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Abstract001

Foundation models (FMs) are increasingly used002
to bridge language and action in embodied003
agents, yet the operational characteristics of dif-004
ferent FM integration strategies remain under-005
explored—particularly for complex instruction006
following and versatile action generation in007
changing environments. This paper examines008
three paradigms for building robotic systems:009
end-to-end vision-language-action (VLA) mod-010
els that implicitly integrate perception and plan-011
ning, and modular pipelines incorporating ei-012
ther vision-language models (VLMs) or multi-013
modal large language models (LLMs). We eval-014
uate these paradigms through two focused case015
studies: a complex instruction grounding task016
assessing fine-grained instruction understand-017
ing and cross-modal disambiguation, and an018
object manipulation task targeting skill transfer019
via VLA finetuning. Our experiments in zero-020
shot and few-shot settings reveal trade-offs in021
generalization and data efficiency. By explor-022
ing performance limits, we distill design impli-023
cations for developing language-driven physi-024
cal agents and outline emerging challenges and025
opportunities for FM-powered robotics in real-026
world conditions.027

1 Introduction028

Natural language is emerging as a universal in-029

terface for embodied robotic systems. Recent030

foundation models (FMs) allow robots to follow031

free-form instructions in perception, reasoning,032

and motor commands, offering the promise of033

language-grounded autonomy. They include multi-034

modal large language models (LLMs) (Grattafiori035

et al., 2024; Bai et al., 2025; Lu et al., 2024), vi-036

sion–language models (VLMs) (Liu et al., 2024a;037

Ravi et al., 2025; Ren et al., 2024; Li et al., 2023),038

and vision–language–action (VLA) models (Kim039

et al., 2024; Zheng et al., 2025; Qu et al., 2025; Bu040

et al., 2025).041
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Figure 1: Challenges of foundation models in embodied
robotic systems include cross-modal instruction ground-
ing, generalization across environments and morpholo-
gies, and data-efficient adaptation for the real world.

However, turning the promise of language- 042

grounded autonomy into deployable systems is 043

highly challenging. Robots must (i) map ambigu- 044

ous instructions to the physical world (instruction 045

grounding), (ii) execute reliably across novel ob- 046

jects, scenes, and robot morphologies (generaliz- 047

able execution), and (iii) achieving the aforemen- 048

tioned goals with limited data (efficient adapta- 049

tion). How well different FM integration strategies 050

meet these competing requirements remains under- 051

explored (Fig. 1). 052

To our best knowledge, this work delivers the 053

first head-to-head empirical comparison of three 054

prevalent integration paradigms: end-to-end VLAs 055

that directly map language and vision to actions, 056

multimodal LLM agents that orchestrate percep- 057

tion and control through tool calls, and modular 058

VLM pipelines that couple perception-specialist 059

FMs with task-specific planners (Fig. 2; Table 1). 060

We evaluate these paradigms through tabletop 061

case studies designed to highlight their complemen- 062

tary strengths and limitations. Specifically, we con- 063

sider two task categories: (i) Complex Instruction 064

Grounding, which probes fine-grained understand- 065

ing and cross-modal disambiguation (Sec.3); and 066

(ii) Object Manipulation, which measures the abil- 067

ity to transfer learned skills after VLA fine-tuning 068
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under distribution shifts, complemented by com-069

parative and ablation studies (Sec.4).070

Our zero-shot grounding experiments reveal dis-071

tinct trade-offs across integration strategies. VLM072

pipelines prioritize interpretability and data effi-073

ciency, sacrificing flexibility and peak performance.074

While underperforming on handling complex in-075

struction grounding, they deliver moderate perfor-076

mance in object grounding—using less than 1%077

of the parameters required by multimodal LLMs.078

In contrast, multimodal LLM agents generalize079

better on complex instructions but incur signifi-080

cantly higher inference costs. Notably, smaller081

reasoning-focused models such as GPT-4o-mini082

can even outperform larger models like GPT-4o083

on certain tasks. VLAs, with their tightly coupled084

perception-to-action pathways, support streamlined085

action generation, yet struggle to reason about rare086

or abstract concepts. We further examine the trade-087

off between model size and performance by analyz-088

ing quantization effects on open-source multimodal089

LLMs. These findings offer practical guidance for090

developing language-driven robotic systems under091

real-world constraints.092

Within the VLA paradigm, we categorize093

models by their action generation mechanisms—094

autoregressive (Vaswani et al., 2017; Kim et al.,095

2024; Hung et al., 2025) and diffusion-based ap-096

proaches (Ho et al., 2020; Chi et al., 2023; Reuss097

et al., 2024; Wen et al., 2024). We evaluate their098

adaptability through fine-tuning under distribution099

shifts, mirroring real-world deployment scenarios.100

To assess generalization, we analyze robustness to101

environmental perturbations and variation in object102

appearance and robot morphology.103

To summarize, the main contributions of this104

work are as follows:105

• To our best knowledge, we present the first sys-106

tematic comparison of end-to-end VLA, modular107

VLM, and modular multimodal LLM architec-108

tures on a same set of embodied tasks.109

• We release a dataset and accompanying code110

that supports evaluation of complex instruction111

grounding and manipulation transfer—covering112

accordance comprehension, cross-modal reason-113

ing, and motor adaptation.114

• We benchmark state-of-the-art VLAs and mul-115

timodal LLMs, offering timely insight into the116

capabilities and failure modes of modern FMs in117

robotics.118

• We distill actionable trade-offs that practition-119
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SAM, CLIP 

controller
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Foundation Models 
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Figure 2: Foundation model integration strategies in
language driven robots: (a) End-to-end VLA models,
(b) Modular VLM pipelines, and (c) Multimodal LLM
agents. Each strategy reflects a distinct interface be-
tween language, perception, and control.

