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Abstract

Attention guides our gaze to fixate the proper loca-
tion of the scene and holds it in that location for the de-
served amount of time given current processing demands,
before shifting to the next one. As such, gaze deploy-
ment crucially is a temporal process. Existing computa-
tional models have made significant strides in predicting
spatial aspects of observer’s visual scanpaths (where to
look), while often putting on the background the tempo-
ral facet of attention dynamics (when). In this paper we
present TPP-Gaze, a novel and principled approach to
model scanpath dynamics based on Neural Temporal Point
Process (TPP), that jointly learns the temporal dynamics of
fixations position and duration, integrating deep learning
methodologies with point process theory. We conduct ex-
tensive experiments across five publicly available datasets.
Our results show the overall superior performance of the
proposed model compared to state-of-the-art approaches.
Source code and trained models are publicly available at:
https://github.com/phuselab/tppgaze.

1. Introduction

Gaze, the act of directing the eyes toward a location in
the visual world, is considered a good measure of overt
attention and, more generally, a window to the observer’s
thoughts, intentions, and emotions [10,15]. It is no surprise
that research spanning decades has struggled to produce
several computational models aiming at effectively predict-
ing attention towards regions or events within the landscape
of visual and multimodal stimuli. With roots in psychology
and neuroscience, these approaches have gained traction in
the computer vision and pattern recognition fields since the
seminal Itti et al. [35] model; more recently, state-of-the-art
approaches rely on machine learning advancements, typi-
cally employing deep neural architectures to the purpose
(but see [39] or [14] for an in-depth review). As a matter

Figure 1. Scanpath dynamics as a marked TPP. Time is represented
on the horizontal axis, and different scanpath fixations occurs at
time t1, t2, t3 and t4.

of fact, the vast majority of works in the field has focused
on the computational modelling of spatial saliency in the
shape of saliency maps, namely, a topographic map rep-
resenting the likelihood of fixating a given location of the
scrutinised stimulus, a fixation being defined as the period
of time during which a part of the visual stimulus (the patch)
on the screen is gazed at. Nevertheless, a growing number
of models (i.e., scanpath models) are addressing the pre-
diction of a sequence of fixations – namely, the scanpath –
where the gaze shift from one fixation to the next represents
a saccade. Beyond the salience representation, these models
explicitly unfold the dynamics of overt attention allocation
over a stimulus [6, 40]. It is worth remarking, though, that
barely predicting the spatial sequence of fixations, does not
entail proper modelling of the temporal evolution of atten-
tion. By and large, most scanpath models predict an or-
dered sequence of events while neglecting their continuous
timestamp information. As a result, these models are able
to tell where to look and in what order, but fail in answer-
ing when. In many respects, this is not an innocent flaw:
human actions often rely on visual information, therefore it
is important to direct attention to the right place at the right
time [54]. Practically, modelling when to perform a sac-
cade translates to devising scanpath models able to predict
the sequence of both fixations position and corresponding
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duration. Albeit recently few approaches have successfully
dealt with such problem [17, 18, 20, 47, 53] via fully engi-
neered approaches, only a marginal subset of them has tack-
led it in a mathematically principled way [7, 24, 54]. This
has typically resulted in a weaker generality of the meth-
ods which are tailored to specific contexts or applications.
Under such circumstances, the chief concern of the present
work is to introduce a fresh, general and simple view on
the problem of scanpath modelling: in brief, we consider a
scanpath as the realisation of a point process in space and
time, precisely that of a Neural Temporal Point Process.

Temporal Point Processes (TPPs) are probabilistic gener-
ative models designed for continuous-time event sequences.
Neural TPPs [46, 50, 66, 67] integrate key concepts from
point process literature with deep learning methodologies,
facilitating the creation of adaptable and effective models.
Notably, the modelling assumptions of Neural TPPs align
perfectly with the structure of scanpath data. A scanpath
consists of a series of events (saccades) occurring at irregu-
lar intervals (fixation durations), which is exactly what Neu-
ral TPPs are designed to model. While the psychological
and neuroscience literature has used traditional point pro-
cesses for eye movement analysis [5,28,62], these tools are
not well-suited for scanpath prediction due to their inabil-
ity to handle stimuli. In other words, traditional TPPs are
effective for studying the observer but fall short when ad-
dressing Computer Vision tasks related to attention alloca-
tion prediction. In contrast, Neural TPP-based models offer
the best of both worlds: they combine the robust theoretical
framework of TPPs with the flexibility and power of mod-
ern neural networks. Nevertheless, this is the first attempt
to adopt them for the scanpath modelling problem.

Our key contributions can be summarised as follows: 1)
We propose a novel scanpath model able to jointly learn the
temporal dynamics of both fixations position and duration.
2) We extend recent Neural TPP models to deal with vi-
sual data (i.e., images) and connect scanpath modelling and
prediction to point process theory. To assess our proposal,
which can be appreciated at a glance in Fig. 1, we conduct
experiments on five publicly available datasets, showing an
overall superior performance of the proposed model when
compared to state-of-the-art approaches.

