

000 FOUNDATION FOR CHINESE POETRY RESEARCH: AN 001 OPEN LARGE-SCALE AND FINE-GRAINED MULTI- 002 MODAL KNOWLEDGE GRAPH 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009
010
011

ABSTRACT

013 Classical Chinese poetry is a treasured cultural heritage of humanity, attracting
014 extensive research interest. However, the study of classical Chinese poetry is hin-
015 dered by the lack of open, large-scale, and fine-grained multimodal datasets. Prior
016 datasets are either limited by modality constraints, dataset size, or the level of
017 dataset refinement, making them inadequate for effectively supporting studies and
018 the development of applications in classical Chinese poetry. To address these
019 issues, we propose a method for constructing a large-scale and fine-grained multi-
020 modal knowledge graph of classical Chinese poetry. We first design an infor-
021 mative ontology graph for classical Chinese poetry and comprehensively collect
022 knowledge about poetry based on it. Furthermore, the method utilizes knowledge
023 augmentation, prompt optimization, and text-image alignment to acquire com-
024 prehensive and fine-grained knowledge. Both qualitative and quantitative eval-
025 uations are conducted on the Multimodal Knowledge Graph of Classical Chinese
026 Poetry (CPMK), highlighting its comprehensiveness and high quality. We also
027 conduct downstream evaluations on poetry-image retrieval, poetry question an-
028 swering, and poetry theme classification tasks. Significant results were achieved
029 in all three tasks, particularly in poetry-image retrieval and poetry theme classifi-
030 cation, which attained state-of-the-art performance. This outstanding performance
031 highlights the effectiveness of CPMK, which provides a robust foundation for re-
032 search on classical Chinese poetry. CPMK will be released to promote research in
033 Chinese culture¹.
034

1 INTRODUCTION

035 Classical Chinese poetry is a treasured cultural heritage that passes down ancient literature and
036 fosters cross-cultural understanding between the East and the West. As times change, understanding
037 Chinese poetry has become increasingly difficult. Differences between ancient poetry and modern
038 Chinese, the evolution of poetry imagery meanings, and factors such as the poetry background all
039 affect our understanding of Chinese poetry.
040

041 Numerous studies have shown that integrating information from multiple modalities can signifi-
042 cantly improve the performance of downstream tasks. However, most existing research on classical
043 Chinese poetry is predominantly focused on the textual modality(Wang et al., 2023b; Wei et al.,
044 2024). The scarcity of multimodal datasets hinders research efforts that extend beyond the textual
045 modality. Therefore, constructing a MultiModal Knowledge Graph (MM-KG) of classical Chinese
046 poetry is essential for promoting Chinese culture and advancing research in this area.
047

048 To facilitate the discussion, we introduce several key concepts relevant to classical Chinese poetry.
049 Ancient Poetry (AP) refers to classical Chinese poetry, characterized by its traditional form and
050 archaic language, which differ significantly from modern Chinese. Poetry Imagery (PI) denotes
051 specific objects or concepts that poets use to express emotions and thoughts. Imagery Meaning (IM)
052 is the modern Chinese meaning of the PI, while Imagery Image (II) refers to the visual representation
053 of the IM. Modern Chinese Translation (MCT) refers to the translation of classical Chinese poetry
into modern Chinese. We provide an example in Appendix B to illustrate these concepts.

¹https://github.com/****/CPMK

To the best of our knowledge, the currently available MM-KG of classical Chinese poetry is limited to PKG(Li et al., 2022), which is the only text-vision modality knowledge graph in this field. However, it has many shortcomings, making it difficult to support downstream tasks.

1) PKG focuses solely on PI-related knowledge, neglecting other critical aspects such as poetry-related knowledge and author-related knowledge, all of which are essential for poetry research. For instance, Jiang et al. (2024) utilizes poetry appreciation to assist in generating images of AP. **2)** IIs in the PKG are represented as URLs in website Unsplash², but many of these images are no longer available. Among 127,100 randomly sampled URLs, 9,837(7.7%) were found to be invalid, severely impacting the knowledge graph’s utility in downstream tasks. **3)** For the acquired textual data, PKG does not perform sufficient data processing, so the data quality largely depends on the original websites and the crawler scripts, leading to a large amount of textual noise. Moreover, it fails to differentiate between the various IMs of the same PI. Using multiple IMs together as a query to retrieve IIs results in a weak correspondence between IMs and IIs. Currently, some studies (Liu et al., 2025) attempt to remove textual noise using regular expressions, but heuristic rules struggle to cover all cases in large-scale datasets. **4)** Chinese Poetry originated in the pre-Qin period (before 1000 BCE). Over time, the dissemination process may have led to variations in poetry-related knowledge. However, to the best of our knowledge, existing studies on classical Chinese poetry (Wei et al., 2024; He et al., 2023) overlooked these variations, leading to constructed datasets that lack completeness. **5)** Auditory elements are crucial components of classical Chinese poetry. These elements are mandated in many poetry forms, such as five-character and seven-character poems. However, the auditory data are overlooked in PKG.

