
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Instruction Tuning With Loss Over Instructions

Anonymous Authors1

Abstract

Instruction tuning plays a crucial role in shaping
the outputs of language models (LMs) to desired
styles. In this work, we propose a simple yet
effective method, INSTRUCTION MODELLING
(IM), which trains LMs by applying a loss
function to the instruction and prompt part
rather than solely to the output part. Through
experiments across 21 diverse benchmarks, we
show that, in many scenarios, IM can effectively
improve the LM performance on both NLP tasks
(e.g., MMLU, TruthfulQA, and HumanEval)
and open-ended generation benchmarks (e.g.,
MT-Bench and AlpacaEval). Remarkably, in
the most advantageous case, IM boosts model
performance on AlpacaEval 1.0 by over 100%.
We identify two key factors influencing the
effectiveness of IM: (1) The ratio between
instruction length and output length in the
training data; and (2) The number of training
examples. We observe that IM is especially
beneficial when trained on datasets with lengthy
instructions paired with brief outputs, or under the
Superficial Alignment Hypothesis (SAH) where
a small amount of training examples are used for
instruction tuning. Further analysis substantiates
our hypothesis that the improvement can be
attributed to reduced overfitting to instruction
tuning datasets. Our work provides practical
guidance for instruction tuning LMs, especially in
low-resource scenarios. Our code is available at
https://anonymous.4open.science/
r/InstructionModelling-2632.

1. Introduction
them to learn general-purpose representations transferable
to various language understanding or generation tasks. How-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2024 Workshop on
Foundation Models in the Wild. Do not distribute.

ever, it does align LMs to act in accordance with the user’s
intentions [28]. To enable this transfer, various methods for
aligning language models have thus been proposed, one of
which is instruction tuning (IT) [38, 2, 9]. Recent study
[62] proposes Superficial Alignment Hypothesis (SAH): A
model’s knowledge and capabilities are learnt almost en-
tirely during pretraining, only minimal instruction tuning
data is required to enable high-quality outputs in the de-
sired output style. Existing works [1, 37, 38, 43, 53, 55, 30]
mainly perform instruction tuning by focusing the loss com-
putation solely on the output segments.

In this work, we demonstrate that incorporating an addi-
tional loss component for instructions or prompts, which we
refer to as INSTRUCTION MODELLING (IM) (see §2), could
substantially improve the performance of instruction tuning
on both various NLP tasks (e.g., MMLU, TruthfulQA, and
HumanEval) and open-ended generation benchmarks (e.g.,
MT-Bench and AlpacaEval), as shown in Figure 1. Remark-
ably, in the most favourable case, our proposed method IM
boosts performance on AlpacaEval 1.0 by over 100%. As
illustrated in Figure 2, Our study further identifies two key
factors influencing the effectiveness of IM: (1) The ratio
between instruction length and output length (see Fig-
ure 2 Left). Our analysis shows that our approach IM is
especially beneficial for datasets characterised by lengthy
instructions or prompts paired with comparably brief out-
puts, such as Code Alpaca [8] and Less MMLU Chat
[54]. (2) The number of training examples (see Figure
2 Right). We demonstrate that our approach IM performs
better under the low-resource setting or SAH, where fewer
training examples are available (§3.2).

We hypothesise that the improvement stems from reduc-
ing instruction tuning’s tendency to overfit, particularly
under limited training resource conditions. Recent works
[22, 25, 38, 57, 58] suggest that LMs can quickly mem-
orise training examples even after seeing them just once.
Training on a small amount of instruction tuning data for
a few epochs can potentially lead to rapid overfitting. To
substantiate our hypothesis, our analysis shows that (1) IM
exhibits higher training losses but lower test losses on new
instruction tuning data; (2) The outputs generated by IM
have a lower similarity to the training examples compared
to those from IT, as indicated by BLEU scores; and (3)
IM has less instruction tuning tax on NLP tasks across

1

https://anonymous.4open.science/r/InstructionModelling-2632
https://anonymous.4open.science/r/InstructionModelling-2632

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Instruction Tuning With Loss Over Instructions

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
44

45

46

47

48

49

50
M

ea
n

Pe
rfo

rm
an

ce
ac

ro
ss

 1
8

NL
P

Ta
sk

s (
%

)

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
0

10

20

30

40

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
) IT

IM (ours)

Figure 1. Performance differences between INSTRUCTION TUNING (IT) and our proposed method INSTRUCTION MODELLING (IM)
trained on 7 instruction tuning datasets. (Left) The mean performance across 18 traditional NLP tasks. (Right) The win rate on the
AlpacaEval 1.0 benchmark.

10 1 100 101

Average Instruction Length / Average Output Length in Training Sets (Log Scale)

20

0

20

40

60

80

100

120

Im
pr

ov
em

en
t o

n
Al

pa
ca

Ev
al

 1
.0

 (%
)

LIMA
(1k)

Tulu V2
(326k)

Stanford
Alpaca
(52k)

Less
MMLU-Chat

(13.5k)

Less
Tydiqa
(13.5k)

Code
Alpaca
(20k)

WizardLM
(30k)

ShareGPT
(114k)

Science
(7.5k)

Llama-7B trained on different datasets
Linear Fit: y = 18.85x + 25.83

103 104

Number of Training Examples (Log Scale)

20

40

60

80

100

120

140

160

Im
pr

ov
em

en
t o

n
Al

pa
ca

Ev
al

 1
.0

 (%
) Llama-7B trained on different dataset sizes

Linear Fit: y = -39.37x + 431.74

Figure 2. (Left) Performance improvement, achieved by our approach INSTRUCTION MODELLING (IM) compared to INSTRUCTION

TUNING (IT) on the AlpacaEval 1.0, against the ratio between average instruction length and average output length in instruction tuning
datasets (training size noted in parentheses). (Right) Performance improvement achieved by our approach IM over IT on the AlpacaEval
1.0 against the number of training examples in instruction tuning datasets.

training epochs (§B). Additionally, our study reveals that
this overfitting cannot be effectively addressed by applying
Kullback-Leibler (KL) divergence for regularisation, as it
compromises the model’s ability to follow instructions. Our
further analysis reveals that the advantages of IM persist
across different LMs and model sizes, and that IM could
be effectively combined with the previous approach (i.e.,
NEFTUNE [25]). Meanwhile, we investigate the relationship
between output length and win rate for our approach (§C).

In summary, the main contributions of this paper are:

• We propose INSTRUCTION MODELLING (IM), aiming
to enhance both the instruction-following and general
performance on NLP tasks of LMs. Through extensive
experiments across 21 benchmarks, we demonstrate
that, in many scenarios, IM substantially improves
performance of LMs trained on various instruction
tuning datasets, particularly notable in the AlpacaEval
1.0 benchmark where it boosts scores by over 100%.

• Our study identifies key factors influencing the effec-
tiveness of IM, including the ratio between instruction

length and output length and the number of training
examples, providing practical guidance for instruction
tuning LMs, especially under the low-resource scenar-
ios.

• We provide underlying mechanisms that make IM
effective, specifically how it mitigates overfitting,
thereby enhancing the LMs’ performance across vari-
ous tasks.

2. Our Approach
Let x be the full sequence including any template tokens T ,
which are ignored in the loss calculation. The loss function
L calculates the negative log-likelihood for both instruc-
tion and completion tokens, excluding any prompt template
tokens:

L = −
m+n∑
t=1

logP (xt|x1, x2, ..., xt−1) · 1(xt /∈ T), (1)

where 1(xt /∈ T) is an indicator function that is 1 if xt is
not a template token and 0 otherwise. This ensures that the

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Instruction Tuning With Loss Over Instructions

loss is computed only over the meaningful tokens, not over
the static template tokens.

3. Experiments and Results
In this section, we evaluate the effectiveness of our proposed
method INSTRUCTION MODELLING (IM) by comparing it
with INSTRUCTION TUNING (IT) and other baselines on
various datasets.

