
Under review as a conference paper at ICLR 2024

SOFTHASH: HIGH-DIMENSIONAL HASHING WITH A
SOFT WINNER-TAKE-ALL MECHANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Locality-Sensitive Hashing (LSH) is a classical algorithm that aims to hash sim-
ilar data points into the same bucket with high probability. Inspired by the fly
olfactory system, one variant of the LSH algorithm called FlyHash, assigns hash
codes into a high-dimensional space, showing great performance for similarity
search. However, the semantic representation capability of FlyHash is not yet sat-
isfactory, since it is a data-independent hashing algorithm, where the projection
space is constructed randomly, rather than adapted to the input data manifold. In
this paper, we propose a data-dependent hashing algorithm named SoftHash. In
particular, SoftHash is motivated by the bio-nervous system that maps the input
sensory signals into a high-dimensional space, to improve the semantic represen-
tation of hash codes. We learn the hashing projection function using a Hebbian-
like learning rule coupled with the idea of Winner-Take-All (WTA). Specifically,
the synaptic weights are updated solely based on the activities of pre- and post-
synaptic neurons. Unlike the previous works that adopt the hard WTA rule, we
introduce a soft WTA rule, whereby the non-winning neurons are not fully sup-
pressed in the learning process. This allows weakly correlated data to have a
chance to be learned to generate more representative hash codes. We conduct ex-
tensive experiments on six real-world datasets for tasks including image retrieval
and word similarity search. The experimental results demonstrate that our method
significantly outperforms these baselines in terms of data similarity search accu-
racy and speed.

1 INTRODUCTION

Locality Sensitive Hashing (LSH) (Indyk & Motwani, 1998) has become a widely studied technique
in computer science, which projects input features into binary codes, helping to lessen computational
time in similarity search. The objective of LSH is to cluster similar samples closely while separating
dissimilar ones in the hash space. Classical LSH methods (Kang et al., 2016; Chen et al., 2020) are
usually used to convert high-dimensional features into low-dimensional binary codes for fast and
efficient nearest-neighbor search. Recently, inspired by the fruit fly olfactory circuit depicted in
Figure 1(a), researchers (Dasgupta et al., 2017) have proposed a bio-inspired LSH, named FlyHash.
LSH achieves sparse feature representation by converting high-dimensional features into higher-
dimensional binary codes. A learnable FlyHash version is BioHash (Ryali et al., 2020), which
is able to update synaptic weights of hashing network based on the input data, demonstrating an
improved performance over the classical FlyHash. Although BioHash is a biologically plausible
unsupervised algorithm, its hard winner-take-all (WTA) mechanism only allows one winner neuron
to be updated in each learning step which greatly limits its ability to catch semantic information of
input data.

Winner-Take-All (WTA) (Rumelhart & Zipser, 1985), an important competition mechanism in re-
current neural networks (Wang et al., 2019a). It represents a computational principle utilized in
computational models of neural networks, wherein neurons compete with each other to become ac-
tivated. The WTA network is commonly used in computational models of the brain, particularly
for distributed decision-making or action selection in the cortex. It can be used to develop feature
selectivity through competition in simple recurrent networks. The classical form of WTA is hard
WTA where only the neuron with the highest activation can be updated while other neurons keep
unchanged in the learning process. Such WTA is so crude that the input signal may not be fully

1



Under review as a conference paper at ICLR 2024

(a) PN-KC-APL network architecture (b) Related rules (c) Hebbian-like learning rule

Figure 1: (a) Schematic of the PN-KC-APL network architecture of the mushroom body (MB)
in the fruit fly. MB is the main area of the Drosophila brain responsible for processing sensory
information (Liang et al., 2021). It receives inputs from several sets of projection neurons (PNs)
corresponding to several sensory modalities. The predominant one is olfaction (Bates et al., 2020),
followed by vision (Li et al., 2020b) and thermo-hydro sensory system (Marin et al., 2020), etc.
PNs are connected to approximately 2,000 Kenyon cells (KCs) through synaptic weights (Li et al.,
2020a). KCs then provide feed-forwarded excitation to a single inhibitory neuron called anterior
paired lateral (APL), and receive inhibitory feedback. Consequently, all but the top activated neurons
are silenced in KCs. (b) Illustration of the Hebbian plasticity rule and Oja rule. (c) Illustration of
the local Hebbian-like learning rule used in this work.

exploited by the neurons, affecting the semantic representation of the trained network. Compared
to the hard WTA, the soft WTA allows more than one neuron to be updated with the input signal,
which is more practical and effective in utilizing the input data to extract semantic features.

Based on the soft WTA, this paper introduces a hash function with learnable projection parameters,
to improve the semantic representation of resulting hash codes. Building on inspiration from the bio-
logical evidence and the idea of dimension expansion, we design a novel hashing algorithm SoftHash
(hashing with a soft winner-take-all mechanism) to generate sparse binary hash codes for the input
data presented. SoftHash is a data-dependent hashing algorithm that learns synaptic weights and
biases in a neurobiologically plausible way. We adopt a local Hebbian-like rule combined with the
WTA mechanism to learn semantic features from input data. Especially, instead of making neurons
compete via a hard WTA mechanism, we adopt a soft WTA mechanism, by which an exponential
function is applied to the neurons, allowing weakly correlated data to be learned.

In this paper, we design a data-dependent hashing algorithm SoftHash to preserve the relative re-
lationships between original data points through binary representations, enabling accurate and fast
similarity search. The main contributions of this paper are summarized as follows:

• Hashing algorithm: We introduce SoftHash, a novel data-dependent hashing algorithm,
which can produce sparse and yet discriminative high-dimensional hash codes.

