
Published at ICLR 2025 Workshop on Foundation Models in the Wild.

XLSTM 7B: A RECURRENT LLM
FOR FAST AND EFFICIENT INFERENCE

Maximilian Beck1,2†, Korbinian Pöppel1,2†, Phillip Lippe2†∗, Richard Kurle2,
Patrick M. Blies2, Günter Klambauer1,2, Sebastian Böck2, Sepp Hochreiter1,2
†Equal Contribution
1ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
2NXAI GmbH, Linz, Austria
{beck,poeppel,hochreit}@ml.jku.at

ABSTRACT

Recent breakthroughs in solving reasoning, math and coding problems with Large
Language Models (LLMs) have been enabled by investing substantial computa-
tion budgets at inference time. Therefore, inference speed is one of the most
critical properties of LLM architectures, and there is a growing need for LLMs
that are efficient and fast at inference. Recently, LLMs built on the xLSTM ar-
chitecture have emerged as a powerful alternative to Transformers, offering linear
compute scaling with sequence length and constant memory usage, both highly
desirable properties for efficient inference. However, such xLSTM-based LLMs
have yet to be scaled to larger models and assessed and compared with respect to
inference speed and efficiency. In this work, we introduce xLSTM 7B, a 7-billion-
parameter LLM that combines xLSTM’s architectural benefits with targeted opti-
mizations for fast and efficient inference. Our experiments demonstrate that xL-
STM 7B achieves performance on downstream tasks comparable to other similar-
sized LLMs, while providing significantly faster inference speeds and greater ef-
ficiency compared to Llama- and Mamba-based LLMs. These results establish
xLSTM 7B as the fastest and most efficient 7B LLM, offering a solution for tasks
that require large amounts of test-time computation. Our work highlights xL-
STM’s potential as a foundational architecture for methods building on heavy use
of LLM inference.

1 INTRODUCTION

Recent breakthroughs in test-time compute scaling have unlocked significant improvements in solv-
ing complex reasoning and math problems. By sampling multiple promising solutions, the best an-
swers can be provided to the user or used as training targets Yao et al. (2023); Hao et al. (2023); Guan
et al. (2025). However, as state-of-the-art models such as OpenAI o1and DeepSeek-R1 (DeepSeek-
AI et al., 2025) leverage these methods to push the capabilities of language models to new heights,
the significantly increased computational overhead of test-time compute methods requires more effi-
cient architectures that provide greater inference speeds. A promising path involves linear recurrent
neural networks with gating mechanisms, including GLA Yang et al. (2024b), Mamba Gu & Dao
(2024); Dao & Gu (2024), RWKV Peng et al. (2023; 2024), RetNet Sun et al. (2023), and xLSTM
Beck et al. (2024). Compared to Transformers, these models offer a parallel mode for efficient train-
ing (e.g. Yang et al., 2024b) and a recurrent generation mode that both scale linearly with context
length. The increased compute efficiency combined with constant memory usage during inference
allows spending more compute at test-time, but also enables running models locally on edge devices
acting as an interface to the user with fast response times.

xLSTM has shown competitive performance compared to alternative recurrent models and even
Transformers in a controlled experimental setting using the same data and similar parameter counts
Beck et al. (2024). Moreover, this architecture also excelled in other domains, such as computer vi-
sion Alkin et al. (2025), robotics Schmied et al. (2024), molecular biology Schmidinger et al. (2025),
and time series Kraus et al. (2024). However, so far, xLSTM has not been scaled to datasets beyond
300B tokens and 1.3B parameters. It therefore remains uncertain whether this architecture can match

∗Now at Google Deepmind

1

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

the Transformer’s ability to scale effectively with larger model sizes and extract meaningful patterns
from ever-larger datasets.

In this work, we scale the xLSTM to 7B parameters and present our xLSTM 7B, a large language
model trained on 2.3T tokens from the DCLM dataset Li et al. (2024) with context length 8192 us-
ing 128 H100 GPUs. To achieve this, we improve and optimize the initial xLSTM architecture from
Beck et al. (2024) for optimal training efficiency and stability, without sacrificing performance in
downstream tasks. Our new architecture fully relies on mLSTM cells with parallel training mode to
achieve maximum speed at high language modeling performance. We further optimize the through-
put by modifying the surrounding block architecture. By operating the mLSTM in a lower dimen-
sional space and adding position-wise feedforward MLP layers similar to the default Transformer
blocks, we increase the amount of compute spent for highly optimized linear layers. Additionally,
we discard components such as channel-wise convolutions or learnable skip connections to increase
the GPU utilization during training. We find that this optimized block architecture has a 2× to 4×
higher token throughput compared to the previous xLSTM architecture of Beck et al. (2024), while
achieving similar performance on language modeling. In addition to the efficiency optimizations,
we optimize the new xLSTM architecture for improved training stability, focusing specifically on
the gating mechanism of the mLSTM cell. By introducing soft-capping for input and forget gates
and improved initializations for the input gate we effectively mitigate high gradient norm spikes and
variance, and improve the performance of our xLSTM 7B.

In our evaluations on language downstream and long-context tasks, xLSTM 7B shows comparable
performance to Transformers and Mamba models of the same size, but through our optimized block
architecture it achieves the highest prefill and generation throughput with the lowest GPU memory
footprint on our inference efficiency benchmarks.

To summarize, in this work we present targeted modifications to the xLSTM architecture in order
to (i) improve training and inference efficiency, and (ii) ensure training stability at large scales. (iii)
We introduce a new language model with 7B parameters based on the xLSTM architecture trained
on 2.3 T tokens with 8k context length demonstrating the highest inference speed and efficiency in
our benchmarks.

We will release our pre-trained model weights as well as our training code - including optimized
kernels.

2 BACKGROUND: XLSTM WITH MATRIX MEMORY

In this section, we reassess the mLSTM (Beck et al., 2024), on which we build our xLSTM 7B.
The mLSTM cell is fully parallelizable, and, therefore, enables highly efficient large-scale model
training while maintaining fast recurrent inference with constant memory.

Generation Mode. During inference, when generating tokens, the mLSTM cell processes the
series of input vectors xt ∈ Rd for time steps t ∈ {1, . . . , T} in a recurrent manner, mapping
a state (ht−1,Ct−1,nt−1,mt−1) to a successor state (ht,Ct,nt,mt) given an input xt. Here,
ht ∈ Rdhv denotes the hidden state, Ct ∈ Rdqk×dhv denotes the cell state responsible for long-term
memory, nt ∈ Rdqk denotes the normalizer state, and mt ∈ R denotes the max state controlling the
magnitude of the exponential input gate.

In the recurrent mode (generation), the mLSTM cell
ht = mLSTMCell (xt,ht−1,Ct−1,nt−1,mt−1) , (1)

is defined by the following state update equations:

mt = max
{
log σ(̃ft) +mt−1, ĩt

}
, (2)

Ct = ft Ct−1 + it kt v
⊤
t , (3)

nt = ft nt−1 + it kt, (4)

h̃t =
C⊤

t

(
qt/

√
dqk

)
max

{∣∣n⊤
t

(
qt/

√
dqk

)∣∣, exp(−mt)
} , (5)

ht = ot ⊙ Norm(h̃t). (6)

2

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

The gate activations are computed as:

ft = exp
(
log σ(f̃t) +mt−1 −mt

)
, (7)

it = exp(̃it −mt), (8)
ot = σ (õt) . (9)

The query, key, and value vectors qt,kt ∈ Rdqk , vt ∈ Rdhv are computed as {qt,kt,vt} =
W{q,k,v} xt + b{q,k,v}. The scalar input and forget gates it, ft ∈ R are computed from the
pre-activations {̃it, f̃t} = w⊤

{i,f} xt + b{i,f} and the vector output gate ot ∈ Rdhv is computed from
the pre-activation õt = Wo xt + bo with the sigmoid function σ. The normalization layer Norm
in (6) can be either RMSNorm Zhang & Sennrich (2019) or LayerNorm Ba et al. (2016).

Training Mode. In training, the mLSTM cell processes a full sequence of input vectors X ∈
RT×d and computes the hidden states H ∈ RT×dhv for all time steps T in parallel. We denote the
mLSTM cell in parallel mode (training) as

H = mLSTMCell (X) . (10)
Due to the linear nature of the recurrence in equations (2)-(9), the hidden states H can be computed
in chunks without materializing the intermediate memory states (Ct,nt,mt). This chunkwise-
parallel form enables highly efficient training kernels, analogous to FlashLinearAttention Yang et al.
(2024b); Yang & Zhang (2024), surpassing the training speeds of FlashAttention (Dao, 2024; Shah
et al., 2024). For details on the chunkwise-parallel training kernels for the mLSTM cell, we refer
to Anonymous (2025).

