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Abstract

Instruction tuning plays a crucial role in shaping
the outputs of language models (LMs) to desired
styles. In this work, we propose a simple yet
effective method, INSTRUCTION MODELLING
(IM), which trains LMs by applying a loss
function to the instruction and prompt part
rather than solely to the output part. Through
experiments across 21 diverse benchmarks, we
show that, in many scenarios, IM can effectively
improve the LM performance on both NLP tasks
(e.g., MMLU, TruthfulQA, and HumanEval)
and open-ended generation benchmarks (e.g.,
MT-Bench and AlpacaEval). Remarkably, in
the most advantageous case, IM boosts model
performance on AlpacaEval 1.0 by over 100%.
We identify two key factors influencing the
effectiveness of IM: (1) The ratio between
instruction length and output length in the
training data; and (2) The number of training
examples. We observe that IM is especially
beneficial when trained on datasets with lengthy
instructions paired with brief outputs, or under the
Superficial Alignment Hypothesis (SAH) where
a small amount of training examples are used for
instruction tuning. Further analysis substantiates
our hypothesis that the improvement can be
attributed to reduced overfitting to instruction
tuning datasets. Our work provides practical
guidance for instruction tuning LMs, especially in
low-resource scenarios. Our code is available at
https://anonymous.4open.science/

r/InstructionModelling-2632.

1. Introduction

them to learn general-purpose representations transferable
to various language understanding or generation tasks. How-
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ever, it does align LMs to act in accordance with the user’s
intentions [28]. To enable this transfer, various methods for
aligning language models have thus been proposed, one of
which is instruction tuning (IT) [38, 2, 9]. Recent study
[62] proposes Superficial Alignment Hypothesis (SAH): A
model’s knowledge and capabilities are learnt almost en-
tirely during pretraining, only minimal instruction tuning
data is required to enable high-quality outputs in the de-
sired output style. Existing works [1, 37, 38, 43, 53, 55, 30]
mainly perform instruction tuning by focusing the loss com-
putation solely on the output segments.

In this work, we demonstrate that incorporating an addi-
tional loss component for instructions or prompts, which we
refer to as INSTRUCTION MODELLING (IM) (see §2), could
substantially improve the performance of instruction tuning
on both various NLP tasks (e.g., MMLU, TruthfulQA, and
HumanEval) and open-ended generation benchmarks (e.g.,
MT-Bench and AlpacaEval), as shown in Figure 1. Remark-
ably, in the most favourable case, our proposed method IM
boosts performance on AlpacaEval 1.0 by over 100%. As
illustrated in Figure 2, Our study further identifies two key
factors influencing the effectiveness of IM: (1) The ratio
between instruction length and output length (see Fig-
ure 2 Left). Our analysis shows that our approach IM is
especially beneficial for datasets characterised by lengthy
instructions or prompts paired with comparably brief out-
puts, such as Code Alpaca [8] and Less MMLU Chat
[54]. (2) The number of training examples (see Figure
2 Right). We demonstrate that our approach IM performs
better under the low-resource setting or SAH, where fewer
training examples are available (§3.2).

We hypothesise that the improvement stems from reduc-
ing instruction tuning’s tendency to overfit, particularly
under limited training resource conditions. Recent works
[22, 25, 38, 57, 58] suggest that LMs can quickly mem-
orise training examples even after seeing them just once.
Training on a small amount of instruction tuning data for
a few epochs can potentially lead to rapid overfitting. To
substantiate our hypothesis, our analysis shows that (1) IM
exhibits higher training losses but lower test losses on new
instruction tuning data; (2) The outputs generated by IM
have a lower similarity to the training examples compared
to those from IT, as indicated by BLEU scores; and (3)
IM has less instruction tuning tax on NLP tasks across
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Figure 1. Performance differences between INSTRUCTION TUNING (IT) and our proposed method INSTRUCTION MODELLING (IM)
trained on 7 instruction tuning datasets. (Left) The mean performance across 18 traditional NLP tasks. (Right) The win rate on the

AlpacaEval 1.0 benchmark.
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Figure 2. (Left) Performance improvement, achieved by our approach INSTRUCTION MODELLING (IM) compared to INSTRUCTION
TUNING (IT) on the AlpacaEval 1.0, against the ratio between average instruction length and average output length in instruction tuning
datasets (training size noted in parentheses). (Right) Performance improvement achieved by our approach IM over IT on the AlpacaEval
1.0 against the number of training examples in instruction tuning datasets.

training epochs (§B). Additionally, our study reveals that
this overfitting cannot be effectively addressed by applying
Kullback-Leibler (KL) divergence for regularisation, as it
compromises the model’s ability to follow instructions. Our
further analysis reveals that the advantages of IM persist
across different LMs and model sizes, and that IM could
be effectively combined with the previous approach (i.e.,
NEFTUNE [25]). Meanwhile, we investigate the relationship
between output length and win rate for our approach (§C).

In summary, the main contributions of this paper are:

* We propose INSTRUCTION MODELLING (IM), aiming
to enhance both the instruction-following and general
performance on NLP tasks of LMs. Through extensive
experiments across 21 benchmarks, we demonstrate
that, in many scenarios, IM substantially improves
performance of LMs trained on various instruction
tuning datasets, particularly notable in the AlpacaEval
1.0 benchmark where it boosts scores by over 100%.

* Our study identifies key factors influencing the effec-
tiveness of IM, including the ratio between instruction

length and output length and the number of training
examples, providing practical guidance for instruction
tuning LMs, especially under the low-resource scenar-
i0s.

* We provide underlying mechanisms that make IM
effective, specifically how it mitigates overfitting,
thereby enhancing the LMs’ performance across vari-
ous tasks.