• Biologically plausible: We employ a Hebbian-like local learning rule combined with the
soft WTA mechanism to acquire semantic information from input data. Notably, this mech-
anism enables the learning of weakly correlated data, improving the semantic representa-
tion of produced hash codes.

• Evaluation in different contexts: Our extensive experiments on image retrieval tasks
demonstrate significantly improved image retrieval precision over existing data-dependent
hashing methods. Furthermore, on the word similarity search task, the performance of Soft-
Hash produced binary hash code approaches original dense embeddings while taking less
computation time.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORK

2.1 HASHING ALGORITHMS AND SPARSE EXPANSIVE REPRESENTATIONS

In recent years, several data-dependent LSH methods have emerged, such as PCA hashing (Gong
et al., 2012), spectral hashing (Weiss et al., 2008), graph hashing (Liu et al., 2014; Jiang & Li, 2015),
and deep hashing (Su et al., 2018; Li & Li, 2022). These techniques aim to project high-dimensional
features into low-dimensional binary representations. In contrast, FlyHash distinguishes itself from
classical LSH algorithms in three key aspects: (1) it utilizes sparse, binary random weights; (2) it ex-
pands the dimensionality of the input data; and (3) it sparsifies the binarized output representations.
DenseFly (Sharma & Navlakha, 2018) follows this direction to generate sparse expansive represen-
tations of the inputs by setting all indices with values ≥ 0 to 1, and the remaining to 0, showing
improved performance for nearest-neighbors retrieval. The random projection adopted by FlyHash
and DenseFly is data-independent, however, the fruit flies ”learn to hash” (Hige et al., 2015).

Optimal Sparse Lifting (Li et al., 2018) generates sparse binary output vectors for input data samples
by approximately preserving pairwise similarities between input data samples. This is achieved by
conducting constrained linear programming involving all training data in each learning step. How-
ever, in biological neural networks, the neuron responses are tuned by a synapse-change procedure
that is physically local (Krotov & Hopfield, 2019). Motivated by this, BioHash (Ryali et al., 2020)
applies local Hebbian-like rule to learn sparse expansive motifs, which demonstrate significantly
better retrieval performance over LSH approaches (e.g., classical LSH, data-driven hashing, deep
hashing) at short hash length. However, BioHash shows marginal improvements when the hash
length reaches a certain level. This may be attributed to the hard WTA mechanism adopted by Bio-
Hash, allowing only one neuron to become activated for any input sample. As will be explained
soon, this hard WTA mechanism greatly limits the learning and expressive ability of the neural
network in extracting useful hash codes.

2.2 HEBBIAN-LIKE RULES AND WTA MECHANISMS

Hebbian plasticity is a local correlation-based learning rule (Zhou, 2022) (Figure 1 (b)), which fol-
lows the principle that the synaptic change should only depend on the pre and post synaptic neurons’
firing activities. The general form of the Hebbian plasticity rule can be described as follows:

∆wi
j = ηxiyj . (1)

where wi
j is the synaptic weight connecting ith input to neuron j, yj =

∑
i xiw

i
j is the output

of neuron j. It is obvious that synaptic weights might grow unboundedly. Thus, constraints are
typically introduced into the Hebbian plasticity rule to address this issue. One notable example is
the Oja rule (Oja, 1982) (Figure 1 (b)), which is defined as follows:

∆wi
j = ηyj(xi − wi

jyj). (2)

Theoretical analysis shows that the neuron, after being trained with Oja rule, tends to extract the
principal component from a stationary input vector sequence (Oja, 1982).

The winner-take-all (WTA) mechanism (Rumelhart & Zipser, 1985) is primitive for neural com-
putation, where neurons within a WTA neural circuit will compete to represent an input stimulus,
and the winning one, with the closest receptive field, will suppress the rest. When coupled with
the WTA mechanism, the Hebbian learning rule allows neurons to learn more discriminative feature
representation. Notably, it has been shown that the Hebbian plasticity combined with hard WTA
can approach the performance of error backpropagation algorithm in training shallow feedforward
networks (Krotov & Hopfield, 2019). Subsequent studies have successfully applied this approach
to other network structures (Grinberg et al., 2019; Gupta et al., 2021) as well as deeper networks
(Shinozaki, 2020; Journé et al., 2022).

In this work, we extend these earlier studies by exploring the use of the Hebbian learning rule and
soft WTA mechanism in learning discriminative hash codes, which demonstrate superior capability
in capturing the weak correlations among data samples.

3



Under review as a conference paper at ICLR 2024

3 APPROACH

3.1 LEARNING WITH A SOFT WTA MECHANISM

In this section, we provide a comprehensive description of the proposed hashing algorithm, Soft-
Hash. Our objective with SoftHash is twofold: to enable fast similarity search and to preserve the
relative similarity between the original data points as much as possible.

Mathematically, the objective of the proposed hashing algorithm is to cluster the input data samples
into some buckets. Let us denote an input data sample x in a d-dimensional space as x ∈ Rd and
its hash codes in a m-dimensional space as h(x) ∈ Rm, where h(·) is the hash function. We further
denote the weight matrix for synaptic connections as W ∈ Rm×d and neuron bias as b ∈ Rm.

We utilize a Hebbian-like rule (Moraitis et al., 2022) that combines a Bayesian theorem incorpo-
rating a soft-winner-takes-all (soft-WTA) mechanism with softmax smoothing. A summary of its
probabilistic interpretation and mathematical description is presented in Table 1, wherein qj(·) is the
probability of neuron j.