Multi-Head mLSTM. Similar to multi-head attention in Transformers (Vaswani et al., 2017), the
xLSTM has Nhead = d/dhv different mLSTM cells mLSTMCell(i). The hidden states H(i) of
every head are then concatenated and once again projected, resulting in the mLSTM layer

mLSTM(X) = Concat(H(1), . . . ,H(Nhead))W⊤
proj, (11)

where H(i) = mLSTMCell(i)(X). We discuss key considerations for choosing the number of
parallel heads or in other words the head dimension dhv in Sec. 3.1.

3 OPTIMIZED XLSTM 7B ARCHITECTURE

mLSTM

SwiGLU

Figure 1: Sketch of the updated xLSTM Block.
The lower part is an output-gated sequence-mix
layer with the mLSTM at its core, whereas
the upper part is a gated MLP (SwiGLU) as a
feature/channel-mix layer. See Fig. 7 for details.

The emerging paradigm of increasing test-time
computation necessitates i) the development of
novel architectures optimized for efficient in-
ference. Additionally, new architectures must
ii) be viable in large-scale pre-training setups,
thus be highly efficient during training, and iii)
exhibit stable convergence. Our xLSTM 7B is
designed to meet these three challenges by of-
fering an architecture that can be trained effi-
ciently and with stable convergence and is also
highly efficient at inference. In Sec. 3.1, we de-
tail our optimization of the xLSTM architecture
for efficiency during both inference and train-
ing. We then describe in Sec. 3.2 our actions
to improve and ensure stable convergence for
training large xLSTM models, focusing specif-
ically on the gating mechanism of the mLSTM
cell.

3.1 OPTIMIZING FOR EFFICIENCY

The core of the xLSTM 7B architecture, the mLSTM cell, with its recurrent and parallel mode enable
efficient inference and training. To leverage its full potential, we revisit the design of the surrounding
block structures.

3

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Previous mLSTM Block. Similarly to other linear RNNs like Mamba (Gu & Dao, 2024; Hua
et al., 2022), the previous xLSTM architecture places the mLSTM cell combined with channel-wise
convolutions in between a linear up-projection and down-projection, which is referred to as pre up-
projection block (Beck et al., 2024). These blocks combine sequence mixing and channel mixing in
one block and are therefore stacked homogeneously without interleaving position-wise feed-forward
MLP layers. Although the pre up-projection block architecture has proven competitive language
modeling performance for the xLSTM up to 1.4B parameters, it comes with a substantial trade-off
in computational efficiency for the following reasons:

1. Within the pre up-projection block, the mLSTM operates in a significantly higher dimen-
sion than the embedding dimension of the model. This leads to a substantially higher
computational cost and GPU memory usage for the mLSTM operation.

2. Omitting position-wise feed-forward MLP layers results in a decreased proportion of
highly efficient linear layer FLOPs in the model.

3. The previous xLSTM architecture uses several additional components such as learnable
skip connections, channel-wise convolutions, and small (block-diagonal) projection layers
to compute queries, keys and values. Without custom kernel fusion, these small operations
result in multiple short kernel calls on the GPU, which cannot effectively utilize tensor
cores1 and, consequently, significantly reduce GPU utilization.

4. Previously, the input and forget gate pre-activations were computed from concatenated
query, key and value projections. In a large-scale tensor-parallel training setup this re-
quires an additional all-reduce operation per mLSTM block, which increases the overall
communication cost.

These limitations prevent efficient scaling of the xLSTM architecture as introduced by Beck et al.
(2024) beyond 1.4B parameters. To scale the xLSTM to even larger model sizes, we optimize the
mLSTM block for maximal efficiency by addressing these four limitations.

Optimizing the mLSTM Block. To begin, we operate the mLSTM cell in the models’ embedding
dimension, instead of a higher dimensional space and place position-wise feed-forward MLP layers
after each mLSTM layer. This modification increases the proportion of highly optimized linear
layer (i.e. matrix multiplication) FLOPs and reduces the computation cost of the mLSTM operation
(see App. D for details on the FLOP computation). The significantly reduced GPU memory usage
enables larger batch sizes during training, which also increases training efficiency. The result is the
default dense Transformer block configuration referred to as post up-projection block by Beck et al.
(2024):

z = x+mLSTM
(
Norm(x

)
, (12a)

y = z +MLP
(
Norm(z)

)
, (12b)

where x is the input to the block, z is the intermediate output of the mLSTM layer defined in (11),
and y is the block output. The MLP is a SwiGLU Shazeer (2020) (see Fig. 1).

Moreover, we discard operations like the channel-wise convolution and the learnable skip-
connection, and replace the block-wise query, key and value projections by dense linear layers. This
again increases linear layer FLOPs and ensures effective usage of tensor cores within the mLSTM
layer.

Finally, we ensure that the gate pre-activations for every head are computed independently as out-
lined in (11). This allows us to apply the model parallelization strategies optimized for Transformers
with self-attention (Shoeybi et al., 2020) to our xLSTM 7B architecture and therefore minimize ad-
ditional communication cost.

These optimizations result in our optimized mLSTM block described in Fig. 1 and Fig. 7 in the
appendix, of which we stack 32 in our xLSTM 7B architecture. We observe that our optimizations
achieve a 3.5× speedup in training for 1.4B models, with a slight trade-off in validation perplexity
that can be mitigated through a few more training steps (see Tab. 3). Although the modified block
structure reduces the size of the mLSTM cell memory states C, we find that it does not compromise
the language modeling quality of our model.

1Tensor cores are specialized compute units that accelerate matrix multiplications on GPUs.

4

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Table 1: Model Performance on Huggingface Leaderboard v2.
MODEL BBH ↑ MMLU-PRO ↑ MATH ↑ MUSR ↑ GPQA ↑ IFEVAL ↑ AVERAGE ↑
TRANSFORMERS
Llama-3.1-8B 0.465 0.325 0.042 0.379 0.312 0.125 0.275
Llama-2-7B-hf 0.349 0.186 0.013 0.363 0.269 0.264 0.241
OLMo-7B-hf 0.330 0.118 0.010 0.357 0.257 0.280 0.225
Gemma-7B 0.426 0.293 0.061 0.408 0.295 0.272 0.292
Ministral-8B-Instruct-2410 0.496 0.350 0.151 0.430 0.319 0.322 0.345
Bloom-7B1 0.311 0.111 0.000 0.354 0.264 0.138 0.196
Gpt-j-6B 0.321 0.125 0.009 0.363 0.261 0.250 0.222
Pythia-6.9B 0.326 0.116 0.006 0.355 0.270 0.232 0.217
Qwen2.5-7B 0.541 0.435 0.165 0.446 0.329 0.359 0.379
Gemma-2-9B 0.543 0.414 0.117 0.453 0.334 0.217 0.346
DCLM-7B 0.426 0.312 0.030 0.392 0.303 0.228 0.282

TRANSFORMER-RECURRENT HYBRIDS
Zamba2-7B 0.489 0.319 0.114 0.402 0.318 0.375 0.336

RECURRENT MODELS
Falcon-Mamba-7B (pre-decay) 0.373 0.177 0.024 0.387 0.275 0.252 0.248
Falcon-Mamba-7B 0.429 0.229 0.039 0.412 0.299 0.335 0.290
MambaCodestral-7B (v0.1) 0.405 0.191 0.023 0.359 0.266 0.322 0.261
xLSTM 7B 0.381 0.242 0.036 0.379 0.280 0.244 0.260
xLSTM 7B LCTX 0.390 0.252 0.040 0.374 0.253 0.234 0.257

Optimizing the Memory Capacity. The overall memory capacity of the xLSTM, i.e. the amount
of information that can be stored from an input sequence, is related to the physical size of its memory
cell states C of shape dqk×dhv in GPU memory. By choosing either the number of heads or the head
dimension dhv , the other is given by the relation to the embedding dimension d = #heads × dhv .
For the xLSTM 7B we set dqk = dhv/2 similar to Sun et al. (2023). We can then compute the total
memory state size by #blocks × #heads × dqk × dhv × 4 bytes, assuming that the state is stored
in float32 format. In Tab. 2 we show the memory state size for different number of heads as
well as their trade-offs with language modeling performance and training efficiency. We use a larger
memory state size and a slightly longer train step time to make sure the model is not constrained by
a lack of memory. We elaborate further on this in Sec. 5. We choose 8 heads with head dimension
dhv = 512 for xLSTM 7B.

