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Abstract

The development of Generalist Virtual Agents (GVAs) has shown significant
promise in autonomous task execution. However, current training paradigms face
critical limitations, including reliance on outcome supervision and labor-intensive
human annotations. To address these challenges, we propose Similar, a step-wise
multi-dimensional generalist reward model, which offers fine-grained signals for
agent training and can choose better actions for inference-time scaling. Specifically,
we begin by systematically defining five dimensions for evaluating agent actions.
Building on this framework, we design an MCTS-P algorithm to automatically
collect and annotate step-wise, five-dimensional agent execution data. Using this
data, we train Similar with our crafted Triple-M strategy. Furthermore, we
introduce the first benchmark in the virtual agent domain for step-wise, multi-
dimensional reward model training and evaluation, named SRM. This benchmark
consists of two components: SRMTrain, which serves as the training set for
Similar, and SRMEval, a manually selected test set for evaluating the reward
model. Experimental results demonstrate that Similar, through its step-wise,
multi-dimensional assessment and synergistic gain, provides GVAs with effective
intermediate signals during both training and inference-time scaling.

1 Introduction

Generalist Virtual Agents (GVAs) [10, 5] powered by Multimodal Large Language Models
(MLLMs [[18} 19, 23] 24]]) process multimodal inputs (UI elements [48], text [28]], visuals [41]])
to navigate digital environments, performing tasks and generating outputs that manipulate interfaces
or provide responses. The training of GVAs relies on outcome-based rewards from human-annotated
trajectories, where task completion serves as the primary supervision signal [13]].

However, this paradigm with the outcome reward for GVAs has significant limitations. 1) Lack of
multi-dimensional fine-grained process supervision: Existing methods typically focus on global
task success or the final state of the task, overlooking intermediate steps in execution [42]]. This
oversight makes it impossible to pinpoint failures in unsuccessful trajectories or identify errors in
successful ones, resulting in inefficient learning and reasoning processes [31} 21} [11]]. In contrast,
a Process Reward Model (PRM) offers a better alternative by providing fine-grained supervision
signals to guide agent behavior. 2) Reliance on human-annotated trajectories with reward signals:
Domain experts need to meticulously annotate trajectories consisting of dozens of steps with accurate
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Figure 1: (a) Traditional coarse-grained outcome-based labor-intensive paradigm vs. Our fine-grained
process-based autonomous paradigm. (b) Comparison of benchmark platforms. Previous works
focused on virtual agent benchmarks, while ours is the first benchmark specifically for virtual agent
reward models. The PB, AA, and MD in the list represent Process-based, Automatic Annotation, and
Multi-Dimension, respectively.

outcome-based rewards to train GVAs [13]]. Furthermore, obtaining step-wise fine-grained process-
based rewards makes the process labor-intensive, time-consuming, and nearly infeasible at scale [9,|6].
3) Difficulty in scaling inference-time. Recent outstanding work has demonstrated that inference-
time scaling can significantly enhance agent performance [8l [36]]. However, relying on result-
based training with extensive human annotation limits the ability to handle complex tasks [29 46].
Therefore, our focus has shifted to breaking result-oriented manual annotation-dependent training
methods through step-wise automatic reward model.

To address these challenges, we propose Similar, a step-wise multi-dimensional generalist reward
model. It provides fine-grained supervision signals for agent training and inference-time scaling,
enabling automated, multi-faceted assessment without relying on labor-intensive human annotations.
Specifically, 1) we introduce a step-wise, multi-dimensional assessment system for GVA actions,
defining five key dimensions of process supervision signals: Helpfulness, Odds of Success, Effi-
ciency, Task Relevance, and Coherence. These dimensions are designed to minimize overlap while
collectively providing a comprehensive assessment of each action’s quality. 2) Then we design an
MCTS-P algorithm to automatically collect and annotate tens of thousands of step-wise actions
based on the five dimensions. This approach is applied across four distinct environment domains:
Web, Android, Linux, and Windows. Unlike existing methods that rely on labor-intensive human
annotations, this automated framework ensures scalability across diverse environments and generates
a unified, fine-grained dataset that captures universal reasoning patterns, significantly reducing the
cost and time required for data collection. 3) Finally, using this dataset, we employ a Triple-M (multi-
step, multi-objective, and multi-modal) strategy to train a reward model. This strategy integrates
multiple dimensions of assessment and generates a synergistic gain by combining the strengths of
five dimensions. As illustrated in Figure[T] (a), traditional methods focus solely on outcomes, require
significant manual effort, and are coarse-grained, outcome-based, and labor-intensive. In contrast,
our approach enables Similar to perform step-wise, multi-dimensional automatic assessment of
agent trajectories, making it fine-grained, process-based, and autonomous.

