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ABSTRACT

With the development of modern deep neural network (DNN), the scale of parameters is increasing, making it difficult
to deploy models for use on resource-constrained edge devices. To address this issue, model compression is necessary,
and using low-rank matrix decomposition to compress DNN models is an effective research approach. However,
traditional studies on low-rank decomposition compression typically apply a single matrix decomposition method to
each parameter matrix in the neural network, without considering the structural characteristics of each layer in AI
models, thus failing to achieve the optimal compression effect. Therefore, this paper proposes, for the first time, a
scheme for model compression using multiple decomposition methods, selecting the most suitable decomposition
method for each layer in the model. However, to truly implement this approach, it is essential to balance model
accuracy and compression cost. To address this, we propose a joint optimization paradigm that simultaneously
optimizes model accuracy and compression rate. We also introduce a framework LMFBRL based on reinforcement
learning that jointly selects the optimal decomposition method and rank. Tests were conducted on five models such
as LeNet-300, ResNet-20, and Vgg-16. Compared to singly using the MF method for compressing the LeNet300
model, our approach has shown an improvement of 3.6% in compression rate and a 1.8% increase in accuracy. The
test results validate the effectiveness of the algorithm proposed in this paper.

1 INTRODUCTION

With the continuous advancement of AI model capabilities, the scale of model parameters has grown exponentially. Common models
like VGG and ResNet now have parameter counts reaching into the millions, necessitating significant computational resources and time
to run these models. For the effective execution of these large-scale AI models, they are typically deployed on resource-rich cloud
servers. However, transmitting collected data from edge devices to the cloud, processing it, and then sending back the results involves
considerable transmission latency, resulting in response delays.

In the ever-expanding landscape of intelligent applications, there is an urgent need to implement edge intelligence at edge nodes to
meet the demand for rapid service response in scenarios such as smart homes and autonomous driving. Deploying AI models on edge
nodes allows for the quick utilization of local data for training, without the need to wait for data transmission to cloud servers. This not
only reduces network latency and transmission costs but also enhances data privacy and security.

However, edge nodes have limited resources, making it challenging to deploy large-scale AI models. Existing research, as demonstrated
by Cheng et al. (Denil M, 2023) (Lyu H, 2019) (Cheng Y, 2015) (Cheng Y, 2018), has shown the redundancy of AI models, providing
foundational principles for model compression. Therefore, we can compress AI models and deploy the compressed versions to resource-
constrained edge nodes for rapid execution.

Existing AI model compression techniques can be primarily categorized into four types: parameter quantization(Wu J, 2016)(Zhou Y,
2018), pruning(Luo J H, 2017)(Li Y, 2022), knowledge distillation(Hinton G, 2015), and low-rank decomposition(Tai C, 2015)(Wu K,
2019)(Phan A H, 2020a).

a.Parameter quantization reduces the floating-point precision of model parameters (e.g., from Float32 to Float8) to compress the
model. However, when quantizing parameters to specific bit-widths, many existing training methods and hardware platforms become
incompatible, necessitating the design of specialized system architectures with limited flexibility.

b.Pruning reduces the model parameter count by removing redundant weights with small values. However, it relies heavily on pre-
trained models, and platforms like TensorFlow do not support sparse computation, thus hindering computational acceleration.

c.Knowledge distillation treats large AI models as teacher models, incorporating soft targets related to the teacher model as part of
the total loss function to guide the training of student models, resulting in compressed models. However, its assumptions about student
models are overly restrictive, limiting its applicability.

d.Low-rank decomposition utilizes techniques to decompose weight matrices/tensors of AI models into smaller scale low-rank matri-
ces/tensors, achieving parameter compression. This method does not require specialized hardware support, can be used across various
platforms, and offers flexibility in compression levels by adjusting the rank of the decomposition matrices.

Based on the analysis of the four AI model compression methods mentioned above, this paper adopts the approach of low-rank decom-
position due to its advantages of low hardware requirements and flexible compression.
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1.1 CHALLENGE

Current research on AI model compression includes numerous low-rank decomposition methods, primarily categorized into low-rank
matrix decomposition and low-rank tensor decomposition (Wang C, 2024) (Tang J, 2022) (Liu Y, 2022). Two-dimensional matrix
decomposition is simpler and faster than high-dimensional tensor decomposition, with Singular value decomposition (SVD) and Full-
rank matrix factorization (MF) being the main methods. Most existing research employs a single decomposition method for all neural
network layers. For instance, Hsu et al. (Hsu, 2017) used SVD for all layers, while Winata et al. (Winata, 2015) used MF. These
methods have been effective for model compression.

However, our experiments reveal that different neural network layers have distinct structural characteristics, and various decomposition
methods have different capacities for representing these structures. This limitation becomes apparent when using a single decompo-
sition method. Our tests show that applying different decomposition methods to different network layers yields varying compression
effectiveness, with the optimal method differing for each layer (detailed analysis in Section 3).

To address this issue, we explore using multiple decomposition methods for model compression, selecting the most suitable method for
each layer. However, achieving this multi-decomposition approach requires addressing two key challenges:

a.Balancing model accuracy and compression cost: Compressing a model often reduces accuracy. Striving for higher compression
can result in progressively lower accuracy. Existing methods tend to focus on one aspect (Xu Y, 2020) (Yang H, 2020), leading to
either high compression cost and low accuracy or low compression cost and high accuracy. Balancing the trade-off between accuracy
and compression cost to achieve optimal outcomes for both is extremely challenging.

b.Jointly selecting the decomposition method and the rank r: The performance of low-rank decomposition compression is in-
fluenced by the chosen rank r. Existing methods determine the rank based on a single predetermined decomposition method. Our
approach, involving multiple decomposition methods, requires the joint selection of both the decomposition method and the rank,
which is highly challenging.

1.2 CONTRIBUTION

To address these challenges and achieve optimal model compression, this paper proposes the Low-Rank Matrix Factorization Algorithm
Based On Reinforcement Learning (LMFBRL). This method selects the optimal decomposition method for each layer, determines the
appropriate rank r, balances the trade-off between compression ratio and accuracy, and achieves optimal results. The contributions are
as follows:

a.Joint Optimization of Model Accuracy and Compression Cost: This paper introduces a paradigm that jointly considers model
accuracy and cost functions in the context of multiple decomposition methods. By constructing expressions for both and jointly
optimizing them, we achieve an optimal balance between model accuracy and compression, resulting in the best possible solution for
model compression.

b.Alternating Training for Compressed Models Without Retraining: We propose an alternating optimization algorithm that iter-
atively performs parameter learning and model compression. Initially, model parameters are updated using the model’s loss function
and a compression parameter matrix. Subsequently, each network layer’s parameter matrix undergoes decomposition and compression.
This alternating process is repeated through successive training iterations until the final training epoch is reached. Notably, the resulting
compressed model does not require retraining after the alternating optimization process is completed.