Fused Generation Kernels for the mLSTM Cell. During autoregressive generation, the hidden
state outputs of the mLSTM cell are computed, with its recurrent formulation given by (1) – (9).
The recurrent formulation consists of a combination of an outer-product, dot-products and several
pointwise operations, which translates to individual consecutive GPU kernels. Since each kernel
loads its inputs from and stores its outputs to GPU memory, this increases the amount of slow
memory operations. To ensure that intermediate results of equations (2)–(5) are not unnecessarily
transferred to GPU memory, but instead remain on the GPU’s compute chips, we write fused GPU
kernels for the mLSTM generation mode. This results in significantly faster generation as shown in
speed benchmarks in Sec. 5.2.

3.2 OPTIMIZING FOR STABILITY

We find that the previous xLSTM architecture at the 7B parameter scale often becomes unstable in
early stages of training. In particular, we noticed that training at higher learning rates leads to large
spikes in the gradient magnitude and loss value, similar to reports from previous works on Mamba-
based models Lieber et al. (2024); Dao & Gu (2024); Zuo et al. (2024). We further observed and
attribute these spikes to very large outlier features, i.e. individual feature values that are significantly
larger than the average feature value He et al.. We address these stability issues by (i) the use of
RMSNorm instead of LayerNorm, (ii) soft-capping of the input and forget gates, and (iii) a negative
initialization of the input gate bias.

Pre-Norm with RMSNorm. Many works report that replacing the LayerNorm by RMSNorm at
the input of each layer (e.g. in the pre-norm setting (Xiong et al., 2020)) improves training stability
for Transformers (OLMo et al., 2025; Touvron et al., 2023; Gemma Team, 2024a; Yang et al., 2024a)
and Mamba models (Zuo et al., 2024). Our experiments in App. C.2, Fig. 8 confirm that this also

5

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

applies to the pre-norm normalization layers in (12) in our xLSTM architecture. Therefore, we
replace the LayerNorm by RMSNorm in our xLSTM architecture.

Gate Soft-Capping. To reduce potential large outlier features and related loss spikes, we apply
soft-capping to the input and forget gate pre-activations ĩt and f̃t, such that their values stay between
−a and a for a specific cap value a. We cap the gates using a = 15 with the function softcapa(x) =
a·tanh(x/a). In Sec. 5.3 and App. Sec. C.2, we confirm that this significantly improves the stability
and performance of our xLSTM architecture. Additionally, we apply soft-capping with a = 30 to
the final layer logits, similar to Gemma Team (2024b).

Negative Input Gate Bias Initialization. We observe that early on in training our xLSTM models
experience large gradient norm spikes, which affect the final performance of our model (see Fig. 10
in App. C.2). Initializing the input gate at large negative values (e.g. -10) effectively mitigates these
gradient norm spikes and improves performance. For the impact of the input gate, see also Sec. 5.3.

Finally, we outline the detailed block architecture of our xLSTM 7B in Appendix A and our training
recipe in Appendix B.

4 RELATED WORK

Although the largest language models to date have predominantly relied on Transformer-based archi-
tectures, recurrent LLMs and hybrid models have recently gained traction as alternative architectures
due to their enhanced efficiency in processing long contexts. Many recent efforts have targeted the
7B parameter scale (or nearby), striking a balance between model capacity and resource constraints.
Griffin De et al. (2024) is one of the first hybrid recurrent models that was trained with up to 14B
parameters. Later, the same architecture was used to train RecurrentGemma with 9B parameters
Botev et al. (2024). The Griffin architecture uses a 1D temporal convolution of size 4 before the
sequence mixing part, similar to H3 Fu et al. (2023) and Mamba Gu & Dao (2024), but the hidden
state is vector valued with independent updates per each (scalar) dimension. In contrast, Eagle-7B
Peng et al. (2024) builds on the RWKV architecture and uses a matrix-valued hidden state similar to
linear attention and gated linear attention Katharopoulos et al. (2020); Yang et al. (2024b).

Among the Mamba models at the 7B parameter scale, Waleffe et al. (2024) provided the first com-
parative analysis of Mamba 1, Mamba 2, and a hybrid Mamba architecture. In their experiments,
the performance of both Mamba 1 and Mamba 2 significantly lagged behind Transformers, while
the hybrid architecture was shown to surpass the performance of Transformers. Aligned with this
finding, several new hybrid Mamba architectures have been proposed, including Samba (3.8B) Ren
et al. (2024), Zamba (7B) Glorioso et al. (2024), and the 12B parameter mixture-of-experts-model
Jamba Lieber et al. (2024). More recently, FalconMamba Zuo et al. (2024) based on Mamba 1 and
Codestral Mamba (Mistral AI Team, 2024) based on Mamba 2 have shown that a purely recurrent
architecture is capable of exceeding the performance of hybrid Mamba models and Transformers.

5 EXPERIMENTS

5.1 LANGUAGE MODELING PERFORMANCE

Huggingface Leaderboard. We start by benchmarking xLSTM 7B against state-of-the-art Trans-
former and recurrent LLMs on the 7B parameter scale. To this end, we evaluate the performance on
the Open LLM Leaderboard v2 using the LM Evaluation Harness (Gao et al., 2024; Fourrier et al.,
2024). The results are summarized in Tab. 1, showing that xLSTM 7B ranks in the mid-range among
7B-scale models, several of which benefited from substantially larger training datasets. We believe
that with a larger and better curated training dataset, including a greater emphasis on math and code
data in earlier training phases, xLSTM 7B could match the performance of the strongest 7B models.

Long-Context Evaluation and Fine-Tuning. To evaluate long-context capabilities, we use the
RULER benchmark Hsieh et al. (2024), which consists of a set of synthetic needle-in-a-haystack,
question-answering and variable tracking tasks, with varying context length from 4K to 131K to-
kens. For this benchmark, we consider both our standard xLSTM 7B and a long-context version
(xLSTM 7B LCTX), where we replace the standard cool-down phase described in App. B with a
long-context variant. For the long-context cool-down phase, we add long-context data (see App.
Tab. 5) to the training corpus and train the model with a context length of 32K, while adjusting the
batch size to maintain the number of tokens per batch. We compare to Llama 2 7B (not long-context

6

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

fine-tuned) and Llama 3.1 8B (long-context fine-tuned up to 131K tokens) as Transformer baselines,
CodestralMamba and FalconMamba as State Space Model baselines, and RWKV-5/6 as additional
RNN baselines.

4096 8192 16384 32768 65536 131072
Context Length [Tokens]

0

20

40

60

80

100

Av
er

ag
e

Ac
cu

ra
cy

 [%
]

Llama 3 8B
Llama 2 7B
FalconMamba 7B

CodestralMamba 7B
RWKV-5 7B
RWKV-6 7B

xLSTM 7B
xLSTM 7B LCTX

Figure 2: RULER results of xLSTM 7B in
comparison to Transfomers (with and with-
out long context finetuning) and State Space
Models, with and without medium context
cooldown.

.

The results on RULER are shown in Fig. 2. As
expected, Llama 3 provides the strongest baseline,
since it is heavily fine-tuned on very long contexts
and with a more advanced and optimized approach
Grattafiori et al. (2024). On the other hand, Llama
2 fails entirely for context lengths beyond 4k, for
which it has not been trained. For xLSTM 7B, the
long-context cool-down stage in pre-training largely
improves long-context capabilities, resulting in com-
petitive performance compared to state-space mod-
els and outperforming RWKV-5/6. Notably, the
long-context xLSTM 7B achieves 20% average ac-
curacy at a context length 131k, although it was
trained only with a context length up to 32k during
the cool-down phase. This is particularly remarkable
given that, unlike Transformers with a growing KV
cache, xLSTM 7B must store information from the
entire sequence in a fixed-size memory with limited capacity (see Tab. 2). We assume that xL-
STM 7B’s performance could be pushed further by explicitly training on even longer sequences and
with a more advanced fine-tuning protocol as it was used in the training of Llama 3 (Grattafiori et al.,
2024). In Sec. 5.3, we further investigate the effect of the memory state size and the input gate on
the long context capabilities of xLSTM 7B.

