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Abstract

Foundation models (FMs) are increasingly used
to bridge language and action in embodied
agents, yet the operational characteristics of dif-
ferent FM integration strategies remain under-
explored—yparticularly for complex instruction
following and versatile action generation in
changing environments. This paper examines
three paradigms for building robotic systems:
end-to-end vision-language-action (VLA) mod-
els that implicitly integrate perception and plan-
ning, and modular pipelines incorporating ei-
ther vision-language models (VLMs) or multi-
modal large language models (LLMs). We eval-
uate these paradigms through two focused case
studies: a complex instruction grounding task
assessing fine-grained instruction understand-
ing and cross-modal disambiguation, and an
object manipulation task targeting skill transfer
via VLA finetuning. Our experiments in zero-
shot and few-shot settings reveal trade-offs in
generalization and data efficiency. By explor-
ing performance limits, we distill design impli-
cations for developing language-driven physi-
cal agents and outline emerging challenges and
opportunities for FM-powered robotics in real-
world conditions.

1 Introduction

Natural language is emerging as a universal in-
terface for embodied robotic systems. Recent
foundation models (FMs) allow robots to follow
free-form instructions in perception, reasoning,
and motor commands, offering the promise of
language-grounded autonomy. They include multi-
modal large language models (LLMs) (Grattafiori
et al., 2024; Bai et al., 2025; Lu et al., 2024), vi-
sion—language models (VLMs) (Liu et al., 2024a;
Ravi et al., 2025; Ren et al., 2024; Li et al., 2023),
and vision—language—action (VLA) models (Kim
et al., 2024; Zheng et al., 2025; Qu et al., 2025; Bu
et al., 2025).
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Figure 1: Challenges of foundation models in embodied
robotic systems include cross-modal instruction ground-

ing, generalization across environments and morpholo-
gies, and data-efficient adaptation for the real world.
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However, turning the promise of language-
grounded autonomy into deployable systems is
highly challenging. Robots must (i) map ambigu-
ous instructions to the physical world (instruction
grounding), (ii) execute reliably across novel ob-
jects, scenes, and robot morphologies (generaliz-
able execution), and (iii) achieving the aforemen-
tioned goals with limited data (efficient adapta-
tion). How well different FM integration strategies
meet these competing requirements remains under-
explored (Fig. 1).

To our best knowledge, this work delivers the
first head-to-head empirical comparison of three
prevalent integration paradigms: end-to-end VLAs
that directly map language and vision to actions,
multimodal LLM agents that orchestrate percep-
tion and control through tool calls, and modular
VLM pipelines that couple perception-specialist
FMs with task-specific planners (Fig. 2; Table 1).

We evaluate these paradigms through tabletop
case studies designed to highlight their complemen-
tary strengths and limitations. Specifically, we con-
sider two task categories: (i) Complex Instruction
Grounding, which probes fine-grained understand-
ing and cross-modal disambiguation (Sec.3); and
(i1) Object Manipulation, which measures the abil-
ity to transfer learned skills after VLA fine-tuning



under distribution shifts, complemented by com-

parative and ablation studies (Sec.4).

Our zero-shot grounding experiments reveal dis-
tinct trade-offs across integration strategies. VLM
pipelines prioritize interpretability and data effi-
ciency, sacrificing flexibility and peak performance.
While underperforming on handling complex in-
struction grounding, they deliver moderate perfor-
mance in object grounding—using less than 1%
of the parameters required by multimodal LLMs.
In contrast, multimodal LLM agents generalize
better on complex instructions but incur signifi-
cantly higher inference costs. Notably, smaller
reasoning-focused models such as GPT-40-mini
can even outperform larger models like GPT-40
on certain tasks. VLAs, with their tightly coupled
perception-to-action pathways, support streamlined
action generation, yet struggle to reason about rare
or abstract concepts. We further examine the trade-
off between model size and performance by analyz-
ing quantization effects on open-source multimodal
LLMs. These findings offer practical guidance for
developing language-driven robotic systems under
real-world constraints.

Within the VLA paradigm, we categorize
models by their action generation mechanisms—
autoregressive (Vaswani et al., 2017; Kim et al.,
2024; Hung et al., 2025) and diffusion-based ap-
proaches (Ho et al., 2020; Chi et al., 2023; Reuss
et al., 2024; Wen et al., 2024). We evaluate their
adaptability through fine-tuning under distribution
shifts, mirroring real-world deployment scenarios.
To assess generalization, we analyze robustness to
environmental perturbations and variation in object
appearance and robot morphology.

To summarize, the main contributions of this
work are as follows:

* To our best knowledge, we present the first sys-
tematic comparison of end-to-end VLA, modular
VLM, and modular multimodal LLM architec-
tures on a same set of embodied tasks.

* We release a dataset and accompanying code
that supports evaluation of complex instruction
grounding and manipulation transfer—covering
accordance comprehension, cross-modal reason-
ing, and motor adaptation.

* We benchmark state-of-the-art VLAs and mul-
timodal LLMs, offering timely insight into the
capabilities and failure modes of modern FMs in
robotics.

* We distill actionable trade-offs that practition-
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Figure 2: Foundation model integration strategies in
language driven robots: (a) End-to-end VLA models,
(b) Modular VLM pipelines, and (c) Multimodal LLM
agents. Each strategy reflects a distinct interface be-
tween language, perception, and control.

ers can apply when choosing an FM stack for
language-driven embodied agents.