2. Our Approach

Let z be the full sequence including any template tokens 7',
which are ignored in the loss calculation. The loss function
L calculates the negative log-likelihood for both instruc-
tion and completion tokens, excluding any prompt template
tokens:

m—+n

L=- Z log P(x¢|21, 2, ., we—1) - L € 1), (1)

t=1

where 1(x; ¢ T) is an indicator function that is 1 if x; is
not a template token and O otherwise. This ensures that the
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loss is computed only over the meaningful tokens, not over
the static template tokens.

3. Experiments and Results

In this section, we evaluate the effectiveness of our proposed
method INSTRUCTION MODELLING (IM) by comparing it
with INSTRUCTION TUNING (IT) and other baselines on
various datasets.

3.1. Experimental Setup

Instruction Tuning Datasets. We assess our method,
IM, across various instruction tuning datasets, detailed
as follows: (1) Stanford Alpaca [49] (52,002 exam-
ples); (2) Dolly [13] (15,011 examples); (3) Sharegpt
[8] (50,000 examples); (4) Code Alpaca [5] (20,022
examples); (5) Science Literature [24] (7,544 ex-
amples); (6) WizardLM [55] (30,000 examples); (7)
Tulu V2 [24] (326,181 examples). Additionally, we
incorporate instruction tuning datasets under the low-
resource setting or SAH: (8) LIMA [62] (1,030 exam-
ples); (9) Less' [54], where high-quality instruction
tuning data are selected from Flan V2 and Dolly.
Here, we use the Less MMLU Chat (13,533 examples),
Less BBH ICL (13,533 examples), and Less Tydiga
(13,533 examples); (10) Alpagasus? [6], which offers
three subsets: Alpagasus Dolly 3k (2,996 examples),
Alpagasus Dolly 9k (9,229 examples) selected from
Dolly,and Alpagasus Alpaca 5k (5,305 examples)
selected from Stanford Alpaca. See dataset details
and statistical analysis in Appendix §D.

Evaluation Benchmarks. Our study conducts a compre-
hensive analysis of 21 NLP datasets, focusing on a suite
of canonical NLP benchmarks and their capacity for open-
ended language generation. For canonical NLP benchmarks,
the evaluation is organised into six categories (18 tasks
in total): (1) Language Understanding and Knowledge in-
cludes MMLU [19], PIQA [3], OpenbookQA [35], Hel-
laSwag [59], and LAMBADA [39]; (2) Multilinguality con-
tains LAMBADA Multilingual [39], WMT 2014 [4], and
WMT 2016 [44]; (3) Commonsense Reasoning features
Winograd schema challenge (WSC) [29], WinoGrande [42],
AI2 Reasoning Challenge (ARC) [11], and CoQA [41]; (4)
Math and Coding Reasoning includes GSM8K [12], and
HumanEval [7]; (5) Safety and Helpfulness comprises Truth-
fulQA [32], ToxiGen [16], and Hendrycks Ethics [18]. (6)
Big Bench Hard (BBH) dataset [48] is included to assess
models. Our models are also tested for their open-ended
text generation capabilities using model-based evaluations,
specifically through MT-Bench [61], AlpacaEval 1.0 and

"https://github.com/princeton-nlp/LESS
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2.0 [31], where the AlpacaEval 1.0 compares the model out-
puts against the text_davinci_003 evaluated by GPT-4
and the AlpacaEval 2.0 compares the model outputs against
GPT—4 outputs evaluated by GPT-4 Turbo. See evaluation
details in Appendix §E.

All Comparison Approaches. In our study, we mainly
experiment using the LLAMA-2-7B-BASE and LLAMA-
2-13B-BASE [50], and the OPT-6.7B [60] models. We
report model performance trained on LLAMA-2-7B-BASE
if not specified. We compare with NEFTUNE [25] as the
baseline, which adds noise to the embedding during the
instruction tuning to increase the robustness of instruction-
tuned models. In this paper, we use several dataset selection
papers. See hyperparameter and implementation details in
Appendix §F.

3.2. Main Results

In this section, we first evaluate the model performance of
our approach and baselines across various tasks. Then we
investigate the key factors that contribute to the effectiveness
of our approach. Below we will discuss our findings.

#1: Our approach IM can improve the performance
of Instruction Tuning on various NLP tasks and open-
ended generation benchmarks. Figure 1 provides a sum-
mary of the model’s performance across both traditional
NLP tasks and the AlpacaEval 1.0 benchmark. Table 1
offers a detailed breakdown of experimental results for tra-
ditional NLP tasks across six categories, as well as perfor-
mance on additional benchmarks for open-ended generation
(i.e., MT-Bench and AlpacaEval). The experimental results
show that our approach IM can improve the performance
of instruction tuning on various NLP tasks and open-ended
generation benchmarks. Specifically, on the Alpagasus
Dolly 3k dataset, IM improves the overall mean score
of NLP tasks to 48.95, an increase of 2.37 points from
the baseline. Similarly, on the Alpagasus Dolly 9k
dataset, we observe an improvement of 2.46 points in the
mean NLP score.

#2: Our approach IM is especially beneficial for datasets
characterised by lengthy instructions or prompts paired
with comparably brief outputs. To better understand
the impact factors on the effectiveness of IM, we extend
our experiments to more instruction-tuning datasets, such
as Science Literature, Code Alpaca and Tulu
V2. Interestingly, as shown in Figure 2 Left, we find that
IM is particularly effective in scenarios where datasets
characterised by lengthy instructions and shorter outputs,
such as Less MMLU Chat and Less BBH ICL. For
example, in datasets like Less MMLU Chat and Less
Tydiga, IM shows remarkable efficacy. In contrast, the
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Table 1. Performance comparisons using 7 instruction tuning datasets with the LLAMA-2-7B on 6 categories of 23 traditional NLP
tasks and 3 open-ended benchmarks with LLM as judgements. “IT” refers to INSTRUCTION TUNING. “IM” refers to INSTRUCTION
MODELLING. Green and red arrows indicate performance changes against the baseline (IT).