Table 1: Summary of probability interpretations and mathematical descriptions.
Probabilistic interpretation Mathematical description
prior probability Q(Cj ; bj) = ebj

j-th component of mixture likelihood function qj(x|Cj ;wj) = euj(x;wj)

posterior probability qj(Cj |x; bj) = yj =
euj+bj∑m
l=1 eul+bl

The plasticity rule for any neuron j can be written as

τ
dwi

j

dt
= ∆wi

j = η · yj · (xi − ujw
i
j) (3)

where τ is time constant of the plasticity dynamics, wi
j is synaptic weight from the ith neuron at

the input layer to the jth neuron at the output layer, and η is the learning rate. uj is a postsynaptic
variable obtained by the inner product ⟨x,wj⟩ =

∑
i w

i
jxi, where wj ∈ W . bj is the bias term of

neuron j, representing prior information stored by the neuron. Inspired by the spike-based learning
rule (Nessler et al., 2013), the biases bj can be iteratively updated as per

∆bj = ηe−bj (yj − ebj ). (4)

Based on the above parameters, the Bayesian posterior can be calculated by the following softmax
function

yj =
euj+bj∑m
l=1 e

ul+bl
(5)

where uj + bj is the activation of the jth neuron. yj is used to symbolize the softmax output of
the jth neuron, as illustrated in Figure 1 (c), which is also considered as the output after the soft
WTA operation. It can be shown that the synaptic weight vector wj will be implicitly normalized
by the learning rule to a unit vector when ⟨x,wj⟩ ≥ 0. To make this point clear, let’s consider the
derivative of the norm of wj

d ∥wj∥2

dt
= 2wj

dwj

dt
= 2

η

τ
ujyj · (1− ∥wj∥2). (6)

Provided that ujyj ≥ 0, the derivative of the vector norm increases if ∥wj∥2 < 1, and decreases
otherwise if ∥wj∥2 > 1. Since yj ≥ 0, the weight vector tends to converge to a unit vector when
uj ≥ 0. The learning rule in equation 3 is similar to the Oja rule. The difference is Oja rule only
considers linear weighted summation of inputs yj for neuron j; equation 3 considers both linear
weighted summation of inputs uj and nonlinear output yj for neuron j. While the activation on
neuron j is large enough that yj is close to 1, equation 3 reduces to the learning rule in BioHash.

In the following content, we will analyze the differences between BioHash and SoftHash in view
of machine learning, to explain that learning with the soft WTA mechanism is more effective in

4



Under review as a conference paper at ICLR 2024

capturing the weak correlations among data samples. First, the learning process can be shown to
minimize the following energy function, defined by

E = −
∑
x∈X

m∑
j=1

yjf

(
< x,wj >

< wj , wj >
1
2

)
. (7)

It is a monotonically decreasing function (More details in Appendix A), f(·) is an exponential func-
tion. Note that the synaptic plasticity rule in equation 3 is local; the learning process does not
perform gradient descent, i.e. ẇj ̸= ∇wjE.

(a) BioHash (b) SoftHash

Figure 2: Illustration of approximate clustering
ways of learning processes of BioHash and Soft-
Hash.

In (Ryali et al., 2020), the energy function of
BioHash with the specific settings is approxi-
mate to the spherical K-means clustering algo-
rithm (More details in Appendix B), where the
distance from the input point to the centroid is
measured by the normalized inner product in-
stead of the Euclidean distance. Thus, each in-
put sample can belong to only one neuron, as
illustrated in Figure 2 (a).

Obviously, the energy function equation 7 can
be approximated as a mixture probabilistic
model, where each output neuron is treated as
a separate probabilistic model. In this frame-
work, the clustering process can be interpreted
as the probability that each input sample be-
longs to different neurons Figure 2 (b). Consequently, each input sample can be associated with
one or multiple neurons, allowing for a more flexible and nuanced representation of the data. This
probabilistic modeling approach in SoftHash enables a richer understanding of semantic informa-
tion from input data, and captures complex patterns and associations in the data, leading to more
expressive and discriminative hash codes in the next subsection.

3.2 HASHING ALGORITHM

After the learning process is complete, only the highest firing neurons retain their values as one,
and the others are zeroed out. The hash code is generated in the following way, which sparsifies the
representation while preserving the largest and most discriminative coefficients. For a given sample
x, we generate a hash code v ∈ {0, 1}m as

vj =

{
1, yj is in top k

0, otherwise.
(8)

v is a high-dimensional sparse binary hash code ( a vector of m elements, with k ones in it), where k
is denoted as hash length.

Biological Interpretation The process of generating hash codes via SoftHash is a crude mathemat-
ical approximation of the computation performed by the PN-KC-APL neural networks in Figure 1
(a). An input sample x generates its posterior probabilities into the KC neurons using feedforward
synaptic weights W and neuron biases b. The KC-APL recurrent network retains a small fraction
of activated KCs and silences the remaining. Finally, the activated KCs are assigned state 1 while
the remaining inactive KCs are assigned state 0. The overall algorithm of SoftHash is shown in
Appendix C.

We provide intuition behind SoftHash to explain the locality-sensitive property in it. For the purpose
of fast similarity search, the location of an input data sample x can be specified by observing the
nearest few references’ from a set of m reference points that are picked in the hash space, producing
a sparse and useful local representation. Such that, the nearest neighbors of the input data be quickly
found by the hamming distance. We model all output neurons as probabilistic models to support the
entirety of the data distribution. The values on the output layer represent the probabilities that
each input sample belongs to them, which are calculated based on input data, synaptic weights,
and neuron biases. The plasticity rule for synaptic weights in equation 7 and the iterative update

5



Under review as a conference paper at ICLR 2024

for neuron biases in equation 4 assign m probabilistic models, enabling their density to match the
input data density. In other words, more output neurons are needed to provide high resolution where
the data density is high; fewer neurons are needed where the data density is low. In this way, our
algorithm has the sufficient capability to enable similar inputs to activate similar output neurons and
be clustered closely in a new dimension extended hash space.