* We release all code, data to facilitate repro-
ducible embodied Al studies; We also release a
complete, end-to-end claw-machine robot sys-
tem to demonstrate FM integrations in real-
world applications.

2 Foundation Model Integration for
Language-Guided Robotics

Concerning how FMs are integrated into robot sys-
tems, we identified the following three types of
integration strategies (Fig. 2). In the following,
We briefly describe each strategy along with its
respective advantages and limitations.

2.1 End-to-End Vision-Language-Action

Definition. Vision-Language-Action  (VLA)
models operate in an end-to-end manner, directly
translating visual observations and natural lan-
guage instructions into low-level actions without
decoupled perception, language, and control mod-
ules (Fig. 2a). Two mainstream paradigms have
emerged within this framework: auto-regressive
and diffusion-based action generation. Through
large-scale pretraining, these models acquire broad
capabilities that support generalization across
tasks. However, efficient adaptation to real-world
settings remains a significant challenge.
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Table 1: Comparison of foundation model integration strategies in embodied robotic systems, highlighting differ-
ences in instruction grounding, manipulation generalization, and adaptation methods.

Autoregressive VLA Models. Autoregressive
VLA models typically process language and vi-
sual inputs, employing various tokenization strate-
gies to convert multimodal data into a unified la-
tent space. Then the transformer-based decoder
generates actions step-by-step in an autoregressive
manner conditioned on the input context and previ-
ously generated actions, allowing structured action
generation and planning.

Building on the previous groundbreaking models
such as RT-1 (Brohan et al., 2023), RT-2 (Zitkovich
et al., 2023) and VIMA (Jiang et al., 2023), Open-
VLA (Kim et al., 2024) emerges as an impor-
tant open-source method, combining a fine-tuned
Llama 2 (7B) model with DinoV2 and SigLIP
for visual tokenization, pretrained on the Open-
X-Embodiment dataset (O’Neill et al., 2024) con-
sisting of 970k real-world robot demonstrations.
TraceVLA (Zheng et al., 2025) improves Open-
VLA with visual trace prompting to enhance spa-
tiotemporal awareness. Emma-X (Sun et al., 2024)
further refines dataset quality using a trajectory seg-
mentation and Embodied Chain-of-Thought reason-
ing. This work is followed by NORA (Hung et al.,
2025), which uses Qwen-2.5-VL-3B as backbone
and pretrained on the Open-X-Embodiment dataset.
In parallel, other efforts integrate tactile sensing
into robot perception (Yang et al., 2024; Gao et al.,
2024; Zhao et al., 2024), supporting more generic
robot policies. Other recent developments include
distilling spatial representations from VLMs, e.g.,
Gemini-Robitics (Gemini Robotics Team, 2025),
and enriching training with additional features,
such as 3D spatial relationships in Spatial VLA (Qu
et al., 2025), task-centric latent space in UniVLA
(Bu et al., 2025), and integrating multimodal under-
standing with action prediction in ChatVLA (Zhou
et al., 2025) and UP-VLA (Zhang et al., 2025).

Diffusion-based VLA Models. Diffusion-based
VLA models formulate action generation as a de-
noising process over latent trajectories. Given a

noisy version of a full action sequence, the model
learns to recover the true trajectory conditioned on
language and vision.

Diffusion Policy (DP) (Chi et al., 2023) pio-
neered the use of diffusion model for visuomotor
policy representation, laying the foundation for sub-
sequent multimodal approaches. Octo (Octo Model
Team et al., 2024) uses conditional diffusion decod-
ing for action sequence prediction. Rather than
lightweight diffusion heads, (Reuss et al., 2024;
Wen et al., 2024; Li et al., 2024b) use larger and
more dedicated diffusion policy modules the as ac-
tion decoder. DTP (Fan et al., 2025) introduces
a trajectory-level guidance to enhance diffusion-
based planning. Recent works such as mg (Black
et al., 2024) and 7y 5 (Intelligence et al., 2025)
integrate a pretrained VLM with a flow-matching-
based action expert to model action distributions.
These models often utilize FAST (Pertsch et al.,
2025) for efficient compressed action tokenization.
HybridVLA (Liu et al., 2025) unifies diffusion
and autoregressive action prediction within a sin-
gle LLM-based framework. A growing focus is
placed on adapting VLA models to diverse embod-
iments including bimanual manipulation and hu-
manoid robots, such as RDT-1b (Liu et al., 2024b),
DexVLA (Wen et al., 2025) and GROOT N1 (Bjorck
et al., 2025).

Strengths and Limitations. VLA models pro-
vide a unified, end-to-end framework for robotic
manipulation, (i) seamlessly integrating visual, lan-
guage, and action modalities. Leveraging large-
scale pretraining and fine-tuning, these models ex-
hibit (ii) strong potential for generalizing across
diverse manipulation tasks and robotic embodi-
ments. However, their performance is constrained
by the (iii) limited availability of high-quality, di-
verse robotic datasets. Pretraining can also intro-
duce biases from training distributions, leading to
(iv) degraded performance in out-of-distribution
scenarios, such as novel tasks or different robotic



embodiments. Therefore, despite their potential,
further work is needed to enhance their robustness
and generalization across real-world settings, for
example, efficient adaptation using few-shot data.