Since reward models are crucial for GVAs, and prior research has not focused on evaluating reward
models, we propose SRM, the first benchmark in the GVA domain for step-wise, multi-dimensional
reward model training and evaluation. Figure[I|(b) illustrates that it consists of 110k automatically
annotated data points, divided into the scalable SRMTrain (78Kk) for training Similar and the curated
SRMEval (32k) for evaluating reward models.

Our reward model, Similar, can enhance the learning and reasoning of GVAs. For training, it
serves as a reward model in a reinforcement learning framework, guiding GVAs to optimize its
behavior based on action quality. By providing fine-grained feedback, it effectively guides the agents’
learning process and enhances their performance. For inference-time scaling, it can be integrated
with search algorithms such as Monte Carlo Tree Search (MCTS) to leverage reward signals for
filtering candidate actions, and improve model performance [8, 45]]. By selecting actions that are
more likely to complete the task, it enhances accuracy and reduces time.

Extensive experiments demonstrate the superiority of our approach: 1) Effectiveness of step-wise,
multi-dimensional data: Using our collected data for reward modeling, Similar-RL-Llama achieves



a 13.2% improvement over the baseline Llama-3.2-11B-Vision model on the SRMEval benchmark,
demonstrating the effectiveness of our automated framework in enabling fine-grained assessment
of GVA actions. 2) Synergistic gain from the Triple-M strategy: The Triple-M strategy integrates
multiple dimensions by leveraging the strengths of five dimensions, enabling Similar-TM-Llama
to achieve an Avg score of 61.2 on SRMEval, significantly outperforming Similar-RL-Llama
(53.9, a 13.5% improvement). This highlights the synergistic gain of our training strategy. 3)
Effective guidance in training and inference: Similar provides fine-grained, multi-dimensional
feedback during training and integrates with search algorithms like MCTS to scale inference-time
during inference to improve reasoning accuracy. Its strong performance across multiple benchmarks
underscores its versatility and practical applicability.

Our contributions can be summarized as follows:

* We define five dimensions for step-wise GVA assessment and an MCTS-P algorithm to
collect fine-grained, cross-platform reward model data annotations.

* We propose a Triple-M strategy to train a reward model, called Similar, integrating multiple
dimensions and generating synergistic gains for robust, fine-grained feedback.

* Moreover, we introduce SRMEval, a multi-step, multi-dimensional, and multi-platform
benchmark for evaluating reward models, which is a set of SRM to advance research in
reward model performance assessment.

» Experiments demonstrate that our approach, through step-wise multi-dimensional assess-
ment, boosts GVAs during both training and inference-time scaling.

2 Related Work

2.1 Fine-Tuning Virtual Agent

Fine-tuning Virtual Agents traditionally relies on human-annotated datasets, which are labor-intensive
and time-consuming [33]]. Methods such as imitation learning [[14]] and reinforcement learning [13} 4]
have been employed to fine-tune agents based on curated expert trajectories or outcome rewards,
but these approaches often suffer from compounding errors and limited exploration [7, 138, 30].
Recent advancements, such as reject sampling fine-tuning (RFT) [44] and direct policy optimization
(DPO) [25]], have sought to reduce reliance on human annotations by leveraging both successful
and failure trajectories [[17,150]. However, these methods face significant challenges, including the
lack of process supervision and reliance on human-annotated data, which limit their scalability and
adaptability [40, 13| 27]. In contrast, our work addresses these limitations by introducing a novel
training paradigm that leverages multi-dimensional process supervision and automated annotation to
enhance the learning and reasoning capabilities of GVAs.

