
Waypoint Transformer: Reinforcement Learning via
Supervised Learning with Intermediate Targets

Anirudhan Badrinath Yannis Flet-Berliac Allen Nie Emma Brunskill
Department of Computer Science

Stanford University
{abadrina, yfletberliac, anie, ebrun}@cs.stanford.edu

Abstract

Despite the recent advancements in offline reinforcement learning via supervised
learning (RvS) and the success of the decision transformer (DT), DTs have fallen
short in several challenging benchmarks. The root cause of this underperfor-
mance lies in their inability to seamlessly connect segments of suboptimal tra-
jectories. To overcome this limitation, we present a novel approach to enhance
RvS methods by integrating intermediate goal targets. We introduce the Way-
point Transformer (WT), building upon the DT framework and conditioned on
automatically-generated waypoints. The results show a significant increase in the
final return compared to existing RvS methods, with performance on par or greater
than existing state-of-the-art value-based methods.

1 Introduction

Traditionally, offline reinforcement learning (RL) methods that compete with state-of-the-art (SOTA)
algorithms have relied on objectives encouraging pessimism in combination with value-based methods
(1; 2). However, these can be challenging to train, requiring intricate hyperparameter tuning and
tricks to ensure stability and optimal performance.

Reinforcement learning via supervised learning (RvS) has emerged as a simpler alternative to
traditional methods (3). RvS methods are based on behavioral cloning (BC) to train a policy and
eliminate the need for any temporal-difference (TD) learning (e.g., fitted value functions). This
yields a simpler algorithmic framework based on supervised learning. There are several successful
applications of RvS, including goal-conditioned methods (4; 5; 6; 7; 3).

However, RvS methods, such as the decision transformer (7), have typically struggled in tasks with
clear goals, where seamlessly connecting (or "stitching") appropriate segments of suboptimal training
trajectories is critical for success (8). For example, when tasked with reaching goal locations in
AntMaze environments or completing a series of tasks in FrankaKitchen with only a singular global
goal, RvS typically performs significantly worse than TD learning methods (9; 10; 11).

We introduce a waypoint generation technique that produces intermediate goals, which serve as
guidance to steer a policy to desirable goal outcomes. By conditioning a transformer-based RvS
method adapted from DT on these generated targets, we obtain a trained policy that learns to follow
them, leading to improved performance and stability compared to prior offline RL methods.

2 Preliminaries

We assume that there exists an agent interacting with a Markov decision process (MDP) with
states st ∈ S and actions at ∈ A with unknown transition dynamics p(st+1 | st, at), initial state
distribution p(s0), and global goal ω. The agent chooses an action from a transformer policy

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

at ∼ πθ(at | st−k..t,Φt−k..t, ω), parameterized by θ and conditioned on the known history of states
st−k..t and an additional proposed goal conditioning variable Φt−k..t. To train our RvS algorithm on
an offline datasetD, we optimize the output of an autoregressive transformer model based on past and
current states and conditioning variable, using a negative log-likelihood loss and gradient descent.

3 Methodology

3.1 Illustrative Example

s(0) s(h) s(H)a(2)
a(1) a(1)

a(2)a(2)a(2)
… …

Figure 1: Chain MDP to motivate the benefit of inter-
mediate goals for conditional BC-based policy training.

To motivate the benefits of using waypoints,
consider an infinite-horizon, deterministic
MDP with H + 1 states and two possible
actions at non-terminal states. A graphi-
cal representation of the MDP is shown in
Figure 1. For this scenario, we consider
the goal-conditioned setting where the tar-
get goal state during train and test time is
ω = s(H), and the episode terminates once we reach ω.

In offline RL, the data is often suboptimal for achieving the desired goal during testing. In this
example, suppose we have access to a dataset D that contains an infinite number of trajectories
collected by a random behavioral policy πb where πb(at = a(1) | st) = λ > 0 for all st. Clearly, πb

is suboptimal with respect to reaching ω in the least number of timesteps; in expectation, it takes
H

1−λ timesteps to reach s(H) instead of H (optimal) since the agent "stalls" at the current state with
probability λ and moves to the next state with probability 1− λ.