2.2 Modular Vision—Language Pipelines

Definition. In a modular vision-language
pipeline (Fig. 2b), perception is handled by a spe-
cialist vision language model (VLM) that outputs
symbolic scene information, typically grounded
2-D / 3-D bounding boxes, segmentation masks,
or referring expression pointers. A downstream
planner or policy module then consumes this
structured representation to generate low-level
actions. The language channel is therefore
disentangled from motor control, allowing each
module to be tuned independently, thus preserving
the transparency and plug-and-play advantages of
classical planning.

Representative systems. Language-promptable
specialist VLMs endow modular stacks with zero-
shot semantics for various robotics pipelines.
(Bandyopadhyay et al., 2024) demonstrates an
end-to-end sample collection robot system that
uses GroundingDINO (Liu et al., 2024a) to lo-
calize objects and refines each box with SAM
(Ravi et al., 2025) masks before passing them to
classical grasp-and-place controllers, illustrating
this paradigm’s practicality in real deployments.
(Werby et al., 2024) aggregates these modules into
a floor-room-object hierarchy, showcasing their
usage in long-horizon language-conditioned navi-
gation across multi-story buildings.

Strength and Limitations. Modular VLM
pipelines strike a balance between transparency
and adaptability, and delivers practical benefits:
(i) interpretability—detections can be inspected;
(i1) lightweight—the model parameters are usually
around 100M~600M, approximately 1% ~ 6%
the size of LLaMA 3.2 Vision 11B (Grattafiori
et al., 2024). On the other hand, it is limited at
(i) interaction rigidness compared with more flexi-
ble multimodal LLMs, and (ii) pipeline brittleness
where perception errors propagate without mitiga-
tion (Fig. 2b; Table 1). Their success hinges on
robust open-vocabulary grounding—precisely the
capability our Instruction Grounding case study
stresses in Section 3.

2.3 Multimodal LLM Agents as Orchestrators

Definition. Multimodal LLM agents place a
large, tool-calling language model at the centre
of the control loop (Fig. 2c). The LLM receives
raw user utterances, selectively invokes vision tools
(e.g., a detector or depth estimator) via function
calls, reasons over their outputs in-context, and
finally issues high-level action primitives to a low-
level controller. The agent therefore acts as a cogni-
tive hub that binds perception and control through
natural language.

Representative Systems. Multimodal LLMs are
taking increasingly important roles in robotics.
Gemini Robotics (Gemini Robotics Team, 2025)
integrates perception, spatial reasoning, and tra-
jectory synthesis into one Gemini-2.0 backbone
(Google DeepMind, 2024), which serves as the em-
bodied brain. (Li et al., 2024c¢), in the same vibe as
Gemini Robotics, leverages the inherent common
sense and reasoning capabilities of these models
by fine-tuning adapter modules through a chain-of-
thought training paradigm. It endows the model
with accurate pose prediction and precise manip-
ulation abilities. These works collectively show
the trend that the multimodal LLM shifts to the
“cognitive hub” in robot systems. (Glocker et al.,
2025) build a modular agent-orchestration system
for household object management robots. It uti-
lize Llama 3.2 Vision (Grattafiori et al., 2024) for
open-vocabulary perception to facilitate creating
grounded task plans, while the limitations of the
multmodal LLM were not discussed.

Somewhat similar to our work, (Li et al., 2024a)
investigates the eligibility of Multimodal LLMs to
serve as the “brain” for in-home robotics by provid-
ing a benchmark to compare models along the axes
of perception, visual reasoning and task planing.
Models like GPT-4V, Qwen-VL (Bai et al., 2025)
and DeepSeek-VL (Lu et al., 2024) were included,
but more recent releases were not covered—Ilikely
due to the fact that the field is moving fast with new
models emerging in rapid succession.

Strengths and Limitations. Multimodal LLM
agents excel in (i) visual commonsense reasoning,
leveraging extensive language priors to generalize
to novel concepts beyond the reach of most spe-
cialist VLMs, and (ii) instruction following with
support for fine-grained visual understanding and
dynamic planning. Despite their expressive power,
however, these models are (iii) resource-intensive,
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Figure 3: Experimental setup for two case studies in a
cluttered tabletop environment. The top row shows ego-
centric video data collected for the manipulation case
study. The bottom row is an example setup for the in-
struction grounding task, including an annotated visual
prompt paired with complex instructions in three forms:
implicit, explicit with attributes and spatial references.

posing challenges for deployment—particularly on
mobile robotic platforms.

3 Case Studies on Instruction Grounding

Natural language instruction grounding involves
translating user intents into clear, actionable goals
in a visual scene, which is a key capability for
embodied Al (Gemini Robotics Team, 2025). Our
case study offers empirical insights into the ground-
ing performance of various models through the
lens of challenging cross-modal disambiguation,
and further examines the trade-offs introduced by
model sizes and quantization—providing practical
suggestions for efficient deployment.

Benchmark Dataset. To minimize the impact
of vision priors on measured performance, we
design benchmarking scenarios using household
objects placed on a tabletop. These objects are
commonly represented in the training datasets of
the foundation models, and the tabletop setup fea-
tures minimal variation in lighting and camera
angles—ensuring that the evaluation primarily re-
flects grounding capabilities.