2. Background and Related Work

2.1. Neural Temporal Point Processes (TPPs)

Consider a sequence of generic events happening irreg-
ularly over time, TPPs model the next arrival time of an
event by conditioning on the past events. Specifically, de-
note Ht = {tn ∈ T : tn < t} (with T representing the
sequence of strictly increasing arrival times of events) the
history of arrival times of all events up to time t, the re-
lation between the current arrival time t and the history, is

typically determined by the conditional intensity function
λ∗(t) = λ(t|Ht), whose functional form determines the
properties of the TPP. Equivalently, the sequence of positive
inter-event times τn = tn− tn−1 can be considered. Know-
ing the conditional intensity function allows to recover the
conditional probability of the inter-arrival time of an event:

p∗(τn) = p(τn|Htn)

= λ∗(tn−1 + τn) exp

(
−
∫ τn

0

λ∗(tn−1 + s)ds

)
.

(1)

For instance, under the the assumptions of no dependence
on the history and constancy over time (i.e., λ∗(t) = k, with
k ≥ 0), the homogeneous Poisson process is recovered,
with inter-event times distributed according to the exponen-
tial distribution. Choosing more complex functional forms
for λ∗(t) allows to recover many well known TPPs such as
Hawkes or self-correcting processes [30, 34]. Clearly, re-
stricting λ∗(t) to a specific parameterisation limits the gen-
eral applicability of TPPs. For this reason, most recent so-
lutions resorted to neural approaches (Neural TPPs) imple-
menting learnable parametric forms of the intensity func-
tion, λ∗

θ(t) [27, 33]. As an example, early Neural TPPs,
such as the Neural Hawkes Process [46], used RNNs to
model the intensity function of the process. More recently,
self-attention mechanisms have been employed to the same
purpose [66, 67]. The choice of the parametric form for the
intensity function has to take into account the necessity of
a closed form solution of the integral in Eq. (1), thus prac-
tically restricting the expressiveness of the model. More
complex parametric forms would require Monte Carlo ap-
proximation of the integral [46]. To address this, Shchur et
al. [50] proposed to directly learn the parametric conditional
distribution p∗θ(τ) of the inter-arrival times rather than the
conditional intensity function λ∗

θ(t), thus recasting learning
Neural TPPs as a density estimation problem.
Marked TPPs. The basic mathematical formalism of TPPs
allows to naturally handle the dynamics of arrival times of
events. However, the distribution of time until the next event
might depend on factors other than the history. Event data is
often accompanied with some kind of covariate indicating
the nature of the specific event being predicted. In the realm
of TPPs, such covariate are called marks. More formally, a
marked TPP is a random process whose realisations consists
of a sequence of discrete events localised in time, {rFn

, tn},
with the timing tn ∈ R+ and the mark rFn

∈ M. The mark
rFn

is typically modelled as an integer representing the type
of event, however other kinds of marks (e.g., M = R2) can
be eventually adopted. Specifying a marked-TPP involves
the definition of the joint conditional density function of the
next event, with inter-event time τn and mark rFn

, given
the history of past events: p∗(rFn

, τn) = p(rFn
, τn|Htn).

By assuming a conditional distribution parameterised by the
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weights of a neural model, p∗θ(rFn , τn), inference can be
performed by maximising the joint likelihood of the N ob-
served events in a sequence:

θ∗ = argmax
θ

N∏
n=0

pθ(rFn , τn|Ht) =

N∏
n=0

p∗θ(rFn , τn).

(2)
Applications of Neural TPPs span a variety of research

fields [51], such as healthcare [29], finance [4], social net-
work analysis [55], earthquake forecasting [11], and recom-
mender systems [38]. In this work, we leverage the Neural
TPP framework to model attention dynamics on visual data.

2.2. Scanpath Modelling

Modelling scanpaths involves defining a mapping
from visual data, I (raw image data representing ei-
ther a static picture or a stream of images), to
a sequence of time-stamped gaze locations S =
{(rF1 , t1), (rF2 , t2), . . . (rFN

, tN )}. Here rFn ∈ R2 rep-
resents the two-dimensional vector of spatial coordinates of
the n−th fixation on the stimulus I, while tn ∈ R+ repre-
sents its arrival time. Eventually, a perceptual representa-
tion of the input stimuli, Z , is computed, with the aim of
locating the relevant objects inside the scene:

I → Z → {(rF1
, t1), (rF2

, t2), . . . (rFN
, tN )}. (3)

Here we assume that no specific external task or goal
is given to the observer (i.e., free-viewing condition). No-
tably, the dynamics of the attentive process, which unrolls
as a sequence of fixations location with corresponding du-
ration/arrival time, is characterised by an inherent random-
ness which likely stems from internal stochastic fluctua-
tions affecting sensory and information processing, move-
ment planning, and execution [56], in both fixations loca-
tion and corresponding duration. Notably, many scanpath
models proposed in the recent literature [2, 3, 41, 52] get
rid of fixations’ timestamp information by rearranging the
sequence {(rF1 , t1), (rF2 , t2), . . . } as {rF (1), rF (2), · · · },
thus assuming (rFn , tn) = rF (n).

Several approaches [7, 24, 54] have dealt with this prob-
lem comprehensively, relying on specific theoretical frame-
works. Tatler et al. [54] modeled saccade timings as an
evidence accumulation process with clear neurobiological
significance. Similalry, in [24] a Langevin-type SDE race
model [9] was adopted to predict fixations and their duration
in socially relevant contexts, while in [7] fixation duration
was equated to the patch residence time of a forager search-
ing for nourishment. Conversely, the vast majority of recent
methods [17, 18, 20, 47, 53] simply model fixation duration
by employing specific neural architectural choices that aim
at associating each fixation to its corresponding duration.