2.2 Reward Models for Virtual Agent

Reward Models (RMs) are critical for guiding virtual agents by evaluating action quality [47, 51].
While Outcome Reward Models (ORMSs) focus on task success [42] 143]], Process Reward Models
(PRMs) provide feedback on intermediate steps, offering an evaluation of agent performance in
complex reasoning tasks [31]. Recent studies show that PRMs outperform ORMs in tasks like
math reasoning, where process supervision is essential [21, 20]. However, generating high-quality
process supervision data remains challenging, as human annotation is expensive. To address this,
methods like step-level Q-value [47] and ReST-MCTS* [49] have explored MCTS to automate data
collection, achieving significant gains. Building on these insights, our work introduces a step-wise,
multi-dimensional system leveraging MCTS to collect fine-grained annotations, enabling a robust
reward model to guide GVAs.

3 Method

In this section, we present the pipeline for training our Similar model. The SRM benchmark will be
introduced in Section[d] As shown in Figure 2] to evaluate agent steps multi-dimensionally, we first
define five-dimension process supervision (Section [3.1). Next, we introduce an MCTS-P algorithm to
automatically collect step-wise annotations (Section3.2)). Finally, we design the Triple-M strategy to
train Similar, achieving synergistic gains across five dimensions (Section [3.3).

3.1 Five-Dimensional Process Supervision Framework
To assess the quality of an agent’s steps, we systematically define a five-dimensional process su-
pervision framework. Given task complexity and interdependencies, a single metric is insufficient

for assessing step quality [47]. Our framework addresses this limitation by covering the multi-
faceted nature of step assessment. The first three dimensions—Helpfulness, Odds of Success, and
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Figure 2: Similar model training pipeline. First, we systematically define five dimensions to
describe the quality of an agent’s step. Next, we propose an MCTS-P algorithm to automatically
collect annotated step-wise data. Finally, we design the Triple-M strategy to train the Similar model,
which can guide the agent during both the training and inference phases.

Efficiency—are computed automatically, while the remaining two—7Task Relevance and Coher-
ence—are assessed using MLLMs. These dimensions are independent and interpretable, ensuring
broad applicability across tasks.

The current step is denoted as S;, where ¢ is the step index. The three automatic metrics are derived
through MCTS simulations [22]]. For S;, we simulate /N subsequent trajectories until a termination
condition is met (i.e., the agent completes the task or reaches the maximum step length). We define
1, HCLZ‘J‘ €A, aij = a*
0, otherwise

truth, a; ; denotes the final action of the j-th trajectory in step ¢, and A is the set of all actions. The
following sections detail how each dimension assesses .5;.

the basic reward r; as: r; = { , J € N, where a* represents the ground

Helpfulness (H). It quantifies whether a given step contributes positively or negatively to task
completion, assigning values inversely proportional to the trajectory length. This dimension is
designed to assess the impact of each step on the overall task. Steps that facilitate task completion
are considered helpful, while those that hinder progress are assigned negative values. For example,
each step in a 3-step successful trajectory is worth 1/3, while steps hindering progress (those failing
to lead to success) receive corresponding negative values. And in two successful trajectories of the
same task, the steps in the trajectory with fewer steps will have higher Helpfulness value.

The Helpfulness can be calculated as the following formula:

1— AC;_,
Hy = — 22 (9, -1
S a1
0, i=0

where AC; = { max(AC;_y + H;,0), otherwise’ which is a mathematical placeholder to recur-

sively track cumulative Helpfulness scores during MCTS rollouts. And M is the total number of
reasoning steps.

Odds of Success (0S). It measures the probability that a given step will lead to the successful
completion of the task. This dimension identifies steps that are more likely to result in a successful
outcome. Steps with higher values are more likely to lead to success, while those with lower values are
less likely to succeed. Conversely, incorrect steps lead to failure. The Odds of Success is calculated
by evaluating the proportion of successful paths among simulated results from a given step.