ers can apply when choosing an FM stack for 120

language-driven embodied agents. 121

• We release all code, data to facilitate repro- 122

ducible embodied AI studies; We also release a 123

complete, end-to-end claw-machine robot sys- 124

tem to demonstrate FM integrations in real- 125

world applications. 126

2 Foundation Model Integration for 127

Language-Guided Robotics 128

Concerning how FMs are integrated into robot sys- 129

tems, we identified the following three types of 130

integration strategies (Fig. 2). In the following, 131

We briefly describe each strategy along with its 132

respective advantages and limitations. 133

2.1 End-to-End Vision-Language-Action 134

Definition. Vision-Language-Action (VLA) 135

models operate in an end-to-end manner, directly 136

translating visual observations and natural lan- 137

guage instructions into low-level actions without 138

decoupled perception, language, and control mod- 139

ules (Fig. 2a). Two mainstream paradigms have 140

emerged within this framework: auto-regressive 141

and diffusion-based action generation. Through 142

large-scale pretraining, these models acquire broad 143

capabilities that support generalization across 144

tasks. However, efficient adaptation to real-world 145

settings remains a significant challenge. 146
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Pipelines for
Robot Systems

Instruction Grounding Manipulation Generalization Adaptation for Deployment

Visual
inputs

Multi-round
dialogue

CoT
reasoning

Morphology
independent

Skill sets Data Efficiency

End-to-End VLA Models ! % % % Wide range Data-hungry finetuning
Modular VLM pipelines ! % % ! Controller-

specific
Cheap finetuning

Multimodal LLMs Agents ! ! ! ! In-context learning

Table 1: Comparison of foundation model integration strategies in embodied robotic systems, highlighting differ-
ences in instruction grounding, manipulation generalization, and adaptation methods.

Autoregressive VLA Models. Autoregressive147

VLA models typically process language and vi-148

sual inputs, employing various tokenization strate-149

gies to convert multimodal data into a unified la-150

tent space. Then the transformer-based decoder151

generates actions step-by-step in an autoregressive152

manner conditioned on the input context and previ-153

ously generated actions, allowing structured action154

generation and planning.155

Building on the previous groundbreaking models156

such as RT-1 (Brohan et al., 2023), RT-2 (Zitkovich157

et al., 2023) and VIMA (Jiang et al., 2023), Open-158

VLA (Kim et al., 2024) emerges as an impor-159

tant open-source method, combining a fine-tuned160

Llama 2 (7B) model with DinoV2 and SigLIP161

for visual tokenization, pretrained on the Open-162

X-Embodiment dataset (O’Neill et al., 2024) con-163

sisting of 970k real-world robot demonstrations.164

TraceVLA (Zheng et al., 2025) improves Open-165

VLA with visual trace prompting to enhance spa-166

tiotemporal awareness. Emma-X (Sun et al., 2024)167

further refines dataset quality using a trajectory seg-168

mentation and Embodied Chain-of-Thought reason-169

ing. This work is followed by NORA (Hung et al.,170

2025), which uses Qwen-2.5-VL-3B as backbone171

and pretrained on the Open-X-Embodiment dataset.172

In parallel, other efforts integrate tactile sensing173

into robot perception (Yang et al., 2024; Gao et al.,174

2024; Zhao et al., 2024), supporting more generic175

robot policies. Other recent developments include176

distilling spatial representations from VLMs, e.g.,177

Gemini-Robitics (Gemini Robotics Team, 2025),178

and enriching training with additional features,179

such as 3D spatial relationships in SpatialVLA (Qu180

et al., 2025), task-centric latent space in UniVLA181

(Bu et al., 2025), and integrating multimodal under-182

standing with action prediction in ChatVLA (Zhou183

et al., 2025) and UP-VLA (Zhang et al., 2025).184

Diffusion-based VLA Models. Diffusion-based185

VLA models formulate action generation as a de-186

noising process over latent trajectories. Given a187

noisy version of a full action sequence, the model 188

learns to recover the true trajectory conditioned on 189

language and vision. 190

Diffusion Policy (DP) (Chi et al., 2023) pio- 191

neered the use of diffusion model for visuomotor 192

policy representation, laying the foundation for sub- 193

sequent multimodal approaches. Octo (Octo Model 194

Team et al., 2024) uses conditional diffusion decod- 195

ing for action sequence prediction. Rather than 196

lightweight diffusion heads, (Reuss et al., 2024; 197

Wen et al., 2024; Li et al., 2024b) use larger and 198

more dedicated diffusion policy modules the as ac- 199

tion decoder. DTP (Fan et al., 2025) introduces 200

a trajectory-level guidance to enhance diffusion- 201

based planning. Recent works such as π0 (Black 202

et al., 2024) and π0.5 (Intelligence et al., 2025) 203

integrate a pretrained VLM with a flow-matching- 204

based action expert to model action distributions. 205

These models often utilize FAST (Pertsch et al., 206

2025) for efficient compressed action tokenization. 207

HybridVLA (Liu et al., 2025) unifies diffusion 208

and autoregressive action prediction within a sin- 209

gle LLM-based framework. A growing focus is 210

placed on adapting VLA models to diverse embod- 211

iments including bimanual manipulation and hu- 212

manoid robots, such as RDT-1b (Liu et al., 2024b), 213

DexVLA (Wen et al., 2025) and GR00T N1 (Bjorck 214

et al., 2025). 215

Strengths and Limitations. VLA models pro- 216

vide a unified, end-to-end framework for robotic 217

manipulation, (i) seamlessly integrating visual, lan- 218

guage, and action modalities. Leveraging large- 219

scale pretraining and fine-tuning, these models ex- 220

hibit (ii) strong potential for generalizing across 221

diverse manipulation tasks and robotic embodi- 222

ments. However, their performance is constrained 223

by the (iii) limited availability of high-quality, di- 224

verse robotic datasets. Pretraining can also intro- 225

duce biases from training distributions, leading to 226

(iv) degraded performance in out-of-distribution 227

scenarios, such as novel tasks or different robotic 228
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embodiments. Therefore, despite their potential,229