Consider a global goal-conditioned policy πG(at | st, ω) that is optimized using a behavioral cloning
objective on D. Clearly, the optimal policy π∗

G(at | st, ω) = πb(at | st) ∀st since ω = s(H) is a
constant. Hence, the global goal-conditioned policy π∗

G is as suboptimal as the behavioral policy πb.

Instead, suppose that we condition a policy πW (at | st,Φt) on an intermediate goal state Φt = st+K

for some chosen K < 1
1−λ (expected timesteps before πb executes a2), optimized using a behavioral

cloning objective on D. For simplicity, suppose our target intermediate goal state Φt for some current
state st = s(h) is simply the next state Φt = s(h+1). Based on data D from πb, the probability of
taking action a(2) conditioned on the chosen Φt and st is estimated as:

Prπb
[at = a(2) | st = s(h), st+K = s(h+1)] =

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

=
(1− λ)λK−1(

K
1

)
[(1− λ)λK−1]

=
1(
K
1

) =
1

K
.

Hence, for the optimal intermediate goal-conditioned policy π∗
W trained on D, the probability of

choosing the optimal action a(2) is:

π∗
W (at = a(2) | st = s(h),Φt = s(h+1)) =

1

K
.

Since π∗
G(at = a(2) | st = s(h), ω) = 1− λ and we choose K such that 1

K > 1− λ, we conclude:
π∗
W (at = a(2) | st,Φt) > π∗

G(at = a(2) | st, ω).

The complete derivation is presented in Appendix A. Based on this example, conditioning the actions
on reaching a desirable intermediate state is more likely to result in taking the optimal action compared
to a global goal-conditioned policy. Conditioning acts as a "guide" for the policy, directing it toward
desirable intermediate goal targets in order to reach the global goal.

3.2 Augmenting Goal Conditioning with Waypoint Generation

In this section, we develop the waypoint network to address RvS’s inability to "stitch" to achieve the
desired goal, based on (8). Specifically, stitching requires considering experiences that are relevant to
appropriate short-term goals. To illustrate this, we show the AntMaze Large environment in Figure 2,
where the objective is to reach a target location from the start location (9). Analyzing the training
trajectories that pass through either the start (blue) or target location (red), less than 5% of trajectories

2

pass through both start and target regions; hence, the policy must "stitch" together subsequences from
the blue and red trajectories within the stitching region. By providing intermediate targets within
this region, rather than conditioning solely on the global goal, we can guide the policy to connect the
relevant subsequences needed to reach the target.

start
region

stitching
region

target
region

Figure 2: antmaze-large task to
navigate from start (circle) to target
(star). Blue and red colored lines are
training trajectories passing through
start or end locations respectively.

To obtain effective intermediate targets, we propose the goal
waypoint network, explicitly designed to generate short-term
goals Φt. The purpose of these intermediate targets is to
guide the policy network πθ, conditioned on Φt, towards
states that lead to the desired global goal by stitching relevant
subsequences.

To that end, we represent the waypoint network Wϕ, param-
eterized by ϕ, as a neural network that makes approximate
K-step predictions of future observations Φt, conditioned on
the current state, st, and target goal, ω. Formally, we mini-
mize the objective in Equation 1 across the dataset D, where
Lϕ is a mean-squared error for continuous state spaces:

argmin
ϕ

∑
τ∈D

Lϕ(Wϕ(st, ω), st+K). (1)

3.3 Waypoint Transformer

W𝜙

ω

ât

W𝜙
st+2

ω

ât+2

st

st st+2

W𝜙
st+1

ât+1

st+1 ω

… …waypoint transformer

Figure 3: Waypoint Transformer architecture,
where Φt = Wϕ(st, ω) represents the output of
the goal waypoint network.

We propose the waypoint transformer (WT), a
transformer-based offline RL method that lever-
ages the proposed waypoint network Wϕ and a
GPT-2 architecture based on multi-head atten-
tion (12). The WT policy πθ is conditioned on
past states st−k..t and goal waypoints Φt−k..t =
Wϕ(st−k..t, ω) with a context window of size k,
as in Figure 3.