c.Joint Selection of Decomposition Method and Rank Based on Reinforcement Learning: Leveraging reinforcement learning,
we employ the Q-learning algorithm to establish a Q-value matrix based on two different decomposition methods. Each Q-value is
determined by the model’s loss value and an optimal rank selection function. Within the reinforcement learning framework, a selection
function is constructed to choose the decomposition method by comparing Q-values. This approach not only solves for the Q-values to
select the decomposition method but also determines the optimal rank simultaneously, achieving the goal of jointly selecting the best
decomposition method and rank.

d.Extensive Experiment: We conducted experiments using five models: LeNet-300, LeNet-5, ResNet-20, ResNet-32, and Vgg-
16, tested on two datasets, MNIST and CIFAR-10. The experimental results demonstrate that, compared to using a single fixed
decomposition method for model compression, our LMFBRL approach achieves better compression rates with minimal accuracy loss.
Specifically, LeNet-300 achieved a compression rate of 89.5% and an accuracy of 96.2%. When applying MF decomposition solely
to LeNet-300, the compression rate was 83.6% with an accuracy of 95.2%. In comparison, our LMFBRL approach resulted in a 3.6%
improvement in compression rate and a 1.8% increase in accuracy. Test results confirm the effectiveness of our algorithm.

2 RELATED WORK

For an L-layer neural network model, the output is represented as Oi = Ψ(Wioi−1 − bi), where i ∈ {1, 2, · · · , L}. Here, Oi denotes
the output of the i-th layer, xi = oi−1 is the input to the i-th layer, Ψ(∗) represents the activation function, and bi is the bias term.
The principle of low-rank decomposition involves decomposing the parameter matrix W of each layer into smaller matrices. The main
methods (MF and SVD) are discussed in Section A.1 and Section A.2.

2



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Under review as a conference paper at ICLR 2025

In low-rank decomposition-based AI compression, performance is influenced by the chosen rank r, affecting both compression rate and
accuracy. Thus, selecting the optimal rank is crucial.

Some studies use a fixed rank r for each layer’s decomposition. For example, Kim et al. (Kim Y D, 2015) use variational Bayesian
matrix decomposition to select ranks for CNNs on mobile devices, then decompose and fine-tune the model. Kim et al. (Kim H,
2019) propose an effective method considering the entire network to choose the correct rank configuration, using new accuracy metrics
non-iteratively. These fixed-rank methods can achieve high compression rates but often compromise accuracy, leading to poor overall
performance.

To address these issues, some researchers propose automated rank selection using performance metrics or heuristics. Phan et al. (Phan
A H, 2020b) introduced SLR low-rank decomposition, using positive definite tensors to reduce parameters and costs. Xiao et al.
(Xiao J, 2023) proposed HALOC, a hardware-aware framework for automatic rank determination. Other studies (Kim Y D, 2015)
(Kim H, 2019) (Acharya A, 2019) (Tai C, 2015) (Lebedev V, 2014) also use rank selection to improve compression but focus solely on
rank r without optimizing model accuracy. It is not possible to achieve optimal values for both compression rate and accuracy.

Moreover, the aforementioned studies all employ the same decomposition method for compressing neural networks. However, our
analysis shows that the optimal decomposition method varies for different layers of the neural network, and also differs based on the
structure of those layers. As a result, a fixed decomposition scheme does not yield the best compression performance.

To solve these issues, this paper introduces a joint optimization paradigm for model accuracy and compression cost, ensuring both are
optimized. Inspired by reinforcement learning, we construct a framework (LMFBRL) for joint selection of decomposition methods and
ranks. This framework selects the best method and optimal rank for each layer, achieving the best possible model compression.

3 EXPERIMENTAL STUDIES: DIFFERENT DECOMPOSITION METHODS FOR DIFFERENT NETWORK
LAYERS

This paper makes a novel discovery that, due to the differing structural characteristics of the layers in AI models and the varying
representation capabilities of two decomposition methods, using a single decomposition approach cannot achieve optimal model com-
pression. The following sections will introduce this finding and analyze its impact on compression performance.

As shown in Fig. 1, there is a variety of types of neural network layers, primarily including fully connected layers and convolutional
layers, along with others such as pooling layers and flatten layers. The decomposition methods need to focus on compressing the
parameters of fully connected and convolutional layers. Convolutional layers primarily filter and extract input features at the front end,
while fully connected layers perform feature classification at the end.

Figure 1: The structure of deep neural network.

Additionally, the two low-rank decomposition methods, MF and SVD, op-
erate differently (see Appendix 1). Consequently, their decomposition and
compression effects on the same neural network layer also differ. We will
validate these findings through experiments by comparing the results of
compression performance tests.

For our experiments, we selected the VGG-16 model and focused on com-
pressing the 5th convolutional layer and the 14th fully connected layer.
We applied both MF and SVD methods to these layers. We then compared
and analyzed the compression performance of these two methods. The test
results are presented in Table 1.

Table 1: Compression of Network Layers Using Two Decomposi-
tion Methods

Method Params5 Params14 ACC ρparams τparams
Original 294912 262144 89.1% 0 -
MF-MF 35200 25600 86.9% 86.3% 39.2

SVD-SVD 66176 10240 85.9% 89.1% 27.8
MF-SVD 46464 33792 87.2% 85.6% 45
SVD-MF 16896 24576 85.7% 92.6% 27.2

In Table 1, the "Method" column indicates the decomposition
method used for the 5th and 14th layers. For example, MF-
SVD means MF decomposition was used for the 5th layer and
SVD method for the 14th layer. The parameters Params5 and
Params14 represent the number of parameters in these layers.
The metrics ACC, ρparams, and τparams denote the model’s accu-
racy, parameter compression ratio, and parameter compression
performance, respectively. The higher their values, the better the
compression effect. Detailed explanations of these metrics can
be found in Section 8.

By comparing the τparams values, we see that MF-MF with τparams=39.2 is greater than SVD-SVD with τparams=27.8, indicating that the
MF-MF scheme has better compression performance. Further comparing MF-MF’s τparams=39.2 with MF-SVD’s τparams=45, we find
that MF-SVD has superior compression performance. Additionally, comparing MF-SVD’s τparams=45 with SVD-MF’s τparams=27.2,
MF-SVD still proves to be better. This suggests that the 5th layer is more suited to MF decomposition, while the 14th layer benefits
more from SVD method.

By comparing the parameter compression performance τparams across the four schemes in the table, we conclude that the MF-SVD
scheme offers the best compression performance. This indicates that, due to the different structural characteristics of network
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layers and the varying representational capacities of decomposition methods, selecting the most suitable decomposition method
for each layer is essential for achieving optimal model compression.

4 PROBLEM FORMULATION

In response to the issue of single decomposition methods failing to consider the structural characteristics of various network layers in
AI models, this paper proposes the LMFBRL approach. It employs multiple decomposition methods for model compression, selecting
the most suitable method for each layer in the model to achieve optimal compression results.