We curated a new Instruction Grounding bench-
mark dataset. In images containing multiple house-
hold objects, each object is tagged with a number
as the visual prompt, and each image is paired with
language instructions crafted to test visual com-
monsense and cross-modal disambiguation con-
cerning attribute or spatial relationships — for “pick
up the red-capped marker,” the color must be used
to select one among a few markers; whereas “grasp

MODEL EAsy MEDIUM HARD AvVG

Specialist VLMs
GroundingDINO-86M  0.518 0.357 0.349 0.408
GroundingDINO-145M  0.443 0.320 0.355 0.372

Closed-source Multimodal LLMs
Gemini2.5-Pro-Exp 0.904 0.765 0.793 0.821
Gemini2.0-Flash 0.884 0.738 0.678 0.767
GPT-4.5 0.837 0.723 0.739  0.766
GPT-40 0.814 0.745 0.683 0.747
GPT-40-mini 0.803 0.722 0.604  0.710
04-mini 0.721 0.769 0.710 0.733
GPT-4V 0.470 0.476 0.467 0.471

Open-source Multimodal LLMs
Llama-3.2V-90B 0.722 0.701 0.657 0.693
Llama-3.2V-11B 0.583 0.569 0.547 0.566
Llama-4-Maverick 0.698 0.576 0.634  0.636
Llama-4-Scout 0.776 0.615 0.624 0.672
Qwen2-VL-72B 0.686 0.614 0.558 0.619
Gemma-3-27B 0.452 0.384 0.267 0.368
DS-Janus-Pro-7B 0.444 0.330 0.317 0.364
Phi-3.5-Vision-4.2B 0.291 0.357 0.205 0.284

Table 2: Object grounding performance of specialist
VLMs and multimodal LLMs (closed-source and open-
source) across varying scene complexity levels. Mod-
els are evaluated on easy, medium, and hard cluttered
scenes, with macro accuracy reported.

the cup in front of the screwdriver” requires reason-
ing over spatial relations (Fig. 3; Appendix).

Language ambiguity often leads to execution
failure in an embodied system. By comparing spe-
cialist VLMs and multimodal LLMs, we reveal
their concrete failure modes that further inform our
design implications in Sec. 5.

Zero-Shot Object Grounding. We begin with

a foundational question for instruction grounding:

Can FMs accurately recognize objects in cluttered

open scenes? Table 2 presents the performance

hierarchy for specialist VLMs and a range of multi-
modal LLMs, serving as a basis for deeper analysis
of ambiguity resolution in later sections.

* Despite their popularity in modular pipelines,
GroundingDINO achieve only 35-41% accu-
racy, as it struggles with featureless objects, e.g.
‘the can’. Moreover, it is brittle in open scenes,
e.g. a ‘screwdriver’ is constantly recognized as a
‘marker’, which instead is an easy case for multi-
modal LLMs which embodied large volume of
visual commonsense.

Gemini 2.5-Pro takes the first place with 0.82,
followed by Gemini 2.0-Flash and GPT-4.5.
Open-source systems still trail the proprietary
tier. Llama 3.2-Vision 90B reaches about 84%
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Figure 4: Performance of complex instruction grounding across VLM-LLM pipelines and end-to-end multimodal
LLMs. Macro accuracy is reported across instruction types—implicit, attribute-based, and relationship-based.
Subfigures show (a) proprietary models and (b) open-source models along with their Int4-quantized variants.

of Gemini 2.5’s score, while the more recent
Llama 4 releases did not outperform it.

* Smaller community models (Gemma-27B, Phi-
Vision) fall below the specialist-threshold, sug-
gesting that they are still inadequate for fine-
grained grounding in cluttered scenarios.

» Last, when compute is a bottleneck, GPT-40-
mini (0.71) and Llama 3.2-Vision 11B (0.57)
provide the best speed—accuracy trade-off, de-
livering decent performance without incurring
heavy memory footprint or high API costs.

Zero-Shot Complex Instruction Grounding.
This task is framed as a multiple-choice problem,
where the model is asked to select the correct ob-
ject index in a cluttered scene based on three types
of natural language instructions: implicit, attribute-

based, and relationship-based—each type probes a

distinct grounding challenge. We evaluate a series

of multimodal LLMs, using a modular VLM-LLM

pipeline as a baseline. In this pipeline, the LLM

parses the instruction to infer likely targets, queries

GroundingDINO to detect candidate objects, and

selects from the detected boxes—essentially guess-

ing without directly perceiving the scene.

* Implicit Instruction Grounding. Instructions like
“I need a tool to tighten the screws” only refer
to the target object implicitly, and the model
needs to infer the target object using its com-
mon sense priors. For such instructions, the
modular VLM-LLM pipeline struggles to se-
lect a screwdriver, lacking embedded affordance
reasoning. In contrast, multimodal LLMs per-
form well, reflecting strong visual commonsense.
GPT-4.5 demonstrates exceptional performance

(0.94), though its high inference cost—20x that
of Gemini 2.5 makes it cost-prohibitive for most
applications.

* Relational Reasoning Remains Challenging.

This category requires resolving referential am-
biguity through implicit chain-of-thought rea-
soning: grounding objects, modeling spatial rela-
tionships, and disambiguating targets (e.g., iden-
tifying the correct mug among many based on
“next to something). Accuracy drops signif-
icantly nearly across all models. Only Gem-
ini 2.5-Pro and o4-mini achieve accuracy above
0.80—the former likely benefits from embod-
ied training data, while the latter demonstrates
strong reasoning capabilities. Notably, o04-
mini is a medium-sized model, yet it outper-
forms larger models like GPT-4.5 on relational
instructions—suggesting that structured reason-
ing may help close, or even overcome the perfor-
mance gap brought by different model scales.