NLP Benchmarks LLM-based Evaluation

Understanding Multi- Commonsense Math&Code Safety & AlpacaEval AlpacaEval
Method & Knowledge linguality ~ Reasoning Reasoni BBH  ipfulness ~ Mean  MT-Bench 1.0 2.0
LLAMA-2-BASE 63.91 61.99 75.86 13.32 38.80 42.03 49.32 1.16 0.01 0.01
LLAMA-2-CHAT 63.42 55.15 70.28 15.33 38.92 51.79 49.15 6.63 79.04 6.48
Alpagasus Alpaca 5k (5,305 training examples)
1T 64.98 57.24 66.06 8.93 26.80 47.74 45.29 3.62 16.29 2.46
NEFTUNE 65.18 56.88 66.45 10.24 29.53 45.46 45.621033  3.50)0.12 21.3715.08 2.3700.09
IM (ours) 64.01 56.63 72.47 11.58 35.52 44.62 47471208 3.480.14 19.521323 3.2910.83
Alpagasus Dolly 3k (2,996 training examples)
1T 65.81 57.46 67.55 11.96 33.02 43.70 46.58 4.23 13.42 2.00
NEFTUNE 65.90 57.79 67.28 11.64 35.43 44.36 47.07t049  4.4210.19 14.0410.62 2.0310.03
IM (ours) 65.66 57.47 73.24 14.57 37.48 45.29 48.951237  4.06)0.17 15.1111.69 2.4410.44
Alpagasus Dolly 9k (9,229 training examples)
1T 64.10 56.62 69.70 7.96 32.19 42.65 45.54 4.33 21.54 2.28
NEFTUNE 64.20 56.69 69.51 8.99 3391 42.62 45.99t045  4.2100.12 31.61110.07 2.8410.56
IM (ours) 64.67 55.32 74.87 12.50 36.69 43.96 48.001246  4.55%0.22 30.7719.23 2.671039
Less Tydiga (13,533 training examples)
1T 64.01 56.81 64.77 12.06 36.54 55.09 48.21 4.08 5.12 1.88
NEFTUNE 64.03 55.09 64.02 13.84 36.65 51.21 47.47 074 4.1970.11 8.3573.23 2.58%10.70
IM (ours) 64.28 56.10 65.70 17.15 34.86 54.09 48.70t049  4.3670.28 10.1074.98 2.8811.00
Less MMLU Chat (13,533 training examples)
1T 64.74 57.42 62.94 9.53 33.13 55.35 47.18 3.86 4.42 1.20
NEFTUNE 65.21 57.43 63.14 9.45 35.89 55.32 47.741056  4.0670.20 6.2211.80 1.06/0.14
IM (ours) 63.95 56.34 64.76 12.52 36.94 52.55 47.841066  4.54%1068 9.7815.36 1.9310.73
Less BBH ICL (13,533 training examples)
1T 63.83 62.04 75.92 6.90 38.93 42.07 48.28 4.78 36.20 2.36
NEFTUNE 63.88 58.83 67.97 13.54 38.63 51.33 49.03t075  5.0570.27 39.8113.61 2.871051
IM (ours) 64.14 56.72 71.12 13.56 39.03 50.34 49.1510.87 5.0310.25 44.1517.95 3.56711.20
LIMA (1,030 training examples)
1T 63.92 58.29 71.96 16.01 39.27 43.29 48.79 4.77 33.06 2.58
10 epoch NEFTUNE 63.66 57.67 73.03 15.95 38.77 43.14 48.7010.09 4.7910.02 30.51]255 2.43)0.15
IM (ours) 64.49 58.21 75.55 17.06 38.84 4345 49.6010.81 4.8310.06 32.94)0.12 2.47)0.11

Tulu V2 dataset, with an instruction to output length ra-
tio of about 0.5, benefits less compared to the Science
Literature dataset, which has a much higher ratio of
24.7. We hypothesise that this trend can be attributed to
the tendency of language models trained on datasets with
shorter outputs to overfit. In cases where the instructions
are longer, IM acts as an effective form of regularisation,
mitigating this issue. For further details on the experimental
setup, refer to the Appendix in §F.

#3: Our approach IM performs better with fewer train-
ing examples. We find that another important factor in
the effectiveness of IM is the quantity of training examples.
Specifically, we design additional experiments by sampling
different numbers of examples from the Tulu V2 datasets,
which contain about 320k training examples and achieve a
modest improvement compared to other datasets in Figure 2
Left. We ensure that our samples maintain an instruction-to-
output length ratio of around 10. As shown in Figure 2 Right,
IM demonstrates substantial performance improvements on
the AlpacaEval 1.0 as the number of training examples de-
creases. This suggests that IM could be particularly valuable

for developing robust models in resource-constrained sce-
narios or under the SAH. For details on the experimental
setup, please refer to the Appendix in §F.

4. Conclusion

In conclusion, our study proposes INSTRUCTION MOD-
ELLING, which trains LMs with loss over instructions rather
than outputs only. Our experimental evaluations demon-
strate that our approach largely improves the performance of
LMs on both NLP tasks and open-ended generation bench-
marks in some scenarios, especially under the Superficial
Alignment Hypothesis and low-resource setting where mini-
mal training data is used for instruction tuning. Our analysis
has shed light on two key factors that influence the effec-
tiveness of our approach, (1) the ratio between instruction
and output lengths, and (2) the quantity of training data,
providing practical insights for optimising instruction-based
training methods. Our analysis reveals the mechanisms be-
hind the effectiveness of IM, particularly its ability to reduce
overfitting, showing that applying instruction losses in some
scenarios can lead to more robust and adaptable LMs.
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Appendix Overview

The appendix is structured as follows:
Appendix §A presents the related works.