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

The two most time-consuming parts of our proposed SoftHash are the update steps of synaptic
weights and neuron biases. For each epoch, the time complexity of performing the dot product on
synaptic weights is N · d ·m, and that of update neuron biases is N ·m. The softmax formula costs
N · (m + 1) · m operations, and equation 3 requires d · m in addition to N · d · m operations for
calculating the dot-product for each input data sample. Thus, the overall computational complexity
of our approach is O(N ·d ·m+N ·m+N ·(m+1) ·m+d ·m) ≈N ·d ·m+N ·m2 per epoch. For the
storage cost, the sparse binary representation obtained by SoftHash entails the storage of klog2m
bits per data sample and O(k) computational cost to compute Hamming distance. Empirically, in
the next sections, we will show SoftHash can preserve the data correlation very well for image and
text datasets.

4 IMAGE RETRIEVAL

In this section, we use the image retrieval task to evaluate the performance of SoftHash. The image
retrieval aims to find the most similar ones of any given image from a large image database, which
is an important task in machine learning and information retrieval.

4.1 EXPERIMENT SETTINGS

Datasets. We conduct experiments on three public benchmark datasets for image retrieval, including
Fashion-MNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009) and CIFAR100. In spe-
cific, Fashion-MNIST contains 70k grey-scale images (size 28 × 28) of clothing products from 10
classes. CIFAR10/CIFAR100 contain 60k RGB images (size 32 × 32 × 3) of animals and vehicles
from 10/100 classes. For datasets Fashion-MNIST and CIFAR10, we randomly select 100 query
inputs of each class to form a query set of 1,000 images (Dasgupta et al., 2017). For CIFAR100, we
randomly select 10 query inputs of each class to obtain 1,000 query images. The remaining images
are used for both training as well as the database for retrieval.

Evaluation Metrics. Following previous work Su et al. (2018), we adopt the widely used Mean
Average Precision (MAP) to measure the hamming ranking quality.

Baseline Methods. We compare our proposed SoftHash with data-dependent hashing algorithms
Spectral Hashing (SH) (Weiss et al., 2008), Iterative Quantization (ITQ) (Gong et al., 2012) and Scal-
able Graph Hashing (SGH) (Jiang & Li, 2015), the hashing algorithm with binary random weights
FlyHash (Dasgupta et al., 2017), and the hashing algorithm with learnable synaptic weights Bio-
Hash (Ryali et al., 2020). Besides, the conventional hashing algorithm LSH is also included in our
study. It generates the hash code of the input data sample x according to y = sgn(Mx), where
M ∈ Rm×k is a random matrix. k is the hash length.

4.2 RESULTS AND DISCUSSION

Comparison results The mAP@1000 results of different hashing algorithms on three benchmarks
are shown in Table 2, with hashing lengths varying from 32 to 128. From the table, it is evident that
SoftHash-2 demonstrates the best retrieval performance among all the hashing algorithms, particu-
larly at larger hash lengths, especially when k = 128. The performance of SoftHash-2 significantly
improves with the increase in hash length compared to SoftHash-1. Comparing the results of Fly-
Hash and LSH, it is clear that FlyHash outperforms the classical algorithm LSH at different hash
lengths, indicating the superiority of high-dimensional sparse binary representations.

Ablation study We conduct experiments to evaluate the mAP@1000 results of BioHash and Soft-
Hash with different weight initialization settings. We can observe that both SoftHash-2 and Bio-

6



Under review as a conference paper at ICLR 2024

Table 2: mAP@1000 (%) on Fashion-MNIST, CIFAR10 and CIFAR100, ground truth based on
Euclidean distance, following protocol in (Li et al., 2018) (Ryali et al., 2020). The best results
for each hash length are shown in boldface. SoftHash-1 (BioHash-1) and SoftHash-2 (BioHash-2)
have different weight initialization settings, uniform initialization for SoftHash-1 (BioHash-1) and
Gaussian initialization for SoftHash-2 (BioHash-2). More details are summarized in Appendix D.2.

Fashion-MNIST CIFAR10 CIFAR100
Method 32 64 128 32 64 128 32 64 128
LSH 0.1734 0.2506 0.3348 0.0710 0.1054 0.1446 0.0683 0.0998 0.1375
SH 0.3464 0.4223 0.4675 0.1310 0.1471 0.1819 0.1096 0.1557 0.1870
ITQ 0.3133 0.4159 0.4913 0.1763 0.2209 0.2605 0.1672 0.2128 0.2552
SGH 0.3095 0.3488 0.3941 0.1133 0.1362 0.1690 0.1245 0.1560 0.1869
FlyHash 0.3623 0.4203 0.4595 0.1470 0.1790 0.2037 0.1399 0.1684 0.1886
BioHash-1 0.3876 0.4031 0.4101 0.1974 0.2115 0.2235 0.2024 0.2109 0.2235
BioHash-2 0.4025 0.4411 0.4586 0.2054 0.2716 0.3211 0.2254 0.2863 0.3328
SoftHash-1 0.4750 0.5530 0.6028 0.2164 0.2685 0.3024 0.2266 0.2710 0.3084
SoftHash-2 0.5080 0.6003 0.6712 0.2632 0.3570 0.4681 0.2872 0.4038 0.5163

Hash-2, when initialized with synaptic weights following the standard normal distribution, achieve
better results. The reason may be that Gaussian initialization is more effective in breaking symme-
try compared to uniform initialization. In this way, Gaussian initialization ensures that each neuron
learns distinct features from the beginning, and improves the network’s ability to capture input data
characteristics during the learning process.

(a) LSH 32 (b) SoftHash 32 (c) SoftHash 128 (d) SoftHash 512

Figure 3: tSNE embedding of LSH (Hash Length k = 32 ) and SoftHash-2 (Hash Length k = 32,
128, 512) on the dataset Fashion-MNIST.