For a neural network model with L layers, the weight matrices of the model are represented as W = {Wi} = {W1,W2, . . . ,WL},
where Wi ∈ Rmi×ni , and i = {1, 2, . . . , L} denotes the index of the i-th layer of the model. Considering the interplay between com-
pression ratio and model accuracy mentioned earlier, we have formulated the following problem paradigm to balance the relationship
between the two:

min
W

L (W ) + µC (r (W ))

s.t. rank (Wi) ≤ Ri, i = 1, 2, . . . , L.
(1)

In the above Eq. (1), L (W ) represents the loss function, which indicates the model’s accuracy, while C (r (W )) represents the
cost function, which denotes the number of parameters, thereby approximating the compression ratio of the model. In this problem
paradigm, Ri denotes the maximum rank of each layer’s parameter matrix, where Ri ≤ min{mi, ni}. Here, µ serves as a hyperparam-
eter to balance the importance between the compression ratio and model accuracy. µ belongs to the interval [0, 1]. As µ approaches 0,
the model prioritizes accuracy improvement, whereas as µ approaches 1, it prioritizes increasing the model’s compression ratio.

This study involves selecting between two decomposition methods: MF and SVD. Therefore, the cost function C(r(W )) in Eq. (1)
must account for different decomposition method conditions. For each layer, the cost function presents two options, as shown in Eq.
(2):

C (r (W )) =

L∑
i=1

Best{CMF (r (Wi)) , CSV D (r (Wi))}

s.t. rank (Wi) ≤ Ri, i = 1, 2, . . . , L.

(2)

In Eq. (2) above, for the cost function of each network layer, we derive the cost function CMF (r(Wi)) from MF decomposition and
CSV D(r(Wi)) from SVD method. By utilizing the Best function, we select the optimal cost function from these two decomposition
methods to determine the chosen decomposition method. The principles of the two decomposition methods and their cost functions can
be found in the Appendix A.1 and A.2.

To adaptively select the optimal decomposition method for each layer of the AI model, we combine the cost functions of the two
decomposition methods: CMF (r (Wi)) = ri · (mi + ni) and CSV D (r (Wi)) = ri · (mi + ri + ni). We then rewrite Eq.(2) as follows:

min
W,ϕi,ωi,ri

L (W ) + µ

L∑
i=1

{ϕi (ri · (mi + ni)) + ωi (ri · (mi + ri + ni))}

s.t. ϕi, ωi ∈ {0, 1} , ϕi + ωi = 1, ri = rank (Wi) , rank (Wi) ≤ Ri, i = 1, 2, . . . , L.

(3)

where ϕi and ωi are two binary indicator parameters for the i-th layer of AI model, and ϕi and ωi can only take 0 or 1. Specifically,
when ϕi = 1 and ωi = 0, it indicates that the i-th network layer selects the MF decomposition. Conversely, when ϕi = 0 and ωi = 1,
it indicates that the i-th network layer selects the SVD method. Due to ϕi + ωi = 1, each layer can adopt only one decomposition
method.

5 OVERVIEW OF SOLUTION

To solve the problem (3), we need to optimize and solve for parameters W , ϕi, ωi, and ri. To address this multivariable problem, we
first introduce intermediate variables X = {X1, X2, . . . , XL}, and impose the constraint {Xi} = {Wi}. We then reformulate Eq. (4)
as a constrained optimization problem:

min
W,ϕi,ωi,ri

L (W ) + µ

L∑
i=1

{ϕi (ri · (mi + ni)) + ωi (ri · (mi + ri + ni))}

s.t. ϕi, ωi ∈ {0, 1} , ϕi + ωi = 1, ri = rank (Wi) , Xi = Wi, rank (Wi) ≤ Ri, i = 1, 2, . . . , L.

(4)

Based on the augmented Lagrangian method, we can transform the above problem as follows:

min
W,ϕi,ωi,ri,Xi

L (W ) + µ

L∑
i=1

{ϕi (ri · (mi + ni)) + ωi (ri · (mi + ri + ni))}+
β

2

L∑
i=1

||Wi −Xi −
1

β
γi||2

s.t. ϕi, ωi ∈ {0, 1} , ϕi + ωi = 1, ri = rank (Xi) , rank (Xi) ≤ Ri, i = 1, 2, . . . , L.

(5)
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where β is the penalty parameter, which increases with the step of iterations in the model, β ∈ (β1 < β2 < · · · ). Detailed analysis of
this approach can be found in Section 5.2. {γ1, γ2, · · · , γL} are the vector of Lagrange multipliers, with dimensions matching those of
the weight matrixs {W1,W2, . . . ,WL}, and it is updated during each iteration.

To solve Eq. (5), we have designed an alternating optimization method by alternately optimizing W , ϕi, ωi, ri and Xi. So Eq. (5)
is divided into two sub-problems to be solved alternately. The first sub-problem focuses on updating the model parameters, which is
suggested in section 5.1. The second sub-problem involves selecting the decomposition method and determining the optimal rank for
decomposition, which is suggested in section 6. The detailed solution method is outlined in Algorithm 1.

Algorithm 1 Alternating solution algorithm for model parameters updating and compression selecting
0: Initialize: The pre-trained model parameters W , the selected compression ranks r, the compressed model parameters X , and the

Lagrange multipliers γ are all initialized to zero.
1: for β = β1 < β2 < · · · do
2: Sub-problem 1: Model Parameters Updating
3: W ← argminW L (W ) + β

2

∑L
i=1 ||Wi −Xi − 1

β γi||
2

4:
5: Sub-problem 2: Joint Selection of Decomposition and Rank r
6: ϕi, ωi, ri, Xi ← argminϕi,ωi,ri,Xi

µ
∑L

i=1{ϕi (ri · (mi + ni)) + ωi (ri · (mi + ri + ni))}+ β
2

∑L
i=1 ||Wi −Xi − 1

β
γi||2

7: end for

5.1 THE OPTIMIZATION OF PARAMETER W

The first sub-problem involves updating the learning of model parameters. We need to solve the objective function in line 3 of Algorithm
1, where the compressed matrix Xi corresponding to the parameter matrix Wi of each network layer is a known condition. The SGD
gradient descent algorithm is utilized to solve based on the model’s loss and the constraints imposed by the compression matrix on the
original parameter matrix. The solving formula is as follows:

W ∗ = W − α ·
∂
(
L (W ) + β

2

∑L
i=1 ||Wi −Xi − 1

β γi||
2
)

∂W
.

(6)

In the above Eq. (6), W ∗ represents the updated parameters, W denotes the original parameters, α is the learning rate, and the fraction
following it represents the partial derivative with respect to parameter W . This equation completes the update of model parameters,
constituting the entire learning and updating process of the model. Next, we will elaborate on the solution to the second subproblem in
section 6.