3.1. Experimental Setup

Instruction Tuning Datasets. We assess our method,
IM, across various instruction tuning datasets, detailed
as follows: (1) Stanford Alpaca [49] (52,002 exam-
ples); (2) Dolly [13] (15,011 examples); (3) Sharegpt
[8] (50,000 examples); (4) Code Alpaca [5] (20,022
examples); (5) Science Literature [24] (7,544 ex-
amples); (6) WizardLM [55] (30,000 examples); (7)
Tulu V2 [24] (326,181 examples). Additionally, we
incorporate instruction tuning datasets under the low-
resource setting or SAH: (8) LIMA [62] (1,030 exam-
ples); (9) Less1 [54], where high-quality instruction
tuning data are selected from Flan V2 and Dolly.
Here, we use the Less MMLU Chat (13,533 examples),
Less BBH ICL (13,533 examples), and Less Tydiqa
(13,533 examples); (10) Alpagasus2 [6], which offers
three subsets: Alpagasus Dolly 3k (2,996 examples),
Alpagasus Dolly 9k (9,229 examples) selected from
Dolly, and Alpagasus Alpaca 5k (5,305 examples)
selected from Stanford Alpaca. See dataset details
and statistical analysis in Appendix §D.

Evaluation Benchmarks. Our study conducts a compre-
hensive analysis of 21 NLP datasets, focusing on a suite
of canonical NLP benchmarks and their capacity for open-
ended language generation. For canonical NLP benchmarks,
the evaluation is organised into six categories (18 tasks
in total): (1) Language Understanding and Knowledge in-
cludes MMLU [19], PIQA [3], OpenbookQA [35], Hel-
laSwag [59], and LAMBADA [39]; (2) Multilinguality con-
tains LAMBADA Multilingual [39], WMT 2014 [4], and
WMT 2016 [44]; (3) Commonsense Reasoning features
Winograd schema challenge (WSC) [29], WinoGrande [42],
AI2 Reasoning Challenge (ARC) [11], and CoQA [41]; (4)
Math and Coding Reasoning includes GSM8K [12], and
HumanEval [7]; (5) Safety and Helpfulness comprises Truth-
fulQA [32], ToxiGen [16], and Hendrycks Ethics [18]. (6)
Big Bench Hard (BBH) dataset [48] is included to assess
models. Our models are also tested for their open-ended
text generation capabilities using model-based evaluations,
specifically through MT-Bench [61], AlpacaEval 1.0 and

1https://github.com/princeton-nlp/LESS
2https://github.com/gpt4life/alpagasus

2.0 [31], where the AlpacaEval 1.0 compares the model out-
puts against the text davinci 003 evaluated by GPT-4
and the AlpacaEval 2.0 compares the model outputs against
GPT-4 outputs evaluated by GPT-4 Turbo. See evaluation
details in Appendix §E.

All Comparison Approaches. In our study, we mainly
experiment using the LLAMA-2-7B-BASE and LLAMA-
2-13B-BASE [50], and the OPT-6.7B [60] models. We
report model performance trained on LLAMA-2-7B-BASE
if not specified. We compare with NEFTUNE [25] as the
baseline, which adds noise to the embedding during the
instruction tuning to increase the robustness of instruction-
tuned models. In this paper, we use several dataset selection
papers. See hyperparameter and implementation details in
Appendix §F.

3.2. Main Results

In this section, we first evaluate the model performance of
our approach and baselines across various tasks. Then we
investigate the key factors that contribute to the effectiveness
of our approach. Below we will discuss our findings.

#1: Our approach IM can improve the performance
of Instruction Tuning on various NLP tasks and open-
ended generation benchmarks. Figure 1 provides a sum-
mary of the model’s performance across both traditional
NLP tasks and the AlpacaEval 1.0 benchmark. Table 1
offers a detailed breakdown of experimental results for tra-
ditional NLP tasks across six categories, as well as perfor-
mance on additional benchmarks for open-ended generation
(i.e., MT-Bench and AlpacaEval). The experimental results
show that our approach IM can improve the performance
of instruction tuning on various NLP tasks and open-ended
generation benchmarks. Specifically, on the Alpagasus
Dolly 3k dataset, IM improves the overall mean score
of NLP tasks to 48.95, an increase of 2.37 points from
the baseline. Similarly, on the Alpagasus Dolly 9k
dataset, we observe an improvement of 2.46 points in the
mean NLP score.

#2: Our approach IM is especially beneficial for datasets
characterised by lengthy instructions or prompts paired
with comparably brief outputs. To better understand
the impact factors on the effectiveness of IM, we extend
our experiments to more instruction-tuning datasets, such
as Science Literature, Code Alpaca and Tulu
V2. Interestingly, as shown in Figure 2 Left, we find that
IM is particularly effective in scenarios where datasets
characterised by lengthy instructions and shorter outputs,
such as Less MMLU Chat and Less BBH ICL. For
example, in datasets like Less MMLU Chat and Less
Tydiqa, IM shows remarkable efficacy. In contrast, the

3

https://github.com/princeton-nlp/LESS
https://github.com/gpt4life/alpagasus

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Instruction Tuning With Loss Over Instructions

Table 1. Performance comparisons using 7 instruction tuning datasets with the LLAMA-2-7B on 6 categories of 23 traditional NLP
tasks and 3 open-ended benchmarks with LLM as judgements. “IT” refers to INSTRUCTION TUNING. “IM” refers to INSTRUCTION

MODELLING. Green and red arrows indicate performance changes against the baseline (IT).
NLP Benchmarks LLM-based Evaluation

Method Understanding
& Knowledge

Multi-
linguality

Commonsense
Reasoning

Math&Code
Reasoning BBH Safety &

Helpfulness Mean MT-Bench AlpacaEval
1.0

AlpacaEval
2.0

LLAMA-2-BASE 63.91 61.99 75.86 13.32 38.80 42.03 49.32 1.16 0.01 0.01
LLAMA-2-CHAT 63.42 55.15 70.28 15.33 38.92 51.79 49.15 6.63 79.04 6.48

Alpagasus Alpaca 5k (5,305 training examples)
IT 64.98 57.24 66.06 8.93 26.80 47.74 45.29 3.62 16.29 2.46
NEFTUNE 65.18 56.88 66.45 10.24 29.53 45.46 45.62↑0.33 3.50↓0.12 21.37↑5.08 2.37↓0.09

IM (ours) 64.01 56.63 72.47 11.58 35.52 44.62 47.47↑2.18 3.48↓0.14 19.52↑3.23 3.29↑0.83

Alpagasus Dolly 3k (2,996 training examples)
IT 65.81 57.46 67.55 11.96 33.02 43.70 46.58 4.23 13.42 2.00
NEFTUNE 65.90 57.79 67.28 11.64 35.43 44.36 47.07↑0.49 4.42↑0.19 14.04↑0.62 2.03↑0.03

IM (ours) 65.66 57.47 73.24 14.57 37.48 45.29 48.95↑2.37 4.06↓0.17 15.11↑1.69 2.44↑0.44

Alpagasus Dolly 9k (9,229 training examples)
IT 64.10 56.62 69.70 7.96 32.19 42.65 45.54 4.33 21.54 2.28
NEFTUNE 64.20 56.69 69.51 8.99 33.91 42.62 45.99↑0.45 4.21↓0.12 31.61↑10.07 2.84↑0.56

IM (ours) 64.67 55.32 74.87 12.50 36.69 43.96 48.00↑2.46 4.55↑0.22 30.77↑9.23 2.67↑0.39

Less Tydiqa (13,533 training examples)
IT 64.01 56.81 64.77 12.06 36.54 55.09 48.21 4.08 5.12 1.88
NEFTUNE 64.03 55.09 64.02 13.84 36.65 51.21 47.47↓0.74 4.19↑0.11 8.35↑3.23 2.58↑0.70

IM (ours) 64.28 56.10 65.70 17.15 34.86 54.09 48.70↑0.49 4.36↑0.28 10.10↑4.98 2.88↑1.00