The formula for Odds of Success is defined as:

N *
Zj:l I(a;; = a”)
N Y

0S; =

where 1(-) is the indicator function.

Efficiency (E). It evaluates whether a given step is operationally efficient in terms of resource
consumption, such as time or computational effort. A fundamental assumption is that fewer steps
equate to higher efficiency, as shorter paths imply lower resource usage. Steps that reduce the total
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Algorithm 1 MCTS-P Algorithm
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SFinal $H=1/3 13: S + BestChild(S, C)
14:  endif
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dimensions. Our 5 dimensions align with  17: BestcChild(S, ¢)
5 task elements of an agent step: H (final 18 v(S) = H(S) + OS(5) + E(S) + TR(S) + O(S)
state), OS (next step), E (number of steps),  19: return arg maxs caenor s (227 + ¢ 2;“(’_;5)3))

TR (instruction), and C (last step).

Output: Action a

number of steps required to complete a task are considered efficient, as they enable the agent to
accomplish the task more quickly and with fewer resources.

The Efficiency metric is calculated as the following formula:

Len;—1 — Len;
Ei _ i—1 7
leng
where Len,; = avg(Len(S; ;)), and Len(S; ;) represents the number of steps remaining to complete
the task after executing action a; ;.

Task Relevance (TR). It assesses whether a step is related to the task instruction. Some steps may
be task-relevant but still fail (e.g., recording incorrect notes), while others may be irrelevant yet
contribute to success (e.g., clicking on a blank screen). These distinctions cannot be captured through
automated calculations. However, MLLMs with advanced image understanding can evaluate this
dimension. Task Relevance is binary, with values {0, 1}.

Coherence (C). It: measures the continuity and logical flow between consecutive steps. Some
operations, although task-relevant, efficient, and likely to lead to success, may lack coherence with
the previous step. For example, in a task such as “Query the Lakers’ game result and record it in
a Note," opening a browser and a Note simultaneously may lack coherence compared to directly
searching for the game result after opening the browser. Coherence is also evaluated using MLLMs
and is a binary classification dimension, with possible values of {0, 1}.

The prompts of two MLLM-based assessment dimensions is detailed in Appendix A. To better
understand the five dimensions, we use Figure [3] Each agent step relates to five task elements:
instruction, last step, next step, final state, and step count. In the figure, step S5 is assessed by these
dimensions. The task requires 3 steps: .S1, S, and S5 2, with all sharing an H value of % Among the
next steps from Ss, S3 2 and S5 3 are correct, yielding an OS value of % The E value is %, calculated
as % Since S5 aligns with S7 and the instruction, 7R and C values are 1.

3.2 Automatic Generalist Dataset Collecting

MCTS (Monte Carlo Tree Search) is a heuristic search algorithm used in decision-making, combining
random sampling and tree-based search to find the optimal option. Based on its advantages, such as
its scalability and efficient exploration-exploitation balance [22| 35]], we propose a modified version,
MCTS-P, to automatically collect annotated data. MCTS-P leverages the five dimensions introduced
in Section[3.1]to comprehensively assess each step taken by the virtual agent.

In MCTS-P, the five-dimensional scores are used as the basis for node selection and backpropagation.
Specifically, the algorithm computes a weighted sum of the five dimensions to obtain a composite
score for each step. This composite score serves as the value v; ; for each node S; ; in the search tree.
The tree structure in MCTS-P is similar to traditional MCTS, with each node .S; ; storing the action
a;, ;, visit count n; ;, and value v; ;. The pseudo-code for MCTS-P is provided in Algorithm