5.2 THE UPDATE OF PARAMETER β

The loop statement in the 1 line of Algorithm 1 indicates that as the number of iterations increases throughout the process, we gradually
increase our penalty factor β. In line 3 of Algorithm 1, the loss function L(W ) in the objective function for parameter updates is used
to improve model accuracy. The subsequent regularization term ||Wi−Xi− 1

β γi||
2 constrains the parameter matrix Wi to approximate

the low-rank compressed matrix Xi. This makes the parameter matrix more sparse, thereby enhancing the model’s compression rate.
Consequently, when the value of β is small, the loss function L(W ) has a greater impact, and the model training focuses more on
improving accuracy. As the value of β increases, the influence of the regularization term becomes more significant, and the training
emphasizes enhancing the compression rate. Therefore, by the end of the training, the model achieves an optimal balance between
accuracy and compression rate.

6 REINFORCEMENT LEARNING FRAMEWORK FOR SELECTION OF DECOMPOSITION METHOD AND
RANK

This section will provide a detailed analysis of the second sub-problem of Algorithm 1. In order to solve for the parameters ϕi, ωi, ri
and Xi, which allows us to select the optimal decomposition method for each network layer and determine the best rank to obtain the
optimal compressed matrix. The objective function for the compression process is defined as follows:

min
ϕi,ωi,ri,Xi

µ

L∑
i=1

{ϕi (ri · (mi + ni)) + ωi (ri · (mi + ri + ni))}+
β

2

L∑
i=1

||Wi −Xi −
1

β
γi||2

s.t. ϕi, ωi ∈ {0, 1} , ϕi + ωi = 1, ri = rank (Xi) , rank (Xi) ≤ Ri, i = 1, 2, . . . , L.

(7)

To solve Eq. (7), we propose a reinforcement learning-based framework for multi-decomposition method selection (LMFBRL). Next,
we will provide a detailed explanation of this framework. For a detailed explanation of reinforcement learning, please refer to Appendix
A.3.
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6.1 CALCULATING THE REWARD VALUES Q UNDER DIFFERENT DECOMPOSITIONS

In the reinforcement learning framework of this paper, it is necessary to make choices for the decomposition methods of each layer,
and the criterion for selection is the reward value Q of the corresponding decomposition method, we employ the Q-learning method.
So we construct a reward matrix Ω ∈ R2×L, defined as Table 2.

Table 2: Reward matrix Ω

Method
Layer 1 2 · · · L

MF Q1,mf Q2,mf · · · QL,mf

SVD Q1,svd Q2,svd · · · QL,svd

Our objective is to maximize the sum of the reward values for each layer,
Q =

∑L
i=1 max{Qi,mf , Qi,svd}, where Qi,mf represents the value ob-

tained by selecting the MF decomposition method for the i-th network
layer, and Qi,svd represents the value obtained by selecting the SVD
method for the i-th network layer. Here, we employ a greedy algorithm,
selecting the decomposition method for each layer that yields the maximum gain until the final layer, thereby achieving the overall
maximum reward value Q.

To simultaneously select the decomposition method and the corresponding optimal rank, this paper cleverly sets the Q values for each
decomposition method as the results obtained from solving the corresponding rank selection functions. In other words, solving Eq. (7)
yields the optimal ranks for the two decomposition methods. Therefore, the rank selection function and Q value of each decomposition
method are equivalent.

When we choose the MF method, the rank selection function for the MF method in the i-th network layer is equivalent to Qi,mf
solution. From Eq. (7), we obtain the following:

Qi,mf = µ · ri · (mi + ni) +
β

2
||Wi −Xi,mf −

1

β
γi||2

s.t. ri, Xi ← minri,Xiri · (mi + ni) +
β

2
||Wi −Xi,mf −

1

β
γi||2, ri = rank (Xi,mf ) , rank (Xi,mf ) ≤ Ri, i = 1, 2, . . . , L.

(8)

We observe from Eq. (8) that as the rank ri decreases, the number of parameters in the decomposition matrix reduces. However,
the error between the MF decomposition matrix Xi,mf and the weight matrix Wi increases for the i-th layer of the model. Hence,
it is necessary to find an optimal solution ri,best that minimizes the result, which is our objective. This requires traverse all the ranks
{ri} = {ri,1, ri,2, . . .}.
Alternatively, when we choose the SVD method, we present the following formula as the solution for the rank selection function of
SVD method from Eq. (7), which is equivalent to Qi,svd solution:

Qi,svd = µ · ri · (mi + ri + ni) +
β

2
||Wi −Xi,svd −

1

β
γi||2

s.t. ri, Xi ← min
ri,Xi

ri · (mi + ni) +
β

2
||Wi −Xi,svd −

1

β
γi||2, ri = rank (Xi,svd) , rank (Xi,svd) ≤ Ri, i = 1, 2, . . . , L.

(9)

When solving Eq. (9) for the SVD method, according to (Golub and van Loan., 2012) and based on the Eckhart-Young theorem,
||Wi −Xi,svd − 1

β γi||
2 ⇐⇒ ||

∑Ri

l=ri+1 s
2
il − 1

β γ
2
i ||. So Eq. (9) is equivalent to:

Qi,svd = µ · ri · (mi + ri + ni) +
β

2
||

Ri∑
l=ri+1

s2il −
1

β
γ2
i ||

s.t. ri, Xi ← min
ri,Xi

ri · (mi + ni) +
β

2
||

Ri∑
l=ri+1

s2il −
1

β
γ2
i ||, ri = rank (Xi,svd) , rank (Xi,svd) ≤ Ri, i = 1, 2, . . . , L.

(10)

To solve Eq. (10), similar to the method for solving the MF problem, we need to iterate through all the ranks to find the optimal rank
that minimizes the result.

6.2 SELECTION OF DECOMPOSITION METHODS

By solving the Eq. (8) and Eq. (10), we obtain both the reward value Qi and the rank ri of the i-th layer. Therefore, to select the
optimal decomposition method for each layer of the model, we define the method selection function E(ϕ, ω), which derives the optimal
decomposition method for the model based on the reward value Q, is expressed as follows:

E(φ, ω) =

L∪
i=1

{
(φi, ωi) = {1, 0},Qi,mf ≥ Qi,svd,
(φi, ωi) = {0, 1},Qi,mf < Qi,svd.

(11)

Combining Eq. (11) with the previous Eq. (7), the best compressed matrix for the i-th layer is Xi,best = E(ϕi, ωi) · {Xi,mf , Xi,svd},
obtained by multiplying the decomposition matrices.

As show in Fig. 2, the parameter matrices Wi of each layer of the trained model are decomposed into the product form of decomposition
matrices according to the recorded selection method. The first layer selects the SVD method, so the corresponding weight matrix W1
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is decomposed into the product of matrices U1, S1 and V1. The second layer selects the MF method, so the corresponding weight
matrix W2 is decomposed into the product of matrices U2 and V2. The subsequent network layers are decomposed into corresponding
compression structures according to the corresponding decomposition method selected.