5.2 SPEED BENCHMARKS

0 2000 4000 6000 8000 10000 12000 14000 16000
Prefill Length [Tokens]

40

60

80

100

120

140

160

To
ke

ns
 p

er
 S

ec
on

d

Llama 3 8B
Llama 2 7B

FalconMamba 7B
CodestralMamba 7B

xLSTM 7B

Figure 3: Throughput for generating 100
tokens with batch size 1 at varying prefill
lengths.

The constant memory size and linear compute scal-
ing with context length of our xLSTM architecture
enable highly efficient generative inference in large
scale-inference serving environments as well as lo-
cal inference running on edge devices.

We focus on the local single user inference set-
ting, which is common when models are deployed
on edge devices. Therefore, we benchmark genera-
tive inference with our xLSTM 7B model on a sin-
gle NVIDIA H100 GPU with batch size 1, unless
specified otherwise. We compare our xLSTM 7B to
Llama 2 and Llama 3 models as Transformer base-
lines and Falcon Mamba (Mamba 1 architecture)
and Codestral Mamba (Mamba 2 architecture) as
Mamba baselines. We use model implementations
from Huggingface transformers library and optimize each with torch.compile 2 and PyTorch
CUDA Graphs (Nguyen et al., 2021).

Generation Throughput. The generation throughput measures the generation speed in tokens per
second at varying prefill lengths, i.e., varying length of documents the model gets to read before it
starts to generate text. In Fig. 3, we observe that due to the quadratic scaling with input context
length of the attention mechanism, the speed at which the Transformer models can generate text
significantly drops for longer prefill lengths. In contrast, recurrent architectures with constant cost
per generated token have a constant generation speed independent of the input context length.

We find that xLSTM 7B is about 50% faster in text generation than Mamba, which we attribute
mostly to our optimized block design (see Sec. 3), and even faster than Llama-based Transformer
models with a similar block design at prefill length 0.

2
https://github.com/huggingface/transformers

7

https://github.com/huggingface/transformers

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

0 5000 10000 15000
Generation Length [Tokens]

0

100

200

300

400

500

Ge
ne

ra
tio

n
Ti

m
e

[s
]

0 5000 10000 15000
Generation Length [Tokens]

14

16

18

20

22

Ge
ne

ra
tio

n
M

em
or

y
[G

B]

Llama 3 8B
Llama 2 7B

FalconMamba 7B
CodestralMamba 7B

xLSTM 7B

Figure 4: Time and GPU memory used for gen-
eration of a single sequence of varying lengths
for generation without prefill.

0 5000 10000 15000
Prefill Length [Tokens]

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
to

 Fi
rs

t T
ok

en
 [s

]

0 5000 10000 15000
Prefill Length [Tokens]

1

2

3

4

Ti
m

e
to

 Fi
rs

t 1
00

 To
ke

ns
 [s

]

Llama 3 8B
Llama 2 7B

FalconMamba 7B
CodestralMamba 7B

xLSTM 7B

Figure 5: Time to first (1) token and time to first
100 tokens at varying prefill lengths for batch
size 1.

BS=32
CTX=2048

BS=16
CTX=4096

BS=8
CTX=8192

BS=4
CTX=16384

BS=2
CTX=32768

Tokens

1

2

3

4

5

To
ke

ns
 p

er
 S

ec
on

d

×104

37741 36343
33938

30000

24320

42609 40829
37864

33211

26224

16878 16840 16449 16309 16027

27272 27184 27354 28014 28108

47580 47543 47627 47596 47642

Llama 3 8B
Llama 2 7B

FalconMamba 7B
CodestralMamba 7B

xLSTM 7B

Figure 6: Prefill throughput for varying batch
sizes and context lengths.

Generation Time and Memory Consumption.
We measure the token generation time and GPU
memory usage (without pre-fill) for different gener-
ation lengths. Fig. 4 (left) demonstrates the linear
scaling of recurrent models vs. the quadratic scaling
of Transformers in compute (runtime), while Fig. 4
(right) shows the constant memory size of recur-
rent models compared to the linear growth of the
Transformer KV-cache. Since Llama 3 uses grouped
query attention (Ainslie et al., 2023) the memory us-
age grows slower compared to Llama 2, which uses
default multi-head attention.

With our optimized block design, we operate the
mLSTM in a lower dimensional space. This results
in a significantly lower memory footprint (Fig. 4 (right)) and lower generation times (Fig. 4 (left))
of our xLSTM 7B model compared to the Mamba models.
Time To First Token. In applications, where the language model operates as interface to the user
(potentially on edge devices), it is important to have short response times. In Fig. 5, we measure
this response time or latency as the time the model takes to generate 1 or 100 token after consuming
varying prefill lengths. Our xLSTM 7B achieves the fastest response times for all prefill lengths.
Prefill Throughput. Finally, we measure the prefill throughput in tokens per second for 65,536
tokens at varying batch size and context length. Due to the quadratic scaling with context length, the
throughput of the Llama models decreases with longer contexts. In contrast, our xLSTM 7B achieves
the highest throughput (about 70% higher than Codestral Mamba) independent of the context length.

5.3 ABLATION STUDIES

Table 2: Head dimension ablation for a 7B param-
eter xLSTM model with 32 blocks, embedding di-
mension 4096 and training context length 8192.
KV Cache in Tokens shows how many tokens in a
similar sized Transformer correspond to our state
size. FLOPs forward are the mLSTM cell forward
FLOPs for a full sequence.

#Heads dhv
Total Memory
State in MB

KV Cache
in Tokens

FLOPs
forward ↓ Val

PPL ↓ Train Step
Time in s ↓

4 1024 268.4 256 7.6e11 9.58 3.97
8 512 134.2 128 4.1e10 9.52 3.63

16 256 67.1 64 2.4e10 9.52 3.51
32 128 33.6 32 1.5e10 9.55 3.41

Pre-Up vs. Post-Up Projection Block. We
compare the pre-up projection block architec-
ture against our optimized mLSTM block in
terms of validation perplexity and training step
time for three model sizes. For both block
types, we apply gate soft-capping and the input
gate bias initialization described in Sec. 3. The
results in Tab. 3 show a slight performance dif-
ference in terms of validation perplexity at the
largest model size. However, the 3.5× speedup
in training step time confirms our choice for the
post-up projection block in xLSTM 7B, deviat-
ing from the pre-up projection of Mamba Gu &
Dao (2024); Dao & Gu (2024) and the previous xLSTM architecture Beck et al. (2024).

Memory State Size. The memory state size as well as the training step time is directly influenced
by the number of heads (see Sec. 3.1 and Tab. 2). In this experiment we investigate how the memory
state size affects the performance of the xLSTM in validation perplexity, on downstream tasks as

8

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Table 3: Comparison between the previous xLSTM architecture (Beck et al., 2024) and our xL-
STM 7B architecture in terms of step time and perplexity for different number of parameters. Mod-
els of size 160M and 400M use batch size 128 distributed over 16 GPUs, and 1.4B parameter models
use batch size 256 (32 GPUs). For the 7B parameter model, our new architecture uses batch size 512
(128 GPUs), whereas the previous architecture uses only batch size 256 (128 GPUs) because of the
architecture’s increased GPU memory requirements. Due to the expensive computational costs, we
only compute the token throughput and did not fully train the 7B parameter models for this ablation.

MODEL THROUGHPUT ↑ SPEEDUP ↑ PPL ↓ ∆ PPL
1K TOKENS/SEC

160M PREVIOUS 76.20 20.43
OURS 225.99 ×2.97 21.34 +0.91

400M PREVIOUS 28.13 15.26
OURS 102.40 ×3.64 15.74 +0.48

1.4B PREVIOUS 10.57 12.46
OURS 37.03 ×3.50 12.68 +0.22

7B PREVIOUS 3.46 -
OURS 9.15 × 2.64 -

well as on long context tasks. To do so, we train xLSTM models with 7B parameters and different
number of heads on 160B tokens of our pre-training dataset.

In our evaluations in perplexity (Tab. 2) and on downstream tasks (Tab. 7 and 8), we find that the
performance remains stable across different the number of heads, i.e., memory state sizes, with a
slight improvement for more heads (e.g. 16). In contrast, our long context evaluation in Fig. 12
suggests that at very long contexts 4 and 8 heads (i.e., larger memory states) seem to perform better.
While this is in line with our intuition that larger memory state size corresponds to better long-
context capabilities, we believe that an even larger study (e.g., training on more tokens) than our
ablation at 7B parameters and 160B tokens would be necessary to fully explore this connection.