Less MMLU Chat (13,533 training examples)
IT 64.74 57.42 62.94 9.53 33.13 55.35 47.18 3.86 4.42 1.20
NEFTUNE 65.21 57.43 63.14 9.45 35.89 55.32 47.74↑0.56 4.06↑0.20 6.22↑1.80 1.06↓0.14

IM (ours) 63.95 56.34 64.76 12.52 36.94 52.55 47.84↑0.66 4.54↑0.68 9.78↑5.36 1.93↑0.73

Less BBH ICL (13,533 training examples)
IT 63.83 62.04 75.92 6.90 38.93 42.07 48.28 4.78 36.20 2.36
NEFTUNE 63.88 58.83 67.97 13.54 38.63 51.33 49.03↑0.75 5.05↑0.27 39.81↑3.61 2.87↑0.51

IM (ours) 64.14 56.72 71.12 13.56 39.03 50.34 49.15↑0.87 5.03↑0.25 44.15↑7.95 3.56↑1.20

LIMA (1,030 training examples)
IT 63.92 58.29 71.96 16.01 39.27 43.29 48.79 4.77 33.06 2.58
10 epoch NEFTUNE 63.66 57.67 73.03 15.95 38.77 43.14 48.70↓0.09 4.79↑0.02 30.51↓2.55 2.43↓0.15

IM (ours) 64.49 58.21 75.55 17.06 38.84 43.45 49.60↑0.81 4.83↑0.06 32.94↓0.12 2.47↓0.11

Tulu V2 dataset, with an instruction to output length ra-
tio of about 0.5, benefits less compared to the Science
Literature dataset, which has a much higher ratio of
24.7. We hypothesise that this trend can be attributed to
the tendency of language models trained on datasets with
shorter outputs to overfit. In cases where the instructions
are longer, IM acts as an effective form of regularisation,
mitigating this issue. For further details on the experimental
setup, refer to the Appendix in §F.

#3: Our approach IM performs better with fewer train-
ing examples. We find that another important factor in
the effectiveness of IM is the quantity of training examples.
Specifically, we design additional experiments by sampling
different numbers of examples from the Tulu V2 datasets,
which contain about 320k training examples and achieve a
modest improvement compared to other datasets in Figure 2
Left. We ensure that our samples maintain an instruction-to-
output length ratio of around 10. As shown in Figure 2 Right,
IM demonstrates substantial performance improvements on
the AlpacaEval 1.0 as the number of training examples de-
creases. This suggests that IM could be particularly valuable

for developing robust models in resource-constrained sce-
narios or under the SAH. For details on the experimental
setup, please refer to the Appendix in §F.

4. Conclusion
In conclusion, our study proposes INSTRUCTION MOD-
ELLING, which trains LMs with loss over instructions rather
than outputs only. Our experimental evaluations demon-
strate that our approach largely improves the performance of
LMs on both NLP tasks and open-ended generation bench-
marks in some scenarios, especially under the Superficial
Alignment Hypothesis and low-resource setting where mini-
mal training data is used for instruction tuning. Our analysis
has shed light on two key factors that influence the effec-
tiveness of our approach, (1) the ratio between instruction
and output lengths, and (2) the quantity of training data,
providing practical insights for optimising instruction-based
training methods. Our analysis reveals the mechanisms be-
hind the effectiveness of IM, particularly its ability to reduce
overfitting, showing that applying instruction losses in some
scenarios can lead to more robust and adaptable LMs.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Instruction Tuning With Loss Over Instructions

References
[1] Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,

Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,
Jai Prakash Gupta, Kai Hui, Sebastian Ruder, and Don-
ald Metzler. Ext5: Towards extreme multi-task scaling
for transfer learning. In The Tenth International Con-
ference on Learning Representations, ICLR 2022, Vir-
tual Event, April 25-29, 2022. OpenReview.net, 2022.

[2] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
Training a helpful and harmless assistant with rein-
forcement learning from human feedback. ArXiv
preprint, abs/2204.05862, 2022.

[3] Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jian-
feng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–7439.
AAAI Press, 2020.

[4] Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. Findings of the 2009 Workshop
on Statistical Machine Translation. In Proceedings of
the Fourth Workshop on Statistical Machine Transla-
tion, pages 1–28, Athens, Greece, 2009. Association
for Computational Linguistics.

[5] Sahil Chaudhary. Code alpaca: An instruction-
following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[6] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
Alpagasus: Training a better alpaca model with fewer
data. In The Twelfth International Conference on
Learning Representations, 2024.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis,

Elizabeth Barnes, Ariel Herbert-Voss, William Heb-
gen Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. ArXiv preprint,
abs/2107.03374, 2021.

[8] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,
2023.

[9] Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Val-
ter, Sharan Narang, Gaurav Mishra, Adams Yu, Vin-
cent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53,
2024.

[10] Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. Semi-supervised sequence mod-
eling with cross-view training. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1914–1925, Brus-
sels, Belgium, 2018. Association for Computational
Linguistics.

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering?
try arc, the ai2 reasoning challenge. ArXiv preprint,
abs/1803.05457, 2018.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. Training verifiers to solve math
word problems, 2021.

[13] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei
Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. Free dolly: Introduc-
ing the world’s first truly open instruction-tuned llm,
2023.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Instruction Tuning With Loss Over Instructions

[14] Tri Dao. Flashattention-2: Faster attention with better
parallelism and work partitioning, 2023.

[15] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. Textbooks are all you
need. ArXiv preprint, abs/2306.11644, 2023.

[16] Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. ToxiGen:
A large-scale machine-generated dataset for adversar-
ial and implicit hate speech detection. In Proceedings
of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
3309–3326, Dublin, Ireland, 2022. Association for
Computational Linguistics.

[17] Guande He, Jianfei Chen, and Jun Zhu. Preserving
pre-trained features helps calibrate fine-tuned language
models. ArXiv preprint, abs/2305.19249, 2023.

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
Aligning AI with shared human values. In 9th In-
ternational Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language under-
standing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[20] Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. Unnatural instructions: Tuning language mod-
els with (almost) no human labor. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 14409–14428, Toronto, Canada, 2023.
Association for Computational Linguistics.

[21] Tom Hosking, Phil Blunsom, and Max Bartolo. Hu-
man feedback is not gold standard. In The Twelfth In-
ternational Conference on Learning Representations,
2024.

[22] Jeremy Howard and Jonathan Whitaker. Can llms
learn from a single example?, 2023.

[23] Mathew Huerta-Enochian. Instruction fine-tuning:
Does prompt loss matter?, 2024.

[24] Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi, Joel
Jang, David Wadden, Noah A Smith, Iz Beltagy, et al.
Camels in a changing climate: Enhancing lm adapta-
tion with tulu 2, 2023.

[25] Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchen-
bauer, Hong-Min Chu, Gowthami Somepalli, Brian R.
Bartoldson, Bhavya Kailkhura, Avi Schwarzschild,
Aniruddha Saha, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. NEFTune: Noisy embeddings improve
instruction finetuning. In The Twelfth International
Conference on Learning Representations, 2024.

[26] Aditi Jha, Sam Havens, Jeremey Dohmann, Alex Trott,
and Jacob Portes. Limit: Less is more for instruction
tuning across evaluation paradigms. ArXiv preprint,
abs/2311.13133, 2023.

[27] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. UNIFIEDQA: Crossing format
boundaries with a single QA system. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1896–1907, Online, 2020. Association for
Computational Linguistics.

[28] Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. Scalable agent align-
ment via reward modeling: a research direction. ArXiv
preprint, abs/1811.07871, 2018.

[29] Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. The winograd schema challenge. In 13th Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning, KR 2012, Proceedings
of the International Conference on Knowledge Repre-
sentation and Reasoning, pages 552–561. Institute of
Electrical and Electronics Engineers Inc., 2012. 13th
International Conference on the Principles of Knowl-
edge Representation and Reasoning, KR 2012 ; Con-
ference date: 10-06-2012 Through 14-06-2012.

[30] Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason E Weston, and Mike
Lewis. Self-alignment with instruction backtranslation.
In The Twelfth International Conference on Learning
Representations, 2024.

[31] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Alpacaeval: An automatic
evaluator of instruction-following models, 2023.