Figure 2: The compressed model based on LMFBRL.

In summary, we design a reinforcement learning-based framework that si-
multaneously selects the optimal decomposition method and rank r. The
reward values Qi,mf and Qi,svd for the two decomposition methods are de-
termined by solving the corresponding rank selection functions. By compar-
ing the obtained reward values Qi,mf and Qi,svd, the optimal decomposition
method is identified using the method selection function E(ϕ, ω). Thus, the
optimal decomposition method and best rank for the network layers in the
model can be derived simultaneously.

7 COMPLETED SOLUTION

This section provides a comprehensive analysis of the LMFBRL algorithm
designed in this paper. The algorithm adopts an iterative training approach, termed "update before compression selection," which
involves training the model parameters first and then compressing them using a reinforcement learning-based decomposition algorithm
across all layers. The compressed matrices obtained are then used to train the entire model parameters, and this process is iteratively
repeated until the final training round. The detailed procedure is outlined in Algorithm 2.

Through the aforementioned iterative method of training before compression, as the number of iterations increases, we adjust our
penalty factor β towards infinity, causing the model parameter matrix W to gradually approach the low-rank compressed matrix X ,
becoming more low-rank. After completing all training, based on the recorded optimal decomposition methods for each layer, the
trained model parameter matrix W is decomposed into various decomposition matrices, thus achieving model compression.

The entire model training method employs the SGD (Stochastic Gradient Descent) algorithm, and the pre-trained model is incorporated
into the LMBFRL algorithm for training. Lines 1 to 24 of the Algorithm 2 represent the alternating optimization scheme designed in
this paper. Line 2 involves the training process for the entire model parameters, where W represents the original uncompressed model
Weight matrix with rank Ri. During the learning steps of the algorithm, parameter updates are performed, while X represents the
compressed low-rank matrix with rank ri ≤ Ri, obtained during the compression selection steps of the algorithm.

Lines 3 to 21 of the Algorithm 2 outline the model compression process, wherein all network layers of the model undergo decomposition
and compression. During the reinforcement learning process, the selection of decomposition methods for each layer is determined
by comparing the utility function values Q obtained from different decomposition methods. The selection function E chooses the
decomposition method with the highest utility and simultaneously determines the selected rank r. The resulting compressed matrix
X is then used in the parameter update steps. This process is iteratively repeated until the final round, where the trained model is
decomposed according to the selected method and rank r to obtain the final compressed model.

The final compressed model obtained in this study does not require retraining to restore accuracy, saving a significant amount of time.

8 EXPERIMENT Algorithm 2 Low rank matrix factorization algorithm
based on reinforcement learning

0: Initialize: The pre-trained model parameters W ,
the selected compression ranks r, the compressed
model parameters X , and the Lagrange multipli-
ers γ are all initialized to zero.
for β = β1 < β2 < · · · do

2: Update W by Eq. (6)
for i = 1, . . . , L do

4: Matrix decomposition process
Perform SVD on the i-th layer:

6: Optimize ri,svd,Xi,svd by Eq. (10)
Perform MF on the i-th layer:

8: Optimize ri,mf ,Xi,mf by Eq. (8)

10: Choose best matrix decomposition method:
Calculate Qi,svd by (Eq. 10)

12: Calculate Qi,mf by Eq. (8)
Optimize (ϕi, ωi) by Eq. (11)

14: Xi,best = (ϕi, ωi) · {Xi,mf, Xi,svd}
γi ← γi − β (Wi −Xi,best)

16: end for
If ∥W −Xbest∥ ≤ ε

18: break
end for

20: return W,Xbest, rbest

Our experiment tests five models: LeNet-300, LeNet-5, ResNet-20, ResNet-
32, and Vgg-16. Six algorithms are employed: LMFBRL-Selected, SVD-
Selected, MF-Selected, LMFBRL-Fixed, SVD-Fixed, and MF-Fixed. Two
datasets are utilized: MNIST and CIFAR-10. The parameter metrics consist
of seven indicators: Params, FLOPs, Accuracy, ρparams, ρFLOPs, τparams, and
τFLOPs. For detailed information, please refer to the Appendix A.4.

Our experimental setup includes an NVIDIA GeForce RTX 4070 GPU, 32GB
of memory, running on Windows 11. We used Python version 3.7 and PyTorch
version 1.31.0. Experiments were conducted on five AI models using the two
datasets and five algorithms.

In our experiments, the parameter µ was set to 1 × 10−6 and 1 × 10−8. The
algorithm was trained for 40 iterations, with an initial β value of 1.09. For the
SGD algorithm, the learning rate was set to 0.09, the decay rate to 0.98, and
the momentum to 0.9. We used the MNIST and CIFAR10 datasets for training
and testing.

8.1 VERIFICATION OF THE LMFBRL FRAMEWORK

Comparison with Fixed Decomposition Methods. This experiment aims to
validate the effectiveness of the multi-decomposition method selection frame-
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Table 3: Comparison of Model Compression Methods
Model Method Params FLOPs ACC ρparams ρFLOPs τparams τFLOPs

LeNet-300 Original 266610 1066030 97.8% 0 0 - -
SVD-Selected 25253 100605 95.5% 90.5% 90.5% 39.4 39.4
MF-Selected 43782 174718 95.2% 83.6% 83.6% 32.1 32.1

LMFBRL-Selected 33037 131122 97% 87.6% 87.7% 109.5 109.6
LeNet-5 Original 431080 9173530 98.3% 0 0 - -

SVD-Selected 15688 2336890 94.5% 96.4% 74.5% 25.4 19.6
MF-Selected 54010 7348650 97.3% 87.5% 19.9% 87.5 19.9

LMFBRL-Selected 30742 4293910 97.8% 92.7% 53.2 185.4 106.4
ResNet-20 Original 269722 162204190 87.4% 0 0 - -

SVD-Selected 118522 29203072 85.9% 56.1% 82% 37.4 54.7
MF-Selected 254957 57395214 87% 5.5% 64.6% 13.7 161.5

LMFBRL-Selected 162653 29142656 86.9% 39.7% 82% 79.4 164
ResNet-32 Original 464154 275450398 88.6% 0 0 - -

SVD-Selected 180986 46776960 86.2% 61% 83% 25.4 34.6
MF-Selected 438893 92463312 87.9% 5.4% 66.4% 7.9 94.9

LMFBRL-Selected 285484 50735744 88% 38.5% 81.6% 64.2 136
Vgg-16 Original 14990922 1253856798 89.1% 0 0 - -

SVD-Selected 543223 215234798 83.9% 96.4% 82.8% 18.5 15.9
MF-Selected 485689 165246814 65.4% 96.8% 86.8% 4.1 3.7

LMFBRL-Selected 647133 14990922 84.1% 95.7% 98.8% 19.1 19.8

work based on reinforcement learning, referred to as LMFBRL. The algorithms compared in this study are LMFBRL-Selected, SVD-
Selected, and MF-Selected, and the models tested include five architectures: LeNet-300, LeNet-5, ResNet-20, ResNet-32, and Vgg-16.