Norm Layer Types. Our update on the xLSTM block architecture has two normalization layers, a
pre-norm at the block entry and a head-wise norm layer after the mLSTM cell. In this ablation, we
test the effect of the types of these normalization layers on training stability and performance, with
LayerNorm (Ba et al., 2016) and RMSNorm (Zhang & Sennrich, 2019) as the options. In Fig. 8
in App. C.2 we confirm that, for the pre-norm the RMSNorm type has a strong stabilizing effect,
whereas for the mLSTM cell state norm there is no impact on stability and performance.

Soft-capping. Soft-capping of the output logits and the input and forget gate pre-activations, is
important for training stability. In Fig. 9 of the appendix, we visualize the validation loss and
gradient norms during training on 160B tokens with and without soft-capping. The run without
soft-capping shows a higher variance in the gradient norms and an overall worse validation loss.

Input Gate. We initialize the input gate with larger negative values (e.g. -10) to mitigate large
gradient norm spikes and variance (see Sec. 3.2). This suggests that the input gate is important for
the performance of the xLSTM architecture. Therefore, in App. C.2 we test the effect of having the
input gate non-trainable. We compare a version with fixed input gate at one (i.e. setting weights
and biases to zero) with a version, where the input gate bias is fixed at our low default initialization
value of -10. We find that, while the learnable input gate only slightly improves performance of our
xLSTM over the fixed input gate versions on our standard downstream tasks (App. C.2, Tab. 7 and 8),
it significantly improves performance on long-context evaluations (App. C.2, Fig. 12).

6 CONCLUSION

In this work, we demonstrate how our targeted modifications enable the xLSTM architecture to
scale to models with 7B parameters, trained on 2.3 T tokens. By switching to a post-up-projection
structure, gate soft-capping and proper initialization, we largely improve training stability and token
throughput, making the xLSTM the fastest RNN-based architecture at the 7B scale, while competi-
tive in performance with Transformers and other recurrent models. We believe that xLSTM’s very
high decoding speeds in combination with its good performance highlight its potential as founda-
tional architecture for methods investing substantial compute at inference time.

9

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Benedikt Alkin, Maximilian Beck, Korbinian Pöppel, Sepp Hochreiter, and Johannes Brandstet-
ter. Vision-LSTM: xLSTM as generic vision backbone. In Proceedings of the International
Conference on Learning Representations (ICLR), 2025. URL https://openreview.net/
forum?id=SiH7DwNKZZ.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Lewis Tunstall, Agustı́n
Piqueres, Andres Marafioti, Cyril Zakka, Leandro von Werra, and Thomas Wolf. SmolLM2 - with
great data, comes great performance, 2024.

Anonymous. Tiled flash linear attention: More efficient linear RNN and xLSTM kernels. In Sub-
mitted to the International Conference on Machine Learning (ICML), 2025. under review.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2023.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
Li. LongAlign: A recipe for long context alignment of large language models. In Findings of
the Association for Computational Linguistics: EMNLP 2024, pp. 1376–1395, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.74. URL https://aclanthology.org/2024.findings-emnlp.74.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended long short-term memory. In Proceedings of the Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2405.04517.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert,
Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM
Leaderboard. https://huggingface.co/spaces/open-llm-leaderboard-old/
open_llm_leaderboard, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Cosmopedia, February 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/cosmopedia.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivan-
shu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B:
An open-source autoregressive language model. In ACL Workshop on Challenges & Perspec-
tives in Creating Large Language Models, 2022. URL https://arxiv.org/abs/2204.
06745.

Aleksandar Botev, Soham De, Samuel L Smith, Anushan Fernando, George-Cristian Muraru, Ruba
Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi, and et al.
RecurrentGemma: Moving past transformers for efficient open language models, 2024. URL
https://arxiv.org/abs/2404.07839.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024.

10

https://arxiv.org/abs/2305.13245
https://openreview.net/forum?id=SiH7DwNKZZ
https://openreview.net/forum?id=SiH7DwNKZZ
https://aclanthology.org/2024.findings-emnlp.74
https://arxiv.org/abs/2405.04517
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2404.07839

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

T. Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2024. URL
https://openreview.net/forum?id=mZn2Xyh9Ec.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Proceedings of the International Conference on Machine
Learning (ICML), 2024. URL https://openreview.net/forum?id=ztn8FCR1td.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and
Caglar Gulcehre. Griffin: Mixing gated linear recurrences with local attention for efficient lan-
guage models, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, and et al. DeepSeek-R1: Incentivizing reasoning
capability in LLMs via reinforcement learning, January 2025. URL http://arxiv.org/
abs/2501.12948. arXiv:2501.12948 [cs].

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/
open_llm_leaderboard, 2024.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In Proceedings
of the International Conference on Learning Representations (ICLR), 2023. URL https://
openreview.net/forum?id=COZDy0WYGg.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Gemma Team. Gemma: Open models based on gemini research and technology. 2024a. URL
https://arxiv.org/abs/2403.08295.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024b. URL
https://arxiv.org/abs/2408.00118.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and et al. The Llama 3
herd of models. 2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rStar-Math: Small LLMs can master math reasoning with self-evolved deep thinking, 2025.

11

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=ztn8FCR1td
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, 2023.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
and minimising outlier features in transformer training. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
iBBcRUlOAPR.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the International Conference on Machine Learning (ICML), volume 162, pp.
9099–9117. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
hua22a.html.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: fast autoregressive transformers with linear attention. In Proceedings of the International
Conference on Machine Learning (ICML), 2020.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. The Stack: 3 TB of permissively licensed source code. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pxpbTdUEpD.

Maurice Kraus, Felix Divo, Devendra Singh Dhami, and Kristian Kersting. xLSTM-Mixer: Mul-
tivariate time series forecasting by mixing via scalar memories. arXiv preprint, 2024. URL
https://arxiv.org/abs/2410.16928.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, and et al. Tülu 3: Pushing
frontiers in open language model post-training. 2024.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, and et al. Datacomp-lm: In search of the next generation of
training sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong,
Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. NuminaMath.
https://github.com/project-numina/aimo-progress-prize/blob/main/
report/numina_dataset.pdf, 2024.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024. URL https://arxiv.org/abs/2403.19887.

12

https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://proceedings.mlr.press/v162/hua22a.html
https://proceedings.mlr.press/v162/hua22a.html
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://arxiv.org/abs/2410.16928
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://arxiv.org/abs/2403.19887

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=Bkg6RiCqY7.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. FineWeb-Edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Mistral AI Team. Codestral Mamba. https://mistral.ai/news/codestral-mamba/,
2024. Accessed: 2025-01-30.

Vinh Nguyen, Michael Carilli, Sukru Burc Eryilmaz, Vartika Singh, Michelle Lin,
Natalia Gimelshein, Alban Desmaison, and Edward Yang. Accelerating PyTorch
with CUDA graphs, October 2021. URL https://pytorch.org/blog/
accelerating-pytorch-with-cuda-graphs/. Accessed: 2025-01-30.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
OLMo 2 furious, 2025. URL https://arxiv.org/abs/2501.00656.

Belandros Pan. Anti-Haystack, February 2024. URL https://huggingface.co/
datasets/wenbopan/anti-haystack.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Leon Derczynski, and et al. RWKV: Reinventing RNNs
for the transformer era. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2023, pp. 14048–14077, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.936.
URL https://aclanthology.org/2023.findings-emnlp.936.

Bo Peng, Daniel Goldstein, Quentin Gregory Anthony, Alon Albalak, Eric Alcaide, Stella Bider-
man, Eugene Cheah, Teddy Ferdinan, Kranthi Kiran GV, Haowen Hou, Satyapriya Krishna,
Ronald McClelland Jr., Niklas Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Hao-
qin Tu, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Jian Zhu, and Rui-Jie Zhu. Eagle and
finch: RWKV with matrix-valued states and dynamic recurrence. In First Conference on Lan-
guage Modeling, 2024. URL https://openreview.net/forum?id=soz1SEiPeq.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
hybrid state space models for efficient unlimited context language modeling, 2024. URL https:
//arxiv.org/abs/2406.07522.