In a different vein, this work recasts the whole visual
attention allocation process in the mathematical frame-

CNN
Backbone

GMM

LGMM

GRU / Transformer

Figure 2. Overview of TPP-Gaze model architecture. Given a
semantic representation of the image (zj) and the history of past
events (hn), the next fixation position and duration are simulated.

work of point process theory [23]. This emphasises the
central role of visual attention’s spatio-temporal dynam-
ics by explicitly modelling scanpaths as sequences of dis-
crete events happening at irregular intervals. Specifically,
we conceive a scanpath as a realisation of a random pro-
cess whose events happen at strictly increasing arrival times
T = {t1, . . . , tN}. Fixations duration can be recovered by
resorting to inter-event times τn = tn − tn−1, while their
locations can be represented as the two-dimensional contin-
uous mark associated to the n-th event. Under this assump-
tion, (Neural) Temporal Point Processes (TPPs) represent
the natural choice for modelling this kind of data.

3. Proposed Method
Given a stimulus (image) Ij , an ensemble of Nobs

observers performs a sequence of fixations and saccades
(scanpath) on it, thus obtaining a set of sequences Cj =
{S1, . . . , SNobs}. Each scanpath Si is a sequence of pairs
(events) Si

n = (rFn , tn) each composed by a fixation posi-
tion (marker) rFn

∈ R2, and a corresponding arrival time
tn ∈ R+. At the most general level, we are interested in
modelling the stochastic generative process that given a se-
mantic representation of the image Zj and the history of
past events Ht, simulates the next fixation position and du-
ration. More formally:

Si
n+1 ∼ pθ(rFn+1

, tn+1|Ht,Zj), (4)

where pθ(·) represents the parametric joint conditional dis-
tribution of a Neural TPP [50].

3.1. Architecture

In the following, we present the architecture of
TPP-Gaze, implementing a scanpath model on an image
as a Neural TPP.
Representing Scene Semantics. As outlined in Eq. (3), the
sequence of events composing a scanpath depends not only
on the history of past events, but on a perceptual representa-
tion of the input stimulus Ij , encoding scene semantics and
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relevant objects location. We extract the perceptual repre-
sentation of the input image via a CNN architecture inspired
by [41]. Specifically, the input image is first processed by a
pre-trained DenseNet201 CNN [32]. Activation maps from
various convolutional layers (as reported in [41]) are ex-
tracted, thus obtaining a 2, 048 channels volume, each rep-
resenting the location of semantic features inside the scene.
It is worth noticing that learning to predict fixations loca-
tion (i.e., marks) involves a mapping between coordinates
in Cartesian space, a task in which standard convolutions
have been reported to fail [43]. In the vein of [45, 52], we
adopt a CoordConv layer [43] to give convolutions access to
their own input coordinates. This results in a 2, 051 chan-
nels volume which is fed as input to 3 layers of 1 × 1 con-
volutions, followed by a linear layer mapping to zj acting
as our semantic representation.
Representing History. Neural TPPs employ either Re-
current Neural Networks (RNNs) and their variants (e.g.,
LSTM, GRU) [27, 50, 57] or Transformer encoders [66, 67]
to model the nonlinear dependency over both the mark-
ers and the timings from past events [51]. As shown in
Fig. 2, the pair (rFn

, τn) representing the event occurring
at the time tn with fixation position rFn

and duration τn =
tn − tn−1, is fed as the input into either a GRU or a Trans-
former encoder as described in [67]. The Transformer/GRU
state embedding hn represents the influence of the history
up to the n−th fixation. Hence, can be employed as a vec-
tor space representation of Htn . Taking into account the
semantic representation zj and the history embedding hn,
Eq. (4) can be rewritten as:

Si
n+1 ∼ pθ(rFn+1 , tn+1|hn, zj). (5)

Fixation Duration Generation. We model the conditional
dependence of the distribution pθ(τn+1|hn, zj) on both past
events and stimulus by concatenating the history embedding
and semantic vectors into a context vector cj,n = [hn||zj ].
In the vein of [50], the latter is employed to learn the pa-
rameters of a Log-Gaussian Mixture Model (LGMM) via
an affine transform:

w = softmax(Vwcj,n) s = exp(Vscj,n)

m = Vmcj,n
(6)

where w ∈ RK
+ are the mixture weights, m ∈ RK are the

mixture means, and s ∈ RK
+ are the standard deviations. K

represents the number of mixture components. The fixation
duration for the n−th event can be generated by sampling
from the LGMM defined by:

p∗θ(τn|cj,n) = p(τn|w,m, s)

=

K∑
k=1

wk
1

τnsk
√
2π

exp

(
− (log τn −mk)

2

2s2k

)
.

(7)

Fixation Position (Mark) Generation. Similarly, given
the context vector cj,n, we define the conditional probabil-
ity of the next mark (fixation position), pθ(rFn+1

|hn, zj),
as a 2D Gaussian Mixture Model (GMM) whose parame-
ters are obtained via another affine projection:

ωg = softmax(Rg
ωcj,n) Σg = diag(exp(Rg

Σcj,n))

µg = Rg
µcj,n

(8)

where ωg ∈ R2
+ are the mixture weights, µg ∈ R2 are the

mixture means, and Σg ∈ R2×2 are the diagonal covari-
ance matrices of G bi-variate Gaussian distributions. The x
and y coordinates of the n−th fixation can be generated by
sampling from the GMM defined by:

p∗θ(rFn |cj,n) = p(rFn |ω,µ,Σ)

=

G∑
g=1

ωg

exp
(
− 1

2 (rFn
− µg)

TΣ−1 (rFn
− µg)

)√
(2π)2|Σg|

.