[32] Stephanie Lin, Jacob Hilton, and Owain Evans. Truth-
fulQA: Measuring how models mimic human false-
hoods. In Proceedings of the 60th Annual Meeting of

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Instruction Tuning With Loss Over Instructions

the Association for Computational Linguistics (Volume
1: Long Papers), pages 3214–3252, Dublin, Ireland,
2022. Association for Computational Linguistics.

[33] Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando
Pérez-Garcı́a, Naoto Usuyama, Sheng Zhang, Tristan
Naumann, Aditya Nori, Hoifung Poon, Javier Alvarez-
Valle, Ozan Oktay, and Stephanie L. Hyland. Com-
positional zero-shot domain transfer with text-to-text
models. Transactions of the Association for Computa-
tional Linguistics, 11:1097–1113, 2023.

[34] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. What makes good data for alignment?
a comprehensive study of automatic data selection in
instruction tuning. ArXiv preprint, abs/2312.15685,
2023.

[35] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381–
2391, Brussels, Belgium, 2018. Association for Com-
putational Linguistics.

[36] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. MetaICL: Learning to learn in con-
text. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 2791–2809, Seattle, United States, 2022.
Association for Computational Linguistics.

[37] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. Cross-task generalization via
natural language crowdsourcing instructions. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3470–3487, Dublin, Ireland, 2022. As-
sociation for Computational Linguistics.

[38] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training lan-
guage models to follow instructions with human feed-
back. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho, editors, Advances in Neu-
ral Information Processing Systems, 2022.

[39] Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. The LAMBADA dataset: Word prediction

requiring a broad discourse context. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1525–1534, Berlin, Germany, 2016. Association for
Computational Linguistics.

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 311–318, Philadelphia, Pennsylvania, USA,
2002. Association for Computational Linguistics.

[41] Siva Reddy, Danqi Chen, and Christopher D. Man-
ning. CoQA: A conversational question answering
challenge. Transactions of the Association for Compu-
tational Linguistics, 7:249–266, 2019.

[42] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bha-
gavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–8740.
AAAI Press, 2020.

[43] Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaf-
fin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful
Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chh-
ablani, Nihal V. Nayak, Debajyoti Datta, Jonathan
Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Man-
ica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,
Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos
Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Févry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M. Rush. Multitask prompted training en-
ables zero-shot task generalization. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022.

[44] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Edinburgh neural machine translation systems for
WMT 16. In Proceedings of the First Conference on
Machine Translation: Volume 2, Shared Task Papers,
pages 371–376, Berlin, Germany, 2016. Association
for Computational Linguistics.

[45] Zhengxiang Shi, Yue Feng, and Aldo Lipani. Learning
to execute actions or ask clarification questions. In

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Instruction Tuning With Loss Over Instructions

Findings of the Association for Computational Linguis-
tics: NAACL 2022, pages 2060–2070, Seattle, United
States, 2022. Association for Computational Linguis-
tics.

[46] Zhengxiang Shi and Aldo Lipani. Don’t stop pretrain-
ing? make prompt-based fine-tuning powerful learner.
In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[47] Shivalika Singh, Freddie Vargus, Daniel Dsouza,
Börje F Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciunas,
Laura OMahony, et al. Aya dataset: An open-access
collection for multilingual instruction tuning. ArXiv
preprint, abs/2402.06619, 2024.

[48] Mirac Suzgun, Nathan Scales, Nathanael Schärli,
Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. Challenging BIG-bench tasks
and whether chain-of-thought can solve them. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, ed-
itors, Findings of the Association for Computational
Linguistics: ACL 2023, pages 13003–13051, Toronto,
Canada, 2023. Association for Computational Linguis-
tics.

[49] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An
instruction-following llama model, 2023.

[50] Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. ArXiv preprint, abs/2307.09288,
2023.

[51] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. Self-instruct: Aligning language
models with self-generated instructions. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 13484–13508, Toronto, Canada,
2023. Association for Computational Linguistics.

[52] Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gian-
nis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani
Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi,

Kuntal Kumar Pal, Maitreya Patel, Mehrad Morad-
shahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney,
Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh
Puri, Rushang Karia, Savan Doshi, Shailaja Keyur
Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-
NaturalInstructions: Generalization via declarative in-
structions on 1600+ NLP tasks. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 5085–5109, Abu Dhabi,
United Arab Emirates, 2022. Association for Compu-
tational Linguistics.

[53] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. Finetuned language
models are zero-shot learners. In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022.

[54] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. Less: Selecting influ-
ential data for instruction tuning, 2024.

[55] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin,
and Daxin Jiang. WizardLM: Empowering large pre-
trained language models to follow complex instruc-
tions. In The Twelfth International Conference on
Learning Representations, 2024.

[56] Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan
Qi, Maoquan Wang, Bin Gu, and Neel Sundaresan.
Rethinking the instruction quality: Lift is what you
need, 2023.

[57] Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei
Zheng, and Yang You. To repeat or not to repeat: In-
sights from scaling LLM under token-crisis. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

[58] Adam X Yang, Maxime Robeyns, Xi Wang, and Lau-
rence Aitchison. Bayesian low-rank adaptation for
large language models. In ICLR, 2024.

[59] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4791–4800, Florence, Italy, 2019.
Association for Computational Linguistics.

[60] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Instruction Tuning With Loss Over Instructions

Open pre-trained transformer language models. ArXiv
preprint, abs/2205.01068, 2022.

[61] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-
a-judge with MT-bench and chatbot arena. In Thirty-
seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

[62] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. LIMA: Less is
more for alignment. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Instruction Tuning With Loss Over Instructions

Appendix Overview
The appendix is structured as follows:

Appendix §A presents the related works.

Appendix §B presents additional experiments showing that Instruction Modelling Mitigates Overfitting of Instruction
Tuning.

Appendix §C presents additional analysis about instruction modelling.

Appendix §D provides a brief description (with statistical summaries) for instruction tuning datasets.

Appendix §E provides details of evaluation benchmarks and settings.

Appendix §F provides experimental setting, implementation details and hyperparameters for all comparison methods used
in our experiments.

Appendix §G provides the supplementary experimental results to investigate the effect of our approach on training and
testing losses.

Appendix §H provides the supplementary experimental results to investigate the relationship between the win rate on the
AlpacaEval 1.0 and the number of epochs.

Appendix §I provides the mathematical formula for the Kullback-Leibler (KL) divergence used in our paper.

Appendix §J provides the supplementary experimental results to investigate the relationship between the output length
and the number of epochs.

A. Related Work
Instruction Tuning. LMs can better align with user intents through fine-tuning on datasets consisting of instructions
and human-written completions [2, 38]. Early studies mainly focus on NLP tasks, showing that fine-tuning with various
NLP datasets trained with instruction output pairs improves cross-task generalisation [1, 27, 37, 38, 43, 46, 53]. Recent
works explore the creation of instruction tuning datasets by LLMs themselves [51, 20, 55, 30] or through crowdsourcing
approaches [8, 62]. Such instruction-tuning phrase [24, 45, 47, 21, 58] enables LLMs to generalise beyond instructions in
the training set, largely enhancing their practical utility.

Data Selection for Instruction Tuning. Research on instruction tuning for LMs presents diverging perspectives on
the optimal data scale for supervised fine-tuning. A prevailing view recommends fine-tuning on expansive datasets to
enhance LM performance across various NLP tasks, thereby improving zero-shot and few-shot learning capabilities
[1, 27, 38, 53, 37, 43, 52, 36]. For example, Flan V2 comprises over a million question-answer pairs from diverse NLP
sources [9], and Natural Instructions features 61 distinct tasks and 193k task instances [37]. Conversely, another
research trajectory prioritises data quality over quantity [15, 56, 34, 26]. Superficial Alignment Hypothesis (SAH) [62]
advocates for using smaller, high-quality datasets, arguing that LMs primarily acquire their capabilities during the pretraining
phase and thus require only minimal data for effective instruction tuning. For instance, LIMA [62] employs a carefully
curated set of 1k diverse prompts to generate stylistically consistent responses, aimed at creating a helpful AI assistant.
AlpaGasus [6] and Less [54] employ methods to select high-quality data based on LLM-generated judgements and gradient
signals, respectively. However, both views agree on the importance of (1) the quality of pre-trained base LMs and (2) the
diversity and quality of the IT data.