further work is needed to enhance their robustness230

and generalization across real-world settings, for231

example, efficient adaptation using few-shot data.232

2.2 Modular Vision–Language Pipelines233

Definition. In a modular vision-language234

pipeline (Fig. 2b), perception is handled by a spe-235

cialist vision language model (VLM) that outputs236

symbolic scene information, typically grounded237

2-D / 3-D bounding boxes, segmentation masks,238

or referring expression pointers. A downstream239

planner or policy module then consumes this240

structured representation to generate low-level241

actions. The language channel is therefore242

disentangled from motor control, allowing each243

module to be tuned independently, thus preserving244

the transparency and plug-and-play advantages of245

classical planning.246

Representative systems. Language-promptable247

specialist VLMs endow modular stacks with zero-248

shot semantics for various robotics pipelines.249

(Bandyopadhyay et al., 2024) demonstrates an250

end-to-end sample collection robot system that251

uses GroundingDINO (Liu et al., 2024a) to lo-252

calize objects and refines each box with SAM253

(Ravi et al., 2025) masks before passing them to254

classical grasp-and-place controllers, illustrating255

this paradigm’s practicality in real deployments.256

(Werby et al., 2024) aggregates these modules into257

a floor–room–object hierarchy, showcasing their258

usage in long-horizon language-conditioned navi-259

gation across multi-story buildings.260

Strength and Limitations. Modular VLM261

pipelines strike a balance between transparency262

and adaptability, and delivers practical benefits:263

(i) interpretability—detections can be inspected;264

(ii) lightweight—the model parameters are usually265

around 100M∼600M, approximately 1% ∼ 6%266

the size of LLaMA 3.2 Vision 11B (Grattafiori267

et al., 2024). On the other hand, it is limited at268

(i) interaction rigidness compared with more flexi-269

ble multimodal LLMs, and (ii) pipeline brittleness270

where perception errors propagate without mitiga-271

tion (Fig. 2b; Table 1). Their success hinges on272

robust open-vocabulary grounding—precisely the273

capability our Instruction Grounding case study274

stresses in Section 3.275

2.3 Multimodal LLM Agents as Orchestrators 276

Definition. Multimodal LLM agents place a 277

large, tool-calling language model at the centre 278

of the control loop (Fig. 2c). The LLM receives 279

raw user utterances, selectively invokes vision tools 280

(e.g., a detector or depth estimator) via function 281

calls, reasons over their outputs in-context, and 282

finally issues high-level action primitives to a low- 283

level controller. The agent therefore acts as a cogni- 284

tive hub that binds perception and control through 285

natural language. 286

Representative Systems. Multimodal LLMs are 287

taking increasingly important roles in robotics. 288

Gemini Robotics (Gemini Robotics Team, 2025) 289

integrates perception, spatial reasoning, and tra- 290

jectory synthesis into one Gemini-2.0 backbone 291

(Google DeepMind, 2024), which serves as the em- 292

bodied brain. (Li et al., 2024c), in the same vibe as 293

Gemini Robotics, leverages the inherent common 294

sense and reasoning capabilities of these models 295

by fine-tuning adapter modules through a chain-of- 296

thought training paradigm. It endows the model 297

with accurate pose prediction and precise manip- 298

ulation abilities. These works collectively show 299

the trend that the multimodal LLM shifts to the 300

“cognitive hub” in robot systems. (Glocker et al., 301

2025) build a modular agent-orchestration system 302

for household object management robots. It uti- 303

lize Llama 3.2 Vision (Grattafiori et al., 2024) for 304

open-vocabulary perception to facilitate creating 305

grounded task plans, while the limitations of the 306

multmodal LLM were not discussed. 307

Somewhat similar to our work, (Li et al., 2024a) 308

investigates the eligibility of Multimodal LLMs to 309

serve as the “brain” for in-home robotics by provid- 310

ing a benchmark to compare models along the axes 311

of perception, visual reasoning and task planing. 312

Models like GPT-4V, Qwen-VL (Bai et al., 2025) 313

and DeepSeek-VL (Lu et al., 2024) were included, 314

but more recent releases were not covered—likely 315

due to the fact that the field is moving fast with new 316

models emerging in rapid succession. 317

Strengths and Limitations. Multimodal LLM 318

agents excel in (i) visual commonsense reasoning, 319

leveraging extensive language priors to generalize 320

to novel concepts beyond the reach of most spe- 321

cialist VLMs, and (ii) instruction following with 322

support for fine-grained visual understanding and 323

dynamic planning. Despite their expressive power, 324

however, these models are (iii) resource-intensive, 325
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Implicit
  7: “I need a tool to tighten screws.”

Explicit attribute
10: “Give me the rectangular can.”

Explicit relations:
  1: “Give me the marker next to the box.”
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Figure 3: Experimental setup for two case studies in a
cluttered tabletop environment. The top row shows ego-
centric video data collected for the manipulation case
study. The bottom row is an example setup for the in-
struction grounding task, including an annotated visual
prompt paired with complex instructions in three forms:
implicit, explicit with attributes and spatial references.

posing challenges for deployment—particularly on326

mobile robotic platforms.327

3 Case Studies on Instruction Grounding328

Natural language instruction grounding involves329

translating user intents into clear, actionable goals330

in a visual scene, which is a key capability for331

embodied AI (Gemini Robotics Team, 2025). Our332

case study offers empirical insights into the ground-333

ing performance of various models through the334

lens of challenging cross-modal disambiguation,335

and further examines the trade-offs introduced by336

model sizes and quantization—providing practical337

suggestions for efficient deployment.338

Benchmark Dataset. To minimize the impact339

of vision priors on measured performance, we340

design benchmarking scenarios using household341

objects placed on a tabletop. These objects are342

commonly represented in the training datasets of343

the foundation models, and the tabletop setup fea-344

tures minimal variation in lighting and camera345

angles—ensuring that the evaluation primarily re-346

flects grounding capabilities.347

We curated a new Instruction Grounding bench-348

mark dataset. In images containing multiple house-349

hold objects, each object is tagged with a number350

as the visual prompt, and each image is paired with351

language instructions crafted to test visual com-352

monsense and cross-modal disambiguation con-353

cerning attribute or spatial relationships – for “pick354

up the red-capped marker,” the color must be used355

to select one among a few markers; whereas “grasp356

MODEL EASY MEDIUM HARD AVG

Specialist VLMs
GroundingDINO-86M 0.518 0.357 0.349 0.408
GroundingDINO-145M 0.443 0.320 0.355 0.372

Closed-source Multimodal LLMs
Gemini2.5-Pro-Exp 0.904 0.765 0.793 0.821
Gemini2.0-Flash 0.884 0.738 0.678 0.767
GPT-4.5 0.837 0.723 0.739 0.766
GPT-4o 0.814 0.745 0.683 0.747
GPT-4o-mini 0.803 0.722 0.604 0.710
o4-mini 0.721 0.769 0.710 0.733
GPT-4V 0.470 0.476 0.467 0.471