The LMFBRL-Selected algorithm uses both SVD and MF methods and selects the optimal decomposition method for each layer of
the AI models. In contrast, SVD-Selected applies a fixed SVD method to decompose the AI models, and MF-Selected uses a fixed
MF method. The results of the experiments are presented in Table 3, where the metric accuracy(ACC) represents the precision of the
compressed models. A higher value indicates greater accuracy in the compressed model, with the highest values highlighted in bold.

From the table, we observe that the LMFBRL-Selected algorithm achieves the highest accuracy for four out of the five models, except
for ResNet-20. For the ResNet-20 model, the accuracy of the LMFBRL-Selected algorithm is only 0.1% lower than the highest-
performing algorithm, MF-Selected. Therefore, compared to the other two algorithms, LMFBRL-Selected generally produces the best
accuracy for the compressed models.

This analysis demonstrates the high effectiveness of the LMFBRL framework. Both SVD-Selected and MF-Selected rely on fixed
decomposition methods, which cannot account for the structural characteristics of the network layers in AI models. In contrast, the
LMFBRL-Selected algorithm, based on reinforcement learning, selects the most appropriate decomposition method for each layer,
thus achieving optimal compression accuracy.

8.2 VERIFICATION OF THE JOINT PARADIGM OF MODEL ACCURACY AND COMPRESSION COST

Comparison with Non-Joint Optimization Methods. This experiment aims to demonstrate the effectiveness of the joint paradigm
of model accuracy and compression cost proposed in this paper. The algorithms compared in this study are LMFBRL-Selected, SVD-
Selected, and MF-Selected, and the models tested include five architectures: LeNet-300, LeNet-5, ResNet-20, ResNet-32, and Vgg-16.

The objective function of the LMFBRL-Selected algorithm is based on the joint paradigm of model accuracy and compression cost, as
proposed in this paper. In contrast, the other two algorithms, SVD-Selected and MF-Selected, use an objective function that optimizes
only the compression cost. The experimental results are presented in Table 3, where the parameters τparams and τFLOPs represent
the compression performance in terms of computation and parameter reduction, respectively. These are expressed as the ratio of
compression rate to accuracy loss, with higher values indicating better compression performance.

From the Table 3, we observe that the LMFBRL-Selected algorithm achieves the highest values for both τparams and τFLOPs across all
models. This indicates that, compared to the other two algorithms, LMFBRL-Selected delivers optimal performance in both accuracy
and compression rate.

This analysis demonstrates the high effectiveness of the proposed joint optimization paradigm for model accuracy and compression
cost. In contrast, the SVD-Selected and MF-Selected algorithms focus solely on optimizing the compression cost, which prevents
them from achieving the best balance between accuracy and compression rate. The joint optimization method proposed in this
paper allows for both model accuracy and compression rate to be simultaneously optimized, delivering superior compression
performance.
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Figure 3: Rank Selection for LeNet-300 Model Layers Figure 4: Rank Selection for LeNet-5 Model Layers

Table 4: Model Compression based on Fixed Rank
Model Method Params FLOPs ACC ρparams ρFLOPs τparams τFLOPs

LeNet-300 35439 141346 97% 86.7% 86.7% 108.4 108.4
LeNet-5 19973 2640302 81.7% 95.4% 71.2% 5.7 4.3

SVD-Fixed ResNet-20 110852 27798490 85.7% 59% 82.9% 34.6 48.7
ResNet-32 178234 45233174 87.7% 61.6% 83.6% 68.4 92.9

Vgg-16 453864 199667858 72.5% 97% 84.1% 5.8 5.1
LeNet-300 42466 169454 94.8% 84.1% 84.1% 28 28

LeNet-5 53110 6790650 97.8% 87.7% 26% 175.4 52
MF-Fixed ResNet-20 243463 34376594 84.5% 9.7% 78.8% 3.4 27.1

ResNet-32 412355 59863312 87.2% 11.2% 78.3% 8 56
Vgg-16 486393 163030878 69.1% 96.8% 87% 4.8 4.3

LeNet-300 34066 135854 97.2% 87.2% 87.3% 145.3 145.3
LeNet-5 53110 6790650 97.8% 87.7% 26% 175.4 52

LMFBRL-Fixed ResNet-20 186453 35672431 86.6% 30.9% 78% 38.6 97.5
ResNet-32 213244 51243748 87.6% 54.1% 81.4% 54.1 81.4

Vgg-16 402326 176310974 72.8% 97.3% 85.9% 6 5.3

8.3 VERIFICATION OF RANK SELECTION METHOD IN LMFBRL ALGORITHM

Compared with the rank selected by the fixed decomposition method. This experiment aims to evaluate the effectiveness of the
rank selection method proposed in this paper, namely the LMFBRL-Selected algorithm. The algorithms compared in this study are
LMFBRL-Selected, SVD-Selected, and MF-Selected, tested on two models: LeNet-300 and LeNet-5.

The LMFBRL-Selected algorithm employs a reinforcement learning-based multi-decomposition method selection framework, which
selects the most suitable decomposition method and the optimal rank for each layer of the model. In contrast, SVD-Selected uses a
fixed SVD method to compress the model and select the ranks of the decomposed matrices for each layer, while MF-Selected applies
the MF method for compression and rank selection.

The results are displayed in Fig. 3, Fig. 4, and Table 3. In the figures, the blue bars represent the ranks chosen by MF-Selected, the
orange bars represent the ranks chosen by SVD-Selected, and the LMFBRL-Selected algorithm is illustrated differently: yellow bars
with blue stripes indicate that LMFBRL-Selected chose the MF method for that layer, and yellow bars with orange stripes indicate that
LMFBRL-Selected chose the SVD method for that layer.

Fig. 3 and Fig. 4 show the rank selections of the three algorithms for the LeNet-300 and LeNet-5 models, respectively. The figures
demonstrate that the rank selection for each layer differs across the three algorithms. The LMFBRL-Selected algorithm selects the best
decomposition method for each layer, and the ranks chosen by LMFBRL-Selected for the same decomposition method often differ
from those selected by the other two algorithms. However, as shown in Table 3, the accuracy of the compressed models for LeNet-300
and LeNet-5 indicates that the LMFBRL-Selected algorithm achieves the highest accuracy. This suggests that the rank selection made
by the LMFBRL-Selected algorithm leads to higher accuracy in the compressed models.

These results demonstrate that the rank selection method in the LMFBRL-Selected algorithm is effective. The other two algorithms use
fixed decomposition methods and cannot select the optimal decomposition method and corresponding rank for each layer. In contrast,
the LMFBRL-Selected algorithm’s rank selection method enables the compressed models to achieve the best accuracy.