Appendix §B presents additional experiments showing that Instruction Modelling Mitigates Overfitting of Instruction
Tuning.

Appendix §C presents additional analysis about instruction modelling.
Appendix §D provides a brief description (with statistical summaries) for instruction tuning datasets.
Appendix §E provides details of evaluation benchmarks and settings.

Appendix §F provides experimental setting, implementation details and hyperparameters for all comparison methods used
in our experiments.

Appendix §G provides the supplementary experimental results to investigate the effect of our approach on training and
testing losses.

Appendix §H provides the supplementary experimental results to investigate the relationship between the win rate on the
AlpacaEval 1.0 and the number of epochs.

Appendix §1 provides the mathematical formula for the Kullback-Leibler (KL) divergence used in our paper.

Appendix §J provides the supplementary experimental results to investigate the relationship between the output length
and the number of epochs.

A. Related Work

Instruction Tuning. LMs can better align with user intents through fine-tuning on datasets consisting of instructions
and human-written completions [2, 38]. Early studies mainly focus on NLP tasks, showing that fine-tuning with various
NLP datasets trained with instruction output pairs improves cross-task generalisation [1, 27, 37, 38, 43, 46, 53]. Recent
works explore the creation of instruction tuning datasets by LLMs themselves [51, 20, 55, 30] or through crowdsourcing
approaches [8, 62]. Such instruction-tuning phrase [24, 45, 47, 21, 58] enables LLMs to generalise beyond instructions in
the training set, largely enhancing their practical utility.

Data Selection for Instruction Tuning. Research on instruction tuning for LMs presents diverging perspectives on
the optimal data scale for supervised fine-tuning. A prevailing view recommends fine-tuning on expansive datasets to
enhance LM performance across various NLP tasks, thereby improving zero-shot and few-shot learning capabilities
[1,27, 38,53, 37,43, 52, 36]. For example, F1lan V2 comprises over a million question-answer pairs from diverse NLP
sources [9], and Natural Instructions features 61 distinct tasks and 193k task instances [37]. Conversely, another
research trajectory prioritises data quality over quantity [15, 56, 34, 26]. Superficial Alignment Hypothesis (SAH) [62]
advocates for using smaller, high-quality datasets, arguing that LMs primarily acquire their capabilities during the pretraining
phase and thus require only minimal data for effective instruction tuning. For instance, LIMA [62] employs a carefully
curated set of 1k diverse prompts to generate stylistically consistent responses, aimed at creating a helpful Al assistant.
AlpaGasus [6] and Less [54] employ methods to select high-quality data based on LLM-generated judgements and gradient
signals, respectively. However, both views agree on the importance of (1) the quality of pre-trained base LMs and (2) the
diversity and quality of the IT data.

Regularisation Through Language Modelling Objectives. Pretraining data and language modelling objectives have
been used as a regularisation technique in fine-tuning LMs. In particular, [10, 33] fine-tunes LMs on labelled data, with

unsupervised learning on unlabelled data for auxiliary tasks as regularisation. [38] mixes the alignment objective with the
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next token prediction objective using pretraining data to mitigate alignment tax in reinforcement learning from human
feedback (RLHF). [17] adopts the masked language objective on the pretraining or downstream task corpus to preserve
pre-trained features, and shows improvements in calibration and accuracy. [23] investigates the effect of incorporating
instruction loss weighting on instruction tuning, suggesting that the instruction loss ratio is an important hyperparameter
when fine-tuning short-completion data but is irrelevant when using long-completion data. In this work, we propose a
broader guideline that does not introduce new hyperparameters but focuses on when and how to include loss over instruction
effectively. We refer to our approach as INSTRUCTION MODELLING because it combines elements of both language
modelling and instruction tuning.

B. Instruction Modelling Mitigates Overfitting of Instruction Tuning

This section explores the underlying interpretation behind the effectiveness of our approach. Our experimental results
demonstrate that IM can alleviate the overfitting problem of Instruction Tuning. Below we will discuss our findings in detail.
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Figure 3. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION
TUNING (IT) on the LIMA dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu V2 dataset, using
a 10% randomly sampled data for efficacy. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the
loss over the output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues
compared to IT. See Appendix §G for more examples.

#1. Train and test loss analysis. Figure 3 clearly illustrates the effectiveness of our approach IM in mitigating overfitting
issues compared to IT. In the training loss distribution for the LIMA dataset, IM exhibits a slightly higher mean loss of
1.45 compared to 1.37 for IT, suggesting that IM does not overfit to the training data as much as IT does. This is further
corroborated in the test loss distribution on the Tulu V2 dataset (using a 10% randomly sampled data set), where IM
demonstrates a lower mean test loss of 1.17 compared to 1.32 for IT. This indicates that IM maintains better generalisation
to new data, emphasising the model’s capability to learn effectively without fitting excessively to training examples. For
more examples, see Appendix §G.

Table 2. Average BLEU Score comparison of IM and IT, where a lower score indicates less overfitting. Green and red arrows indicate
performance changes against the baseline (IT).