To build a comprehensive and generalist dataset for training and testing reward models, we collect a
large number of task trajectories from agents across four different platforms: Web, Android, Linux,
and Windows. Using the MCTS-P algorithm, we perform automatic data annotation to collect process
supervision signals. The annotation process involves the following steps: 1) For each node S; ; in the
search tree T}, we calculate the minimum number of steps M required to reach a correct answer. 2)
During the expansion phase, the algorithm simulates N possible outcomes for each step to obtain the
basic reward r;. 3) Based on M and r;, we compute the three automatically calculated dimensions:
Helpfulness, Odds of Success, and Efficiency. 4) We then use a MLLM (GPT-40 [15]) to evaluate the
Task Relevance and Coherence of each step. 5) We prune all incomplete branches (those that do not
reach a final answer) and verify the correctness of the remaining paths using the evaluation methods
provided by the four benchmark environments. The obtained trajectories are selected as the final
dataset for training and evaluation.

3.3 Triple-M Strategy for RM Training

Traditional reward modeling relies on human-annotated data [32]], whereas we generate step-wise
annotations across multiple dimensions. To better utilize integrating Multi-step, Multi-dimensional,
and Multi-modal data, we propose a novel Triple-M strategy tailored for virtual agents.

Our Triple-M strategy leverages a pre-trained decoder-only MLLM as the backbone feature extractor
fo, divided into two stages. The first stage trains a regression layer for five-dimensional score
prediction. For each input sequence x @ y (where x represents the prompt and y represents the
response), we extract the last hidden state h € R with d-dimensional features and map it to a
five-dimensional reward score through a linear regression layer W € R%*®. The model is optimized
using a regression loss:

Ling = 0 Bavypen [WTh = 73,

where r € R® is the ground-truth reward vector, and D is the training dataset.

In the second stage, we train a gating network to dynamically balance the five-dimensional scores,
addressing the multi-objective optimization problem. We introduce a prompt-aware gating network
94, implemented as a shallow multi-layer perceptron (MLP). This network dynamically adjusts the
model’s focus based on the input prompt x. The gating network computes non-negative coefficients
w € RS for the five reward dimensions. These coefficients are derived from the last hidden state
corresponding to the prompt « and normalized via a softmax function.

The gating network is trained using the Bradley-Terry (BT) loss [2]] function, which aligns the

model’s predictions with human preferences. The BT loss is formulated as:
€xXp (Rchosen )

exp(Rchosen) + eXp(Rrejected)

where Rchosen and Riejeced Tepresent the preference scores for the chosen and rejected responses.
During training, only the gating network parameters are updated, while the backbone network and
regression layer remain frozen.

)

Lpr = ngnE —log

Finally, the scalarized reward R of the trained Similar model is computed as R = g, (fo(z)) 7.
Through this design, our Similar model can not only output five-dimensional scores but also a
comprehensive score that balances the five dimensions, just like an all-around expert combining the
capabilities of six experts.

4 SRM Benchmark

We introduce the SRM benchmark, built from multi-dimensional, and multi-platform annotated data.

Data Collection. We used GPT-40-1120 [[15] as the agent to collect agent action trajectories across
four benchmarks—WebArena (WA) [52]], VisualWebArena (VWA) [16], Android World (AW) [26]],
and OSWorld (OW) [39]. Since these environments do not provide dedicated training and test sets, to
ensure fairness and prevent data leakage, we rigorously used 70% data provided by these benchmarks
for agent trajectory data collection, while the remaining 30% were reserved for evaluation experiments
to ensure no data overlap between SRMTrain and evaluation sets. Ultimately, we collected 10k agent
trajectories by generating multiple distinct actions per step through task-specific prompt injection and
stochastic exploration. And we constructed 110k preference pairs for the SRM benchmark based on
the scores of the designed dimensions. We also sampled some data for human experts to verify the
accuracy of the pairs, as detailed in Appendix C.
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Dataset Construction. We carefully selected 32k data points for manual annotation as the test set
SRMEval, while the remaining 78k data points were used as the training set SRMTrain to train
the Similar model. The test data tasks are distinct from those in the training data. As shown
in Figure [d] each data point in SRMEval includes instruction, observation screenshot, step index,
trajectory, evaluation type, and candidate action pair. The evaluation types include our proposed
five key dimensions—Helpfulness (H), Odds of Success (OS), Efficiency (E), Task Relevance (TR),
and Coherence (C)—as well as a total dimension that integrates the five dimensions (Tot, weighted
sum of the five dimensions) and a trajectory-level dimension (Traj, average Tot score of all steps in
trajectory). More visualization cases of SRMEval are detailed in Appendix F.