(9)

3.2. Model Inference

Consider a set of stimuli I = {I1, . . . , Ij , . . . , IJ} each
gazed by Nobs human observers. Each observer produces an
ensemble of scanpaths Cj = {S1, . . . , SNobs} with Si

n =
(riFn

, τ in) representing an event (i.e., fixation position and
duration). Model inference is performed by minimising a
negative log-likelihood loss with respect to the parameters
of the semantic network, the GRU/Transformer encoding
history of events, and the affine transforms of the LGMM
and GMM. Formally, the loss function is defined as follows:

L(θ) = −
∑
j

∑
i

∑
n

[
log p∗θ(τ

i
n|cj,n) + log p∗θ(r

i
Fn

|cj,n)
]
.

(10)

4. Experiments
4.1. Experimental Setup

Datasets. Regarding the stimuli and eye tracking data, we
select five publicly available datasets of human recorded
scanpaths comprising both fixation positions and durations:
COCO-FreeView, MIT1003, OSIE, NUSEF, and FiFa.

COCO-FreeView [61] is a high-quality dataset capturing
free viewing behaviour, featuring the same natural images
adopted in COCO-Search18, annotated with 822, 602 eye
fixations from a free-viewing task. Only train and valida-
tion splits are publicly released. Each image was presented
for 5 seconds. The MIT1003 dataset [37] comprises 1, 003
images primarily featuring natural scenes. It provides eye
movement data from 15 subjects, observing stimuli for 3
seconds. The OSIE dataset [58] comprises 700 images with
eye-tracking data of 15 viewers. The dataset was explicitly
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devised to incorporate high-level semantic attributes. The
NUSEF (NUS Eye Fixation) dataset [48] features a diverse
collection of images, representing a range of semantic con-
cepts and capturing objects with varying scale, illumination,
and orientation. Each free-view experiment lasted 5 sec-
onds. The Fixations In Faces (FiFa) database [16] shares
data related to observers’ viewing of faces in natural set-
tings.Each image was presented for 2 seconds.
Implementation and Training Details. COCO-FreeView
and MIT1003 datasets are used for model training. To this
end, 70% of the images from both datasets are used for
training, while the remaining 30% is equally partitioned be-
tween validation and test sets. We use AdamW as optimizer,
with weight decay set to 10−1, and the learning rate set to
10−3. Batch size is equal to 128. We employ early stop-
ping after 20 epochs with no improvement on the validation
set. Following previous literature [20, 41], during training
and evaluation, we discard the first fixation and removed all
scanpaths containing less than four fixations.
Scanpath Evaluation Metrics. A variety of scanpath
evaluation metrics have been proposed to quantitatively
assess the similarity between real and simulated eye-
movements [1,39]. Here we employ the MultiMatch, Scan-
Match, and Sequence Score evaluation metrics since they
explicitly consider fixation duration in the evaluation pro-
cess. Moreover the String Edit Distance is adopted to fur-
ther evaluate predicted scanpaths.

MultiMatch (MM) [25, 36] assesses scanpaths based on
five features: shape (Sh), length (Len), direction (Dir), po-
sition (Pos), and duration (Dur). Scanpaths are temporally
aligned and compared using the Dijkstra algorithm. Sim-
ilarity is determined by applying vector arithmetic to the
aligned saccade pairs. ScanMatch (SM) [22] encodes scan-
paths as letter sequences by segmenting them into spatial
and temporal bins. In our experiments, the longest dimen-
sion of the stimuli is divided into 14 bins, while the shortest
is split into 8 bins. The temporal bin size is set to 50 ms
for scanpath models delivering fixation duration estimates.
The encoded scanpaths are then aligned and compared, with
higher scores reflecting greater spatial, temporal, and se-
quential similarity. Sequence Score (SS) [59] transforms
the human and predicted scanpaths into sequences of fixa-
tion cluster IDs and compares them using a string-matching
algorithm. String Edit Distance (SED) [10], first partitions
the input stimulus into an n × n grid. Scanpaths are then
transformed into strings and the string-edit algorithm calcu-
lates the distance between them.
Evaluation Protocol. We compare the scanpaths synthe-
sised from various models with those recorded from human
observers. The objective is to evaluate whether the simu-
lated behaviours exhibited statistical properties closely re-
sembling those exhibited by human subjects who are eye-
tracked while viewing a given stimulus. The evaluation pro-

Dim GMM MM (KL-Div) ↓ SM (KL-Div) ↓ SED ↓

CNN Img TPP K G Dur Avg w/ Dur w/o Dur Avg

Image Backbone
RN 256 256 4 16 0.011 0.037 0.113 0.101 17.575
DN 256 256 4 16 0.012 0.028 0.078 0.060 17.032

Image and TPP Dimensionalities
DN 128 128 4 16 0.010 0.031 0.094 0.069 16.959
DN 128 256 4 16 0.012 0.030 0.084 0.063 16.887
DN 256 128 4 16 0.009 0.037 0.105 0.082 17.413
DN 256 256 4 16 0.012 0.028 0.078 0.060 17.032
DN 256 512 4 16 0.010 0.031 0.101 0.095 17.462
DN 512 256 4 16 0.008 0.032 0.110 0.093 17.497
DN 512 512 4 16 0.009 0.027 0.104 0.077 17.154