* Instruction-Dependent Quantization Effects.

INT4 quantization reduces the model size by
over 70%, making it an attractive choice for de-
ployment. In Llama 3.2 Vision, we observe that
it disproportionately impacts implicit and rela-
tional instruction grounding, indicated by the
relative accuracy drop of 14% — 17%, while at-
tribute grounding is more robust with only 4%
loss. Despite reduced precision, quantized 11B
models offer a speed—accuracy balance for low-
resource settings. Our findings underscore the
need for fine-grained quantization strategies that
preserve the most important high-level reasoning
capabilities under resource constraints.



MODELS

LIBERO-SPATIAL LIBERO-OBJECT LIBERO-GOAL LIBERO-LONG AVERAGE

OpenVLA finetuned 84.7 88.4
7o finetuned 96.8 98.8
7o-FAST finetuned 96.4 96.8
Spatial VLA finetuned-AC 88.2 89.9
NORA-finetuned 85.6 87.8
NORA-finetuned-AC 85.6 89.4
NORA-Long-finetuned 92.2 95.4

79.2 53.7 76.5
95.8 85.2 94.15
88.6 60.2 85.5
78.6 55.5 78.1
71.0 45.0 73.9
80.0 63.0 79.5
89.4 74.6 87.9

Table 3: Success rates (%) on the LIBERO Simulation Benchmark across four task suites, each evaluated over
500 trials. Results for Spatial VLA are from (Qu et al., 2025); Results for 7y are from (Black et al., 2024), using
pretrained models on LIBERO benchmarks. “AC” denotes the use of action chunking. The comparison in the
Appendix highlights its impact on performance. The finetuned 7y model achieves the highest performance.

4 Case Studies on Robotic Manipulation

Now we shift the focus to skill adaptation. In
an ideal deployment scenario, a pretrained VLA—
already endowed with broad visuomotor skills—
should be retargeted to a new manipulation task
with minimal data and fast convergence. We use
fine-tuning, the standard practice for adaptation, as
a probing lever to evaluate how the state-of-the-art
VLA models adapt to new tasks and deployment
conditions.

Given the scale of VLAs, we compare par-
tial fine-tuning, which leverages our benchmark
dataset (Appendix) and its inherent distribution
bias to study convergence behavior, and full fine-
tuning, which uses large-scale datasets to minimize
the training loss. Our evaluation focuses on three
key aspects: (i) training dynamics—how quickly
and smoothly training converges; (ii) generaliza-
tion—how well the resulting policies perform on
various tasks; and (iii) robustness—how well the
resulting policies handle environmental distractors.
Our experiments highlight the performance of VLA
models in different settings, offering practical sug-
gestions for practitioners who have to adapt large
VLAs under tight data, time and compute budgets.

Skill Adaptation Performance. Our fine-tuning
process consists of two stages: (1) To assess con-
vergence behavior under distribution shift, we col-
lected a custom dataset (see Appendix for details)
with a distribution bias relative to common pretrain-
ing datasets included in the Open-X-embodiment
(O’Neill et al., 2024) and LIBERO datasets (Liu
et al., 2023). We used it to partially fine-tune sev-
eral recent VLA models and trained Diffusion Pol-
icy (DP) and Action Chunking Transformer (ACT)
from scratch. The results are shown in Fig. 5; (2)
For full fine-tuning, we leveraged larger bench-

mark datasets, Open-X-embodiment and LIBERO,

to fully fine-tune RT-1, OpenVLA, Spatial VLA

and NORA, and compared their performance. The

results are shown in Fig. 6.

* Partial Fine-tuning. Through the experiments
we observe that DP and ACT exhibit high sta-
bility with low variance during training. In con-
trast, generalist models such as OpenVLA and
o require significantly more training iterations
to attain comparable accuracy and exhibit greater
variance, which can be attributed to their large
model capacity. Notably, although DP achieves
lower loss by fitting directly to noise, it still de-
mands more training steps to generate coherent
actions, even after loss convergence.

* Full Fine-tuning. These fully fine-tuned VLA
models are evaluated on three tasks: (1) out-of-
distribution (OOD) object manipulation, (2) spa-
tial relationship reasoning and (3) multi-object
pick-and-place tasks. In task (1), both NORA
and OpenVLA succeed, while Spatial VLA fails
due to incorrect affordance point estimation.
In task (2), NORA correctly follows instruc-
tions, while OpenVLA fails and Spatial VLA ex-
hibits unstable performance. In task (3), NORA
achieves successful execution while other mod-
els fail to complete the task reliably.

Sim2Real Adaption Performance. We compare
model performance on simulation benchmarks and
real robot deployments. A significant drop in per-
formance is observed during transfer from simu-
lation to the real world (Table 3; Appendix Ta-
ble 4). The simulation benchmark includes 30
procedurally-generated, disentangled tasks requir-
ing nuanced spatial reasoning (LIBERO-Spatial),
object understanding (LIBERO-Object), and goal
interpretation (LIBERO-Goal), as well as 10 long-
horizon, entangled tasks (LIBERO-Long).
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Figure 5: Results for partial fine-tuning of VLA mod-
els including OpenVLA and 7, alongside results from
training Diffusion Policy and ACT (Action Chunking
Transformer) from scratch on our dataset. VLA models
require more training epochs to converge and exhibit
higher variance in performance.