Regularisation Through Language Modelling Objectives. Pretraining data and language modelling objectives have
been used as a regularisation technique in fine-tuning LMs. In particular, [10, 33] fine-tunes LMs on labelled data, with
unsupervised learning on unlabelled data for auxiliary tasks as regularisation. [38] mixes the alignment objective with the

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Instruction Tuning With Loss Over Instructions

next token prediction objective using pretraining data to mitigate alignment tax in reinforcement learning from human
feedback (RLHF). [17] adopts the masked language objective on the pretraining or downstream task corpus to preserve
pre-trained features, and shows improvements in calibration and accuracy. [23] investigates the effect of incorporating
instruction loss weighting on instruction tuning, suggesting that the instruction loss ratio is an important hyperparameter
when fine-tuning short-completion data but is irrelevant when using long-completion data. In this work, we propose a
broader guideline that does not introduce new hyperparameters but focuses on when and how to include loss over instruction
effectively. We refer to our approach as INSTRUCTION MODELLING because it combines elements of both language
modelling and instruction tuning.

B. Instruction Modelling Mitigates Overfitting of Instruction Tuning
This section explores the underlying interpretation behind the effectiveness of our approach. Our experimental results
demonstrate that IM can alleviate the overfitting problem of Instruction Tuning. Below we will discuss our findings in detail.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training loss on the LIMA Dataset (1k Examples)

0

20

40

60

80

100

120

140

160

180

Co
un

t

Mean Loss:
1.37

Mean Loss:
1.45 Method

IT
IM (Ours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Test Loss on the Tulu Dataset (32k Examples)

0

1000

2000

3000

4000

5000

Co
un

t

Mean Loss:
1.32

Mean Loss:
1.17 Method

IT
IM (Ours)

Figure 3. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION

TUNING (IT) on the LIMA dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu V2 dataset, using
a 10% randomly sampled data for efficacy. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the
loss over the output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues
compared to IT. See Appendix §G for more examples.

#1. Train and test loss analysis. Figure 3 clearly illustrates the effectiveness of our approach IM in mitigating overfitting
issues compared to IT. In the training loss distribution for the LIMA dataset, IM exhibits a slightly higher mean loss of
1.45 compared to 1.37 for IT, suggesting that IM does not overfit to the training data as much as IT does. This is further
corroborated in the test loss distribution on the Tulu V2 dataset (using a 10% randomly sampled data set), where IM
demonstrates a lower mean test loss of 1.17 compared to 1.32 for IT. This indicates that IM maintains better generalisation
to new data, emphasising the model’s capability to learn effectively without fitting excessively to training examples. For
more examples, see Appendix §G.

Table 2. Average BLEU Score comparison of IM and IT, where a lower score indicates less overfitting. Green and red arrows indicate
performance changes against the baseline (IT).

LIMA
Less

Tydiqa
Less

MMLU Chat
Less

BBH ICL
Alpagasus
Alpaca 5k

Alpagasus
Dolly 9k

Alpagasus
Dolly 3k

IT 18.15 69.21 72.43 60.96 72.26 61.76 60.99
IM (ours) 17.30↓0.85 65.63↓3.58 69.20↓3.23 53.94↓7.02 70.50↓1.76 60.61↓1.15 59.04↓1.95

#2. BLEU score analysis. Here we generate outputs using the instructions from the training examples via greedy decoding,
and then compare the generated outputs with the ground truth outputs in training examples and report the results. We use
BLEU (up to n-gram order 4) [40] to measure the similarity between outputs, where a higher score on outputs indicates

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Instruction Tuning With Loss Over Instructions

a higher overlap with training examples. As shown in Table 2, outputs generated by IM consistently have lower BLEU
scores than those generated by IT. This suggests that IM produces outputs have less overlap with the ground truth outputs in
training examples, indicating less overfitting.

2 4 6 8 10
Epoch

46.5

47.0

47.5

48.0

48.5

NL
P

Re
su

lt

(a) LIMA

2 4 6 8 10
Epoch

45

46

47

48
(b) Alpagasus Dolly 9k

2 4 6 8 10
Epoch

46

47

48

49
(c) Alpagasus Dolly 3k

2 4 6 8 10
Epoch

45.0

45.5

46.0

46.5

(d) LESS MMLU CHAT

2 4 6 8 10
Epoch

45

46

47

48

(e) LESS TYDIQA
IM (ours)
IT

Figure 4. Mean performance on 18 NLP tasks over epochs using LLAMA-2-7B-BASE. This analysis suggests that IM experiences a
lower instruction tuning tax compared to IT.

#3. Instruction Tuning Tax on the NLP tasks. Previous works show that training LMs with RLHF causes Alignment
Tax on the NLP tasks [2, 38]. In this study, we observe that instruction tuning can sometimes lead to diminished model
capabilities in some areas, such as multilinguality and commonsense reasoning. To this end, we further explore the impact
of instruction tuning on the performance of NLP tasks. Figure 4 illustrates that our approach IM generally has a lower
instruction tuning tax compared to IT over IT, suggesting better robustness under the low-resource setting. We provide
additional experiments for win rates across epochs in Appendix §H.

Table 3. Performance on 18 NLP benchmarks and AlpacaEval 2.0. Green and red arrows indicate performance changes against the
baseline (LLAMA-2-7B-BASE). This analysis suggests that while applying KL Loss in the instruction tuning helps mitigate performance
degradation in NLP tasks, it substantially harms the model performance in open-ended generation tasks.

LIMA (1K) ALPAGASUS DOLLY (9K)

LLAMA-2-7B-BASE IT w/o KL Loss IT w/ KL Loss IT w/o KL Loss IT w/ KL Loss

NLP Tasks 49.32 48.79↓0.53 49.26↓0.06 45.54↓3.78 49.31↓0.01

AlpacaEval 2.0 0.01 2.58↑2.57 0.06↑0.05 2.28↑2.27 0.04↑0.03

#4. Can we use KL divergence loss as regularisation for instruction tuning? In this analysis, we explore the application
of KL divergence loss in instruction tuning and assess its impact on both instruction following and model performance. Table
3 offers a detailed comparison across various NLP benchmarks and open-ended language generation tasks, particularly using
AlpacaEval 2.0, with models trained with and without KL divergence loss. Our findings are as follows: (1) Incorporating
KL Loss reduces overfitting and reduces the performance degradation on traditional NLP tasks. For example, on the
Dolly dataset, incorporating KL Divergence Loss leads to less instruction tuning tax in NLP tasks, with scores rising from
45.54 to 49.31. (2) KL Loss detrimentally affects the model’s instructions following abilities. For example, on the LIMA
dataset, we observe a substantial decrease in AlpacaEval 2.0 scores from 2.58 to 0.06. For additional ablation studies and
implementation details, see Appendix §I.

C. Further Analysis
#1. The advantage of our proposed method persists with different language models and sizes. As shown in Figure 5,
our analysis demonstrates that our proposed method IM consistently outperforms the IT across different models and sizes,
including OPT-6.7B and LLAMA-2-13B-BASE, on 18 traditional NLP tasks and AlpacaEval 1.0 benchmark These findings
underline the effectiveness of our approach irrespective of the underlying language model or its scale.