Mixture Components
DN 256 256 2 16 0.014 0.027 0.092 0.071 16.944
DN 256 256 4 16 0.012 0.028 0.078 0.060 17.032
DN 256 256 2 32 0.009 0.030 0.109 0.098 17.216
DN 256 256 4 32 0.009 0.031 0.103 0.076 17.252

Table 1. Ablation study results comparing different model config-
urations and hyperparameters. We report the results for ResNet50
(RN) and DenseNet201 (DN) visual backbones, various embed-
ding vector dimensions for the image representation and the TPP
history, and different numbers of Gaussian mixture components.

tocol unfolds as follows. Suppose there are Nobs human ob-
servers. For each stimulus, we first compute the evaluation
scores for every possible pair of the Nobs observers (Real
vs. Real). Then, for each model, (i) we generate gaze tra-
jectories from artificial observers and (ii) calculate the eval-
uation scores for every possible pair of real and artificial
scanpaths (Real vs. Simulated).

For a given metric this procedure yields a target dis-
tribution P of similarity scores between observers (Real
vs. Real) and a distribution Q of similarity scores for
the given model w.r.t. humans (Real vs. Simulated). As
reported in [40], MM, SM, and SS average values may
deliver inconsistent results: models exhibiting less vari-
ability w.r.t. humans, can score systematically better than
the ground truth model. This issue can be tackled by
considering a good model as the one that minimises the
discrepancy between the target and model-derived score
distributions. We quantified such discrepancy using the
Kullback-Leibler Divergence (KL-Div): DKL(P ∥ Q) =∑

x∈X P (x) log(P (x)/Q(x)). Conversely, as SED is an
evaluation metric not requiring alignment, it is not suscep-
tible to the inconsistency issues associated with MM, SM,
and SS. Consequently, its values are directly reported with-
out any further processing.

4.2. Scanpath Prediction

Ablation Studies. The TPP-Gaze architecture consists of
three main blocks: image encoding (CNN backbone), his-
tory encoding (RNN/Transformer), and fixation/inter-time
prediction (GMM/LGMM). To break down these compo-
nents and make the adopted design choices explicit, we per-
form extensive ablation studies. Specifically, we evaluate
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COCO-FreeView MIT1003

MM (KL-Div) ↓ SM (KL-Div) ↓ SS (KL-Div) ↓ SED ↓ MM (KL-Div)↓ SM (KL-Div) ↓ SS (KL-Div) ↓ SED ↓

Sh Len Dir Pos Dur Avg w/ Dur w/o Dur w/ Dur w/o Dur Avg Sh Len Dir Pos Dur Avg w/ Dur w/o Dur w/ Dur w/o Dur Avg

Itti-Koch [35] 0.42 0.40 0.21 1.02 - 0.51 - 2.54 - 1.01 14.00 0.91 0.64 0.71 1.53 - 0.95 - 2.27 - 6.30 8.86
CLE (Itti) [8, 35] 0.07 0.30 0.35 1.43 - 0.54 - 2.50 - 1.27 14.37 0.10 0.10 0.32 1.04 - 0.39 - 2.16 - 6.25 9.09
CLE (DG) [8, 42] 0.06 0.18 0.23 1.31 - 0.44 - 2.37 - 1.22 14.31 - - - - - - - - - - -
G-Eymol [63] 0.37 0.73 0.93 1.22 1.99 1.05 9.00 6.67 8.75 6.30 14.20 0.68 0.68 0.46 1.54 1.03 0.88 15.90 4.89 3.32 6.96 6.96
IOR-ROI-LSTM [20] 1.15 0.47 0.03 0.19 0.05 0.38 1.54 0.76 0.56 0.64 13.55 0.59 0.27 0.07 0.57 0.05 0.31 0.69 0.45 5.08 8.61 8.61
DeepGazeIII [41] 0.04 0.02 0.03 0.03 - 0.03 - 0.33 - 0.33 13.15 - - - - - - - - - - -
Scanpath-VQA [17] 0.05 0.16 0.10 0.06 0.25 0.12 1.07 0.34 0.43 0.28 12.76 0.04 0.05 0.08 0.05 0.14 0.07 0.06 0.05 0.05 0.11 7.26

DeepGazeIII [41] 0.01 0.03 0.05 0.05 - 0.04 - 0.34 - 0.36 13.15 0.05 0.01 0.20 0.05 - 0.08 - 0.19 - 5.06 8.28
Scanpath-VQA [17] 0.62 0.41 0.02 0.05 0.03 0.23 0.08 0.03 0.03 0.31 14.34 0.20 0.14 0.15 0.08 0.02 0.12 0.23 0.19 0.14 0.25 9.27
TPP-Gaze (GRU) 0.06 0.02 0.02 0.03 0.01 0.03 0.08 0.06 0.05 0.11 17.03 0.01 0.03 0.09 0.04 0.01 0.04 0.15 0.11 0.12 0.11 7.21
TPP-Gaze (Trans.) 0.05 0.01 0.02 0.03 0.01 0.03 0.10 0.07 0.06 0.12 16.93 0.01 0.02 0.09 0.07 0.02 0.04 0.22 0.16 0.14 0.14 7.33

Table 2. Comparison of various models on COCO-FreeView and MIT1003. Gray color indicates models trained under the same settings
and datasets. Within this group, bold values represent the best performance for each metric. Underline values indicate the overall best
performance across all models and metrics.