We train the waypoint network Wϕ on offline
dataset D independently of the policy. To train
the WT policy, we use gradient descent to iteratively optimize its parameters θ. To further simplify
the design and improve computational efficiency, the WT is not conditioned on past actions at−k..t

(i.e., unlike the DT).

4 Experiments

We evaluate WT across challenging goal-conditioned tasks, with comparisons to prior offline RL
methods. including conditional BC methods such as DT and RvS-R/G; value-based methods such as
Onestep RL (13), TD3 + BC (14), CQL, and IQL; and standard BC baselines. For this, we leverage
D4RL, an open-source benchmark for offline RL, consisting of varying datasets for tasks from
AntMaze and FrankaKitchen (9). These environments present a challenge for offline RL methods as
they contain no optimal trajectories and perform critical evaluations of a model’s stitching ability (9).
For instance, partial and mixed offline datasets in Kitchen consist of suboptimal, undirected data.

Across all tasks, Table 1 shows that WT (66.0 ± 4.4) improves upon the next best, IQL (59.8 ±
8.0), with respect to average score. In terms of variability across seeds, there is a notable reduction
compared to IQL and most other methods. In the most challenging tasks requiring stitching, our
method demonstrates performance far exceeding the next best method, IQL. On the AntMaze Large
datasets, WT demonstrates a significant relative percentage improvement of 83.1% (play) and 51.6%
(diverse). On Kitchen Partial and Mixed, the improvement is 37.8% and 39.0% respectively.

5 Utility of Waypoint Networks

To analyze the utility and behavior of waypoint networks, we qualitatively evaluate an agent’s
performance across rollouts of trained transformer policies on antmaze-large-play-v2. For this

3

Table 1: Normalized scores and training, where blue highlights indicates SOTA performance.

Environment TD3 + BC Onestep RL CQL IQL BC 10% BC RvS-R/G DT WT (Ours)
antmaze-umaze-v2 78.6 64.3 74.0 87.5 ± 2.6 54.6 62.8 65.4 ± 4.9 53.6 ± 7.3 64.9 ± 6.1

antmaze-umaze-diverse-v2 71.4 60.7 84.0 62.2 ± 13.8 45.6 50.2 60.9 ± 2.5 42.2 ± 5.4 71.5 ± 7.6
antmaze-medium-play-v2 10.6 0.3 61.2 71.2 ± 7.3 0.0 5.4 58.1 ± 12.7 0.0 ± 0.0 62.8 ± 5.8

antmaze-medium-diverse-v2 3.0 0.0 53.7 70.0 ± 10.9 0.0 9.8 67.3 ± 8.0 0.0 ± 0.0 66.7 ± 3.9
antmaze-large-play-v2 0.2 0.0 15.8 39.6 ± 5.8 0.0 0.0 32.4 ± 10.5 0.0 ± 0.0 72.5 ± 2.8

antmaze-large-diverse-v2 0.0 0.0 14.9 47.5 ± 9.5 0.0 6.0 36.9 ± 4.8 0.0 ± 0.0 72.0 ± 3.4
antmaze-avg-v2 27.3 20.9 50.6 63.0 ± 8.3 16.7 22.5 53.5 ± 7.2 16.0 ± 2.1 68.4 ± 4.9

kitchen-complete-v0 - - 43.8 62.5 65.0 4.0 50.2 ± 3.6 46.5 ± 3.0 49.2 ± 4.6
kitchen-partial-v0 - - 49.8 46.3 38.0 66.0 51.4 ± 2.6 31.4 ± 19.5 63.8 ± 3.5
kitchen-mixed-v0 - - 51.0 51.0 51.5 40.0 60.3 ± 9.4 25.8 ± 5.0 70.9 ± 2.1

kitchen-avg-v0 - - 48.2 53.3 ± 7.5 51.5 36.7 54.0 ± 5.2 34.6 ± 9.2 61.3 ± 3.4
average - - 49.8 59.8 ± 8.0 28.3 27.2 53.7 ± 6.5 22.2 ± 4.5 66.0 ± 4.4

analysis, we consider a WT policy (using a goal waypoint network with K = 30) and a global
goal-conditioned transformer policy (i.e., no intermediate goals).