Open-source Multimodal LLMs
Llama-3.2V-90B 0.722 0.701 0.657 0.693
Llama-3.2V-11B 0.583 0.569 0.547 0.566
Llama-4-Maverick 0.698 0.576 0.634 0.636
Llama-4-Scout 0.776 0.615 0.624 0.672
Qwen2-VL-72B 0.686 0.614 0.558 0.619
Gemma-3-27B 0.452 0.384 0.267 0.368
DS-Janus-Pro-7B 0.444 0.330 0.317 0.364
Phi-3.5-Vision-4.2B 0.291 0.357 0.205 0.284

Table 2: Object grounding performance of specialist
VLMs and multimodal LLMs (closed-source and open-
source) across varying scene complexity levels. Mod-
els are evaluated on easy, medium, and hard cluttered
scenes, with macro accuracy reported.

the cup in front of the screwdriver” requires reason- 357

ing over spatial relations (Fig. 3; Appendix). 358

Language ambiguity often leads to execution 359

failure in an embodied system. By comparing spe- 360

cialist VLMs and multimodal LLMs, we reveal 361

their concrete failure modes that further inform our 362

design implications in Sec. 5. 363

Zero-Shot Object Grounding. We begin with 364

a foundational question for instruction grounding: 365

Can FMs accurately recognize objects in cluttered 366

open scenes? Table 2 presents the performance 367

hierarchy for specialist VLMs and a range of multi- 368

modal LLMs, serving as a basis for deeper analysis 369

of ambiguity resolution in later sections. 370

• Despite their popularity in modular pipelines, 371

GroundingDINO achieve only 35–41% accu- 372

racy, as it struggles with featureless objects, e.g. 373

‘the can’. Moreover, it is brittle in open scenes, 374

e.g. a ‘screwdriver’ is constantly recognized as a 375

‘marker’, which instead is an easy case for multi- 376

modal LLMs which embodied large volume of 377

visual commonsense. 378

• Gemini 2.5-Pro takes the first place with 0.82, 379

followed by Gemini 2.0-Flash and GPT-4.5. 380

Open-source systems still trail the proprietary 381

tier. Llama 3.2-Vision 90B reaches about 84% 382
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Figure 4: Performance of complex instruction grounding across VLM–LLM pipelines and end-to-end multimodal
LLMs. Macro accuracy is reported across instruction types—implicit, attribute-based, and relationship-based.
Subfigures show (a) proprietary models and (b) open-source models along with their Int4-quantized variants.

of Gemini 2.5’s score, while the more recent383

Llama 4 releases did not outperform it.384

• Smaller community models (Gemma-27B, Phi-385

Vision) fall below the specialist-threshold, sug-386

gesting that they are still inadequate for fine-387

grained grounding in cluttered scenarios.388

• Last, when compute is a bottleneck, GPT-4o-389

mini (0.71) and Llama 3.2-Vision 11B (0.57)390

provide the best speed–accuracy trade-off, de-391

livering decent performance without incurring392

heavy memory footprint or high API costs.393

Zero-Shot Complex Instruction Grounding.394

This task is framed as a multiple-choice problem,395

where the model is asked to select the correct ob-396

ject index in a cluttered scene based on three types397

of natural language instructions: implicit, attribute-398

based, and relationship-based—each type probes a399

distinct grounding challenge. We evaluate a series400

of multimodal LLMs, using a modular VLM–LLM401

pipeline as a baseline. In this pipeline, the LLM402

parses the instruction to infer likely targets, queries403

GroundingDINO to detect candidate objects, and404

selects from the detected boxes—essentially guess-405

ing without directly perceiving the scene.406

• Implicit Instruction Grounding. Instructions like407

“I need a tool to tighten the screws” only refer408

to the target object implicitly, and the model409

needs to infer the target object using its com-410

mon sense priors. For such instructions, the411

modular VLM–LLM pipeline struggles to se-412

lect a screwdriver, lacking embedded affordance413

reasoning. In contrast, multimodal LLMs per-414

form well, reflecting strong visual commonsense.415

GPT-4.5 demonstrates exceptional performance416

(0.94), though its high inference cost—20× that 417

of Gemini 2.5 makes it cost-prohibitive for most 418

applications. 419

• Relational Reasoning Remains Challenging. 420

This category requires resolving referential am- 421

biguity through implicit chain-of-thought rea- 422

soning: grounding objects, modeling spatial rela- 423

tionships, and disambiguating targets (e.g., iden- 424

tifying the correct mug among many based on 425

“next to something”). Accuracy drops signif- 426

icantly nearly across all models. Only Gem- 427

ini 2.5-Pro and o4-mini achieve accuracy above 428

0.80—the former likely benefits from embod- 429

ied training data, while the latter demonstrates 430

strong reasoning capabilities. Notably, o4- 431

mini is a medium-sized model, yet it outper- 432

forms larger models like GPT-4.5 on relational 433

instructions—suggesting that structured reason- 434

ing may help close, or even overcome the perfor- 435

mance gap brought by different model scales. 436

• Instruction-Dependent Quantization Effects. 437

INT4 quantization reduces the model size by 438

over 70%, making it an attractive choice for de- 439

ployment. In Llama 3.2 Vision, we observe that 440

it disproportionately impacts implicit and rela- 441

tional instruction grounding, indicated by the 442

relative accuracy drop of 14%− 17%, while at- 443

tribute grounding is more robust with only 4% 444

loss. Despite reduced precision, quantized 11B 445

models offer a speed–accuracy balance for low- 446

resource settings. Our findings underscore the 447

need for fine-grained quantization strategies that 448

preserve the most important high-level reasoning 449

capabilities under resource constraints. 450
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MODELS LIBERO-SPATIAL LIBERO-OBJECT LIBERO-GOAL LIBERO-LONG AVERAGE

OpenVLA finetuned 84.7 88.4 79.2 53.7 76.5
π0 finetuned 96.8 98.8 95.8 85.2 94.15
π0-FAST finetuned 96.4 96.8 88.6 60.2 85.5
SpatialVLA finetuned-AC 88.2 89.9 78.6 55.5 78.1
NORA-finetuned 85.6 87.8 77.0 45.0 73.9
NORA-finetuned-AC 85.6 89.4 80.0 63.0 79.5
NORA-Long-finetuned 92.2 95.4 89.4 74.6 87.9

Table 3: Success rates (%) on the LIBERO Simulation Benchmark across four task suites, each evaluated over
500 trials. Results for SpatialVLA are from (Qu et al., 2025); Results for π0 are from (Black et al., 2024), using
pretrained models on LIBERO benchmarks. “AC” denotes the use of action chunking. The comparison in the
Appendix highlights its impact on performance. The finetuned π0 model achieves the highest performance.