LIMA Less Less Less Alpagasus Alpagasus Alpagasus
Tydiga MMLU Chat BBH ICL Alpaca 5k Dolly 9k Dolly 3k
IT 18.15 69.21 72.43 60.96 72.26 61.76 60.99

IM (ours) 17.30J085 65.63]358 69.20]3.23 53.94)7.02 70.50]1.76 60.61]1.15 59.041.95

#2. BLEU score analysis. Here we generate outputs using the instructions from the training examples via greedy decoding,
and then compare the generated outputs with the ground truth outputs in training examples and report the results. We use
BLEU (up to n-gram order 4) [40] to measure the similarity between outputs, where a higher score on outputs indicates
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a higher overlap with training examples. As shown in Table 2, outputs generated by IM consistently have lower BLEU
scores than those generated by IT. This suggests that IM produces outputs have less overlap with the ground truth outputs in
training examples, indicating less overfitting.
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Figure 4. Mean performance on 18 NLP tasks over epochs using LLAMA-2-7B-BASE. This analysis suggests that IM experiences a
lower instruction tuning tax compared to IT.

#3. Instruction Tuning Tax on the NLP tasks. Previous works show that training LMs with RLHF causes Alignment
Tax on the NLP tasks [2, 38]. In this study, we observe that instruction tuning can sometimes lead to diminished model
capabilities in some areas, such as multilinguality and commonsense reasoning. To this end, we further explore the impact
of instruction tuning on the performance of NLP tasks. Figure 4 illustrates that our approach IM generally has a lower
instruction tuning tax compared to IT over IT, suggesting better robustness under the low-resource setting. We provide
additional experiments for win rates across epochs in Appendix §H.

Table 3. Performance on 18 NLP benchmarks and AlpacaEval 2.0. Green and red arrows indicate performance changes against the
baseline (LLAMA-2-7B-BASE). This analysis suggests that while applying KL Loss in the instruction tuning helps mitigate performance
degradation in NLP tasks, it substantially harms the model performance in open-ended generation tasks.

LIMA (1K) ALPAGASUS DOLLY (9K)
LLAMA-2-7B-BASE IT w/o KL Loss IT w/ KL Loss IT w/o KL Loss IT w/ KL Loss
NLP Tasks 49.32 48.79/0.53 49.260.06 45.54 378 49.31]0.01
AlpacaEval 2.0 0.01 2.5812.57 0.0610.05 2.2812.27 0.0410.03

#4. Can we use KL divergence loss as regularisation for instruction tuning? In this analysis, we explore the application
of KL divergence loss in instruction tuning and assess its impact on both instruction following and model performance. Table
3 offers a detailed comparison across various NLP benchmarks and open-ended language generation tasks, particularly using
AlpacaEval 2.0, with models trained with and without KL divergence loss. Our findings are as follows: (1) Incorporating
KL Loss reduces overfitting and reduces the performance degradation on traditional NLP tasks. For example, on the
Dolly dataset, incorporating KL Divergence Loss leads to less instruction tuning tax in NLP tasks, with scores rising from
45.54 t0 49.31. (2) KL Loss detrimentally affects the model’s instructions following abilities. For example, on the LTMA
dataset, we observe a substantial decrease in AlpacaEval 2.0 scores from 2.58 to 0.06. For additional ablation studies and
implementation details, see Appendix §I.

C. Further Analysis

#1. The advantage of our proposed method persists with different language models and sizes. As shown in Figure 5,
our analysis demonstrates that our proposed method IM consistently outperforms the IT across different models and sizes,
including OPT-6.7B and LLAMA-2-13B-BASE, on 18 traditional NLP tasks and AlpacaEval 1.0 benchmark These findings
underline the effectiveness of our approach irrespective of the underlying language model or its scale.

#2. Relationship between the model output length and the win rate. As shown in Figure 6, win rates are not necessarily
associated with the lengths of the outputs. Our result reveals that our approach IM does not necessarily generate longer
outputs than IT across different data utilisation levels from the Tulu V2 dataset. Specifically, the output lengths for
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Figure 5. Comparison of INSTRUCTION TUNING (IT) and INSTRUCTION MODELLING (IM) methods using OPT-6.7B (Top Row) and
LLAMA-2-13B-BASE (Bottom Row) trained on 7 instruction tuning datasets. (Left) The mean performance across 23 traditional NLP
tasks. (Right) The win rate on the AlpacaEval 1.0 benchmark.

both approaches are similar despite varying levels of data utilisation. Furthermore, IM consistently outperforms the IT,
suggesting that improvements in performance as measured by win rates on the AlpacaEval 1.0 are not dependent on the
output length. We provide additional analysis on other instruction tuning datasets under the SAH in Appendix §J.

Table 4. Performance comparison of IM and IM +NEFTUNE on AlpacaEval 1.0 and various NLP benchmarks. Green and red arrows
indicate performance changes against the baseline (IM). This analysis shows that adding NEFTUNE to IM could further improve model
performance.

LIMA Less Less Less Alpagasus Alpagasus Alpagasus
Tydiga MMLU Chat BBH ICL Alpaca 5k Dolly 9k Dolly 3k
AlpacaEval 1.0 Win Rate
IM 32.94 10.10 9.78 44.15 19.52 30.77 15.11
IM +NEFTUNE 30.77]217 23.4111331 12.4512.67 48.2514.10 32.07112.55 38.2817.51 23.3578.24
Mean Performance Across 23 NLP Tasks
IM 49.60 48.70 47.84 49.15 47.47 48.00 48.95
IM +NEFTUNE 49.47]0.13  49.441074 47.730.11 48.620.53 48.7011.23 48.6310.63 49.5410.59

#3. Our proposed method IM could further improve the model performance with NEFTUNE. Table 4 demonstrates
the combined effects of our proposed method IM and NEFTUNE on performance across various NLP tasks and the
AlpacaEval 1.0 benchmark. The integration of NEFTUNE with IM generally further improves the win rates in AlpacaEval
1.0, showing notable improvements in several datasets such as a 13.31% increase on Less Tydiga and a 12.55% boost on
Alpagasus Alpaca 5k (in absolute). However, this combination leads to a performance drop in certain contexts, such
as a lower performance on NLP tasks on Less MMLU Chat and Less BBH ICL. This indicates that while NEFTUNE
may enhance model robustness under certain conditions, its benefits are context-dependent, highlighting the need for the
careful application of NEFTUNE when used in conjunction with IM to optimise effectiveness across diverse evaluation
settings.
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Figure 6. (Left) Output length comparison between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION TUNING (IT)
across various data utilisation levels from the Tulu V2 dataset, as evaluated on the AlpacaEval dataset. (Right) Performance comparison
(measured by win rate) between IM and IT on the AlpacaEval 1.0 across various data utilisation levels from the Tulu V2 dataset. This
analysis suggests that the improvement provided by IM is not necessarily associated with the increased output lengths. See more length
analysis in Appendix §J.