Visualization We randomly selected 2,000 input data samples from the Fashion-MNIST dataset
and visualized the geometry of the hash codes obtained by LSH and SoftHash-2 using t-Stochastic
Neighbor Embedding (t-SNE) (Van der Maaten & Hinton, 2008). The visualization is shown in
Figure 3, where each point represents an input sample, and the color indicates the category it belongs
to. From subfigures (a) and (b) in Figure 3, it is obvious that the cluster structure obtained by
SoftHash-2 is more compact compared to LSH when using the same hash length. This suggests that
SoftHash-2 generates hash codes that result in tighter and more distinct clusters in the embedding
space. Furthermore, as depicted in subfigures (b), (c), and (d) of Figure 3, increasing the hash length
of SoftHash-2 refines the manifold structure. In other words, input data samples belonging to the
same category exhibit smaller distances from each other in the hash code space. These visualizations
provide evidence of the effectiveness of SoftHash-2 in generating compact and discriminative hash
codes that capture meaningful information in the data.

5 WORD SIMILARITY SEARCH

Word embeddings contain the semantic and syntactic information of words, which are represented
with dense vectors. Existing post-process operations Yogatama & Smith (2015); Wang et al. (2019b)
have tried to transform original word embeddings into sparse ones, speeding up computation. In this
section, we take word embeddings provided by the pre-train language model as input data and apply

7



Under review as a conference paper at ICLR 2024

hashing algorithms to get their binary representations, we will conduct experiments to evaluate the
performance of binary embeddings for word similarity search.

5.1 EXPERIMENT SETTINGS

Datasets. We use the pre-trained GloVe embeddings Pennington et al. (2014) as original input data.
We conduct experiments on three public word similarity datasets: WordSim353 Agirre et al. (2009),
SimLex999 Hill et al. (2015), Men Bruni et al. (2014), which contain 353, 999, 3,000 pairs of words
with human-annotated similarity scores, respectively.

Evaluation Metrics. We use cosine similarity Liang et al. (2021) to evaluate similarity scores for
original real-valued representations from GloVe embeddings (d= 300). Following previous work
Tissier et al. (2019), the similarity scores for binary representations are evaluated by the Hamming
similarity.

5.2 RESULTS AND DISCUSSION

The Spearman’s rank correlation scores obtained with the similarity and human-annotated scores
are depicted in Figure 4. Each sub-figure corresponds to different datasets, and the horizontal axis
represents the hash lengths. For SoftHash, the best scores are achieved at hash lengths of k=128
or k=512, which are very close to the scores obtained with the original dense vectors provided by
GloVe. For LSH, the results increase with hash length varying from 2 to 128, but the deviation
is large compared to GloVe. For BioHash, the results increase rapidly with the increase of the
hash length when the hash length is small, but the results no longer improve when hash lengths
reach certain values, which are k=16 for SimLex999, k=64 for WordSim353, and k=64 for Men.
From Figure 4, we could see that sparse binary representations obtained by SoftHash achieve similar
results to original vectors from GloVe on the word similarity task.

Figure 4: Performance comparison of hashing algorithms with different hash lengths on the word
similarity task via Spearman’s rank correlation coefficient.

Figure 5: Comparison of computation time of different output rep-
resentations on SimLex999, WordSim353 and Men with a single
CPU core.

In Figure 5, we show the computa-
tion time on the original embedding
from GloVe and binary codes ob-
tained from different hashing algo-
rithms. It is observed that search-
ing with binary representations is
faster than searching with the origi-
nal dense vectors, further highlight-
ing the computational advantages of
using binary embeddings. Over-
all, these findings suggest that Soft-
Hash outperforms LSH and Bio-
Hash in preserving relative correla-
tion, while providing computational
efficiency through binary represen-
tations.

We conduct the experiment that finds the nearest neighbor words of a target word for further observ-
ing whether hash codes can catch the semantic information of word embeddings. The ground truth

8



Under review as a conference paper at ICLR 2024

in this experiment is the top 10 nearest neighbor words of a target word, which are measured by
the cosine similarity between embeddings of words. Figure 6 presents the top 10 nearest neighbor
words for the target words ’apple’ and ’women’ in the hash code space, with hash lengths of 64
and 512, respectively. The results demonstrate that SoftHash successfully preserves the semantic
information similar to the original word embeddings. Notably, in Figure 6, we could observe that
hash codes generated by SoftHash not only identify similar nearest neighbor words for the target
word ’women’ but also maintain the same relative order of the words. We define the Rel score
(Rel score ∈ [0, 1]) to observe the performance of the top 10 nearest neighbor words of a target
word of different hashing algorithms (more detail in Appendix E.2). The higher Rel score repre-
sents results more similar to the ground truth provided by GloVe. This observation further supports
the effectiveness of SoftHash in capturing and preserving semantic relationships between words.

(a) Hash length 64

(b) Hash length 512

Figure 6: For each target word (left), 10 nearest neighbor words (middle) and Rel score (right) of
hashing algorithms with different hash lengths are shown. The nearest neighbor words provided by
GloVe are ground truth. The nearest neighbor words provided by hashing algorithms that appear in
the ground truth are shown in boldface.

6 CONCLUSIONS

In this work, we propose an unsupervised hashing algorithm SoftHash to generate discriminative
and sparse hash codes. SoftHash is a data-dependent algorithm, its learnable synaptic weights and
neuron biases are updated in a neurobiologically plausible way. In particular, we adopt a soft WTA
mechanism in the learning process, allowing weakly correlated data a chance to be learned to effi-
ciently generate more representative high-dimensional hash codes. We demonstrate that SoftHash
outperforms recent data-driven hashing algorithms for image retrieval on benchmark datasets. Ad-
ditionally, we explore the application of SoftHash in post-processing word embeddings for word
similarity search. Our experiments show that our sparse binary representations maintain the rank
correlation of the original dense embeddings while requiring less computation time.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and Aitor Soroa. A
study on similarity and relatedness using distributional and wordnet-based approaches. 2009.