8.4 VERIFICATION OF RANK SELECTION SCHEMES

Compared with the fixed rank decomposition method. This experiment is conducted to demonstrate the effectiveness of the rank
selection scheme proposed in this paper. The algorithms compared in this study include LMFBRL-Selected, SVD-Selected, MF-
Selected, LMFBRL-Fixed, SVD-Fixed, and MF-Fixed, tested on five models: LeNet-300, LeNet-5, ResNet-20, ResNet-32, and Vgg-
16.
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Figure 5: Comparison of τFLOPs between the Selected-Rank
Method and the Fixed-Rank Method

Figure 6: Comparison of ACC between the Selected-Rank Method
and the Fixed-Rank Method

The LMFBRL-Selected, SVD-Selected, and MF-Selected algorithms utilize a rank selection scheme, while LMFBRL-Fixed, SVD-
Fixed, and MF-Fixed use fixed ranks based on the average rank r obtained from the experiments. The results are presented in Fig.5 and
Fig.6, as well as Table 3 and Table 4. Fig.5 and Fig.6 display bar charts comparing the parameters τFLOPs and ACC, which reflect the
compression performance of the algorithms, with specific values detailed in Table 3 and Table 4.

From Fig.5, we observe that the rank selection algorithms in the first three columns generally have higher average τFLOPs than the
fixed rank algorithms in the last three columns, except for the LeNet-300 model, where the rank selection algorithm’s average τFLOPs
is slightly lower than that of the fixed rank algorithm. This indicates that the rank selection scheme offers superior compression
performance in most models.

Fig.6 shows that all algorithms maintain high accuracy across the models. The average accuracy of the rank selection algorithms for
LeNet-5, ResNet-20, and Vgg-16 is higher than that of the fixed rank algorithms, while the other two models show similar average
levels between the two types of algorithms. This suggests that the proposed rank selection scheme achieves better accuracy than the
fixed rank schemes.

These results confirm the effectiveness of the proposed rank selection scheme, as the three algorithms using fixed ranks cannot adap-
tively select the optimal rank. In contrast, the proposed scheme can identify the best rank for each layer of the model, resulting in
improved compression performance.

9 CONCLUSION

To deploy AI models efficiently on resource-constrained edge devices, model compression techniques are commonly used. This paper
focuses on using low-rank decomposition for model compression.

Traditional low-rank decomposition research typically employs a single matrix decomposition method for each parameter matrix in a
neural network, neglecting the structural characteristics of each layer and failing to achieve optimal compression. This paper introduces
a new scheme called LMFBRL, which uses multiple decomposition methods for model compression, selecting the most suitable method
for each layer. However, implementing this plan requires establishing criteria for selecting decomposition methods and balancing
model accuracy and compression costs. To address this, we propose a joint optimization approach that simultaneously optimizes model
accuracy and compression ratio. We introduce a rank selection scheme to choose the most appropriate rank for each decomposition
method and incorporate a reinforcement learning-based framework to select the optimal decomposition method for each network layer.

Experimental results show that the LMFBRL algorithm outperforms other single decomposition methods by selecting the most suitable
method for each layer, resulting in higher accuracy and compression rates. The data demonstrate that optimizing both model accuracy
and compression cost achieves superior results. Compared to fixed-rank decomposition methods, our rank selection scheme enables
the compressed model to achieve higher accuracy and compression rates.
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A APPENDIX

A.1 FULL-RANK MATRIX FACTORIZATION (MF)

As show in Fig.7, for the weight matrix Wi ∈ Rmi×ni of the i-th layer of AI model, the matrix factorization decompose it into the
product of matrices Ui ∈ Rmi×ri and Vi ∈ Rri×ni , where ri is the selected rank, and ri ≤ min{mi, ni}, which can be formulated as
follow:

Wi ≈ Ui · Vi, (12)

where the matrix Ui ∈ Rmi×ri is a row feature matrix, and Vi ∈ Rri×ni is a column feature matrix.

We find that the size of the weight matrix Wi is mi × ni, while the size of the decomposed matrices Ui and Vi can be denoted as the
cost function CMF (r(Wi)) as follow:

CMF (r (Wi)) = ri · (mi + ni) , (13)

Therefore, due to the low rank property of the weight matrix Wi, when the chosen rank ri is sufficiently small, the number of parameters
in the decomposed matrix, ri × (mi + ni), is much less than mi × ni. This significantly reduces the number of model parameters,
thereby achieving decomposition and compression of the weight matrix in the AI model.

Figure 7: Matirx factorization decomposition diagram.

MF Decomposition for Model Compression Structure. As shown in Fig. 8, the MF method is applied to compress the weight matrix
of the i-th layer in the original AI model. The structure of the original model (Fig. 8.a) transforms the weight matrix Wi into the
product of two matrices, Ui and Vi, resulting in the compressed model (Fig. 8.b). Thus, the depth of the compressed model increases,
while the number of parameters decreases, achieving compression of the original model.

Figure 8: Illustration of the structural changes in model based on MF.

A.2 SINGULAR VALUE DECOMPOSITION (SVD)

As shown in Fig. 9, the weight matrix Wi ∈ Rmi×ni of the i-th layer in the AI model is factorized into the product of three matrices:
Ui ∈ Rmi×ri , Si ∈ Rri×ri , and Vi ∈ Rri×ni . Here, ri represents the chosen rank, where ri ≤ min{mi, ni}. This can be expressed as
follows:
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We observe that the size of the weight matrix Wi is mi × ni, and the dimensions of the decomposed matrices Ui, Si, and Vi can be
expressed as the cost function CSV D(r(Wi)), as follows:

Wi ≈ Ui · Si · V T
i . (14)

where Ui ∈ Rmi×ri represents the left singular matrix, Vi ∈ Rni×ri represents the right singular matrix, and Si ∈ Rri×ri represents
the singular value matrix

CSV D (r (Wi)) = ri · (mi + ri + ni) . (15)

Therefore, due to the low rank property of the weight matrix Wi, when the chosen rank ri is sufficiently small, the number of parameters
in the decomposed matrices, ri × (mi + ri + ni), is significantly less than mi × ni. This reduction greatly decreases the number of
model parameters, enabling effective decomposition and compression of the weight matrix in the AI model.

Figure 9: Singular Value Decomposition diagram.

SVD for Model Compression Structure. As illustrated in Fig. 10, the SVD method is employed to compress the weight matrix of the
i-th layer in the original AI model. The original model’s structure (Fig. 10.a) transforms the weight matrix Wi into the product of three
matrices: Ui, Si, and Vi, resulting in the compressed model (Fig. 10.b). Consequently, the depth of the compressed model increases
while the number of parameters decreases, effectively compressing the original model.

Figure 10: Illustration of the structural changes in model based on SVD.