The ant’s locations across 100 rollouts of a WT policy (Figure 4a) and a global goal-conditioned
transformer policy (Figure 4b) demonstrate that WT shows notably higher ability and consistency
in reaching the goal location. Without intermediate goals, the ant occasionally turns in the wrong
direction and demonstrates a lesser ability to successfully complete a turn (Figure 4b). Consequently,
the WT achieves more than twice the evaluation return (72.5 ± 2.8) compared to the global goal-
conditioned policy (33.0 ± 10.3).

6 Discussion

(a) (b)

(c)
0 200 400 600 800 1000

Timestep (t)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
op

or
ti

on
 o

f C
om

pl
et

ed
 R

un
s

(d)

No Waypoints
WT

Figure 4: Shows the ant’s location across 100 rollouts
of (a) a WT policy and (b) a global goal-conditioned
transformer policy; (c) generated intermediate goals
by the waypoint network Wϕ, (d) the proportion of all
successful runs completed by timestep t.

In this study, we address the issues with ex-
isting conditioning techniques used in RvS,
such as the "stitching" problem associated
with global goals, through the automatic
generation of intermediate targets. Based
on empirical evaluations, we demonstrate
significantly improved performance and
stability compared to existing RvS meth-
ods, often on par with or outperforming TD
learning methods. Especially on challeng-
ing tasks with suboptimal dataset composi-
tion, such as AntMaze Large and Kitchen
Partial/Mixed, the guidance provided by
the waypoint network through intermediate
targets (e.g., as shown in Figure 4) signifi-
cantly improves upon existing state-of-the-
art performance. We believe that this work
can present a pathway forward to develop-
ing practical offline RL methods leveraging
the simplicity of RvS and exploring more
effective conditioning techniques, as for-
malized by (3).

However, despite improvements across challenging tasks, WT’s margin of improvement on AntMaze
U-Maze and Kitchen Complete (i.e., easier tasks) is lower. We believe this likely due to stitching
being less necessary in such tasks compared to difficult tasks. Further characterizing the performance
of WT on such tasks is an interesting direction for fuure work.

7 Conclusion

We propose a method for goal-conditioned reinforcement learning via supervised learning, Waypoint
Transformer, conditioned on generated intermediate targets. We show that RvS with waypoints
significantly surpasses existing RvS methods and achieves on par with or surpasses SOTA. We believe
that WT advances the performance and applicability of RvS within the context of offline RL.

4

References
[1] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning

without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[2] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[3] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential
for offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

[4] Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

[5] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[6] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

[7] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[8] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

[9] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[10] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[11] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna.
When does return-conditioned supervised learning work for offline reinforcement learning?
arXiv preprint arXiv:2206.01079, 2022.

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[13] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

[14] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

5

A Derivation for Illustrative Example

We provide detailed derivations based on the simple deterministic MDP shown in Section 4.1, in
the context of an offline dataset D collected by a random behavioural policy πb. We show that
minimization of a maximum likelihood objective on πG yields πb, the behavioural policy. Note
πG(at | st, ω) = πG(at | st) as ω = s(H) is a constant (and as a result, at is conditionally
independent). To obtain the optimal policy π∗

G, we maximize the following objective:

argmax
πG

E(st,at)∈D[log πG(at | st, ω)]

We simplify an expectation over an infinitely large dataset D collected by πb:

E(st,at)∈D[log πG(at | st, ω)] = Est∈D[λ log πG(at = a(1) | st, ω) + (1− λ) log πG(at = a(2) | st, ω)]

Since the actions are conditionally independent of the states, let p̂ = πG(at = a(1) | st, ω) for any
state st. Then:

E(st,at)∈D[log πG(at | st, ω)] = λ log p̂+ (1− λ) log(1− p̂)
We can use calculus to maximize the above objective with respect to p̂.