New Task and Evaluation Metric. Based on SRMEval, we proposed a new task for reward models
in the virtual agent domain: Selecting the better action from candidate action pair at step i in a
specific dimension. The evaluation metric is Accuracy, measuring the reward model’s ability to select
the better action. Accuracy is calculated under each evaluation type. For clarity, we use abbreviations
such as H to represent each metric in our experiments.

5 Experiments

5.1 Experimental Setup

Baselines. We selected two baseline methods: 1) Qwen2-VL-7B-Instruct [34]] and Llama-3.2-11B-
Vision-Instruct were directly used as reward models, with prompts provided (detailed in in Appendix
A) to score agent steps. 2) Similar-RL-Qwen and Similar-RL-Llama, whose backbones match
the aforementioned models, were trained using reinforcement learning [1]] on our SRMTrain dataset
to score agent steps.

To benchmark against these baselines, we introduce Similar-TM-Qwen and Similar-TM-Llama,
which are trained on the SRMTrain dataset using the Triple-M strategy with Qwen2-VL-7B-Instruct
and Llama-3.2-11B-Vision-Instruct as backbones, respectively.

Evaluation Benchmarks. We first tested the preference alignment capability of Similar on our
SRMEval, compared with GPT-40-1120, GPT-4-Turbo, and InternVL-2.5-8B. Additionally, we
evaluated our model’s effectiveness as a reward model for virtual agents during both the training
and inference phases. 1) Training Phase. Using WebArena and Android World as benchmarks,
we employed our model and other reward models to annotate GPT-40-collected data from these
environments, generating preference data. This preference data was then used to perform DPO
training on the open-source agents OS-Atlas [37] and UGround [12], validating our model’s ability
to guide agents in the training phase. 2) Inference Phase. With Android World and OSWorld as
benchmarks, we used OS-Atlas as the open-source agent and GPT-40-1120 and GPT-4-Turbo as the
closed-source agents. During inference, Similar and other reward models evaluated the agent’s
simulated N actions, providing rewards and updating the states of nodes in MCTS. Notably, 30% of
the examples partitioned from these benchmarks mentioned earlier were used as the evaluation data.

5.2 Effective Alignment of Preference

We first report the performance of the models on SRMEval in Table[I] The main findings are as fol-
lows: 1) Effectiveness of step-wise, multi-dimensional, cross-platform data: Using our collected data
for reward modeling, Similar-RL-Llama achieved an Avg score of 53.9, remarkably outperforming
the baseline Llama-3.2-11B-Vision-Instruct with 47.6 (1 13.2%) and surpassing closed-source mod-
els GPT-40 (51.4) and GPT-4-Turbo (46.6). It demonstrates that training reward models with our data
enables fine-grained, step-based evaluation, providing a more comprehensive and accurate assessment



Table 2: Task Success Rates (SR) on Android Table 3: Task Success Rates (SR) on Android

World and WebArena in training setting. World and OSWorld in inference setting.