#2. Relationship between the model output length and the win rate. As shown in Figure 6, win rates are not necessarily
associated with the lengths of the outputs. Our result reveals that our approach IM does not necessarily generate longer
outputs than IT across different data utilisation levels from the Tulu V2 dataset. Specifically, the output lengths for

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Instruction Tuning With Loss Over Instructions

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

44.0

M
ea

n
Pe

rfo
rm

an
ce

ac
ro

ss
 1

8
NL

P
Ta

sk
s (

%
) OPT-6.7B IT

OPT-6.7B IM (ours)

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
0

2

4

6

8

10

12

14

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
)

OPT-6.7B IT
OPT-6.7B IM (ours)

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
48

49

50

51

52

53

54

55

56

M
ea

n
Pe

rfo
rm

an
ce

ac
ro

ss
 1

8
NL

P
Ta

sk
s (

%
) Llama-13B IT

Llama-13B IM (ours)

Less
TydiQA Less

MMLU-CHAT Less
BBH-ICL Alpagasus

Alpaca 5k Alpagasus

Dolly 3k Alpagasus

Dolly 9k LIMA
0

10

20

30

40

50

60

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
)

Llama-13B IT
Llama-13B IM (ours)

Figure 5. Comparison of INSTRUCTION TUNING (IT) and INSTRUCTION MODELLING (IM) methods using OPT-6.7B (Top Row) and
LLAMA-2-13B-BASE (Bottom Row) trained on 7 instruction tuning datasets. (Left) The mean performance across 23 traditional NLP
tasks. (Right) The win rate on the AlpacaEval 1.0 benchmark.

both approaches are similar despite varying levels of data utilisation. Furthermore, IM consistently outperforms the IT,
suggesting that improvements in performance as measured by win rates on the AlpacaEval 1.0 are not dependent on the
output length. We provide additional analysis on other instruction tuning datasets under the SAH in Appendix §J.

Table 4. Performance comparison of IM and IM +NEFTUNE on AlpacaEval 1.0 and various NLP benchmarks. Green and red arrows
indicate performance changes against the baseline (IM). This analysis shows that adding NEFTUNE to IM could further improve model
performance.

LIMA
Less
Tydiqa

Less
MMLU Chat

Less
BBH ICL

Alpagasus
Alpaca 5k

Alpagasus
Dolly 9k

Alpagasus
Dolly 3k

AlpacaEval 1.0 Win Rate

IM 32.94 10.10 9.78 44.15 19.52 30.77 15.11
IM +NEFTUNE 30.77↓2.17 23.41↑13.31 12.45↑2.67 48.25↑4.10 32.07↑12.55 38.28↑7.51 23.35↑8.24

Mean Performance Across 23 NLP Tasks

IM 49.60 48.70 47.84 49.15 47.47 48.00 48.95
IM +NEFTUNE 49.47↓0.13 49.44↑0.74 47.73↓0.11 48.62↓0.53 48.70↑1.23 48.63↑0.63 49.54↑0.59

#3. Our proposed method IM could further improve the model performance with NEFTUNE. Table 4 demonstrates
the combined effects of our proposed method IM and NEFTUNE on performance across various NLP tasks and the
AlpacaEval 1.0 benchmark. The integration of NEFTUNE with IM generally further improves the win rates in AlpacaEval
1.0, showing notable improvements in several datasets such as a 13.31% increase on Less Tydiqa and a 12.55% boost on
Alpagasus Alpaca 5k (in absolute). However, this combination leads to a performance drop in certain contexts, such
as a lower performance on NLP tasks on Less MMLU Chat and Less BBH ICL. This indicates that while NEFTUNE
may enhance model robustness under certain conditions, its benefits are context-dependent, highlighting the need for the
careful application of NEFTUNE when used in conjunction with IM to optimise effectiveness across diverse evaluation
settings.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Instruction Tuning With Loss Over Instructions

10% (32k) 20% (65k) 50% (163k) 100% (326k)
Data Utilization from the Tulu Dataset (%)

0

50

100

150

200

250

300

350

Ou
tp

ut
 L

en
gt

h

IT
IM (ours)

10% (32k) 20% (65k) 50% (163k) 100% (326k)
Data Utilization from the Tulu Dataset (%)

56

58

60

62

64

66

68

70

72

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
) IT

IM (ours)

Figure 6. (Left) Output length comparison between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION TUNING (IT)
across various data utilisation levels from the Tulu V2 dataset, as evaluated on the AlpacaEval dataset. (Right) Performance comparison
(measured by win rate) between IM and IT on the AlpacaEval 1.0 across various data utilisation levels from the Tulu V2 dataset. This
analysis suggests that the improvement provided by IM is not necessarily associated with the increased output lengths. See more length
analysis in Appendix §J.

D. Instruction Tuning Dataset
In this work, we use 13 popular datasets from previous instruction tuning research. For the WizardLM, Sharegpt,
Science Literature, and Code Alpaca datasets, we directly use the subset provided by the previous work
[24]. Refer to the dataset statistics in Table 5. In addition, we provide an analysis of the output length distribution for
LIMA, Alpagasus Dolly 3k, Alpagasus Dolly 9k, Alpagasus Alpaca 5k, Less MMLU Chat, Less
Tydiqa, and Less BBH ICL datasets, as shown in Figure 7.

Table 5. Statistical summary for various instruction tuning datasets. The table includes sample sizes, the average total length of instructions
and outputs, the average output length, and the average instruction length with their standard deviations, and ratio calculations.

Dataset Size Total Output Output Std Instruction Instruction Std Output/Instruction Instruction/Output

LIMA 1,030 484.47 442.75 491.34 41.72 79.28 10.6124 0.0942
Less MMLU Chat 13,533 225.19 8.24 16.42 216.95 301.64 0.0380 26.3316
Less Tydiqa 13,533 172.44 25.13 42.62 147.31 235.37 0.1706 5.862
Less BBH ICL 13,533 262.03 61.44 92.55 200.60 196.79 0.3063 3.265
Alpagasus Dolly 3k 2,996 111.91 68.08 106.38 43.83 107.53 1.5530 0.6439
Alpagasus Dolly 9k 9,229 73.40 56.62 48.91 16.79 11.33 3.3727 0.2965
Alpagasus Alpaca 5k 5,305 48.29 30.81 34.44 17.48 12.45 1.7631 0.5672
Tulu V2 326,181 541.16 343.56 575.32 197.60 345.99 1.7387 0.5751
Tulu V2 (10%) 32,618 517.45 338.96 562.74 178.49 345.72 1.8991 0.5266
Tulu V2 (50%) 163,090 515.63 340.67 571.06 174.97 343.45 1.9470 0.5136
Tulu V2 (20%) 65,236 504.56 336.89 562.46 167.68 331.24 2.0092 0.4977
WizardLM 30,000 350.05 258.35 182.98 91.71 86.09 2.8170 0.3550
Sharegpt 50,000 1035.39 831.15 757.10 204.24 344.51 4.0695 0.2457
Science Literature 7,544 1196.08 46.46 57.34 1149.62 905.99 0.0404 24.7417
Stanford Alpaca 52,002 63.77 45.18 44.97 18.59 12.42 2.4302 0.4115
Code Alpaca 20,022 49.74 27.40 27.35 22.34 10.67 1.2262 0.8156

E. Evaluation Datasets and Details
We use the open-source repositories, LM-Evaluation Harness3 and Huggingface Dataset4 as the evaluation tools. We
describe our evaluation setup below:

3https://github.com/EleutherAI/lm-evaluation-harness
4https://huggingface.co/docs/datasets

14

https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/docs/datasets

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Instruction Tuning With Loss Over Instructions

0 500 1000 1500 2000 2500 3000
Output Length

0

2

4

6

8

Fr
eq

ue
nc

y
Lima Data

Average Length: 442.75
Median Length: 269.00
Mode Length: 29.00

0 250 500 750 1000 1250 1500
Output Length

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Dolly (3k from Alpagasus)
Average Length: 68.08
Median Length: 36.00
Mode Length: 7.00

0 200 400 600
Output Length

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

Dolly (9k from Alpagasus)
Average Length: 56.62
Median Length: 49.00
Mode Length: 11.00

0 100 200 300
Output Length

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Alpaca (from 5k Alpagasus)
Average Length: 30.81
Median Length: 16.00
Mode Length: 2.00

100 101 102 103

Output Length

100

101

102

103

104

105

Fr
eq

ue
nc

y

FLAN V2 + Dolly (TyDiQA)
Average Length: 25.13
Median Length: 13.00
Mode Length: 2.00

100 101 102 103

Output Length

100

101

102

103

104

105

Fr
eq

ue
nc

y
FLAN V2 + Dolly (MMLU Chat)

Average Length: 8.24
Median Length: 2.00
Mode Length: 2.00

100 101 102 103

Output Length

100

101

102

103

104

105

Fr
eq

ue
nc

y

FLAN V2 + Dolly (BBH ICL)
Average Length: 61.44
Median Length: 31.00
Mode Length: 2.00

Figure 7. Distribution of output lengths of instruction tuning datasets. This figure presents histograms for the distribution of output
lengths across seven datasets, including LIMA, Alpagasus Dolly 3k, Alpagasus Dolly 9k, Alpagasus Alpaca 5k,
Less MMLU Chat, Less Tydiqa, and Less BBH ICL. Each subplot displays the frequency of output lengths with key statistical
indicators: the average (red dashed line), median (green dashed line), and mode (blue dashed line) of each dataset. The last three subplots
employ a logarithmic scale on both axes to better illustrate data spread.