Niklas Schmidinger, Lisa Schneckenreiter, Philipp Seidl, Johannes Schimunek, Pieter-Jan Hoedt,
Johannes Brandstetter, Andreas Mayr, Sohvi Luukkonen, Sepp Hochreiter, and Günter Klam-
bauer. Bio-xLSTM: Generative modeling, representation and in-context learning of biological
and chemical sequences. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2025. URL https://openreview.net/forum?id=IjbXZdugdj.

Thomas Schmied, Thomas Adler, Vihang Patil, Maximilian Beck, Korbinian Pöppel, Johannes
Brandstetter, Günter Klambauer, Razvan Pascanu, and Sepp Hochreiter. A large recurrent ac-
tion model: xLSTM enables fast inference for robotics tasks, 2024. URL https://arxiv.
org/abs/2410.22391.

J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. FlashAttention-3: Fast and
accurate attention with asynchrony and low-precision, 2024. URL https://arxiv.org/
abs/2407.08608.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://mistral.ai/news/codestral-mamba/
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://arxiv.org/abs/2501.00656
https://huggingface.co/datasets/wenbopan/anti-haystack
https://huggingface.co/datasets/wenbopan/anti-haystack
https://aclanthology.org/2023.findings-emnlp.936
https://openreview.net/forum?id=soz1SEiPeq
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://openreview.net/forum?id=IjbXZdugdj
https://arxiv.org/abs/2410.22391
https://arxiv.org/abs/2410.22391
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism, 2020. URL https://arxiv.org/abs/1909.08053.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language mod-
els. ArXiv, abs/2307.08621, 2023. URL https://api.semanticscholar.org/
CorpusID:259937453.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

TogetherCompute. LongDataCollections, October 2023. URL https://huggingface.co/
datasets/togethercomputer/Long-Data-Collections.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and et al. Llama 2: Open
foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.
2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), volume 30, pp. 5998–6008. Curran Associates, Inc., 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Anand Korthikanti, Tri
Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha,
Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An em-
pirical study of Mamba-based language models. ArXiv, abs/2406.07887, 2024. URL https:
//api.semanticscholar.org/CorpusID:270391285.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the Transformer architecture.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 10524–10533.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/xiong20b.
html.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, and et al. Qwen2 technical report. 2024a. URL
https://arxiv.org/abs/2407.10671.

Songlin Yang and Yu Zhang. FLA: A triton-based library for hardware-efficient implementa-
tions of linear attention mechanism, January 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear atten-
tion transformers with hardware-efficient training. In Proceedings of the International Confer-
ence on Machine Learning (ICML), 2024b. URL https://openreview.net/forum?id=
ia5XvxFUJT.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc., 2023. URL
https://openreview.net/forum?id=5Xc1ecxO1h.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems 32, Vancouver, Canada, 2019. URL https://openreview.
net/references/pdf?id=S1qBAf6rr.

14

https://arxiv.org/abs/1909.08053
https://api.semanticscholar.org/CorpusID:259937453
https://api.semanticscholar.org/CorpusID:259937453
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/togethercomputer/Long-Data-Collections
https://huggingface.co/datasets/togethercomputer/Long-Data-Collections
https://doi.org/10.48550/arXiv.2307.09288
https://api.semanticscholar.org/CorpusID:270391285
https://api.semanticscholar.org/CorpusID:270391285
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://arxiv.org/abs/2407.10671
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://openreview.net/forum?id=ia5XvxFUJT
https://openreview.net/forum?id=ia5XvxFUJT
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/references/pdf?id=S1qBAf6rr
https://openreview.net/references/pdf?id=S1qBAf6rr

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume
Kunsch, and Hakim Hacid. Falcon Mamba: The first competitive attention-free 7b language
model. 2024. URL https://arxiv.org/abs/2410.05355.

15

https://arxiv.org/abs/2410.05355

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

A XLSTM 7B ARCHITECTURE SUMMARY

The xLSTM 7B architecture consists of 32 post-up projection blocks and is described in Fig. 1 and
Tab. 4. We use the GPT-NeoX-20B tokenizer Black et al. (2022) with vocabulary size 50257 and do
not tie the weights for input layers (embedding) and output layers (logits).

Table 4: Hyperparameters of xLSTM 7B.

NUM
PARAMS

VOCAB
SIZE

NUM
BLOCKS

MODEL
DIM

NUM
HEADS

6,865,424,896 50257 32 4096 8

f

o

Ct-1 v

mLSTM

Headwise Norm

Norm

Norm

Swish

Sigmoid

k

h

q

i

vkifq

Figure 7: Improved xLSTM Block. The lower part is a output-gated sequence-mix layer with the
mLSTM at its core, whereas the upper part is a Gated MLP (SwiGLU) as a feature/channel-mix
layer. Multiple Heads are shown in depth, larger light gray boxes without are linear layers. For
the SwiGLU we use a projection factor of 2.66 matching common Transformers. For the query/key
dimension we use a factor of 0.5. The Norm layers are RMS norms (Zhang & Sennrich, 2019), the
Headwise Norm is a Layernorm (Ba et al., 2016).

16

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

B TRAINING RECIPE

Optimization. Pre-training was conducted on a high-performance computing cluster comprising
128 NVIDIA H100 GPUs. We use Fully Sharded Data Parallel (FSDP) and activation checkpointing
to reduce the parameter and activation memory footprint. We pre-train xLSTM 7B for a total of
550K (thousand) training steps with batch size 512 and context length 8192, encompassing a total
of 2.3T (trillion) training tokens. We apply batch size ramp-up with batch size 128 for the first 2000
steps, 256 for the next 2000 steps, and the full batch size (512) afterward. We use the AdamW
optimizer Loshchilov & Hutter (2019) with (peak) α = 5× 10−4, β1 = 0.99, β2 = 0.95, ϵ = 10−8,
weight decay 0.1 and gradient clipping norm 0.5. The learning rate schedule comprises a linear
warm-up over 3000 training steps, an exponential decay phase spanning 540,000 steps, and a linear
cool-down lasting 7000 steps. We choose the exponential decay factor such that 0.1× α is reached
after 500,000 steps.
Sequence packing. Language datasets come with documents of highly varying lengths. To effi-
ciently train a model by processing fixed sequence length sequences (e.g. 8192 tokens), multiple
shorter documents are typically packed into a sequence, and the different documents are separated
by an end-of-document (EOD) token. In order to avoid leaking information between independent
documents that are packed into the same sequence, we reset the memory states of each mLSTM
cell at the document borders signified by the EOD token. This can be easily achieved by explicitly
setting the forget gate value to zero, resetting the memory state to the zero-matrix.
Dataset selection. We only use publicly available high-quality datasets for pre-training. The
dataset selection is divided into two training stages: In the first stage lasting 500K (thousand) train-
ing steps, we train exclusively on the DCLM dataset Li et al. (2024). In the second stage (50K steps)
towards the end of the training, we use a combination of datasets that prioritizes math, coding, and
question-and-answer (Q&A) data. The dataset proportions for the second stage are listed in the
second column of Tab. 5.

Similarly to Zuo et al. (2024), the second training stage includes a collection of small supervised
fine-tuning (SFT) Q&A datasets to improve the model’s understanding of texts involving questions
and answers. These SFT datasets are all publicly available and consist of NuminaMath CoT LI
et al. (2024), MetaMathQA Yu et al. (2023), Tulu v3.1 Lambert et al. (2024), OpenHermes 2.5
Teknium (2023), GSM8K Cobbe et al. (2021), and Smoltalk (subsets magpie-ultra, longalign, and
self-oss-instruct) Allal et al. (2024).

For longer context training we replace the high-quality data cool-down by a longer context version
keeping the number of tokens per step and the number of steps fixed. The batch size is reduced from
512 to 128, while increasing the context length to 32,768. We replace a large share of the DCLM
dataset part with long context text collections, namely LongDataCollections (TogetherCompute,
2023), LongAlign10k (Bai et al., 2024), AntiHayStack (Pan, 2024) and LongAlpaca12k (Chen et al.,
2024), see third column of Tab. 5.

Table 5: Dataset Proportions for second training stage in standard and longer context mode.