OSIE NUSEF FiFa

MM (KL-Div) ↓ SM (KL-Div) ↓ MM (KL-Div) ↓ SM (KL-Div) ↓ MM (KL-Div) ↓ SM (KL-Div) ↓

Sh Len Dir Pos Dur Avg w/ Dur w/o Dur Sh Len Dir Pos Dur Avg w/ Dur w/o Dur Sh Len Dir Pos Dur Avg w/ Dur w/o Dur

Itti-Koch [35] 1.62 0.89 0.45 3.69 - 1.66 - 2.22 0.63 0.44 0.17 0.56 - 0.45 - 0.61 1.51 0.51 1.08 3.46 - 1.64 - 6.08
CLE (Itti) [8, 35] 0.13 0.03 0.20 0.75 - 0.28 - 1.98 0.26 0.03 0.09 0.42 - 0.20 - 0.79 0.38 0.10 0.29 1.14 - 0.48 - 3.97
CLE (DG) [8, 42] 0.17 0.03 0.15 0.60 - 0.24 - 1.43 0.28 0.06 0.06 0.18 - 0.15 - 0.50 0.40 0.14 0.36 0.97 - 0.46 - 3.10
G-Eymol [63] 1.18 1.08 0.25 2.12 1.18 1.16 16.17 7.29 0.38 0.30 0.05 0.29 3.02 0.81 1.76 0.55 0.34 0.57 0.59 2.48 2.40 1.28 17.36 11.71
IOR-ROI-LSTM [20] 1.72 0.73 0.03 0.96 0.03 0.69 0.75 0.76 0.90 0.36 0.12 0.23 0.17 0.36 0.11 0.13 1.24 0.51 0.10 1.71 0.05 0.72 1.25 1.56
DeepGazeIII [41] 0.14 0.08 0.06 0.15 - 0.11 - 0.12 0.10 0.06 0.08 0.05 - 0.07 - 0.07 0.28 0.12 0.21 0.34 - 0.24 - 0.60
Scanpath-VQA [17] 0.07 0.07 0.04 0.04 0.16 0.08 0.03 0.03 0.11 0.04 0.02 0.05 0.08 0.06 0.02 0.03 0.14 0.04 0.13 0.07 0.12 0.10 0.03 0.13

DeepGazeIII [41] 0.04 0.03 0.09 0.14 - 0.08 - 0.22 0.11 0.07 0.09 0.04 - 0.08 - 0.06 0.25 0.13 0.40 0.18 - 0.24 - 0.69
Scanpath-VQA [17] 0.49 0.35 0.09 0.20 0.02 0.23 0.40 0.28 0.11 0.07 0.06 0.03 0.16 0.09 0.06 0.06 0.44 0.26 0.33 0.31 0.08 0.28 0.47 0.79
TPP-Gaze (GRU) 0.03 0.04 0.05 0.12 0.03 0.05 0.20 0.30 0.03 0.02 0.01 0.02 0.10 0.04 0.04 0.04 0.05 0.05 0.12 0.25 0.05 0.10 0.23 0.47
TPP-Gaze (Trans.) 0.02 0.04 0.06 0.14 0.05 0.06 0.25 0.44 0.03 0.01 0.02 0.01 0.13 0.04 0.04 0.01 0.06 0.05 0.12 0.30 0.05 0.12 0.32 0.52

Table 3. Comparison of various models on OSIE, NUSEF, and FiFa datasets. Gray color indicates models trained under the same settings
and datasets. Within this group, bold values represent the best performance for each metric. Underline values indicate the overall best
performance across all models and metrics.

two different CNN backbones for image encoding (i.e., a
ResNet50 [31] and a DenseNet201 [32]) as well as three
embedding vector dimensions for the image semantic rep-
resentation (zj) and the history embedding (hn, TPP di-
mensionality). Moreover, different numbers of components
for the GMM/LGMM are considered. Table 1 reports the
results of the ablation studies conducted on the COCO-
FreeView dataset. In our experiments, we select the hyper-
parameters yielding the best trade-off according to the con-
sidered evaluation metrics, resulting in a DesNet201 back-
bone and a dimensionality equal to 256 for all embedding
vectors. Moreover, the parameters K and G representing
mixture components are respectively set to 4 and 16.

Comparison with the State of the Art. To compare the
proposed approach with others, we include state-of-the-art
approaches that either reach high performance in recent
scanpath benchmarks [39], offer source code availability,
and are representative of different approaches and archi-
tectures. As to the latter criteria, following the taxonomy
proposed in [39], scanpath models can be aggregated into
the following categories: biologically inspired (e.g. Itti-
Koch model [35] and G-Eymol [63]); statistically inspired

(e.g. CLE model [8]); cognitively inspired (e.g. IOR-ROI-
LSTM [20]); engineered models (e.g. DeepGazeIII [41] and
Scanpath-VQA [17]); but see [39–41] for an in-depth re-
view. Under such circumstances, we assess the performance
of TPP-Gaze against the aforementioned models.