Alexander S Bates, Philipp Schlegel, Ruairi JV Roberts, Nikolas Drummond, Imaan FM Tamimi,
Robert Turnbull, Xincheng Zhao, Elizabeth C Marin, Patricia D Popovici, Serene Dhawan, et al.
Complete connectomic reconstruction of olfactory projection neurons in the fly brain. Current
Biology, 30(16):3183–3199, 2020.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional semantics. Journal of
artificial intelligence research, 49:1–47, 2014.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2020.

Sanjoy Dasgupta, Charles F Stevens, and Saket Navlakha. A neural algorithm for a fundamental
computing problem. Science, 358(6364):793–796, 2017.

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval. IEEE transactions
on pattern analysis and machine intelligence, 35(12):2916–2929, 2012.

Leopold Grinberg, John Hopfield, and Dmitry Krotov. Local unsupervised learning for image anal-
ysis. arXiv preprint arXiv:1908.08993, 2019.

Manas Gupta, ArulMurugan Ambikapathi, and Savitha Ramasamy. Hebbnet: A simplified hebbian
learning framework to do biologically plausible learning. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3115–3119. IEEE,
2021.

Toshihide Hige, Yoshinori Aso, Mehrab N Modi, Gerald M Rubin, and Glenn C Turner. Het-
erosynaptic plasticity underlies aversive olfactory learning in drosophila. Neuron, 88(5):985–998,
2015.

Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguistics, 41(4):665–695, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Qing-Yuan Jiang and Wu-Jun Li. Scalable graph hashing with feature transformation. In IJCAI,
volume 15, pp. 2248–2254, 2015.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. arXiv preprint arXiv:2209.11883, 2022.

Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou. Column sampling based discrete supervised
hashing. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Dmitry Krotov and John J Hopfield. Unsupervised learning by competing hidden units. Proceedings
of the National Academy of Sciences, 116(16):7723–7731, 2019.

Feng Li, Jack W Lindsey, Elizabeth C Marin, Nils Otto, Marisa Dreher, Georgia Dempsey, Ildiko
Stark, Alexander S Bates, Markus William Pleijzier, Philipp Schlegel, et al. The connectome of
the adult drosophila mushroom body provides insights into function. Elife, 9:e62576, 2020a.

10



Under review as a conference paper at ICLR 2024

Jinzhi Li, Brennan Dale Mahoney, Miles Solomon Jacob, and Sophie Jeanne Cécile Caron. Two
parallel pathways convey distinct visual information to the drosophila mushroom body. bioRxiv,
2020b.

Wenye Li, Jingwei Mao, Yin Zhang, and Shuguang Cui. Fast similarity search via optimal sparse
lifting. Advances in Neural Information Processing Systems, 31, 2018.

Xiaoyun Li and Ping Li. Signrff: Sign random fourier features. Advances in Neural Information
Processing Systems, 35:17802–17817, 2022.

Yuchen Liang, Chaitanya K Ryali, Benjamin Hoover, Leopold Grinberg, Saket Navlakha, Mo-
hammed J Zaki, and Dmitry Krotov. Can a fruit fly learn word embeddings? The Ninth In-
ternational Conference on Learning Representations, 2021.

Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph hashing. Advances in neural
information processing systems, 27, 2014.

Elizabeth C Marin, Laurin Büld, Maria Theiss, Tatevik Sarkissian, Ruairı́ JV Roberts, Robert Turn-
bull, Imaan FM Tamimi, Markus W Pleijzier, Willem J Laursen, Nik Drummond, et al. Connec-
tomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons
in the adult drosophila brain. Current Biology, 30(16):3167–3182, 2020.

Timoleon Moraitis, Dmitry Toichkin, Adrien Journé, Yansong Chua, and Qinghai Guo. Softhebb:
Bayesian inference in unsupervised hebbian soft winner-take-all networks. Neuromorphic Com-
puting and Engineering, 2(4):044017, 2022.

Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS com-
putational biology, 9(4):e1003037, 2013.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15:267–273, 1982.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

David E Rumelhart and David Zipser. Feature discovery by competitive learning. Cognitive science,
9(1):75–112, 1985.

Chaitanya Ryali, John Hopfield, Leopold Grinberg, and Dmitry Krotov. Bio-inspired hashing for
unsupervised similarity search. In International conference on machine learning, pp. 8295–8306.
PMLR, 2020.

Jaiyam Sharma and Saket Navlakha. Improving similarity search with high-dimensional locality-
sensitive hashing. arXiv preprint arXiv:1812.01844, 2018.

Takashi Shinozaki. Biologically-motivated deep learning method using hierarchical competitive
learning. arXiv preprint arXiv:2001.01121, 2020.

Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast optimization
for accurate hash coding in cnn. Advances in neural information processing systems, 31, 2018.

Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-lossless binarization of word embed-
dings. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7104–
7111, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jun Jie Wang, Qi Yu, Shao Gang Hu, Yanchen Liu, Rui Guo, Tu Pei Chen, You Yin, and Yang Liu.
Winner-takes-all mechanism realized by memristive neural network. Applied Physics Letters, 115
(24):243701, 2019a.

11



Under review as a conference paper at ICLR 2024

Yuwei Wang, Yi Zeng, Jianbo Tang, and Bo Xu. Biological neuron coding inspired binary word
embeddings. Cognitive Computation, 11:676–684, 2019b.