Robustness to Perturbations. To evaluate ro-
bustness, we introduced distractor objects into the
environment. As shown in Table 5, both Open-
VLA and NORA exhibit substantial performance
degradation in the presence of these perturbations,
highlighting their sensitivity to novel conditions.

Key Takeaways. Current VLA models still face
significant limitations in the following areas:

* Adaptation and Generalization. A generic
robotic policy is expected to quickly adapt to
datasets with distributional shifts. However, ac-
cording to the partial fine-tuning results, due to
the large model capacities and the limited size of
task-specific datasets, these VLA models failed
to achieve fast adaptation. While full fine-tuning
offers improved performance, it requires exten-
sive data and long training time, which are im-
practical for many real-world scenarios.

* Robustness. Robustness to distribution shifts
(without finetuning) is a critical challenge. Re-
sults reveal substantial performance degradation
both when encountering unseen objects and dur-
ing sim-to-real transfer, highlighting the fragility
of current VLA models in dynamic and unpre-
dictable environments.

These findings suggest that while VLA models
hold promise, they have limitations in data effi-
ciency, adaptation speed, and robustness to make
them reliable for real-world robotic applications.

5 Constraints and Future Directions

Despite the promise of foundation models for en-
abling embodied agents to perform daily tasks,
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Figure 6: Success rates of fully fine-tuned VLA models
on out-of-distribution object manipulation (OOD Ob-
ject), spatial relationship reasoning (Spatial) and multi-
object pick-and-place (Multiple) tasks. NORA achieves
the highest performance.

the following critical constraints still hinder their
widespread deployment:

Data Scarcity. In contrast to natural language
datasets, which are readily sourced from internet,
robotic datasets are significantly more expensive
due to high hardware costs and intensive labor dur-
ing data acquisition. A promising direction for fu-
ture research is developing more data-efficient mod-
els. In addition, exploring high-fidelity simulation
environments and developing robust sim-to-real
transfer techniques could mitigate data scarcity.

Limited Generalization Capability. A key limi-
tation of current VLA models is their limited ability
to generalize to out-of-distribution concepts that
were not well-represented during training, which is
a consequence of the aforementioned data scarcity.
Many models depend heavily on large-scale paired
datasets, which often exhibit biases and limited di-
versity in aspects such as camera viewpoints, light-
ing conditions and specific robotic embodiments.
This results in fragile performance when deployed
in real-world or domain-specific scenarios. Further-
more, these models struggle with fine-grained spa-
tial reasoning and temporal understanding, hinder-
ing them from accurately aligning language with
complex visual scenes or dynamic events.

Efficient Inference. Deploying large-scale mod-
els on robotic platforms introduces significant com-
putational challenges, primarily in inference speed
and GPU RAMs. This underscores the importance
of smaller models that can efficiently generate ac-
tions without significant performance degradation.
This issue is particularly pronounced in autoregres-
sive models, and diffusion models are less affected.



Limitations

When evaluating the generalization capabilities of
Vision-Language Alignment (VLA) models, this
paper primarily focuses on different tasks without
extensively addressing their generalization across
varying robot morphologies. Although relatively
few works have specifically targeted this aspect, it
remains a significant challenge in deploying VLA
models in real-world applications. Robots with
different morphologies, such as bimanual manipu-
lators, humanoid robots, and autonomous vehicles,
require distinct operational protocols and safety
considerations. The absence of a generic robot pol-
icy that can adapt seamlessly across diverse mor-
phologies limits the practical generalization poten-
tial of VLA models and hinders their deployment
as universal robotic policies.

In addition, this paper does not explore the abil-
ity of VLA models to ground instructions involv-
ing open-ended or ambiguous commands. Current
VLA models are largely trained on curated datasets,
which allow them to learn mappings from instruc-
tions to specific actions. However, this reliance
constrains their ability to truly understand instruc-
tions at the semantic level. As a result, when fac-
ing out-of-distribution or vague commands, these
models often struggle to infer reasonable actions.
Addressing this limitation will require integrating
more advanced instruction-understanding modules
into the VLA pipeline to improve their robustness
in handling ambiguous or under-specified input.
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A Details for case studies on robotic
manipulation

A.1 VLA Evaluation Dataset Construction

To analyze the convergence behavior of various
VLA models under distribution shift, we con-
structed a custom cluttered tabletop environment
using a URS5 robotic arm equipped with a wrist-
mounted RealSense RGB-D camera, which is dis-
tinct from any existing settings in the Open-X-
embodiment dataset. Demonstration data for a
screwdriver-picking task among distractor objects
was collected using a SpaceMouse for teleopera-
tion!.

We collected 163 demonstration episodes, each
beginning with a randomized initial robot pose
followed by an attempt to grasp the screwdriver.
OpenVLA and 7y were partially fine-tuned on this
dataset, while Diffusion Policy (DP) and Action
Chunking Transformer (ACT) were trained from
scratch.

Due to the limited size of our custom dataset,
full fine-tuning of RT-1, OpenVLA, Spatial VLA,
and NORA was performed using the Open-X-
embodiment and LIBERO datasets. We evalu-
ated model performance on both a real-world Wid-
owX robotic platform and the LIBERO simulation
benchmark.

A.2 Fine-tuning details for VLA

Partial fine-tuning was conducted on a single
NVIDIA A6000 GPU (48 GB VRAM) over a pe-
riod of three days. To ensure a fair comparison, a
batch size of 1 was used across all models. The
results are presented in Fig. 5.