4 Case Studies on Robotic Manipulation451

Now we shift the focus to skill adaptation. In452

an ideal deployment scenario, a pretrained VLA—453

already endowed with broad visuomotor skills—454

should be retargeted to a new manipulation task455

with minimal data and fast convergence. We use456

fine-tuning, the standard practice for adaptation, as457

a probing lever to evaluate how the state-of-the-art458

VLA models adapt to new tasks and deployment459

conditions.460

Given the scale of VLAs, we compare par-461

tial fine-tuning, which leverages our benchmark462

dataset (Appendix) and its inherent distribution463

bias to study convergence behavior, and full fine-464

tuning, which uses large-scale datasets to minimize465

the training loss. Our evaluation focuses on three466

key aspects: (i) training dynamics—how quickly467

and smoothly training converges; (ii) generaliza-468

tion—how well the resulting policies perform on469

various tasks; and (iii) robustness—how well the470

resulting policies handle environmental distractors.471

Our experiments highlight the performance of VLA472

models in different settings, offering practical sug-473

gestions for practitioners who have to adapt large474

VLAs under tight data, time and compute budgets.475

Skill Adaptation Performance. Our fine-tuning476

process consists of two stages: (1) To assess con-477

vergence behavior under distribution shift, we col-478

lected a custom dataset (see Appendix for details)479

with a distribution bias relative to common pretrain-480

ing datasets included in the Open-X-embodiment481

(O’Neill et al., 2024) and LIBERO datasets (Liu482

et al., 2023). We used it to partially fine-tune sev-483

eral recent VLA models and trained Diffusion Pol-484

icy (DP) and Action Chunking Transformer (ACT)485

from scratch. The results are shown in Fig. 5; (2)486

For full fine-tuning, we leveraged larger bench-487

mark datasets, Open-X-embodiment and LIBERO, 488

to fully fine-tune RT-1, OpenVLA, SpatialVLA 489

and NORA, and compared their performance. The 490

results are shown in Fig. 6. 491

• Partial Fine-tuning. Through the experiments 492

we observe that DP and ACT exhibit high sta- 493

bility with low variance during training. In con- 494

trast, generalist models such as OpenVLA and 495

π0 require significantly more training iterations 496

to attain comparable accuracy and exhibit greater 497

variance, which can be attributed to their large 498

model capacity. Notably, although DP achieves 499

lower loss by fitting directly to noise, it still de- 500

mands more training steps to generate coherent 501

actions, even after loss convergence. 502

• Full Fine-tuning. These fully fine-tuned VLA 503

models are evaluated on three tasks: (1) out-of- 504

distribution (OOD) object manipulation, (2) spa- 505

tial relationship reasoning and (3) multi-object 506

pick-and-place tasks. In task (1), both NORA 507

and OpenVLA succeed, while SpatialVLA fails 508

due to incorrect affordance point estimation. 509

In task (2), NORA correctly follows instruc- 510

tions, while OpenVLA fails and SpatialVLA ex- 511

hibits unstable performance. In task (3), NORA 512

achieves successful execution while other mod- 513

els fail to complete the task reliably. 514

Sim2Real Adaption Performance. We compare 515

model performance on simulation benchmarks and 516

real robot deployments. A significant drop in per- 517

formance is observed during transfer from simu- 518

lation to the real world (Table 3; Appendix Ta- 519

ble 4). The simulation benchmark includes 30 520

procedurally-generated, disentangled tasks requir- 521

ing nuanced spatial reasoning (LIBERO-Spatial), 522

object understanding (LIBERO-Object), and goal 523

interpretation (LIBERO-Goal), as well as 10 long- 524

horizon, entangled tasks (LIBERO-Long). 525
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Figure 5: Results for partial fine-tuning of VLA mod-
els including OpenVLA and π0, alongside results from
training Diffusion Policy and ACT (Action Chunking
Transformer) from scratch on our dataset. VLA models
require more training epochs to converge and exhibit
higher variance in performance.

Robustness to Perturbations. To evaluate ro-526

bustness, we introduced distractor objects into the527

environment. As shown in Table 5, both Open-528

VLA and NORA exhibit substantial performance529

degradation in the presence of these perturbations,530

highlighting their sensitivity to novel conditions.531

Key Takeaways. Current VLA models still face532

significant limitations in the following areas:533

• Adaptation and Generalization. A generic534

robotic policy is expected to quickly adapt to535

datasets with distributional shifts. However, ac-536

cording to the partial fine-tuning results, due to537

the large model capacities and the limited size of538

task-specific datasets, these VLA models failed539

to achieve fast adaptation. While full fine-tuning540

offers improved performance, it requires exten-541

sive data and long training time, which are im-542

practical for many real-world scenarios.543

• Robustness. Robustness to distribution shifts544

(without finetuning) is a critical challenge. Re-545

sults reveal substantial performance degradation546

both when encountering unseen objects and dur-547

ing sim-to-real transfer, highlighting the fragility548

of current VLA models in dynamic and unpre-549

dictable environments.550

These findings suggest that while VLA models551

hold promise, they have limitations in data effi-552

ciency, adaptation speed, and robustness to make553

them reliable for real-world robotic applications.554

5 Constraints and Future Directions555

Despite the promise of foundation models for en-556

abling embodied agents to perform daily tasks,557
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Figure 6: Success rates of fully fine-tuned VLA models
on out-of-distribution object manipulation (OOD Ob-
ject), spatial relationship reasoning (Spatial) and multi-
object pick-and-place (Multiple) tasks. NORA achieves
the highest performance.