Jingjing Wei, Xiangwen Liao, Houdong Zheng, Guolong Chen, and Xueqi Cheng. Learning from
context: a mutual reinforcement model for chinese microblog opinion retrieval. Frontiers of
Computer Science, 12:714–724, 2018.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. Advances in neural information
processing systems, 21, 2008.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

MFYTD Yogatama and CDNA Smith. Sparse overcomplete word vector representations. In ACL,
2015.

Hongchao Zhou. Activation learning by local competitions. arXiv preprint arXiv:2209.13400, 2022.

12



Under review as a conference paper at ICLR 2024

A MORE DETAILS ABOUT THE ENERGY FUNCTION

We show the time derivative of the energy function equation 7 for the special case that only one
neuron j active (yj ≈ 1)

τE
dE

dt
= −

∑
x∈X

f(⟨x, wj

∥wj∥ ⟩)

< wj , wj >
3
2

[
τE⟨

dwj

dt
, x⟩⟨wj , wj⟩ − τE⟨wj , x⟩⟨

dwj

dt
, wj⟩

]
=

−
∑
x∈X

τE
f(⟨x, wj

∥wj∥ ⟩)

< wj , wj >
3
2

[
⟨x, x⟩⟨wj , wj⟩ − ⟨wj , x⟩2

]
≤ 0,

(9)

where f(·) is an exponential function, so f(⟨x, wj

∥wj∥ ⟩) > 0, τE is the time constant. The final
expression is obtained according to the Cauchy-Schwarz inequality.

B BioHash VS. SoftHash

B.1 CONNECTIONS AND DIFFERENCES

BioHash (Ryali et al., 2020) and SoftHash are all data-dependent bio-inspired hashing methods.
Both of them learn the hashing projection function using the Hebbian-like learning rule coupled
with the idea of winner-take-all.

BioHash adopts the Hebbian rule combined with a hard WTA mechanism to learn synaptic weights
from data. The learning of BioHash can be formalized as minimizing the following energy function

E = −
∑
x∈X

m∑
j=1

g[Rank(< wj , x >j)]
< wj , x >j

< wj , wj >
p−1
p

j

(10)

where < X,Y >j=
∑

i,j g
j
ijXiYj , with gjij = |wi|p−2

δij , p ≥ 1 is a Lebesgue norm hyper-
parameter (Krotov & Hopfield, 2019) and δij is Kronecker delta. The Rank operation sorts the inner
products from the largest (j = 1) to the smallest (j = m), and

g[j] =


1, j = 1

−∆, j = 2

0, otherwise.

(11)

For p=2 and ∆=0 (Ryali et al., 2020), the energy function of BioHash is approximate to the spherical
K-means clustering algorithm, where the distance from the input point to the centroid is measured
by the normalized inner product instead of the Euclidean distance.

In equation 10, it is clear that each input sample belongs to only one class. It means only the output
neuron with the largest value can be updated during the learning process, limiting its ability to
catch the semantic information of the input data. SoftHash alleviates this limitation by introducing
a soft WTA mechanism for learning the hash function. In contrast to BioHash using a hard WTA
mechanism, our method makes non-winning classes not fully suppressed in the learning process. By
assigning a credit score euj+bj∑m

l=1 eul+bl
in Eq (5) to each class, SoftHash enables the weakly correlated

classes to have a chance to influence the representative learning, making the learned hash codes
improved with more semantic information.

B.2 EXPERIMENT AND DISCUSSION

We make a further comparison between BioHash and SoftHash on the image retrieval task, where
the hash length varies from 2 to 512. The mAP@1000 results of BioHash and SoftHash on Fashion-
MNIST, CIFAR10 and CIFAR100 are shown in Figure 7.

13



Under review as a conference paper at ICLR 2024

From the figure, it is evident that SoftHash-2 (red line) demonstrates the best retrieval performance
among all the hashing algorithms, especially when k = {64, 128, 256, 512}. Regarding BioHash-1
(dotted blue line), they exhibit the best retrieval performance at small hash lengths. However, there
is only a slight improvement from k = 32 to k = 64 and an even smaller improvement from k = 64
to k = 512. These results align with the conclusions presented in the corresponding work Ryali
et al. (2020).

In summary, we suggest the following:

• SoftHash: SoftHash is recommended when the primary objective is to maintain the relative
relationships between the original data points as accurately as possible while projecting
them into hash space. It is a particularly good choice for scenarios where semantic infor-
mation and similarity structure preservation are essential.

• BioHash: BioHash is a suitable choice in situations where there is a requirement for short
hash lengths. It excels in achieving excellent performance at small hash lengths which can
be advantageous for scenarios where storage is a limiting factor.

(a) Fashion-MNIST (b) CIFAR10 (c) CIFAR100

Figure 7: Illustration of the mAP@1000 results of SoftHash and BioHash on three datasets.

C ALGORITHM

The pseudo-codes of generating hash codes are illustrated in Algorithm 1.

Algorithm 1 SoftHash
Require: synaptic weights W , biases b, hash length k

for x ∈ X do
for j ∈ {1, 2, ...,m} do

uj = ⟨x,wj⟩ =
∑

i w
i
jxi

end for
for j ∈ {1, 2, ...,m} do

yj = softmax(uj + bj)
end for
for j ∈ {1, 2, ...,m} do

if yj in top k of all activations then
vj = 1

else
vj = 0

end if
end for
return v

end for

14



Under review as a conference paper at ICLR 2024

D MORE DETAILS ABOUT IMAGE RETRIEVAL

D.1 IMPLEMENTATION DETAILS

Following the protocol in Dasgupta et al. (2017), for datasets Fashion-MNIST and CIFAR10, we
randomly select 100 query inputs of each class to form a query set of 1,000 images. For CIFAR100,
we randomly select 10 query inputs of each class. The remaining images are used for both training
as well as the database for retrieval. Each input image is normalized to be a unit vector in the 784
(28×28) dimensional space and the 3072 (32×32×3) dimensional space for Fashion-MNIST and
CIFAR10/CIFAR100, respectively. Ground truth is the top 1000 nearest neighbors of a query in
the database, based on Euclidean distance between pairs of images in pixel space.