D. Instruction Tuning Dataset

In this work, we use 13 popular datasets from previous instruction tuning research. For the WizardLM, Sharegpt,
Science Literature, and Code Alpaca datasets, we directly use the subset provided by the previous work
[24]. Refer to the dataset statistics in Table 5. In addition, we provide an analysis of the output length distribution for
LIMA, Alpagasus Dolly 3k,Alpagasus Dolly 9k,Alpagasus Alpaca 5k, Less MMLU Chat, Less
Tydiga, and Less BBH ICL datasets, as shown in Figure 7.

Table 5. Statistical summary for various instruction tuning datasets. The table includes sample sizes, the average total length of instructions
and outputs, the average output length, and the average instruction length with their standard deviations, and ratio calculations.

Dataset Size Total Output OutputStd Instruction Instruction Std Output/Instruction Instruction/Output
LIMA 1,030  484.47 44275 491.34 41.72 79.28 10.6124 0.0942
Less MMLU Chat 13,533 225.19 8.24 16.42 216.95 301.64 0.0380 26.3316
Less Tydiga 13,533 17244 25.13 42.62 147.31 235.37 0.1706 5.862
Less BBH ICL 13,533  262.03 61.44 92.55 200.60 196.79 0.3063 3.265
Alpagasus Dolly 3k 2,996 11191 68.08 106.38 43.83 107.53 1.5530 0.6439
Alpagasus Dolly 9k 9,229 73.40 56.62 48.91 16.79 11.33 3.3727 0.2965
Alpagasus Alpaca 5k 5,305 48.29 30.81 34.44 17.48 12.45 1.7631 0.5672
Tulu V2 326,181  541.16  343.56 575.32 197.60 345.99 1.7387 0.5751
Tulu V2 (10%) 32,618 51745  338.96 562.74 178.49 345.72 1.8991 0.5266
Tulu V2 (50%) 163,090 515.63  340.67 571.06 174.97 343.45 1.9470 0.5136
Tulu V2 (20%) 65,236 504.56  336.89 562.46 167.68 331.24 2.0092 0.4977
WizardLM 30,000  350.05  258.35 182.98 91.71 86.09 2.8170 0.3550
Sharegpt 50,000 1035.39  831.15 757.10 204.24 344.51 4.0695 0.2457
Science Literature 7,544  1196.08 46.46 57.34 1149.62 905.99 0.0404 24.7417
Stanford Alpaca 52,002 63.77 45.18 44.97 18.59 12.42 2.4302 04115
Code Alpaca 20,022 49.74 27.40 27.35 22.34 10.67 1.2262 0.8156

E. Evaluation Datasets and Details

We use the open-source repositories, LM-Evaluation Harness® and Huggingface Dataset* as the evaluation tools. We
describe our evaluation setup below:

*https://github.com/EleutherAI/lm-evaluation—harness
*https://huggingface.co/docs/datasets
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Figure 7. Distribution of output lengths of instruction tuning datasets. This figure presents histograms for the distribution of output
lengths across seven datasets, including LIMA, Alpagasus Dolly 3k, Alpagasus Dolly 9k, Alpagasus Alpaca 5k,
Less MMLU Chat, Less Tydiga, and Less BBH ICL. Each subplot displays the frequency of output lengths with key statistical
indicators: the average (red dashed line), median (green dashed line), and mode (blue dashed line) of each dataset. The last three subplots
employ a logarithmic scale on both axes to better illustrate data spread.

MMLU. We evaluate the model using the dataset at the huggingface dataset 3. We follow the protocol outlined in
HuggingFace Open LLM Leaderboard ©. The evaluation uses multiple-choice questions formatted as the question followed
by four choices (A, B, C, D) and prompting for an answer. We calculate the mean accuracy (acc) across test examples.

BBH. The model evaluation utilizes the dataset at the huggingface dataset ’, specifically tested on the ‘test* split without
the use of few-shot examples. We follow the setup in previous works [24, 48]. The evaluation metric is the exact match score,
averaged (mean) to assess performance. Generation is constrained to a maximum of 1024 tokens, with termination upon
encountering specific delimiters such as ”j/s;”, ”Q”, or double newlines. The generation is greedy decoding (temperature set
to 0.0) and does not use sampling. Answer extraction employs regex patterns to identify responses immediately following

“the answer is” and captures only the first occurrence.

GSMSK. We evaluate using the dataset at the huggingface dataset ®, focusing on arithmetic problem-solving in the ‘test*
split. We follow the HuggingFace Open LLM Leaderboard to 8 few-shot examples. Exact match is the chosen metric,
with case insensitivity and select regex-based filtering of common punctuation and formatting characters to ensure precise
validation of numerical answers. The primary focus is on extracting and comparing the final numerical answer to the model’s
output using a strict regex-based match setup.

HumanEval. We evaluate using the dataset and the evaluation code from the previous work [24]. We report the
performance of the pass@ 1. We perform the decoding using two different temperatures, 0.1 and 0.7. We report the better
pass@1 from these two decoding results.