d

dp̂
[λ log p̂+ (1− λ) log(1− p̂)] =

λ

p̂
− 1− λ

1− p̂

=
λ(1− p̂)− (1− λ)p̂

p̂(1− p̂)

Setting the derivative to 0:
λ(1− p̂)− (1− λ)p̂ = λ− λp̂− p̂+ λp̂ = 0 =⇒ p̂ = λ

This yields an identical policy to the behavioural policy πb. Next, consider the derivation of the
probability of taking action a(2) conditioned on Φt and st based on data D from πb:

Prπb
[at = a(2) | st = s(h), st+K = s(h+1)]

=
Prπb

[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

In the above step, we used the definition of conditional probability. To compute these probabilities,
we recognize that to end up with st+K = s(h+1) from st = s(h), the agent must take action a(2)

exactly once between timestep t and t+K− 1; any more implies the agent has moved beyond s(h+1)

and any less implies the agent is still at s(h).

The probability in the numerator can be written as a product of taking action a(2) at timestep t,
followed by taking action a(1) at timestep t+ 1 to t+K − 1:

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)] = (1− λ)

t+K−1∏
t′=t+1

λ

= (1− λ)λK−1

The probability in the denominator can be written as a product of taking action a(2) at exactly one
timestep t ≤ t′ < t +K, followed by taking action a(1) at the remaining timesteps. This can be
modeled by a binomial probability where there are K slots to take action a(1), each with probability
1− λ. Hence:

Prπb
[st+K = s(h+1) | st = s(h) =

(
K

1

)
(1− λ)λK−1

= K(1− λ)λK−1

The overall probability is computed as:

6

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

=
(1− λ)λK−1

K(1− λ)λK−1

=
1

K

We can apply a similar argument to show that π∗
W (i.e., at optimum) must clone the derived prob-

ability when a maximum likelihood objective is applied. Hence, for the optimal intermediate
goal-conditioned policy π∗

W , we know it obeys:

π∗
W (at = a(2) | st = s(h),Φt = s(h+1)) =

1

K

Since π∗
G(at = a(2) | st = s(h), ω) = πb(at = a(2) | st = s(h)) = 1 − λ and we choose

K < 1
1−λ =⇒ 1

K > 1− λ, we conclude that:

π∗
W (at = a(2) | st,Φt) > π∗

G(at = a(2) | st, ω)

This concludes the derivation.

B Experimental Details

In this section, we provide more details about the experiments, including hyperparameter configura-
tion, sources of reported results for each method, and details of each environment (i.e., version). For
all experiments on WT, the proposed method, we run 5 trials with different random seeds and report
the mean and standard deviation across them. On AntMaze and Kitchen, we use goal-conditioning.
For all experiments on DT, we run 5 trials with random initializations using the default hyperparame-
ters proposed in (7) and used in the official GitHub repository. We are unable to reproduce some of
the results demonstrated in (7) and reported in succeeding work such as (10; 3).

B.1 Environments and Tasks

AntMaze For AntMaze tasks, we include previously reported results for all methods except RvS-G
from (10). The results for the RvS-G are from (3). We run experiments for DT (reward-conditioned,
as per (7)) and WT across 5 seeds. For all reported results, including WT, AntMaze v2 is used as
opposed to AntMaze v0.

FrankaKitchen On Kitchen, we include available reported results from (10) for all methods except
RvS-G and (3) for RvS-G, with results omitted for TD3 + BC and Onestep RL as they are not
available in other work or provided by the authors. Similarly to AntMaze, we run experiments for DT
and WT across 5 seeds. The target goal configuration for WT is "all" (i.e., where all the tasks are
solved), per (3). For all reported results, including WT, Kitchen v0 is used.

B.2 WT Hyperparameters

In Table 2, we show the chosen hyperparameter configuration for WT across all experiments. Consis-
tent with the neural network model in RvS-R/G with 1.1M parameters (3), the WT contains 1.1M
trainable parameters. For the most part, the chosen hyperparameters align closely with default values
in deep learning; for example, we use the ReLU activation function and a learning rate of 0.001 with
the Adam optimizer.