DATASET NAME PROPORTION STANDARD PROPORTION LONGCTX

DCLM Li et al. (2024) 40% 20 %
FineWeb-Edu Lozhkov et al. (2024) 15% 15%
Cosmopedia Ben Allal et al. (2024) 10% 10%
ProofPile-2 Azerbayev et al. (2023) 15% 15%
TheStack Kocetkov et al. (2023) 15% 15%
SFT datasets (see Sec. B) 5% 5%
LongDataCollections TogetherCompute (2023) - 15%
LongAlign10k Bai et al. (2024) - 1%
AntiHayStack Pan (2024) - 1%
LongAlpaca12k Chen et al. (2024) - 2%

Ablation Training For hyperparameter tuning and ablation trainings (”-abl”) at the 7B scale, we
use a shorter training cycle with 76,000 training steps at context length 8192 and batch size 256,
resulting in 160B tokens. We use a linear warmup of 3000 steps, cosine decay to 10% of the peak
learning rate at 75,000 steps and a linear cooldown of 1,000 steps to learning rate 0 at the end. Here,

17

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

we only train on parts of the DCLM dataset, without high-quality data in the late pre-training. Peak
learning rate and other training hyperparameters are the same as for the main training.

C EXPERIMENTS

C.1 EXTENDED EVALUATION

To enable comparability to older models, we evaluate our models on the task selection from the
first version of the HuggingFace leaderboard using HuggingFace’s lighteval (Beeching et al., 2023;
Fourrier et al., 2023). The results in Tab. 6 show that there is a trend upwards in metrics from older
(e.g. Llama 2) to newer models (e.g. Llama 3.1), but that the differences and ordering between
models vary across the tasks.

Table 6: Model Performance on Huggingface Leaderboard v1 based on lighteval by HuggingFace

MODEL ARC-C ↑ MMLU ↑ HELLASWAG ↑ WINOGRANDE ↑ TRUTHFULQA ↑ OPENBOOKQA ↑ PIQA ↑ AVERAGE ↑
TRANSFORMERS
Llama-3.1-8B 0.562 0.663 0.720 0.745 0.362 0.447 0.818 0.617
Llama-2-7B-hf 0.511 0.468 0.687 0.706 0.318 0.412 0.786 0.555
OLMo-7B-hf 0.443 0.286 0.673 0.661 0.301 0.383 0.801 0.507
Qwen2.5-7B 0.617 0.753 0.700 0.717 0.478 0.458 0.804 0.647
Gemma-7B 0.593 0.640 0.721 0.740 0.381 0.436 0.813 0.618

HYBRID MODELS
Zamba2-7B 0.672 0.683 0.740 0.801 0.479 0.468 0.802 0.664

RECURRENT MODELS
Falcon-Mamba-7B 0.599 0.622 0.709 0.743 0.459 0.460 0.822 0.631
Falcon-Mamba-7B (pre-decay) 0.520 0.573 0.699 0.719 0.312 0.430 0.801 0.579
Mamba-Codestral-7B (v0.1) 0.486 0.501 0.626 0.618 0.358 0.380 0.771 0.534
RWKV-v5-Eagle-7B-HF 0.449 0.313 0.622 0.663 0.330 0.393 0.772 0.506
RWKV-v6-Finch-7B-HF 0.471 0.442 0.656 0.696 0.347 0.399 0.792 0.543
xLSTM 7B 0.574 0.578 0.714 0.738 0.419 0.448 0.819 0.613
xLSTM 7B LCTX 0.516 0.588 0.715 0.740 0.374 0.429 0.819 0.597

C.2 ABLATION EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e4

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e4

10 1

100

101

102

103

Gr
ad

ie
nt

 N
or

m

Post-Up Projection with Pre-LN & State-LN
Post-Up Projection with Pre-RMSN & State-LN
Post-Up Projection with Pre-RMSN & State-RMSN

Pre-Up Projection with Pre-LN & State-LN
Pre-Up Projection with Pre-RMSN & State-RMSN

Figure 8: Comparison of pre-up projection and post-up projection blocks with different combina-
tions of RMSNorm and LayerNorm. At each step, the plot shows the maximum gradient norm
observed within the previous 50 steps.

Effect of the Pre-norm Layer Choice (Fig. 8). Here we asses the effect of different normaliza-
tion layer choices for the pre-norm in (12) and the state-norm in (6), both for the xLSTM with a
pre-up projection block of Beck et al. (2024) and our new post-up projection architecture used for
xLSTM 7B. We use soft-capping and the negative input bias initialization (see Sec. 3.2 and 5.3) for
both architectures. For this experiment, we train models with 1.4B parameters for 31,000 steps using
context length 8192 and batch size 256. Fig. 8 shows the validation loss and gradient norm for the
different architectures and normalization layer choices over the course of training (only the 15,000
steps are shown). As can be seen, using LayerNorm as the pre-norm layer leads to very large gradi-
ent norms and diverging validation loss after a few training steps, whereas models with RMSNorm
train stably. For the state-norm layer, the norm type has no impact on the training dynamics.

18

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Effect of Soft-Capping (Fig. 9). The two runs in Fig. 9 show the effect of soft-capping for two
7B sized xLSTM models trained for 76,000 steps at batch size 256 and context length 8192, for an
effective 160B tokens.

0 1 2 3 4 5 6 7
Steps 1e4

2.2

2.3

2.4

2.5

2.6

2.7

Va
lid

at
io

n
Lo

ss

0 1 2 3 4 5 6 7
Steps 1e4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Gr
ad

ie
nt

 N
or

m

No Softcap With Softcap

Figure 9: Effect of softcapping. Two 7B sized xLSTM models are trained with and without soft-
capping for 160B tokens. The lower gradient norm noise on the right is a clear indicator for better
model performance on the left of the model trained with softcapping. At each step, the plot shows
the maximum gradient norm observed within the previous 50 steps.

Effect of Negative Input Gate Bias Init (Fig. 10). In this experiment we train 160M parameter
models with batch size 128 and context length 4096 and vary the input gate bias initialization [0, -2,
-5, -10]. The weights of the input gates are initialized to 0.

In Figure 10 we observe that initializing the input gate biases at -10 effectively mitigates gradient
norm spikes and reduces gradient norm variance during training. In our experiments up to 7B
parameters we observed this behavior transfers across model scales.

We therefore initialize the input gate biases to -10. For an extensive discussion of this behavior we
refer to concurrent work by Anonymous (2025).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Steps 1e4

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Va
lid

at
io

n
Lo

ss

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Steps 1e4

10 1

100

101

102

Gr
ad

ie
nt

 N
or

m

BiasInit 0
BiasInit -2

BiasInit -5
BiasInit -10

Figure 10: Effect of the Bias Initialization. We conduct experiments with four different input
gate biases at the 160M parameter scale, with validation loss on depicted to left and gradient norm
on the right, along the training steps. The higher input gate bias initializations show large gradient
norm spikes, which results in worse training results. Only the lowest initialization can maintain
smooth and low gradient norms with at the best validation perplexities. The reason for this behavior
is studied in more detail in (Anonymous, 2025). At each step, the plot shows the maximum gradient
norm observed within the previous 50 steps.

Effect of the Learning Rate Scheduler (Fig. 11). In our largest experiments, we choose a linear
warmup followed by an exponential decay as a learning rate schedule in order to enable a con-
tinued pre-training with more tokens and without an additional warmup. However, smaller scale
experiments in Fig. 11 show the benefit of a cosine schedule over an exponential one.

19

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e5

0

1

2

3

4

5

6

7

8
Le

ar
ni

ng
 R

at
e

1e 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

Pe
rp

le
xi

ty

Exponential 76k Steps
Exponential 150k Steps

Cosine 76k Steps
Cosine 150k Steps

Figure 11: Effect of Learning Rate Scheduler. The tested learning rate schedules are shown on the
left, with the corresponding training perplexities on the right. While the exponential learning rate
schedule can be continued trivially, the cosine schedule actually works slightly better given a fixed
number of iterations. The learning rate cooldown to zero at the end gives a similar and significant
benefit in both cases.

Effect of Memory State Size and Input Gate on Long Context Evaluations (Fig. 12,
Tab. 7 and 8). In order to test the influence of the head numbers (cell dimensions) and input
gate on long context abilities, we test the ablation models trained in Sec. 5.3 for their performance
in the RULER benchmark (Hsieh et al., 2024). The results in Fig. 12 show that, while the effect of
the head number and equivalently the recurrent memory is inconclusive, the models strongly benefit
from the learnable, exponential input gate for the long context performance.

4096 8192 16384 32768 65536 131072
Context Length [Tokens]

0

10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

 [%
]

Default
LCTX
NH4

NH8
NH16
NH32

NH8 IGateFixed -10
NH8 IGateFixed 0

Figure 12: RULER average accuracies for different number of heads/cell dimensions, and fixed
input gate. The ablations are trained on 160B tokens at 8k context.