AGENT REWARD ANDROID WEBARENA AGENT REWARD ANDROID OSWORLD

MODEL WORLD SR SR MODEL WORLD SR SR

GPT-4-TURBO / 24.1 11.2 GPT-4-TURBO / 24.1 8.4

GPT-4-TURBO QWEN2-VL 249 8.9

GPT-40 / 254 12.7 GPT-4-TURBO +Similar-RL 25.9 10.5

/ GPT-4-TURBO + Similar-TM 28.3 13.4

UGroOUND 324 19.6 GPT-4-TURBO LLAMA-3.2-V 25.3 8.8

UGROUND QWEN2-VL 32.6 20.2 GPT-4-TURBO + Similar-RL 26.5 10.8

UGROUND +Similar-RL 33.1 26.5 GPT-4-TURBO + Similar-TM 30.4 13.9

UGROUND + Similar-TM 33.9 35.9 GPT-40 / 25.4 10.8

UGROUND LLAMA-3.2-V 33.0 23.4 GPT-40 QWEN2-VL 26.0 11.3

L. GPT-40 + Similar-RL 27.1 12.9

UGROUND + Similar-RL 33.8 29.6 GPT-40 + Similar-TM 329 143

UGROUND + Similar-TM 34.6 36.7 GPT-40 LLAMA-3.2-V 26.2 11.7

GPT-40 + Similar-RL 29.6 13.1

OS-ATLAS / 30.4 20.2 GPT-40 +Similar-TM 34.6 16.5

OS-ATLAS QWEN2-VL 30.8 20.8

OS-ATLAS / 30.4 14.3

0S-ATLAS +Similar-RL 32.1 25.9 0S-ATLAS QWEN2-VL 309 148

OS-ATLAS + Similar-TM 34.2 34.5 OS-ATLAS + Similar-RL 32.0 15.4

OS-ATLAS LLAMA-3.2-V 313 20.4 OS-ATLAS + Similar-TM 34.5 16.4

OS-ATLAS LLAMA-3.2-V 31.5 14.8

OS-ATLAS + Similar-RL 33.6 27.4 OS-ATLAS +Similar-RL 32.9 15.7

OS-ATLAS + Similar-TM 34.9 35.6 OS-ATLAS + Similar-TM 35.4 17.8

of GVA action quality. 2) Synergistic gain from the Triple-M strategy: Similar-TM-Llama achieved
an Avg score of 61.2, significantly outperforming Similar-RL-Llama with 53.9 (1 13.5%). And it
achieved higher scores across all dimensions, with improvements such as H increasing from 48.2
to 63.8 (T 32.3%) and E increasing from 47.1 to 59.2 (1 25.6%). The Similar-TM-Qwen model
showed similar performance. This highlights the effectiveness of our Triple-M strategy, leverag-
ing the complementary expertise of each component to achieve synergistic gain. The experiments
demonstrate our model’s ability to align preferences.

5.3 Similar for RL Training

We used GPT-40 and multiple reward models to annotate reward data across benchmark environments.
The annotated data was then used to train the final agent via DPO. The results, shown in Table [2]
demonstrate that our model significantly improves agent learning: 1) The Similar-RL model derived
through Reward Modeling on the SRMTrain dataset outperforms the baseline. When using OS-
Atlas as the agent, Similar-RL-Llama achieves improvements of 10.5% (30.4 — 33.6) and 7.3%
(31.3 — 33.6) over the original OS-Atlas model and the setting using Llama-3.2V as the reward
model, respectively, on Android World. On WebArena, the improvements are 35.6% (20.2 — 27.4)
and 22.3% (22.4 — 27.4), respectively. 2) The Similar-TM model performed best. With OS-Atlas,
Similar-TM-Llama achieved improvements of 3.8% (33.6 — 34.9) and 29.9%(27.4 — 35.6) on
Android World and WebArena, respectively, compared to Similar-RL-Llama. 3) When using
UGround as the agent or adopting Qwen2-VL as the baseline reward model, comparable performance
can be observed. The consistent performance improvements across different models and environments
demonstrate that our method enhances virtual agents’ learning capabilities.

5.4 Similar for Inference-Time Scaling

During inference, we used various reward models to evaluate the agent’s N simulated actions,
providing rewards and updating MCTS node states. Table[3|shows that our model effectively guides
the agent: 1) Consistent with the training setup, the Similar-RL model outperformed both the
original agent without a reward model and the setting using MLLM as the reward model. With GPT-
40, Similar-RL-Llama achieved improvements of 16.5% (25.4 — 29.6) and 12.9% (26.2 — 29.6)
on Android World for these two settings, respectively. A similar performance is observed on
OSWorld. 2) The Similar-TM model performed best. With GPT-40, Similar-TM-Llama achieved
improvements of 16.8% (29.6 — 34.6) and 25.9% (13.1 — 16.5) on Android World and OSWorld,
respectively, compared to Similar-RL-Llama. 3) When employing GPT-4-Turbo, GPT-40, or OS-
Atlas as the agent, or when using Qwen2-VL as the baseline reward model, we consistently observe
similar model performance. It can be concluded that our method is generalizable and effectively
enhances the virtual agent’s inference ability.