the following critical constraints still hinder their 558

widespread deployment: 559

Data Scarcity. In contrast to natural language 560

datasets, which are readily sourced from internet, 561

robotic datasets are significantly more expensive 562

due to high hardware costs and intensive labor dur- 563

ing data acquisition. A promising direction for fu- 564

ture research is developing more data-efficient mod- 565

els. In addition, exploring high-fidelity simulation 566

environments and developing robust sim-to-real 567

transfer techniques could mitigate data scarcity. 568

Limited Generalization Capability. A key limi- 569

tation of current VLA models is their limited ability 570

to generalize to out-of-distribution concepts that 571

were not well-represented during training, which is 572

a consequence of the aforementioned data scarcity. 573

Many models depend heavily on large-scale paired 574

datasets, which often exhibit biases and limited di- 575

versity in aspects such as camera viewpoints, light- 576

ing conditions and specific robotic embodiments. 577

This results in fragile performance when deployed 578

in real-world or domain-specific scenarios. Further- 579

more, these models struggle with fine-grained spa- 580

tial reasoning and temporal understanding, hinder- 581

ing them from accurately aligning language with 582

complex visual scenes or dynamic events. 583

Efficient Inference. Deploying large-scale mod- 584

els on robotic platforms introduces significant com- 585

putational challenges, primarily in inference speed 586

and GPU RAMs. This underscores the importance 587

of smaller models that can efficiently generate ac- 588

tions without significant performance degradation. 589

This issue is particularly pronounced in autoregres- 590

sive models, and diffusion models are less affected. 591
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Limitations592

When evaluating the generalization capabilities of593

Vision-Language Alignment (VLA) models, this594

paper primarily focuses on different tasks without595

extensively addressing their generalization across596

varying robot morphologies. Although relatively597

few works have specifically targeted this aspect, it598

remains a significant challenge in deploying VLA599

models in real-world applications. Robots with600

different morphologies, such as bimanual manipu-601

lators, humanoid robots, and autonomous vehicles,602

require distinct operational protocols and safety603

considerations. The absence of a generic robot pol-604

icy that can adapt seamlessly across diverse mor-605

phologies limits the practical generalization poten-606

tial of VLA models and hinders their deployment607

as universal robotic policies.608

In addition, this paper does not explore the abil-609

ity of VLA models to ground instructions involv-610

ing open-ended or ambiguous commands. Current611

VLA models are largely trained on curated datasets,612

which allow them to learn mappings from instruc-613

tions to specific actions. However, this reliance614

constrains their ability to truly understand instruc-615

tions at the semantic level. As a result, when fac-616

ing out-of-distribution or vague commands, these617

models often struggle to infer reasonable actions.618

Addressing this limitation will require integrating619

more advanced instruction-understanding modules620

into the VLA pipeline to improve their robustness621

in handling ambiguous or under-specified input.622
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A Details for case studies on robotic809

manipulation810

A.1 VLA Evaluation Dataset Construction811

To analyze the convergence behavior of various812

VLA models under distribution shift, we con-813

structed a custom cluttered tabletop environment814

using a UR5 robotic arm equipped with a wrist-815

mounted RealSense RGB-D camera, which is dis-816

tinct from any existing settings in the Open-X-817

embodiment dataset. Demonstration data for a818

screwdriver-picking task among distractor objects819

was collected using a SpaceMouse for teleopera-820

tion1.821

We collected 163 demonstration episodes, each822

beginning with a randomized initial robot pose823

followed by an attempt to grasp the screwdriver.824

OpenVLA and π0 were partially fine-tuned on this825

dataset, while Diffusion Policy (DP) and Action826

Chunking Transformer (ACT) were trained from827

scratch.828

Due to the limited size of our custom dataset,829

full fine-tuning of RT-1, OpenVLA, SpatialVLA,830

and NORA was performed using the Open-X-831

embodiment and LIBERO datasets. We evalu-832

ated model performance on both a real-world Wid-833

owX robotic platform and the LIBERO simulation834

benchmark.835

A.2 Fine-tuning details for VLA836

Partial fine-tuning was conducted on a single837

NVIDIA A6000 GPU (48 GB VRAM) over a pe-838

riod of three days. To ensure a fair comparison, a839

batch size of 1 was used across all models. The840

results are presented in Fig. 5.841

Full fine-tuning of RT-1, OpenVLA, Spa-842

tialVLA, and NORA was conducted on a com-843

pute node equipped with 8×H100 GPUs. The844

fine-tuned models were evaluated on 9 diverse real-845

world manipulation tasks, as shown in Fig. 7. Suc-846

cess rates are summarized in Table 4, demonstrat-847

ing NORA’s superior policy generation capabilities848

across three task categories: out-of-distribution ob-849

ject grasping, spatial reasoning, and multi-object850

manipulation.851

1The dataset will be released upon acceptance.

A.3 Impact of Action Chunking 852

A.3.1 Action Chunking Performs Poorly on 853

WidowX. 854

To investigate the effectiveness of action chunk- 855

ing, we selected NORA-LONG and SpatialVLA 856

for evaluation. Tasks were chosen from three cat- 857

egories: (1) “put the carrot in the pot,” (2) 858

“put the red bottle and hamburger in the 859

pot,” and (3) “put the pink toy at the right 860

corner.” In initial experiments, all predicted ac- 861

tions (5 actions for NORA-LONG, 4 actions for 862

SpatialVLA) were executed sequentially without 863

replanning. This frequently caused the WidowX 864

robot to crash into the environment due to the ac- 865

cumulation of overly large movements. 866

Subsequently, we modified the execution policy 867

to only perform the first action in each predicted 868

chunk. This adjustment resolved the collision issue 869

and NORA -LONG achieved an 80% success rate 870

on the “put the carrot in the pot” task. How- 871

ever, on multi-object pick-and-place tasks, NORA- 872

LONG consistently stopped after placing the first 873

object, resulting in a 0% final success rate. For the 874

spatial reasoning task, NORA-LONG achieved a 875

70% success rate on “put the pink toy at the 876

right corner.” 877

A.3.2 Action chunking improves performance 878

in simulation. 879

We hypothesize that action chunking is more ef- 880

fective at higher control frequencies. For example, 881

Diffusion Policy generates commands at 10 Hz, 882

which are then interpolated to 125 Hz for execu- 883

tion. Similarly, OpenVLA-OFT+ employs action 884

chunking and shows improved performance in real- 885

world ALOHA tasks, which run at 25 Hz. 886

Since our real robotic platforms do not support 887

high-frequency control, we tested this hypothesis 888

in the LIBERO simulation environment (20 Hz). 889

We fine-tuned both NORA and NORA-LONG on 890

this benchmark with an action chunk size of 5, 891

producing two variants: NORA-finetuned-AC and 892

NORA-Long-finetuned. 893

Results show that NORA-finetuned-AC signif- 894

icantly outperforms NORA-finetuned across all 895

LIBERO benchmarks, with a higher average suc- 896

cess rate. Notably, NORA-Long-finetuned outper- 897

forms all baseline models (see Table 3), highlight- 898

ing the benefits of pretraining with action chunking 899

and its transferability to long-horizon tasks. How- 900

ever, it is important to note that LIBERO is a simu- 901
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move the banana close to the pan

put the red bottle and the 
hamburger in the pan

put the carrot and hotdog in pot

put the corn and carrot in pan

put the pink toy at the right corner put carrot in pot

put the blue cube on the right plate

put banana in pot

put the blue cube on the plate

Figure 3: Real-world robot environments and task setups. We evaluate NORA across 9 diverse tasks to assess
its instruction understanding, spatial reasoning, and multi-task motion planning capabilities.