Table 7: Model Performance for different number of heads and non-trainable input gate on the
Huggingface Leaderboard v2 tasks.

MODEL BBH ↑ MMLU-PRO ↑ MATH ↑ MUSR ↑ GPQA ↑ IFEVAL ↑ AVERAGE ↑
xLSTM 7B abl NH4 0.306 0.114 0.004 0.363 0.253 0.160 0.200
xLSTM 7B abl NH8 0.304 0.115 0.002 0.363 0.248 0.173 0.201
xLSTM 7B abl NH16 0.317 0.119 0.002 0.390 0.258 0.161 0.208
xLSTM 7B abl NH32 0.327 0.120 0.001 0.379 0.256 0.171 0.209
xLSTM 7B abl NH8 IGateFixed 0 0.303 0.117 0.004 0.381 0.229 0.149 0.197
xLSTM 7B abl NH8 IGateFixed -10 0.308 0.109 0.000 0.357 0.253 0.165 0.199

xLSTM 7B 0.381 0.242 0.036 0.379 0.280 0.244 0.260
xLSTM 7B LCTX 0.390 0.252 0.040 0.374 0.253 0.234 0.257

Additionally, we evaluate our ablation versions trained for 160B tokens and evaluated on the current
and old HuggingFace LLM Leaderboard as in Tab. 1 and 6, respectively. Results in Tab. 7, 8 show

20

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

only slight influence of the head dimensions or fixing input gate. Only fixing the input gate to the
very small value of its standard bias initialization has a stronger impact on the Leaderboard v1.

Table 8: Model Performance for different number of heads and non-trainable input gate on the
Huggingface Leaderboard v1 tasks.

MODEL ARC-C ↑ MMLU ↑ HELLASWAG ↑ WINOGRANDE ↑ TRUTHFULQA ↑ OPENBOOKQA ↑ PIQA ↑ AVERAGE ↑
xLSTM 7B abl NH4 0.492 0.296 0.665 0.672 0.282 0.405 0.798 0.516
xLSTM 7B abl NH8 0.487 0.292 0.669 0.680 0.302 0.426 0.791 0.521
xLSTM 7B abl NH16 0.505 0.351 0.668 0.701 0.294 0.409 0.796 0.532
xLSTM 7B abl NH32 0.500 0.378 0.666 0.676 0.325 0.411 0.799 0.536
xLSTM 7B abl NH8 IGateFixed 0 0.464 0.292 0.658 0.672 0.280 0.415 0.788 0.510
xLSTM 7B abl NH8 IGateFixed -10 0.241 0.250 0.340 0.519 0.286 0.226 0.681 0.363

xLSTM 7B 0.574 0.578 0.714 0.738 0.419 0.448 0.819 0.613
xLSTM 7B LCTX 0.516 0.588 0.715 0.740 0.374 0.429 0.819 0.597

D FLOP COUNTING

We count the number of FLOPs in a forward pass of the mLSTM. We use a factor of 2 to describe
the multiply accumulate cost.

We use factors denoted as F X to describe the number of FLOPs for operation X (e.g. F exp for the
exponential function). By default we set all of these factors to 1.

D.1 FLOPS FOR THE MLSTM OPERATION

• Inter-chunk recurrent:

– Chunkwise gates: num heads × num chunks
× (0.5×chunk size × (chunk size + 1) + 2×chunk size)

– Gates & max state: num heads × num chunks
× (3 + F max + F exp + chunk size × (3 + 2 × F exp))

– Numerator: num heads × num chunks
× (2×d qk × d v + 4×chunk size × d qk × d v + 3×chunk size × d qk)

– Denominator: num heads × num chunks × (d qk + 4×chunk size × d qk)

• Intra-chunk parallel:

– Gate matrix: num heads × num chunks
× (0.5 × chunk size × (chunk size + 1)
+ chunk size × chunk size × (3 + F mask + F max + F exp)
+ chunk size × (1 + F max))

– Gated Attn logits: num heads × num chunks
× 2×chunk size × chunk size × (1 + d qk)

– Numerator: num heads × num chunks
× 2×chunk size × chunk size × d v

– Denominator: num heads × num chunks × 2 × chunk size × chunk size
– Output combination: num heads × num chunks

× (chunk size × (1 + F max)
+ chunk size × (2 + F abs + F exp + F max + 2×d v))

D.2 FLOPS FOR THE MLSTM IN A TRANSFORMER BACKBONE

For computing the number of FLOPs we follow the procedure from Hoffmann et al. (2022). We
include the FLOPs contributed by the embedding matrices. We do not include RMS- or Layer-
Norm and skip connection FLOPs We assume that the backward pass has 2 times the number of
FLOPs of the forward pass. For the forward pass, the number of FLOPs of the mLSTM for a single
sequence can be approximated by:

• Embeddings

– 2 × seq len × vocab size × d model

21

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

• mLSTM (single layer)
– Query, key, value, input and forget gate projections:

2 × seq len × d model × num heads × (2 × d qk + d v + 2)
– Output gate and projection:

4 × seq len × d model × num heads × d v
+ seq len × num heads × d v × F sig

– mLSTM cell: See above.
• Gated Feedforward (single layer)

– 6 × seq len × d model × d model × proj factor ff
+ 2 × seq len × d model × F swish

• Final Logits
– 2 × seq len × d model × vocab size

• Total forward pass FLOPs:
embeddings + num layers × (mLSTM + feedforward) + final logits

D.3 FLOPS FOR THE TRANSFORMER WITH SELF-ATTENTION

We use the FLOP computations from Hoffmann et al. (2022), with the difference that we use gated
feedforward blocks.

• Embeddings
– 2 × seq len × vocab size × d model

• Attention (single layer)
– Key, query and value projections:

2 × seq len × d model × num heads × (2 × d qk + d v)
– Key @ query logits: 2 × seq len × seq len × (d qk × num heads)
– Softmax: 3 × seq len × seq len × num heads
– Softmax @ query reductions: 2 × seq len × seq len × (num heads × d qk)
– Final linear: 2 × seq len × d model × (num heads × d v)

• Gated Feedforward (single layer)
– 6 × seq len × d model × d model × proj factor ff

+ 2 × seq len × d model × F swish
• Final Logits

– 2 × seq len × d model × vocab size
• Total forward pass FLOPs:

embeddings + num layers × (attention + feedforward) + final logits

E PARAMETER COUNTING

In this section we count the number of paramters in the mLSTM and compare it to the number of
parameters in a Transformer with self-attention. We assume that the model does not use weight
tying and omits biases.

E.1 PARAMETER COUNTING FOR THE MLSTM

• Embeddings
– vocab size × d model

• mLSTM (single layer)
– qkv: d model × num heads × (2 × d qk + d v)
– Input and forget gate: 2 × d model × num heads + 2 × num heads
– Output gate: d model × d model

22

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

– Output projection: d model × d model
– Norm: d model

• Gated Feedforward (single layer)
– 3 × d model × d model × proj factor ff

• Norm (single layer)
– d model

• Final Logits:
– d model × vocab size

• Total number of parameters:
embeddings + num layers × (mLSTM + feedforward + 2 × norm) + norm + final logits

E.2 PARAMETER COUNTING FOR THE TRANSFORMER WITH SELF-ATTENTION

• Embeddings
– vocab size × d model

• Attention (single layer)
– qkv: d model × num heads × (2 × d qk + d v)
– Output projection: d model × d model

• Gated Feedforward (single layer)
– 3 × d model × d model × proj factor ff

• Norm (single layer)
– d model

• Final Logits:
– d model × vocab size

• Total number of parameters:
embeddings + num layers × (attention + feedforward + 2 × norm) + norm + final logits

23

	Introduction
	Background: xLSTM with Matrix Memory
	Optimized xLSTM7B Architecture
	Optimizing for Efficiency
	Optimizing for Stability

	Related Work
	Experiments
	Language Modeling Performance
	Speed Benchmarks
	Ablation Studies

	Conclusion
	xLSTM7B Architecture Summary
	Training Recipe
	Experiments
	Extended Evaluation
	Ablation Experiments

	FLOP Counting
	FLOPs for the mLSTM Operation
	FLOPs for the mLSTM in a Transformer Backbone
	FLOPs for the Transformer with Self-Attention

	Parameter Counting
	Parameter Counting for the mLSTM
	Parameter Counting for the Transformer with Self-Attention