Full fine-tuning of RT-1, OpenVLA, Spa-
tial VLA, and NORA was conducted on a com-
pute node equipped with 8 xH100 GPUs. The
fine-tuned models were evaluated on 9 diverse real-
world manipulation tasks, as shown in Fig. 7. Suc-
cess rates are summarized in Table 4, demonstrat-
ing NORA’s superior policy generation capabilities
across three task categories: out-of-distribution ob-
ject grasping, spatial reasoning, and multi-object
manipulation.

'The dataset will be released upon acceptance.
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A.3 Impact of Action Chunking

A.3.1 Action Chunking Performs Poorly on
WidowX.

To investigate the effectiveness of action chunk-
ing, we selected NORA-LONG and Spatial VLA
for evaluation. Tasks were chosen from three cat-
egories: (1) “put the carrot in the pot,” (2)
“put the red bottle and hamburger in the
pot,” and (3) “put the pink toy at the right
corner.” In initial experiments, all predicted ac-
tions (5 actions for NORA-LONG, 4 actions for
Spatial VLA) were executed sequentially without
replanning. This frequently caused the WidowX
robot to crash into the environment due to the ac-
cumulation of overly large movements.

Subsequently, we modified the execution policy
to only perform the first action in each predicted
chunk. This adjustment resolved the collision issue
and NORA -LONG achieved an 80% success rate
on the “put the carrot in the pot” task. How-
ever, on multi-object pick-and-place tasks, NORA-
LONG consistently stopped after placing the first
object, resulting in a 0% final success rate. For the
spatial reasoning task, NORA-LONG achieved a
70% success rate on “put the pink toy at the
right corner.”

A.3.2 Action chunking improves performance
in simulation.

We hypothesize that action chunking is more ef-
fective at higher control frequencies. For example,
Diffusion Policy generates commands at 10 Hz,
which are then interpolated to 125 Hz for execu-
tion. Similarly, OpenVLA-OFT+ employs action
chunking and shows improved performance in real-
world ALOHA tasks, which run at 25 Hz.

Since our real robotic platforms do not support
high-frequency control, we tested this hypothesis
in the LIBERO simulation environment (20 Hz).
We fine-tuned both NORA and NORA-LONG on
this benchmark with an action chunk size of 5,
producing two variants: NORA-finetuned-AC and
NORA-Long-finetuned.

Results show that NORA-finetuned-AC signif-
icantly outperforms NORA-finetuned across all
LIBERO benchmarks, with a higher average suc-
cess rate. Notably, NORA-Long-finetuned outper-
forms all baseline models (see Table 3), highlight-
ing the benefits of pretraining with action chunking
and its transferability to long-horizon tasks. How-
ever, it is important to note that LIBERO is a simu-
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Figure 7: Real-world robot environments and task setups. We evaluate these models across 9 diverse tasks to assess
its instruction understanding, spatial reasoning, and multi-task motion planning capabilities.
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Category Task RT-1 OpenVLA SpatialVLA NORA
Put the red bottle and the hamburger in the pan 0 20 0 40
Multiple objects  Put the carrot and hotdog in pot 0 0 0 30
Put the corn and carrot in the pan 0 30 0 30
put carrot in pot 0 80 20 90
OOD object Put banana in pot 1 40 0 90
Put the blue cube on the plate 0 50 0 70
Put the pink toy at the right corner 0 60 30 60
Spatial Put the blue cube on the right plate 0 30 0 20
Move the banana close to the pan 30 50 50 80
Average 44 40 11.1 56.7

Table 4: Task performance comparison across different categories and models.

put banana in pot

put carrot in pot put the blue cube on the plate

Figure 8: Comparison of tasks with and without distrac-
tion.

Table 5: Average Success Rate (%) without (w/o) and
with (w/) Distractors

Model w/o Distractors  w/ Distractors
OpenVLA 56.7 50
NORA 83.3 56.7

lation environment and may not reflect real-world
performance at high control frequencies.

A.4 Robustness to Disturbance

To evaluate robustness, we selected three straight-
forward tasks (shown in Fig. 8) and introduced dis-
tractor objects into the environment. Initially, both
OpenVLA and NORA performed well. However,
their success rates declined significantly with the in-
troduction of distractions. This highlights the sensi-
tivity of current VLA models to out-of-distribution
disturbances. The average success rates across the
three tasks are presented in Table 5, while the de-
tailed number of successful executions out of 10
trials is summarized in Table 6.
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TASK OpenVLA NORA
without Distraction

put carrot in pot 8 9
put banana in pot 4 9
put the blue cube on the plate 5 7
with Distraction

put carrot in pot 6 8
put banana in pot 6 4
put the blue cube on the plate 3 5

Table 6: Comparison of task performance between
OpenVLA and NORA under conditions with and with-
out distraction. Each value denotes the number of suc-
cessful executions out of 10 trials.

A.5 Modularized Testbed for Evaluating
VLMs

To facilitate the evaluation of different VLMs

in robotic manipulation, we developed a voice-

controlled testbed using a URS robotic arm?. The

system architecture, shown in Fig. 9, comprises the

following five modules:

* Speech Transcription: Powered by Microsoft
Azure’s speech recognition service.

* Task Decomposition: Based on GPT-3.5 and
GPT-4 using prompting paradigms adapted from
ChatGPT for Robotics.

* Object Detection: Utilizes GroundingDINO
and OWL-VIT for object detection.