SigLIP(Zhai et al., 2023). It is pretrained on the Open-X-Embodiment dataset (Collaboration et al., 2023),
which comprises 970k real-world robot demonstrations.

SpatialVLA (Qu et al., 2025): A VLA model focused on spatial understanding for robot manipulation,
incorporating 3D information such as spatial movement. It learns a generalist policy for spatial manipulation
across diverse robots and tasks. SpatialVLA predicts four actions at a time.

TraceVLA (Zheng et al., 2024): A VLA model enhancing spatial-temporal reasoning via visual trace
prompting. Built by fine-tuning OpenVLA on robot manipulation trajectories, it encodes state-action history
as visual prompts to improve manipulation performance in interactive tasks.

RT-1 (Brohan et al., 2023c): A scalable Robotics Transformer model designed to transfer knowledge from
large task-agnostic datasets. Trained on diverse robotic data, RT-1 achieves a high level of generalization

7

Figure 7: Real-world robot environments and task setups. We evaluate these models across 9 diverse tasks to assess
its instruction understanding, spatial reasoning, and multi-task motion planning capabilities.
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Category Task RT-1 OpenVLA SpatialVLA NORA

Multiple objects
Put the red bottle and the hamburger in the pan 0 20 0 40
Put the carrot and hotdog in pot 0 0 0 30
Put the corn and carrot in the pan 0 30 0 30

OOD object
put carrot in pot 0 80 20 90
Put banana in pot 1 40 0 90
Put the blue cube on the plate 0 50 0 70

Spatial
Put the pink toy at the right corner 0 60 30 60
Put the blue cube on the right plate 0 30 0 20
Move the banana close to the pan 30 50 50 80

Average 4.4 40 11.1 56.7

Table 4: Task performance comparison across different categories and models.

Preprint

Table 2: Experimental results (% success rate) of NORA and baselines on LIBERO Simulation Benchmark.
Each method is evaluated on four task suites over 500 trials. Fine-tuned NORA-Long achieves the best
overall performance. Results marked with ∗ are from SpatialVLA (Qu et al., 2025). AC indicates the use of
action chunking strategy.

Models LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

OpenVLA fine-tuned ∗ 84.7 88.4 79.2 53.7 76.5
TraceVLA fine-tuned ∗ 84.6 85.2 75.1 54.1 74.8
NORA-fine-tuned (Ours) 85.6 87.8 77 45 73.9

SpatialVLA fine-tuned-AC ∗ 88.2 89.9 78.6 55.5 78.1
NORA-fine-tuned-AC (Ours) 85.6 89.4 80 63 79.5
NORA-Long-fine-tuned (Ours) 92.2 95.4 89.4 74.6 87.9

put the blue cube on the plateput banana in pot put carrot in pot

W
ithoutdistraction

W
ith

distraction

Figure 5: Comparison of tasks with and without distraction.

Improved performance in simulated environment. To economically evaluate the adaptability of NORA
to new robot embodiments, we employ LIBERO Simulation Benchmark (Liu et al., 2023). Firstly,
NORA-fine-tuned are obtained by fine-tuning the pretrained NORA on the LIBERO training dataset.
The fine-tuning objective of NORA-LONG is long-horizon planning, predicting the next five actions at each
step, instead of only the next action for NORA-fine-tuned.

As shown in Table 2, NORA-LONG achieves the highest average success rate (87.9%) across all methods,
demonstrating strong generalization in both short- and long-horizon scenarios. Among the fine-tuned baselines
without action chunking , OpenVLA achieves the best average (76.5%). NORA, demonstrates comparable
performance to OpenVLA in spatial, object, and goal-related tasks, but it falls short in long-horizon scenarios.

Notably, when both NORA variants are fine-tuned with action chunking, there is a significant increase in
the LIBERO-Long success rate, emphasizing the importance of action chunking for long-horizon tasks.
NORA-LONG especially excels on LIBERO-Long, achieving a success rate of 74.6%, showcasing its ability
to reason over extended temporal windows. These results highlight the effectiveness of our model in adapting
to new environments and reinforce the utility of windowed training for long-horizon policy generalization.".

9

Figure 8: Comparison of tasks with and without distrac-
tion.

Table 5: Average Success Rate (%) without (w/o) and
with (w/) Distractors

Model w/o Distractors w/ Distractors

OpenVLA 56.7 50
NORA 83.3 56.7

lation environment and may not reflect real-world902

performance at high control frequencies.903

A.4 Robustness to Disturbance904

To evaluate robustness, we selected three straight-905

forward tasks (shown in Fig. 8) and introduced dis-906

tractor objects into the environment. Initially, both907

OpenVLA and NORA performed well. However,908

their success rates declined significantly with the in-909

troduction of distractions. This highlights the sensi-910

tivity of current VLA models to out-of-distribution911

disturbances. The average success rates across the912

three tasks are presented in Table 5, while the de-913

tailed number of successful executions out of 10914

trials is summarized in Table 6.915

TASK OpenVLA NORA

without Distraction
put carrot in pot 8 9
put banana in pot 4 9
put the blue cube on the plate 5 7

with Distraction
put carrot in pot 6 8
put banana in pot 6 4
put the blue cube on the plate 3 5

Table 6: Comparison of task performance between
OpenVLA and NORA under conditions with and with-
out distraction. Each value denotes the number of suc-
cessful executions out of 10 trials.