Shttps://huggingface.co/datasets/hails/mmlu_no_train
®https://huggingface.co/spaces/HuggingFaceH4/open_l1lm leaderboard
"https://huggingface.co/datasets/lukaemon/bbh
$https://huggingface.co/datasets/gsm8k
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ARC. The evaluation setup for the dataset at the huggingface dataset ° utilizes a multiple-choice format. We follow the
HuggingFace Open LLM Leaderboard to 25 few-shot examples. The performance metric used is mean normalized accuracy
(acc_norm).

CoQA. We conduct the model evaluation on the dataset at the huggingface dataset '°. We follow the HuggingFace Open
LLM Leaderboard to 0 few-shot examples. The output generation terminates upon encountering a new line followed by
”QQ:”. The mean F1 score is used as the evaluation metric.

PIQA. Evaluation on the dataset at the huggingface dataset ' involves a multiple-choice. The evaluation incorporates 10
few-shot examples, according to the LIMIT [26]. Performance is measured using the mean normalized accuracy (acc_norm).

OpenBookQA. The dataset at the huggingface dataset '? is evaluated in a multiple-choice format. The mean normalized
accuracy (acc_norm) is used as the evaluation metric.

LAMBADA. The evaluation of the model on the dataset at the huggingface dataset '* is performed using a loglikelihood
output type. The mean accuracy is used as the evaluation metric.

HellaSwag. In the ‘hellaswag® dataset at the huggingface dataset '4, model evaluation is conducted using a multiple-choice
format. We follow the HuggingFace Open LLM Leaderboard to 10 few-shot examples. The mean normalized accuracy
(acc_norm) is used as the evaluation metric.

The Winograd Schema Challenge. The evaluation is conducted using a multiple-choice format on the ‘test‘ split at the
huggingface dataset '°. The mean accuracy is used as the evaluation metric.

Winogrande. The ‘winogrande‘ dataset is assessed using a multiple-choice format at the huggingface dataset '°. We
follow the HuggingFace Open LLM Leaderboard to 5 few-shot examples. The mean accuracy is used as the evaluation
metric.

LAMBADA. For this dataset, evaluation is conducted using the loglikelihood output type on the ‘test® split at the
huggingface dataset !7. This variant focuses on predicting the last word of text passages in English. The mean accuracy is
used as the evaluation metric.

Translation Benchmarks WMT. The evaluation of the translation capabilities is performed on the WMT 2014'® and
WMT 2016' datasets at the huggingface dataset. Here we use the ‘ter* score as the evaluation metric.

TruthfulQA. We use the dataset at the huggingface dataset 2°. We follow the setup at the HuggingFace Open LLM
Leaderboard using the 6 few-shot examples. The mean accuracy is used as the evaluation metric.

ToxiGen. We use the dataset at the huggingface dataset >!. The task is assessed using a multiple-choice framework to
evaluate the model’s capability to identify hateful content in text statements. The mean accuracy is used as the evaluation
metric.

‘https://huggingface.co/datasets/allenai/ai2_arc
"nttps://huggingface.co/datasets/EleutherAI/coqa
"https://huggingface.co/datasets/piga
Phttps://huggingface.co/datasets/openbookga
Bhttps://huggingface.co/datasets/lambada
“https://huggingface.co/datasets/hellaswag
Bhttps://huggingface.co/datasets/winograd_wsc
Yhttps://huggingface.co/datasets/winogrande
"https://huggingface.co/datasets/EleutherAI/lambada_openai
Bhttps://huggingface.co/datasets/wnt14
Yhttps://huggingface.co/datasets/wmtl6
Pnttps://huggingface.co/datasets/truthful_ga
Hnttps://huggingface.co/datasets/skg/toxigen—data
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Hendrycks Ethics. We use the dataset at the huggingface dataset >?, with a multiple-choice format. The model aims to
detect whether described actions in various contexts are ethically wrong. The prompt format integrates a specific scenario
followed by a structured question: Is this wrong?” and then prompts for an answer with options 'no’ or ’yes’. The mean
accuracy is used as the evaluation metric.

F. Implementation Details

Experimental Design for Figure 2 Left. Here we present a detailed experimental design for Figure 2 Left. We
perform experiments on a variety of datasets, including LIMA, Alpagasus Dolly 3k, Alpagasus Dolly
9k, Alpagasus Alpaca 5k,Less MMLU Chat, Less Tydiga, Less BBH ICL, Tulu V2,Code Alpaca,
Stanford Alpaca, Science Literature, WizardLM, and Sharegpt. Furthermore, to evaluate the effective-
ness of IM on datasets with different instruction-to-output length ratios, we select three subsets from Tulu V2. Each
subset contains 3,000 training examples, with instruction-to-output length ratios of approximately 5, 10, and 15, respectively.

Experimental Design for Figure 2 Right. Here we provide a detailed experimental design for Figure 2 Right. We
strategically sampled varying sizes of training examples from the Tulu V2 dataset to investigate the effectiveness of IM
with different sizes training examples. Starting with approximately 320,000 examples in the Tulu V2 dataset, we creates
subsets of data ranging from as few as 1,000 to as many as 35,000 examples. These subsets were selected randomly, ensuring
a representative mix across different scales. We adhered to a fixed instruction-to-output length ratio of approximately 10 to
maintain consistency in training conditions across all samples. We train the LLAMA-2-7B-BASE on all these subsets and
evaluate them respectively.

Table 6. Hyperparameters and configurations for supervised fine-tuning.