We further demonstrate that our model is essential for scaling the inference-time capabilities of agents
by varying the number of child nodes N in MCTS. As shown in Figure 5] (a): 1) When N < 8,
agent performance improves. However, when [NV > 8, performance plateaus or declines, likely due to
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Figure 6: A case of Similar provides guidance for GVA training and inference.

limitations in the agent model, as simulating more actions fails to identify viable paths. 2) Similar-
RL and Similar-TM outperform other settings, with Similar-RL surpassing MLLM-based reward
models and Similar-TM exceeding Similar-RL. These results demonstrate the superiority of our
models while highlighting the challenges of scaling inference-time in agent systems.

5.5 Indepth Analysis

Ablation study. The results, shown in Table EL show that models with partial-dimensional rewards
underperformed compared to Similar. For example, on Android World, models excluding H, OS,
E, TR, and C rewards showed declines of 6.9%, 4.4%, 3.5%, 2.0%, and 0.8%, respectively, with
similar trends on WebArena. Analysis reveals that the H dimension has the most significant impact,
as Helpfulness captures a step’s contribution to task completion. The OS dimension follows closely,
reflecting the influence of the current step on the next step. The C dimension has the least impact,
as agent actions are often inherently coherent and contextually aligned. These results confirm that
fine-grained rewards outperform coarse-grained ones and that our five dimensions comprehensively
assess agent actions. More comprehensive results can be found in Appendix E.

Case Study. To demonstrate the role of our model in training and inference, we included visual
cases, as shown in Figure[6] During training, Similar annotates the agent’s trajectory with multi-
dimensional scores, used for DPO training. During inference, the agent simulates multiple actions for
a single step, and Similar evaluates these actions. In the figure, our model assigns high scores to
action 2 at the third step, with a total score of 0.94, while action 1 receives lower scores. Therefore,
action 2, the highest-scoring action, is easily selected for the current step. More case studies are
detailed in Appendix D.



Correlation Study. The Pearson correlation coefficients among the five dimensions are calculated to
analyze their independence, as shown in Figure 3] (b). The results show that while some correlation
exists among the five dimensions, the values are all below 0.47, indicating independence.

6 Conclusion

In this work, we introduce a novel reward model-based paradigm for training GVAs. Our reward
model, Similar, provides step-wise, multi-dimensional feedback during GVAs’ training and infer-
ence, enabling fine-grained assessment. Additionally, we build the first reward model evaluation
benchmark called SRM. Extensive experiments demonstrate our model’s superior performance on
SRMEval and its effectiveness in guiding GVAs across diverse tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Section ?? (Introduction) of our paper clearly reflect the
contributions and scope, including the proposed method, addressed problems, and open-
source links.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of our work in Section ?? (Conclusion).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our work does not focus on theoretical proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an anonymous link to the code in the Abstract, enabling result
reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: An anonymous link to the code is provided in the Abstract.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test details are provided in Section ?? (Experiments) under
“Implementation Details" and “Experimental Setup," with further details in Appendix ??
and Appendix ??.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experimental results do not include error bars, confidence intervals, or
statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resource information for reproducing experiments is provided in
Appendix ??.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research does not violate any NeurIPS ethical guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is foundational work on modality alignment and does not involve societal
impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not involve high-risk data or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all referenced works and adhere to their licenses and usage terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed documentation for new assets is included in the anonymous link
provided in the Abstract.

Guidelines:
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subject research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: In this paper, we only use large language models (LLMs) to assist with writing,
such as polishing sentences and checking grammar.

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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