exact
solution. Middle: TNN-based FPNN. Bottom: MLP-based FPNN.

Figure 19: 10D Multi-modal: MAE between the exact solution and predicted solutions of different
models. Left: the exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

C.5 10D GAUSSIAN MIXTURE

Following the test problem with two peaks (Tang et al., 2022), we construct a Gaussian mixture
distribution p(x) = β1p1(x) + β2p2(x), comprised of two 10-dimensional Gaussian distributions
p1 and p2. For k = 1, 2, each pk(x) is defined by a probability density function with mean µk and
covariance matrix Σk:

23

Highlight

Highlight

Highlight

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

β1 = 0.55, µ1 = [−1.5,−0.8, 1.3, 0.2,−0.1, 0, 0, 0, 0, 0], Σ1 =

Σ11

Σ12

Σ13

Σ14


Σ11 =

(
2.2 0 0
0 1.2 0
0 0 2

)
, Σ12 =

(
1.5 0.2 0.4
−0.1 1.2 0.4
−0.2 −0.2 0.8

)
, Σ13 =

(
0.4 0.3
0.3 0.9

)
, Σ14 =

(
1 0
0 1

)
(39)

β2 = 0.45, µ2 = [1.2, 1,−1.5, 0, 0, 0.1, 0, 0, 0, 0], Σ2 =

Σ21

Σ22

Σ23

Σ24


Σ21 =

(
2.2 0 0
0 1 0
0 0 1.5

)
, Σ22 =

(
1.2 0.4 −0.2
−0.4 1.2 −0.3
0.2 −0.1 1.2

)
, Σ23 =

(
0.8 0
0 0.3

)
, Σ24 =

(
1 0
0 1

)
(40)

The matrices Σ1 and Σ2 are positive definite. FPNN remains applicable for more randomly con-
structed Gaussian components. To improve visualization, we make some modifications to the mean
µ1, µ2. First, two Gaussian peaks are placed at a certain distance apart and have different relative
positions on the (x1, x2) and (x1, x3) planes. Secondly, we set the last seven components of the
mean near zero, so that we examine the cross-sections (x1, x2, 0, . . . , 0) and (x1, 0, x3, 0, . . . , 0) to
reflect the high-density regions of exact solution. It is straightforward to verify that p(x) serves as
the true solution to following SFP equation:

−∇ · (p(x)∇ log(β1p1(x) + β2p2(x))) +∇2p(x) = 0 (41)

where we get the corresponding drift µ(x) = ∇ log(β1p1(x) + β2p2(x)) and diffusion D = I10.

Figure 20: 10D Gaussian mixture: the exact solution and predicted solutions of FPNN. Left: the
exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

As the region expands, the stochastic system takes longer to reach a steady state. We select a terminal
time of T = 5 and N = 500 time steps. 20k data points are sampled from a 10-dimensional standard
Gaussian distribution to serve as the initial set, followed by the SRK method to obtain the target
distribution pT and domain Ω = [−5, 5]10. The test dataset with 10k points is sampled from two
Gaussian distributions according to weights.

Notably, even though the true solution has the order of 10−5, simple network architectures such
as TNN and MLP successfully learn the two Gaussian peaks located on the coordinate planes

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(x1, x2, 0, . . . , 0) and (x1, 0, x3, 0, . . . , 0) at 600 and 400 steps, ultimately achieving a mean rel-
ative error of 1.86 × 10−7 and 1.16 × 10−7, respectively. And MLP reaches a MAPE of 18.38%
with only 1,480 parameters. The final prediction results and corresponding MAE are presented in
Figure 20 and Figure 21.

Figure 21: 10D Gaussian mixture: MAE between the exact solution and predicted solutions of
different models. Left: the exact solution. Middle: TNN-based FPNN. Right: MLP-based FPNN.

C.6 20D GAUSSIAN

Finally, we consider a SFP equation with drift term µ(x) = −ax and diffusion matrix D = σ2

2 Id.
The exact solution is expressed as follows:

p(x) =
(a

πσ2

)d/2
exp

(
−a∥x∥22

σ2

)
(42)

In our experiments, we select d = 20, a = 3 and σ = 1.5 to test our FPNN with TNN network.
So the true PDF is a 20-dimensional Gaussian distribution with zero mean and covariance matrix
σ2

2aI20. The training dataset is generated by the SRK method, yielding 20k samples with T = 1 and
N = 100. Since the initial distribution is chosen as a 20-dimensional standard Gaussian distribution,
the drift effect towards the origin dominates, causing particles to converge towards Ω = [−2, 2]20

during the SDE simulation. The test dataset is directly constructed by sampling 10k points from the
true distribution.

Figure 22: 20D Gaussian: the predicted solution of FPNN during training.

25

Highlight

Highlight

Highlight

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

After 1.5k update steps, FPNN successfully learns a 20-dimensional Gaussian distribution, achieving
a MAPE of 23.29%. As shown in Figure 10, each dimension aligns well with the true solution,
demonstrating both the effectiveness of our method and the validity of evaluation metrics.

Figure 23: 20D Gaussian: MAE between the exact solution and predicted solution of FPNN. The
first column shows the exact solution and the changes of MAPE during training. The remaining parts
display MAE for pairs of adjacent dimensions, such as (x1, x2, 0, . . . , 0), (0, 0, x3, x4, 0, . . . , 0), and
so on.

26

Highlight

Highlight

	Introduction
	Preliminaries
	Fokker–Planck neural networks
	Score-based PDE loss
	Steady-state data generation
	Network architecture
	Tensor neural networks
	Multi-layer perceptron

	Experiment
	Evaluation Metrics
	Experimental Analysis

	Limitations and Future Work
	Conclusion
	Loss functions for SFP equations
	Related works
	Derivation of score PDE loss
	Connection between score PDE loss and score matching

	Computation of partition function
	Experimental details of PDEs
	4D Ring
	6D Unimodal
	6D Multi-modal
	10D Multi-modal
	10D Gaussian mixture
	20D Gaussian