MMLU. We evaluate the model using the dataset at the huggingface dataset 5. We follow the protocol outlined in
HuggingFace Open LLM Leaderboard 6. The evaluation uses multiple-choice questions formatted as the question followed
by four choices (A, B, C, D) and prompting for an answer. We calculate the mean accuracy (acc) across test examples.

BBH. The model evaluation utilizes the dataset at the huggingface dataset 7, specifically tested on the ‘test‘ split without
the use of few-shot examples. We follow the setup in previous works [24, 48]. The evaluation metric is the exact match score,
averaged (mean) to assess performance. Generation is constrained to a maximum of 1024 tokens, with termination upon
encountering specific delimiters such as ”¡/s¿”, ”Q”, or double newlines. The generation is greedy decoding (temperature set
to 0.0) and does not use sampling. Answer extraction employs regex patterns to identify responses immediately following
”the answer is” and captures only the first occurrence.

GSM8K. We evaluate using the dataset at the huggingface dataset 8, focusing on arithmetic problem-solving in the ‘test‘
split. We follow the HuggingFace Open LLM Leaderboard to 8 few-shot examples. Exact match is the chosen metric,
with case insensitivity and select regex-based filtering of common punctuation and formatting characters to ensure precise
validation of numerical answers. The primary focus is on extracting and comparing the final numerical answer to the model’s
output using a strict regex-based match setup.

HumanEval. We evaluate using the dataset and the evaluation code from the previous work [24]. We report the
performance of the pass@1. We perform the decoding using two different temperatures, 0.1 and 0.7. We report the better
pass@1 from these two decoding results.

5https://huggingface.co/datasets/hails/mmlu_no_train
6https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
7https://huggingface.co/datasets/lukaemon/bbh
8https://huggingface.co/datasets/gsm8k

15

https://huggingface.co/datasets/hails/mmlu_no_train
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/datasets/lukaemon/bbh
https://huggingface.co/datasets/gsm8k

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Instruction Tuning With Loss Over Instructions

ARC. The evaluation setup for the dataset at the huggingface dataset 9 utilizes a multiple-choice format. We follow the
HuggingFace Open LLM Leaderboard to 25 few-shot examples. The performance metric used is mean normalized accuracy
(acc norm).

CoQA. We conduct the model evaluation on the dataset at the huggingface dataset 10. We follow the HuggingFace Open
LLM Leaderboard to 0 few-shot examples. The output generation terminates upon encountering a new line followed by
”Q:”. The mean F1 score is used as the evaluation metric.

PIQA. Evaluation on the dataset at the huggingface dataset 11 involves a multiple-choice. The evaluation incorporates 10
few-shot examples, according to the LIMIT [26]. Performance is measured using the mean normalized accuracy (acc norm).

OpenBookQA. The dataset at the huggingface dataset 12 is evaluated in a multiple-choice format. The mean normalized
accuracy (acc norm) is used as the evaluation metric.

LAMBADA. The evaluation of the model on the dataset at the huggingface dataset 13 is performed using a loglikelihood
output type. The mean accuracy is used as the evaluation metric.

HellaSwag. In the ‘hellaswag‘ dataset at the huggingface dataset 14, model evaluation is conducted using a multiple-choice
format. We follow the HuggingFace Open LLM Leaderboard to 10 few-shot examples. The mean normalized accuracy
(acc norm) is used as the evaluation metric.

The Winograd Schema Challenge. The evaluation is conducted using a multiple-choice format on the ‘test‘ split at the
huggingface dataset 15. The mean accuracy is used as the evaluation metric.

Winogrande. The ‘winogrande‘ dataset is assessed using a multiple-choice format at the huggingface dataset 16. We
follow the HuggingFace Open LLM Leaderboard to 5 few-shot examples. The mean accuracy is used as the evaluation
metric.

LAMBADA. For this dataset, evaluation is conducted using the loglikelihood output type on the ‘test‘ split at the
huggingface dataset 17. This variant focuses on predicting the last word of text passages in English. The mean accuracy is
used as the evaluation metric.

Translation Benchmarks WMT. The evaluation of the translation capabilities is performed on the WMT 201418 and
WMT 201619 datasets at the huggingface dataset. Here we use the ‘ter‘ score as the evaluation metric.

TruthfulQA. We use the dataset at the huggingface dataset 20. We follow the setup at the HuggingFace Open LLM
Leaderboard using the 6 few-shot examples. The mean accuracy is used as the evaluation metric.

ToxiGen. We use the dataset at the huggingface dataset 21. The task is assessed using a multiple-choice framework to
evaluate the model’s capability to identify hateful content in text statements. The mean accuracy is used as the evaluation
metric.

9https://huggingface.co/datasets/allenai/ai2_arc
10https://huggingface.co/datasets/EleutherAI/coqa
11https://huggingface.co/datasets/piqa
12https://huggingface.co/datasets/openbookqa
13https://huggingface.co/datasets/lambada
14https://huggingface.co/datasets/hellaswag
15https://huggingface.co/datasets/winograd_wsc
16https://huggingface.co/datasets/winogrande
17https://huggingface.co/datasets/EleutherAI/lambada_openai
18https://huggingface.co/datasets/wmt14
19https://huggingface.co/datasets/wmt16
20https://huggingface.co/datasets/truthful_qa
21https://huggingface.co/datasets/skg/toxigen-data

16

https://huggingface.co/datasets/allenai/ai2_arc
https://huggingface.co/datasets/EleutherAI/coqa
https://huggingface.co/datasets/piqa
https://huggingface.co/datasets/openbookqa
https://huggingface.co/datasets/lambada
https://huggingface.co/datasets/hellaswag
https://huggingface.co/datasets/winograd_wsc
https://huggingface.co/datasets/winogrande
https://huggingface.co/datasets/EleutherAI/lambada_openai
https://huggingface.co/datasets/wmt14
https://huggingface.co/datasets/wmt16
https://huggingface.co/datasets/truthful_qa
https://huggingface.co/datasets/skg/toxigen-data

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Instruction Tuning With Loss Over Instructions

Hendrycks Ethics. We use the dataset at the huggingface dataset 22, with a multiple-choice format. The model aims to
detect whether described actions in various contexts are ethically wrong. The prompt format integrates a specific scenario
followed by a structured question: ”Is this wrong?” and then prompts for an answer with options ’no’ or ’yes’. The mean
accuracy is used as the evaluation metric.

F. Implementation Details
Experimental Design for Figure 2 Left. Here we present a detailed experimental design for Figure 2 Left. We
perform experiments on a variety of datasets, including LIMA, Alpagasus Dolly 3k, Alpagasus Dolly
9k, Alpagasus Alpaca 5k, Less MMLU Chat, Less Tydiqa, Less BBH ICL, Tulu V2, Code Alpaca,
Stanford Alpaca, Science Literature, WizardLM, and Sharegpt. Furthermore, to evaluate the effective-
ness of IM on datasets with different instruction-to-output length ratios, we select three subsets from Tulu V2. Each
subset contains 3,000 training examples, with instruction-to-output length ratios of approximately 5, 10, and 15, respectively.