A.3 REINFORCEMENT LEARNING INTRODUCTION

Reinforcement learning adjusts each step of action based on feedback from the current environment, ultimately maximizing overall
rewards. In this paper, the current environment for the reinforcement learning framework refers to the i-th layer of the model, where
applying different decomposition methods to the weight matrix yields different feedback. The goal is to select the decomposition
method with the highest feedback for the current layer, maximizing the overall reward. This paper employs the Q-learning algorithm
based on a greedy strategy. According to the following Eq. (16):

K∗(hi, bi) = Q
[
Qi + ϵ ·max

b
K∗(hi−1, bi−1)

]
. (16)

Among them, hi ∈ H is the state subspace, which is the set of decomposition methods chosen for each network layer. bi ∈ B is the
action subspace, representing our comparison operation for each layer’s decomposition method. K∗(∗) represents the optimal action
value function, which represents the overall benefit of selecting a decomposition method for the compressed model. Qi represents the
maximum reward of the current state, indicating the benefit after selecting the decomposition method for the i-th network layer. Q
represents the maximum expected overall reward, and ϵ is a hyperparameter.

As shown in Fig. 11, the entire model is in state space H , and the decomposition method chosen for each network layer in the model is
action space B. The Q in Fig. 11 represents the reward value obtained for the corresponding network layer after implementing the two
decomposition methods. We need to compare the value Q obtained from each decomposition method, select the decomposition method
with the highest value based on the greedy strategy, and finally maximize the profit of the entire model. In the figure 11, by comparing
the value Q of SVD and MF decomposition methods at each network layer, the selected method is marked with blue fluorescence.
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Finally, the entire chain of blue fluorescence is our optimal selection scheme, which can achieve the best decomposition compression
effect of the model.

Figure 11: Selections of multi-decomposition methods based on reinforcement learning.

A.4 DETAILS OF EXPERIENCE

We test the algorithm proposed in this paper using the following five models:

• LeNet-300(Y. LeCun and Haffner, 1998): The LeNet-300 model consists of three fully connected layers, with 300, 100,
and 10 neurons in each layer respectively. Sigmoid activation functions are used between each fully connected layer, and a
Dropout layer is employed between the first and second fully connected layers to reduce overfitting.

• LeNet-5(et al., 2015): LeNet-5 is a classic convolutional neural network model that consists of two convolutional layers, two
pooling layers, and three fully connected layers. The convolutional layers have 5x5 kernels, and the fully connected layers
contain 120, 84, and 10 neurons, respectively.

• Resnet-20(Akamaster, 2017): ResNet-20 is a basic version of the Residual Network (ResNet), consisting of 20 convolutional
layers. Its structure includes several convolutional layers, batch normalization layers, global average pooling layers, and a
fully connected layer for classification.

• Resnt-32(Zhu C, 2016): Compared to ResNet-20, ResNet-32 has a deeper network architecture, consisting of 32 convolu-
tional layers. The model structure includes a series of convolutional layers, batch normalization layers, and global average
pooling layers, followed by a fully connected layer for classification.

• Vgg-16(Simonyan and Zisserman, 2015): The VGG16 model consists of 16 layers, including 13 convolutional layers and
3 fully connected layers. This model utilizes small 3x3 convolutional kernels and a deep network structure, with multiple
convolutional layers stacked repeatedly.

We conducted experimental tests on the aforementioned model using six low-rank decomposition compression algorithms:

• SVD-Selected: This method employs SVD (see Section A.2), where the original matrix is decomposed into the product of
the left singular vectors, a diagonal matrix of singular values, and the transpose of the right singular vectors. We use the
SVD adaptive rank selection algorithm from Yerlan et al.’s (Idelbayev and Carreira-Perpinán, 2020) research for testing and
comparison.

• SVD-Fixed: This method also uses SVD, but the rank of the decomposed matrix is fixed. The rank is determined by averaging
the ranks obtained from the experiments conducted in this study.

• MF-Selected: This method uses MF decomposition (see Section A.1), where the original matrix is decomposed into the
product of two low-rank matrices. We derived a corresponding MF adaptive rank selection algorithm by replacing the SVD in
Yerlan et al.’s adaptive rank selection algorithm with the MF decomposition method.

• MF-Fixed: This method also uses MF decomposition, but the rank of the decomposition matrices is fixed. The rank is
determined by averaging the ranks obtained from the experiments conducted in this study.

• LMFBRL-Selected: This paper proposes the LMFBRL-Selected algorithm, which is based on a reinforcement learning
framework. This algorithm selects the most suitable decomposition method for each network layer to achieve optimal model
compression performance. The decomposition methods adaptively select the rank.

• LMFBRL-Fixed: This paper proposes the LMFBRL-Fixed algorithm, which follows the same framework as LMFBRL-
Selected. However, in LMFBRL-Fixed, the decomposition methods use fixed ranks.

We trained and tested the above-mentioned models using two different datasets:

• MNIST(Y. LeCun and Burges, 2010): The MNIST dataset consists of hand-written digit images from 250 different people,
covering the digits 0 through 9. Each image is a grayscale image with a size of 28×28 pixels. The training set contains 60,000
images, while the test set contains 10,000 images.

• CIFAR-10(Krizhevsky): The CIFAR-10 dataset consists of 60,000 color images divided into 10 classes, with each class
containing 6,000 images. The images in the dataset are 32x32 pixels in size. The training set comprises 50,000 images, while
the test set contains 10,000 images.
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We use seven metrics to evaluate the performance of the proposed algorithm:

• Params: The total number of parameters that need to be trained in the model.
• FLOPs: The number of floating-point operations required for a single forward pass through the model.
• Accuracy (ACC): The accuracy of the model on the test set, defined as the proportion of correctly classified samples to the

total number of samples.
• ρparams: The percentage reduction in the number of parameters after compression relative to the original model. It is calculated

as:

ρparams =

(
1− Params(compressed)

Params(original)

)
× 100%. (17)

• ρFLOPs: The percentage reduction in the number of floating-point operations after compression relative to the original model.
It is calculated as:

ρFLOPs =

(
1− FLOPs(compressed)

FLOPs(original)

)
× 100%. (18)

• τparams: The parameter compression ratio per unit of accuracy loss, reflecting the effectiveness of parameter compression. It
is calculated as:

τparams =
ρparams

ACC(original)− ACC(compressed)
. (19)

A higher value of τparams indicates a better compression effect in params.
• τFLOPs: The computation compression ratio per unit of accuracy loss, reflecting the effectiveness of computation compression.

It is calculated as:
τFLOPs =

ρFLOPs

ACC(original)− ACC(compressed)
. (20)

A higher value of τFLOPs indicates a better compression effect in FLOPs.

Our experimental setup includes an NVIDIA GeForce RTX 4070 GPU, 32GB of RAM, running in Windows 11. We used Python
version 3.7 and PyTorch version 1.31.0. The experiments were conducted on 5 AI models using 2 datasets and 5 algorithms.
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