In Table 3, we show the chosen hyperparameter configuration for the goal waypoint networks across
all experiments. In general, the goal waypoint network outputs the same dimension as the state
since it makes k-step predictions. Depending on the environment, the goal waypoint outputs either a
2-dimensional location for AntMaze or a 30-dimensional state for Kitchen.

C Ablation Studies

Waypoint Network On goal-conditioned tasks, we examine the behavior of the goal waypoint
network as it relates to the performance of the policy at test time by ablating aspects of its configuration

7

Table 2: Hyperparameters and configuration details for WT across all experiments.
Hyperparameter Value

Transformer Layers 2
Transformer Heads 16

Dropout Probability (attn) 0.15
Dropout Probability (resid) 0.15

Dropout Probability (embd) 0.0
Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 30,000

Batch Size 1024

Table 3: Hyperparameters and configuration details for goal waypoint networks across all experiments.
Hyperparameter Value
Number of Layers 3

Dropout Probability 0.0
Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 40,000

Batch Size 1024

and training. For this analysis, we consider antmaze-large-play-v2, a challenging task that
critically evaluates the stitching capability of offline RL techniques.

0 20 40 60 80
K

20

30

40

50

60

70

N
or

m
al

iz
ed

 S
co

re

0.4 0.6 0.8 1.0 1.2
RMSE

20

30

40

50

60

70
N

or
m

al
iz

ed
 S

co
re

Figure 5: Normalized score attained by WT on
antmaze-large-play-v2 based on varying left: the
temporal proximity of generated goals, K, and right:
goal waypoint network RMSE on a held-out dataset.

To understand the effect of the configu-
ration of the goal waypoint network on
test performance, we ablate two variables
relevant to generating effective intermedi-
ate goals: the temporal proximity of inter-
mediate goals (K) and the validation loss
of the goal waypoint network. Addition-
ally, we perform comparisons between the
goal waypoint network and manually con-
structed waypoints, for which the method-
ology and results are shown in Appendix
D.

The normalized score attained by the agent
is shown as a function of K and the valida-
tion loss of the goal waypoint network in
Figure 5. For this environment and dataset, an ideal choice for K is around 30 timesteps. For all
nonzero K, the performance is reduced at a reasonably consistent rate on either side of K = 30.
Importantly, when K = 0 (i.e., no intermediate goals), there is a notable reduction in performance
compared to all other choices of K; compared to the optimal K = 30, the score is reduced by a factor
of 2.2x.

In Figure 5 (right), the normalized score shows the negligible change for values of held-out RMSE
between 0.4 and 0.6, corresponding to at least 1,000 gradient steps or roughly 30 sec of training,
with a sharper decrease henceforth. As the RMSE increases to over 1, we observe a relative plateau
in performance near an average normalized score of 35-45, roughly corresponding to performance
without using a waypoint network (i.e., K = 0 in Figure 5 (left)).

Transformer Configuration Based on the work in (3), we balance between expressiveness and
regularization to maximize policy performance. We ablate the probability of node dropout pdrop
and the number of transformer layers L. To further examine this balance, we experiment with

8

Figure 6: End locations for antmaze-large-play-v2 during 100 rollouts of left: WT and right:
global goal-conditioned transformer policy.

conditioning on past actions at−k..t−1, similarly to the DT, to characterize its impact on performance
and computational efficiency. Similarly to previous sections, we consider antmaze-large-play-v2.

Based on Table 4, we observe that the sensitivity to the various ablated hyperparameters is relatively
low in terms of performance, and removing action conditioning results in reduced training time and
increased performance. In the context of prior RvS work where dropout (pdrop = 0.1) decreased
performance compared to no dropout (pdrop = 0.0) by 1.5-3x on AntMaze, the largest decrease in
average performance on WT is only by a factor of 1.1x (3).