A.5 Modularized Testbed for Evaluating 916

VLMs 917

To facilitate the evaluation of different VLMs 918

in robotic manipulation, we developed a voice- 919

controlled testbed using a UR5 robotic arm2. The 920

system architecture, shown in Fig. 9, comprises the 921

following five modules: 922

• Speech Transcription: Powered by Microsoft 923

Azure’s speech recognition service. 924

• Task Decomposition: Based on GPT-3.5 and 925

GPT-4 using prompting paradigms adapted from 926

ChatGPT for Robotics. 927

• Object Detection: Utilizes GroundingDINO 928

and OWL-ViT for object detection. 929

• Object Segmentation: Employs Segment Any- 930

thing Model (SAM) and FastSAM for segment- 931

ing detected objects. 932

2The source code will be released upon acceptance.
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Azure speech 
recognition

GPT-based 
decomposer

Object 
detection

Grasp object

Drop object

Subtasks

…

Confirm with user

Audio 
input

Text Detection result
（3D position)

3D positionYes

No Re-recognize

Figure 9: The system architecture of the testbed for
VLMs.

Words

Positional:
left, right, be-
tween, beside, near,
far, front, behind

Directional:
aligned with, per-
pendicular to

Instruction
hand over the
screwdriver [on the
left of] the red ball.

pass me the screw-
driver [aligned
with] the marker.

Table 7: Template words and corresponding examples
of generated relation-based instructions for case studies.

• Manipulation: Low-level actions are generated933

by GraspAnything or GraspNet.934

This modular testbed enables rapid integration935

and benchmarking of different models within a real936

robotic system.937

B Details for Case Studies on Instruction938

Grounding939

B.1 VLM Evaluation Dataset Construction940

To evaluate the capabilities of VLMs, we developed941

a dataset specifically designed to test their ability to942

identify objects based on explicit attributes, explicit943

location relations, and functions. Additionally, the944

dataset includes multi-turn questions that refer to945

more than one object, requiring VLMs to ask clari-946

fying questions to identify the correct object.947

• Explicit Attributes. In this category, instruc-948

tions prompt VLMs to identify objects belong-949

ing to a category with multiple instances, where950

each instance can be uniquely identified by ex-951

plicitly mentioned attributes. For example, in952

Figure 3, the beige mug and the gray mug are in-953

cluded because they are unique when described954

with attributes. However, objects like the black955

mug or scissors are excluded. This is because956

there are two identical black mugs, making them957

non-unique, and there is only one pair of scissors,958

which does not require attributes for identifica-959

tion.960

Figure 10: Distribution of Instruction Types

• Explicit Spatial Relationships. In this category, 961

instructions describe objects by their spatial re- 962

lationships to other objects in the image. We en- 963

sure that each referenced object is unique within 964

the image. For example, the measuring cup to 965

the right of the screwdriver uniquely identifies 966

the object. These instructions are designed to test 967

the VLMs’ ability to comprehend and resolve 968

location-based relationships. 969

• Functions. Here, objects are not explicitly men- 970

tioned by name or attributes but are instead de- 971

scribed by their functions. This category evalu- 972

ates the VLMs’ ability to infer the correct object 973

based on its use. For example, the dataset in- 974

cludes instructions referring to objects like scis- 975

sors, screwdrivers, and rulers based on their re- 976

spective functions. 977

• Multi-Turn Conversations. This category in- 978

volves instructions referencing multiple objects 979

in the same image. For example, Figure 3 shows 980

two black mugs. In such cases, VLMs are ex- 981

pected to ask clarifying questions to gather more 982

specific information to identify the intended ob- 983

ject. 984

To ensure high-quality data, we employed a 985

human-in-the-loop process to verify the outputs 986

of VLMs and LLMs: 987

• Initial Object Identification: We used GPT- 988

4o to identify objects in an image and referring 989

them by type, explicit attributes, and detailed 990

location relations. 991

• Human Verification. The authors of this pa- 992

per reviewed and modified the outputs to en- 993

sure their correctness. 994

• Instruction Generation. After verification, 995

GPT-4 was tasked with generating simple, 996

clear instructions for different objects. 997
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Easy Medium Hard
im attr rel im attr rel im attr rel

VLM+GPT-4 0.05 0.516 0.131 0.01 0.336 0.186 0 0.318 0.174
GPT-4o-0513 0.850 1.000 0.778 0.819 0.948 0.680 0.901 0.697 0.469
GPT-4o-mini 0.750 0.717 0.550 0.764 0.771 0.596 0.750 0.382 0.248
GPT-4 0.650 0.750 0.598 0.750 0.737 0.662 0.625 0.417 0.455
Qwen2-VL-72B 0.800 0.917 0.830 0.792 0.756 0.738 0.875 0.700 0.529
Llama-3.2V-90B 0.750 0.850 0.704 0.708 0.853 0.711 0.875 0.491 0.521
Llama-3.2V-90B-Q4 0.800 0.667 0.598 0.625 0.719 0.554 0.542 0.464 0.300
Llama-3.2V-11B 0.650 0.667 0.631 0.764 0.710 0.556 0.833 0.536 0.342
Llama-3.2V-11B-Q4 0.650 0.567 0.502 0.694 0.757 0.555 0.542 0.498 0.450

Table 8: Performance Metrics Across Easy, Medium, and Hard Tasks. im: implicit instructions. attr: explicit
attributes. rel: relative relations.

• Final Review. These instructions underwent998

another round of verification to ensure clarity999

and accuracy.1000

As a result, we have created a high-quality1001

dataset consisting of 30 images and 473 instruc-1002

tions, with a detailed breakdown of each instruction1003

type presented in Fig. 10.1004

B.2 Failure Cases of Specialist VLM Pipelines1005

Grounding DINO, despite popular for zero-shot de-1006

tection, is not robust in open scenes. It successfully1007

detected “blue ball” while failed to detect “ball”,1008

indicating its reliance on visual features. Simi-1009

larly, featureless metal cans pose a great challenge1010

for Grounding DINO, which were almost omit-1011

ted in the detection results. For complex instruc-1012

tion grounding, Grounding DINO and GPT-4 were1013

chained together to “guess” the target by the LLM1014

based on the candidate bounding boxes. The failure1015

cases were illustrated in the Fig. 11 and Fig. 12.1016
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(a) (b)

Figure 11: Examples of Instruction Grounding. (a) “the marker on the left”, (b) “the marker aligned with the ruler”.

(a) (b)

(c) (d)

Figure 12: Examples of Object Grounding. (a) “ball”, (b) “screwdriver”, (c) “marker pens”, (d) “blue ball”.
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