Hyperparameter Assignment
GPUs 2 or 4 A100 80G GPUs
Batch size per GPU 1
Total batch size 128
Number of epochs 2,3,0r 10
Maximum sequence length 2048
Learning rate 2x107°
Learning rate optimizer AdamW
Adam epsilon le-6
Adam beta weights 0.9, 0.98
Learning rate scheduler Linear with warmup
Warmup proportion 0.03
Weight decay 0
Mixed precision bf16

Gradient accumulation steps  Calculated dynamically

Implementation Details. In our study, we fine-tune the LLaMA-2-7B, LLaMA-2-13B and OPT-6.7 model using four
A100 80G GPUs, with a per-GPU batch size of 1 and a total batch size of 128, employing a learning rate of 2e-5. Training
typically proceeds for 2 epochs with a maximum sequence length of 2048 tokens. We utilise gradient accumulation,
calculated to effectively distribute training steps across the available hardware, resulting in larger batch sizes despite
hardware limitations. We employ mixed precision (bf16), linear learning rate scheduling with a warm-up ratio of 0.03, and a

22https ://huggingface.co/datasets/EleutherAI/hendrycks_ethics
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weight decay of 0. To optimise our training, we use DeepSpeed with a stage 3 configuration without offloading. Our setup
also includes the usage of Flash Attention [14] and slow tokenization to enhance training efficiency and compatibility. Our
code is implemented using Open-Instruct??, Pytorch?* and Huggingface?’. Table 6 lists the hyperparameters.

G. Train and Test Loss
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Figure 8. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION
TUNING (IT) on the Alpagasus Dolly 3k dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu
V2 dataset, using a 10% sampled data. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the loss over

the output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues compared to
IT.
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'_l Mean Loss: Method Mean Loss:| |Mean Loss: Method
0.07 0.98 1.12
10000 /= IT L I /=T
Mean Loss: [ IM (Ours) 1 IM (Ours) -

0.16

Count

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 . . 1.0 1.5 2.0 2.5 3.0
Training loss on the Less MMLU-CHAT dataset Test Loss on the Tulu dataset

Figure 9. (Left) Training loss distribution for each example between our approach INSTRUCTION MODELLING (IM) and INSTRUCTION
TUNING (IT) on the Less MMLU Chat dataset. (Right) Test loss distribution for each example between IM and IT on the Tulu V2
dataset, using a 10% sampled data. Mean losses are marked by dashed lines. For both IM and IT, here we only compute the loss over the
output part. IM has a higher train loss with lower test loss, suggesting that IM effectively mitigates the overfitting issues compared to IT.

In this section, we provide additional experiments regarding training and testing loss distributions. Figure 8 focuses on the
Alpagasus Dolly 3k and Tulu V2 datasets, displaying how IM tends to exhibit higher training losses yet achieves
lower test losses compared to IT. Similarly, Figure 9 compares these methods on the Less MMLU Chat and Tulu V2
datasets under analogous conditions.

Bnttps://github.com/allenai/open—instruct

¥nttps://pytorch.org/
Bnttps://huggingface.co/
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H. The impact of Epochs on the Win Rate

(a) Lima‘ Dataset
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Figure 10. AlpacaEval 1.0 performance trends for IM and IT approaches on the LIMA and Alpagasus Dolly 9k datasets across
different epochs.

The figure 10 illustrates the comparative analysis of AlpacaEval 1.0 scores across different epochs for two datasets, LIMA
and Alpagasus Dolly 9k datasets. We evaluate the performance of IM and IT over different numbers of epochs.
IM consistently surpasses IT in performance on the Alpagasus Dolly 9k dataset, while the performance of both
approaches is comparable on the LIMA dataset.

I. Applying KL Divergence Loss for Instruction Tuning

In this section, we first briefly introduce the Kullback-Leibler (KL) divergence, and then introduce the experimental details.

Kullback-Leibler Divergence. Kullback-Leibler (KL) divergence is commonly employed as a regularisation method
in the fine-tuning of LMs, helping to mitigate overfitting by constraining the fine-tuned model to remain similar to the
pre-trained model [38]. Specifically, the KL divergence is added to the fine-tuning objective as a per-token regularisation
term between the fine-tuned LM 7y (), and the pre-trained LM, 7P*(x). For supervised fine-tuning with next token
prediction loss, the training objective incorporating KL divergence is computed as follows:

LxL(0) = EIND[Z —log mo(2¢|To.4—1) + A Z KL (7g (2| @o:—1 ) |77 (¢ |20:0-1))], (2)
¢ t

where )\ is a regularisation parameter that balances the loss due to the next token prediction and the KL divergence, and
m(x¢|xo.+—1) represents the next token distribution of the fine-tuned or pre-trained LM conditioned on the preceding context.

Table 7. Performance on 23 NLP benchmarks and AlpacaEval 2.0, with various values of A, trained on the (LLAMA-2-7B-BASE).
NLP Tasks AlpacaEval 2.0

LLAMA-2-7B-BASE 49.32 0.01
A=0.01 48.81 2.58
A=0.1 48.77 2.44
A=1.0 49.26 0.06

Ablation study on the effect of \. In Table 3, we set the value of the X as 1.0. Here we provide additional experiments
with different values of \. Table 7 presents the model performance on the NLP tasks and AlpacaEval 2.0. This aligns our
observations in §B.
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J. The impact of Epochs on Output Lengths
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Figure 11. Comparative analysis of output lengths for IM and IT across different epochs on Alpagasus Dolly 3k,Alpagasus
Dolly 9k, LIMA, and Less Tydiga datasets.

Figure 11 illustrate the average output length of various models across different epochs. We report the output length on four
different datasets, including Alpagasus Dolly 3k, Alpagasus Dolly 9k, LIMA, and Less Tydiga. Each

line represents the average output length of a model, with epochs ranging from 2 to 10, and is accompanied by error bars
that denote the normalised standard deviation (10%) of the output lengths.
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