Table 2 reports quantitative results on the COCO-
FreeView and MIT1003 datasets in terms of all considered
metrics, while model performance on OSIE, NUSEF, and
FiFa are shown in Table 3 in terms of MM and SM1. In all
experiments, we compare the aforementioned approaches
using the pre-trained model weights released by the au-
thors. As DeepGaze models were trained on the entire
MIT1003 dataset, the results from DeepGazeIII and CLE
(DG) have not been included in this comparison. Addi-
tionally, to explicitly measure the effect of the proposed ar-
chitecture and mathematical framework, we retrain and test
the two most recent models (DeepGazeIII and Scanpath-
VQA) under the same conditions adopted for TPP-Gaze
(see Sec. 4.1). Specifically, beyond training on the same
data, the large-scale pre-training of DeepGazeIII as well as

1We refer to the supplementary material for the results in terms of SS
and SED on OSIE, NUSEF, and FiFa datasets.
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G-Eymol [63] IOR-ROI-LSTM [20] DeepGazeIII [41] Scanpath-VQA [17] TPP-Gaze (Ours) Humans

Figure 3. Comparison of simulated and human scanpaths. Each circle represents a fixation point, with its diameter proportional to the
fixation duration. For methods that do not model fixation duration, circles are shown with a uniform size.
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Figure 4. Statistical properties exhibited by TPP-Gaze and other
methods relative to those of human observers, in terms of em-
pirical fixation durations and saccade amplitudes on the COCO-
FreeView (top row) and OSIE (bottom row) datasets.
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Figure 5. Return fixations analysis comparing TPP-Gaze with
other methods and human observers. Results are shown on
COCO-FreeView (left plot) and OSIE (right plot) datasets.

the fine-tuning stage of Scanpath-VQA based on reinforce-
ment learning [49] have been inhibited. These results are
reported in gray color at the bottom of the tables.

As can be observed, when trained under the same
settings and datasets, TPP-Gaze (with either GRU or
Transformer-based history encoding) outperforms all the
other approaches on most of the adopted metrics. Inter-
estingly, in many cases the proposed approach offers the
best overall performance, even when considering the pre-

trained models released by the authors, except for Scan-
Match where Scanpath-VQA, which is directly optimized
via reinforcement learning on this metric, understandably
proves to be the best. Some qualitative results are shown in
Fig. 3, where we report sampled scanpaths from five mod-
els alongside those from humans. Notably, TPP-Gaze can
predict fixations that better align with those recorded from
human subjects, confirming the advantages of the proposed
approach for predicting scanpaths during free-viewing.

Additional analyses are reported in Fig. 4 that shows
empirical distributions summarizing TPP-Gaze’s scanpath
statistics compared to those yielded by human observers
and other methods. Beyond common scanpath statistics,
we further evaluate the proposed approach using a return
fixations (RF) analysis [64]. RF analysis describes the ten-
dency of observers (either human or simulated) to revisit
previously foveated locations. The frequency of RFs and
the temporal offset (i.e., the number of intervening fixations
before returning to a location) at which they occur, provide
a more nuanced description of the cognitive processes un-
derlying attention allocation [64]. Fig. 5 reports the results
of this analysis in comparison with existing methods across
two datasets. Notably, although TPP-Gazewas not explic-
itly trained for this objective, it produces the most accurate
RF patterns with respect to human behavior when compared
to state-of-the-art approaches2.

4.3. Applications

Saliency Prediction. The performance of TPP-Gaze are
further evaluated by comparing the saliency maps “back-
ward” generated from fixations with those of human ob-
servers across all evaluated scanpath models. The results,
presented in Table 4, are measured using three commonly
adopted saliency metrics [12, 13, 21]: Kullback-Leibler Di-
vergence (KL-Div), Judd’s Area Under the Curve (AUC),
and Normalised Scanpath Saliency (NSS). DeepGazeIII and
CLE (DG) are reported here only as references for the per-

2Results of the RF analysis on OSIE, NUSEF and FiFa are reported in
the supplementary material.
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COCO-FreeView MIT1003 OSIE NUSEF FiFa

KL-Div ↓ AUC ↑ NSS ↑ KL-Div ↓ AUC ↑ NSS ↑ KL-Div ↓ AUC ↑ NSS ↑ KL-Div ↓ AUC ↑ NSS ↑ KL-Div ↓ AUC ↑ NSS ↑

Saliency-based
CLE (DG) [8, 42] 8.65 0.55 0.09 - - - 5.08 0.59 0.28 4.99 0.63 0.38 6.39 0.59 0.25
DeepGazeIII [41] 0.85 0.84 1.75 - - - 0.32 0.87 2.01 0.49 0.85 1.89 0.62 0.88 2.52

Saliency-free
Itti-Koch [35] 8.94 0.56 0.24 5.01 0.64 0.47 3.35 0.65 0.51 4.84 0.63 0.40 5.47 0.64 0.42
CLE (Itti) [8, 35] 7.45 0.54 0.07 4.15 0.61 0.23 3.45 0.61 0.23 3.36 0.63 0.31 4.84 0.60 0.23
G-Eymol [63] 10.98 0.56 0.26 7.64 0.62 0.35 4.58 0.67 0.60 5.09 0.66 0.55 9.04 0.62 0.47
IOR-ROI-LSTM [20] 1.30 0.77 0.99 0.78 0.81 1.40 0.50 0.83 1.46 0.74 0.80 1.32 0.83 0.85 1.72
Scanpath-VQA [17] 3.53 0.77 1.56 2.12 0.82 2.01 1.26 0.84 2.12 2.45 0.80 1.76 1.88 0.86 2.89
TPP-Gaze (GRU) 1.01 0.84 1.65 0.78 0.86 2.06 0.67 0.84 1.72 0.84 0.84 1.71 1.07 0.86 2.06
TPP-Gaze (Transformer) 1.11 0.83 1.54 0.83 0.85 1.93 0.68 0.84 1.68 0.79 0.84 1.70 1.11 0.85 1.91