Table 4: Ablation study of transformer configuration with normalized score on
antmaze-large-play-v2, including dropout probability (pdrop), number of transformer
layers (L), and conditioning on actions, where bolded selections are used for final models.

pdrop Score
0.000 68.3 ± 5.9
0.075 70.8 ± 4.5
0.150 72.5 ± 2.8

Conditioning Score Runtime
(st−k..t, at−k..t−1) 66.5 ± 5.6 30 min
st−k..t (no actions) 72.5 ± 2.8 20 min

L Score
1 72.1 ± 5.7
2 72.5 ± 2.8
3 71.8 ± 3.0

D Additional Experiments

D.1 Analysis of Stitching Region Behavior

To add on to the analysis of the goal waypoint network presented in the main text, we analyze the
"failure" regions of transformer policies with and without a goal waypoint network. That is, by
determining the final locations of the agent, we can examine where the agent ended up instead of the
target location. Similar to the analysis in Section 6.3, this analysis can inform the stitching capability
of our methods.

Based on Figure 6, it is clear that the WT does not get "stuck" (e.g., after taking the wrong turn)
as often as the policy conditioned on global-goals. Moreover, the number of ants ending up near
the beginning portions of the maze (i.e., the bottom left) is significantly smaller for WT, which
contributes to its doubled success rate. We believe these are primarily attributable to the guidance
provided by the goal waypoint network through a consistent set of intermediate goals to reach the
target location at evaluation time.

Interestingly, we observe that WT displays an increased rate of failure around the final turn relative to
other regions in the maze. As there is a relative lack of density in other failure regions closer to the
beginning of the maze, we hypothesize that some rollouts may suffer from the ant getting "stuck" at
challenging critical points in the maze, as defined in (8). This indicates an interesting direction of
exploration for future work and a technique to combat this could result in policies with nearly 100%
success rate in completing antmaze-large-play-v2.

9

D.2 Comparisons to Manual Waypoint Selection

We compare the performance of the proposed goal waypoint network with a finite set of manual
waypoints, hand-selected based on prior oracular knowledge about the critical points within the maze
for achieving success (i.e., turns, midpoints). Based on the selected manual waypoints, shown in
Figure 7, we use a simple algorithm to provide intermediate targets Φt based on a distance-based
sorting approach, shown in Algorithm 1.

Figure 7: Manually selected waypoints (blue pluses) for antmaze-large-play-v2, the chosen task
to evaluate the proposed approach. As before, the start location is marked with a maroon dot, and the
target location is marked wit a gold star.

Algorithm 1 Manual waypoint selection with Wm and st using L2 distance and a given global goal
ω.
Wc ← {wm : ||wm − ω||2 ≤ ||st − ω||2} {consider waypoints that brings agent closer to ω}
return argminwc∈Wc

||wc − st||2

With all configuration and hyperparameters identical to WT, we compare the performance of a global
goal-conditioned policy, WT with manual waypoints, and WT with the goal waypoint network on
antmaze-large-play-v2 in Table 5.

The results demonstrate that WT clearly outperforms manual waypoint selection in succeeding in
the AntMaze Large environment. However, while comparing a global-goal conditioned policy and a
policy conditioned on manual waypoints, it is clear that the latter improves upon average performance
and variability across initialization seeds. We believe that this illustrates that (a) waypoints, whether
manual or generated, tend to improve performance of the policy and (b) finer-grained waypoints
provide more valuable information for the policy to succeed more.

Table 5: Normalized evaluation scores for different waypoint selection techniques on the
antmaze-large-play-v2 task.

Technique Normalized Score
No Waypoints 33.0 ± 10.3

Manual Waypoints 44.5 ± 2.8
Waypoint Network 72.5 ± 2.8

We believe that this provides further verification and justification for both the generation of intermedi-
ate targets and the procedure of generation through a goal waypoint network that performs k-step
prediction.

10

	Introduction
	Preliminaries
	Methodology
	Illustrative Example
	Augmenting Goal Conditioning with Waypoint Generation
	Waypoint Transformer

	Experiments
	Utility of Waypoint Networks
	Discussion
	Conclusion
	Derivation for Illustrative Example
	Experimental Details
	Environments and Tasks
	WT Hyperparameters

	Ablation Studies
	Additional Experiments
	Analysis of Stitching Region Behavior
	Comparisons to Manual Waypoint Selection