Experimental Design for Figure 2 Right. Here we provide a detailed experimental design for Figure 2 Right. We
strategically sampled varying sizes of training examples from the Tulu V2 dataset to investigate the effectiveness of IM
with different sizes training examples. Starting with approximately 320,000 examples in the Tulu V2 dataset, we creates
subsets of data ranging from as few as 1,000 to as many as 35,000 examples. These subsets were selected randomly, ensuring
a representative mix across different scales. We adhered to a fixed instruction-to-output length ratio of approximately 10 to
maintain consistency in training conditions across all samples. We train the LLAMA-2-7B-BASE on all these subsets and
evaluate them respectively.

Table 6. Hyperparameters and configurations for supervised fine-tuning.

Hyperparameter Assignment

GPUs 2 or 4 A100 80G GPUs

Batch size per GPU 1

Total batch size 128

Number of epochs 2, 3, or 10

Maximum sequence length 2048

Learning rate 2× 10−5

Learning rate optimizer AdamW

Adam epsilon 1e-6

Adam beta weights 0.9, 0.98

Learning rate scheduler Linear with warmup

Warmup proportion 0.03

Weight decay 0

Mixed precision bf16

Gradient accumulation steps Calculated dynamically

Implementation Details. In our study, we fine-tune the LLaMA-2-7B, LLaMA-2-13B and OPT-6.7 model using four
A100 80G GPUs, with a per-GPU batch size of 1 and a total batch size of 128, employing a learning rate of 2e-5. Training
typically proceeds for 2 epochs with a maximum sequence length of 2048 tokens. We utilise gradient accumulation,
calculated to effectively distribute training steps across the available hardware, resulting in larger batch sizes despite
hardware limitations. We employ mixed precision (bf16), linear learning rate scheduling with a warm-up ratio of 0.03, and a

22https://huggingface.co/datasets/EleutherAI/hendrycks_ethics

17

https://huggingface.co/datasets/EleutherAI/hendrycks_ethics

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Instruction Tuning With Loss Over Instructions

weight decay of 0. To optimise our training, we use DeepSpeed with a stage 3 configuration without offloading. Our setup
also includes the usage of Flash Attention [14] and slow tokenization to enhance training efficiency and compatibility. Our
code is implemented using Open-Instruct23, Pytorch24 and Huggingface25. Table 6 lists the hyperparameters.

G. Train and Test Loss

0.0 0.5 1.0 1.5 2.0 2.5
Training loss on the Alpagasus Dolly 3k dataset

0

200

400

600

800

1000

Co
un

t

Mean Loss:
0.58

Mean Loss:
0.61

Method

IT
IM (Ours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Test Loss on the Tulu dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t

Mean Loss:
1.26

Mean Loss:
1.19

Method

IT
IM (Ours)

Figure 8. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION

TUNING (IT) on the Alpagasus Dolly 3k dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu
V2 dataset, using a 10% sampled data. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the loss over
the output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues compared to
IT.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training loss on the Less MMLU-CHAT dataset

0

2000

4000

6000

8000

10000

Co
un

t

Mean Loss:
0.07

Mean Loss:
0.16

Method

IT
IM (Ours)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Test Loss on the Tulu dataset

0

2000

4000

6000

8000

10000

Co
un

t

Mean Loss:
1.12

Mean Loss:
0.98

Method

IT
IM (Ours)

Figure 9. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION

TUNING (IT) on the Less MMLU Chat dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu V2
dataset, using a 10% sampled data. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the loss over the
output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues compared to IT.

In this section, we provide additional experiments regarding training and testing loss distributions. Figure 8 focuses on the
Alpagasus Dolly 3k and Tulu V2 datasets, displaying how IM tends to exhibit higher training losses yet achieves
lower test losses compared to IT. Similarly, Figure 9 compares these methods on the Less MMLU Chat and Tulu V2
datasets under analogous conditions.

23https://github.com/allenai/open-instruct
24https://pytorch.org/
25https://huggingface.co/

18

https://github.com/allenai/open-instruct
https://pytorch.org/
https://huggingface.co/

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Instruction Tuning With Loss Over Instructions

H. The impact of Epochs on the Win Rate

2 4 6 8 10
Epoch

30

35

40

45

50

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
) (a) Lima Dataset

2 4 6 8 10
Epoch

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Al
pa

ca
Ev

al
 1

.0
 W

in
 R

at
e

(%
) (b) Alpagasus 9k Dolly Dataset

IM (Ours)
IT

Figure 10. AlpacaEval 1.0 performance trends for IM and IT approaches on the LIMA and Alpagasus Dolly 9k datasets across
different epochs.

The figure 10 illustrates the comparative analysis of AlpacaEval 1.0 scores across different epochs for two datasets, LIMA
and Alpagasus Dolly 9k datasets. We evaluate the performance of IM and IT over different numbers of epochs.
IM consistently surpasses IT in performance on the Alpagasus Dolly 9k dataset, while the performance of both
approaches is comparable on the LIMA dataset.

I. Applying KL Divergence Loss for Instruction Tuning
In this section, we first briefly introduce the Kullback-Leibler (KL) divergence, and then introduce the experimental details.

Kullback-Leibler Divergence. Kullback-Leibler (KL) divergence is commonly employed as a regularisation method
in the fine-tuning of LMs, helping to mitigate overfitting by constraining the fine-tuned model to remain similar to the
pre-trained model [38]. Specifically, the KL divergence is added to the fine-tuning objective as a per-token regularisation
term between the fine-tuned LM πθ(x), and the pre-trained LM, πpre(x). For supervised fine-tuning with next token
prediction loss, the training objective incorporating KL divergence is computed as follows:

LKL(θ) = Ex∼D
[∑

t

− log πθ(xt|x0:t−1) + λ
∑
t

KL(πθ(xt|x0:t−1)||πpre(xt|x0:t−1))
]
, (2)

where λ is a regularisation parameter that balances the loss due to the next token prediction and the KL divergence, and
π(xt|x0:t−1) represents the next token distribution of the fine-tuned or pre-trained LM conditioned on the preceding context.

Table 7. Performance on 23 NLP benchmarks and AlpacaEval 2.0, with various values of λ, trained on the (LLAMA-2-7B-BASE).

NLP Tasks AlpacaEval 2.0

LLAMA-2-7B-BASE 49.32 0.01

λ = 0.01 48.81 2.58
λ = 0.1 48.77 2.44
λ = 1.0 49.26 0.06

Ablation study on the effect of λ. In Table 3, we set the value of the λ as 1.0. Here we provide additional experiments
with different values of λ. Table 7 presents the model performance on the NLP tasks and AlpacaEval 2.0. This aligns our
observations in §B.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Instruction Tuning With Loss Over Instructions

J. The impact of Epochs on Output Lengths

2 4 6 8 10
Epoch

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

Av
er

ag
e

Ou
tp

ut
 L

en
gt

h

Train Data | Method

Dolly (3k) | IM
Dolly (3k) | IT

2 4 6 8 10
Epoch

60.0

80.0

100.0

120.0

140.0

160.0 Train Data | Method

Dolly (9k) | IM
Dolly (9k) | IT

2 4 6 8 10
Epoch

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0
Train Data | Method

LIMA (1k) | IM
LIMA (1k) | IT

2 4 6 8 10
Epoch

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0 Train Data | Method

Less Tydiqa (13.5k) | IM
Less Tydiqa (13.5k) | IT

Figure 11. Comparative analysis of output lengths for IM and IT across different epochs on Alpagasus Dolly 3k, Alpagasus
Dolly 9k, LIMA, and Less Tydiqa datasets.

Figure 11 illustrate the average output length of various models across different epochs. We report the output length on four
different datasets, including Alpagasus Dolly 3k, Alpagasus Dolly 9k, LIMA, and Less Tydiqa. Each
line represents the average output length of a model, with epochs ranging from 2 to 10, and is accompanied by error bars
that denote the normalised standard deviation (10%) of the output lengths.

You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

20