Table 4. Saliency prediction results on COCO-FreeView, MIT1003, OSIE, NUSEF, and FiFa datasets. Models are grouped into saliency-
based and saliency-free methods, where the former (i.e., CLE (DG) and DeepGazeIII) incorporate components trained to predict saliency
maps. Bold values represent the best performance within each metric, while underline values indicate the second-best results.
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Figure 6. Empirical distributions of the adopted metrics quantify-
ing inter-humans (top) and human vs. TPP-Gaze (bottom) scan-
path similarity for the visual search task on COCO-Search18.

formance of a saliency prediction model, given their adop-
tion of an extensive pre-training phase designed expressly
for saliency generation (DeepGazeIII), or explicit adoption
of a saliency model (CLE (DG)). Overall, TPP-Gaze ob-
tains the best or second-best performance across all met-
rics and datasets. It yields results that are comparable to
or surpass those of IOR-ROI-LSTM [20] and Scanpath-
VQA [17], which are significantly better than all other ap-
proaches. This further demonstrates the effectiveness of our
approach in predicting fixation points that better resemble
human scanpaths than those predicted by existing methods.

Extending the Model to Visual Search Tasks. Recently,
several works [17,26,47,60,65] have focused on predicting
attention allocation on specific targets (visual search tasks).
Although TPP-Gaze was originally devised and evaluated
for the free-viewing scenario, it can be extended to tackle
the visual search problem in various ways. Here, we pro-
pose a proof-of-concept model featuring a simple architec-
tural variation that enables goal-directed attention predic-
tion with TPP-Gaze. In a nutshell, we use RoBERTa [44]

Figure 7. Human (left) and simulated (right) scanpaths for the
visual search task. Search objective is “Sink”.

to perform a linguistic embedding of the search target and
learn a target-oriented image semantic representation3. (cf.
Sec. 3.1). Preliminary results show encouraging trends on
the COCO-Search18 dataset [19,59], as illustrated in Fig. 6,
where visual search patterns produced by TPP-Gaze are
compared to human patterns using the MM and SM met-
rics. A qualitative example is depicted in Fig. 7.

5. Conclusion

We presented TPP-Gaze, a novel approach that
explicitly models the evolution of visual attention
through scanpaths using Neural Temporal Point Processes.
TPP-Gaze enables principled modelling of both fixation
positions and their durations. Extensive experiments con-
ducted on five publicly available datasets demonstrate the
effectiveness of the proposed approach in capturing gaze
spatio-temporal dynamics, as reflected in state-of-the-art
performance in scanpath similarity and fixation duration
prediction. Additionally, it demonstrates human-like re-
turn fixation patterns and achieves competitive results in
saliency prediction and task-driven attention allocation.
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di Milano (Bando Linea 3 My First SEED – DM 737/2021 MUR)
and by the PNRR project “Italian Strengthening of Esfri RI Re-
silience (ITSERR)” funded by the European Union - NextGenera-
tionEU (CUP B53C22001770006).

3More details and simulations are shown in the supplementary material

8782



References
[1] Nicola C Anderson, Fraser Anderson, Alan Kingstone, and

Walter F Bischof. A comparison of scanpath comparison
methods. Behavior Research Methods, 47(4):1377–1392,
2015. 5

[2] Marc Assens, Xavier Giro i Nieto, Kevin McGuinness, and
Noel E. O’Connor. PathGAN: Visual Scanpath Prediction
with Generative Adversarial Networks. In ECCV Workshops,
2018. 3

[3] Marc Assens Reina, Xavier Giro-i Nieto, Kevin McGuin-
ness, and Noel E O’Connor. SaltiNet: Scan-Path Prediction
on 360 Degree Images Using Saliency Volumes. In ICCV
Workshops, 2017. 3

[4] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François
Muzy. Hawkes processes in finance. Market Microstructure
and Liquidity, 1(01):1550005, 2015. 3
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Felix A Wichmann. Spatial Statistics and Attentional Dy-
namics in Scene Viewing. Journal of Vision, 15(1):14–14,
2015. 2

[29] Joseph Enguehard, Dan Busbridge, Adam Bozson, Claire
Woodcock, and Nils Hammerla. Neural temporal point pro-
cesses for modelling electronic health records. In Machine
Learning for Health, 2020. 3

[30] Alan G Hawkes. Spectra of some self-exciting and mutually
exciting point processes. Biometrika, 58(1):83–90, 1971. 2

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 6

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 4, 6

8783



[33] Hengguan Huang, Hao Wang, and Brian Mak. Recurrent
poisson process unit for speech recognition. In AAAI, 2019.
2

[34] Valerie Isham and Mark Westcott. A self-correcting point
process. Stochastic Processes and Their Applications,
8(3):335–347, 1979. 2

[35] L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Trans. PAMI,
20:1254–1259, 1998. 1, 6, 8

[36] Halszka Jarodzka, Kenneth Holmqvist, and Marcus
Nyström. A Vector-based, Multidimensional Scanpath Sim-
ilarity Measure. In ETRA, 2010. 5

[37] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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