* Object Segmentation: Employs Segment Any-
thing Model (SAM) and FastSAM for segment-
ing detected objects.

The source code will be released upon acceptance.
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Figure 9: The system architecture of the testbed for
VLMs.

Positional: . .
Directional:

left, r1g1.1t, be- aligned with, per-
tween, beside, near, .
pendicular to

far, front, behind

hand over the
Instruction screwdriver [on the

left of] the red ball.

Words

pass me the screw-
driver [aligned
with] the marker.

Table 7: Template words and corresponding examples
of generated relation-based instructions for case studies.

* Manipulation: Low-level actions are generated
by GraspAnything or GraspNet.
This modular testbed enables rapid integration
and benchmarking of different models within a real
robotic system.

B Details for Case Studies on Instruction
Grounding

B.1 VLM Evaluation Dataset Construction

To evaluate the capabilities of VLMs, we developed
a dataset specifically designed to test their ability to
identify objects based on explicit attributes, explicit
location relations, and functions. Additionally, the
dataset includes multi-turn questions that refer to
more than one object, requiring VLMs to ask clari-
fying questions to identify the correct object.

» Explicit Attributes. In this category, instruc-
tions prompt VLMs to identify objects belong-
ing to a category with multiple instances, where
each instance can be uniquely identified by ex-
plicitly mentioned attributes. For example, in
Figure 3, the beige mug and the gray mug are in-
cluded because they are unique when described
with attributes. However, objects like the black
mug or scissors are excluded. This is because
there are two identical black mugs, making them
non-unique, and there is only one pair of scissors,
which does not require attributes for identifica-
tion.

15

15%

o Explicit Attributes M Explicit Location Relations

Functions Multi-Turn Conversations

Figure 10: Distribution of Instruction Types

» Explicit Spatial Relationships. In this category,
instructions describe objects by their spatial re-
lationships to other objects in the image. We en-
sure that each referenced object is unique within
the image. For example, the measuring cup to
the right of the screwdriver uniquely identifies
the object. These instructions are designed to test
the VLMs’ ability to comprehend and resolve
location-based relationships.

* Functions. Here, objects are not explicitly men-
tioned by name or attributes but are instead de-
scribed by their functions. This category evalu-
ates the VLMSs’ ability to infer the correct object
based on its use. For example, the dataset in-
cludes instructions referring to objects like scis-
sors, screwdrivers, and rulers based on their re-
spective functions.

* Multi-Turn Conversations. This category in-
volves instructions referencing multiple objects
in the same image. For example, Figure 3 shows
two black mugs. In such cases, VLMs are ex-
pected to ask clarifying questions to gather more
specific information to identify the intended ob-
ject.

To ensure high-quality data, we employed a
human-in-the-loop process to verify the outputs
of VLMs and LLMs:

* Initial Object Identification: We used GPT-
4o to identify objects in an image and referring
them by type, explicit attributes, and detailed
location relations.

* Human Verification. The authors of this pa-
per reviewed and modified the outputs to en-
sure their correctness.

* Instruction Generation. After verification,
GPT-4 was tasked with generating simple,
clear instructions for different objects.



Easy Medium Hard

im attr rel im attr rel im attr rel
VLM+GPT-4 0.05 0.516 0.131 0.01 0336 0.186 0 0.318 0.174
GPT-40-0513 0.850 1.000 0.778 0.819 0.948 0.680 0.901 0.697 0.469
GPT-40-mini 0.750 0.717 0.550 0.764 0.771 0.596 0.750 0.382 0.248
GPT-4 0.650 0.750 0.598 0.750 0.737 0.662 0.625 0.417 0.455
Qwen2-VL-72B 0.800 0917 0.830 0.792 0.756 0.738 0.875 0.700 0.529
Llama-3.2V-90B 0.750 0.850 0.704 0.708 0.853 0.711 0.875 0.491 0.521

Llama-3.2V-90B-Q4 0.800 0.667 0.598 0.625 0.719 0.554 0.542 0.464 0.300
Llama-3.2V-11B 0.650 0.667 0.631 0.764 0.710 0.556 0.833 0.536 0.342
Llama-3.2V-11B-Q4 0.650 0.567 0.502 0.694 0.757 0.555 0.542 0.498 0.450

Table 8: Performance Metrics Across Easy, Medium, and Hard Tasks. im: implicit instructions. attr: explicit
attributes. rel: relative relations.

* Final Review. These instructions underwent
another round of verification to ensure clarity
and accuracy.

As a result, we have created a high-quality
dataset consisting of 30 images and 473 instruc-
tions, with a detailed breakdown of each instruction
type presented in Fig. 10.

B.2 Failure Cases of Specialist VLM Pipelines

Grounding DINO, despite popular for zero-shot de-
tection, is not robust in open scenes. It successfully
detected “blue ball” while failed to detect “ball”,
indicating its reliance on visual features. Simi-
larly, featureless metal cans pose a great challenge
for Grounding DINO, which were almost omit-
ted in the detection results. For complex instruc-
tion grounding, Grounding DINO and GPT-4 were
chained together to “guess” the target by the LLM
based on the candidate bounding boxes. The failure
cases were illustrated in the Fig. 11 and Fig. 12.
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Figure 11: Examples of Instruction Grounding. (a) “the marker on the left”, (b) “the marker aligned with the ruler”.

Figure 12: Examples of Object Grounding. (a) “ball”, (b) “screwdriver”, (c) “marker pens”, (d) “blue ball”.
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