We set the output dimensions to 2,000 for high-dimensional representations. For ConvHash and
FlyHash, we average the mAP over 10 trials, where the random matrix changes in each trial. We set
the sampling ratio of input data samples to 0.1 for FlyHash, following the previous workDasgupta
et al. (2017). For hashing algorithms with learnable synaptic weights, we set the initial learning rate
to 0.4 for Fashion-MNIST, which decays from 0.04 to 0 during the learning process; and we set
the learning rate to 0.2 for CIFAR10/CIFAR100, which also decays from 0.02 to 0 as in the case
of Fashion-MNIST. For BioHash, the training is done for 100 epochs with mini-batches of size
100 on three datasets. The Lebesgue norm is set to p=4 and the anti-Hebbian learning parameters
∆ are set to 0.4 and 0.3 for Fashion-MNIST and CIFAR10/CIFAR100Krotov & Hopfield (2019),
respectively. For SoftHash, the training is done for 20 epochs, the batch sizes are all 1024 on three
datasets. Biases are initialized following a negative uniform distribution. The weight initialization
methods for BioHash and SoftHash are shown in Appendix D.2. Additionally, we adopt temperature
scaling Hinton et al. (2015), a mechanism that can maintain the probabilistic interpretation of the
softmax output, to scale exponent by yµ = e(uµ+bµ)/T∑m

l=1 e(ul+bl)/T
, T is set to 10.

The initialization methods for BioHash and SoftHash are summarized in Table 3.

Table 3: Initialization settings for BioHash and SoftHash.
Weight initialization Bias initialization

BioHash-1 uniform distribution -
BioHash-2 standard normal distribution -
SoftHash-1 uniform distribution uniform distribution
SoftHash-2 standard normal distribution uniform distribution

D.2 MORE EXPERIMENTAL RESULTS

We evaluate the performance of hashing algorithms for image retrieval, with hash lengths varying
from 2 to 512. Experimental results on three benchmarks are shown in Figure 8. It is evident that
SoftHash-2 consistently demonstrates the best retrieval performance among all the hashing algo-
rithms, particularly at large hash lengths.

(a) Fashion-MNIST (b) CIFAR10 (c) CIFAR100

Figure 8: Illustration of the mAP@1000 results of different hashing algorithms on Fashion-
MNIST, CIFAR10 and CIFAR100.

15



Under review as a conference paper at ICLR 2024

E MORE DETAILS ABOUT WORD SIMILARITY SEARCH

E.1 IMPLEMENTATION DETAILS

We select the top 50,000 most frequent words from pre-trained GloVe embeddings and use them
to train synaptic weights for BioHash and SoftHash. We set the output dimensions to 2,000 for
high-dimensional representations. We set the initial learning rate to 0.4, which decays from 0.04 to
0 during the learning process. For ConvHash, we average the mAP over 5 trials, where the random
matrix also changes in each trial. For BioHash, the Lebesgue norm is set to p=4 and the anti-Hebbian
learning parameter ∆ is set to 0.4. Weights are initialized following a standard normal distribution
for BioHash and SoftHash. The remaining settings are the same as those used for image retrieval.

E.2 DETAILS OF FINDING NEAREST WORDS

The Normalized Discounted Cumulative Gain (NDCG) is a widely used measure of ranking quality
Wei et al. (2018). NDCG takes into account the position of relevant items in a ranked list, empha-
sizing that items higher in the ranking should receive more credit than those lower in the ranking.
Following NDCG, we define the Rel score to evaluate the performance of the top 10 nearest neigh-
bor words of a target word of different hashing algorithms, which is calculated by

Rel score =
Rel value(∗)

Rel value(GloV e)
(12)

where Rel value(∗) denotes the Rel value of the hashing algorithm, formulating by

Rel value(∗) =
10∑

Index=1

Rel(Index)

log2(Index+ 1)
. (13)

In this equation, the contribution of each word to Rel value(∗) is measured based on two factors:
the relevance score and its position(Index) in the ranked list. Rel(Index) denotes the relevance
score of the word positioned at Index, which is determined by the results of GloVe. In this study,
the relevance scores of the top 10 nearest neighbor words provided by GloVe are set to {Rel(1),
Rel(2), ..., Rel(10) = 1.0, 0.9, ..., 0.1}. Additionally, log2(Index + 1) is used to discount the
relevance score of each word. Note that words not found in the ground truth have a relevance score
of 0. In Figure 9, we provide an example of how to calculate the Rel score of SoftHash for the
target word ”apple”.

Figure 9: An example of calculating Rel score of SoftHash for the target word ”apple”.

16


	Introduction
	Related work
	Hashing Algorithms and Sparse Expansive Representations
	Hebbian-like Rules and WTA Mechanisms

	Approach
	Learning with A Soft WTA Mechanism
	Hashing Algorithm
	Computational Complexity Analysis

	Image retrieval
	Experiment Settings
	Results and Discussion

	Word Similarity Search
	Experiment Settings
	Results and Discussion

	Conclusions
	More details about the energy function
	BioHash vs. SoftHash
	Connections and Differences
	Experiment and Discussion

	Algorithm
	More Details about Image Retrieval
	Implementation Details
	More experimental results

	More Details about Word Similarity Search
	Implementation Details
	Details of finding nearest words