To address the issues above, this paper proposes a novel method for constructing a large-scale and fine-grained MM-KG of classical Chinese poetry, which integrates textual, visual, and auditory modalities. To obtain comprehensive knowledge of classical Chinese poetry, we constructed an ontology graph encompassing multiple aspects of poetry-related knowledge. Guided by this graph, we systematically collected knowledge related to its concepts. To ensure the completeness of textual knowledge, we employ a poetry knowledge augmentation strategy. For the visual data in the ontology graph, we utilize generative models to acquire images, rather than traditional web scraping, enhancing the correlation between text and images. In the process of image generation, prompts are first processed by prompt optimization to improve the quality of generated images. For the obtained text-image pairs, text-image alignment is used to filter out high-quality text-image pairs. For auditory data, we gathered auditory knowledge for characters found in classical Chinese poetry. The proposed method leads to the construction of an MM-KG of Chinese Poetry (CPMK), which includes textual, visual, and auditory modalities.

Qualitative and quantitative evaluations demonstrate that CPMK is more comprehensive and accurate than existing datasets. To further validate the effectiveness of CPMK in downstream tasks, we incorporate it into poetry-image retrieval, poetry question answering, and poetry theme classification tasks. Experimental results demonstrate that CPMK significantly improves the performance of downstream tasks, particularly in poetry-image retrieval and poetry theme classification, where it attained state-of-the-art performance. Through qualitative research, quantitative research, and validation in downstream tasks, it demonstrates that CPMK can provide a solid foundation for the study and development of classical Chinese poetry applications. Our contributions are listed below:

- We propose a novel method for constructing a large-scale and fine-grained MM-KG of classical Chinese poetry. We first design an ontology of classical Chinese poetry to gather comprehensive knowledge, and adopt knowledge augmentation, prompt optimization, and text-image alignment to acquire a large-scale and fine-grained MM-KG.
- Using this method, we construct a multimodal knowledge graph of classical Chinese poetry with **6,834,825** textual nodes, **211,467** visual nodes, and **82,679** auditory nodes. Qualitative evaluation, quantitative evaluation, and downstream task validation collectively confirm its quality and effectiveness in the field of classical Chinese poetry.
- We construct two datasets for the classical Chinese poetry-image retrieval task using manual collection and automated generation methods. To our knowledge, this is the first benchmark for this task. They facilitate the evaluation of retrieval models and promote further research in the field of classical Chinese poetry.

²<https://unsplash.com>

- 108 • We propose a knowledge-enhanced poetry-image retrieval model. By establishing connec-
109 tions between classical Chinese poetry and images through modern Chinese translation of
110 poetry, the model achieves state-of-the-art results on two datasets in the multimodal task of
111 poetry-image retrieval. It uses a large amount of textual data and only a small amount (or
112 even no) visual data, providing insights for other multimodal tasks.
- 113 • We validate the effectiveness of CPMK across multiple tasks by proposing a retrieval-
114 augmented poetry question answering framework and a retrieval-augmented poetry theme
115 classification framework. We achieve excellent results in both tasks, with the poetry theme
116 classification achieving state-of-the-art performance.

118 2 RELATED WORKS

120 2.1 KNOWLEDGE GRAPH CONSTRUCTION

122 Due to advancements in LLMs, many studies have utilized them to construct knowledge graphs.
123 Wang et al. (2025) leverages LLMs for triple extraction, relational embedding, and schema-
124 based normalization, which supports multi-domain construction without retraining or fine-tuning.
125 FolkScope(Yu et al., 2023) leverages the generative power of LLMs and human-in-the-loop annota-
126 tion to semi-automatically construct the knowledge graph. However, in the field of classical Chinese
127 poetry, the lack of a large-scale knowledge base like Wikipedia makes it difficult to collect substan-
128 tial amounts of data, rendering existing methods difficult to apply directly.

129 In the field of classical Chinese poetry, there have also been studies focused on constructing knowl-
130 edge graphs. KnowPoetry (Hong et al., 2020) proposes a framework to extract poems, poets, and
131 their relationships from Tang poetry, thereby constructing a domain ontology and a knowledge
132 graph. SKG-Poetry (Zhao et al., 2022) constructs a sememe knowledge graph of classical Chi-
133 nese poetry, linking classical and modern Chinese vocabularies to enhance semantic understanding.
134 These knowledge graphs are either constrained by their modalities or suffer from quality deficien-
135 cies, which makes it difficult for them to support downstream tasks effectively.

136 2.2 CLASSICAL CHINESE POETRY DATA

138 Research on classical Chinese poetry data mainly focuses on text, with limited exploration of vision
139 and audio modalities. The ancient corpora of text include four main datasets: Poetry(Werneror),
140 CCPM(Li et al., 2021), ACP-Corpus(Liu et al., 2025), Chinese-poetry-and-prose(VMIJUNV).

142 There is limited attention to vision and audio modalities in the study of classical Chinese poetry. In
143 terms of vision modality, the Pkg (Li et al., 2022) compiles knowledge related to PI, and (Liu et al.,
144 2020) maps poems to specific categories and collects images corresponding to those categories.
145 Regarding the audio modality, to our knowledge, no relevant knowledge graph has been identified.

146 3 METHOD FOR CONSTRUCTING CPMK

149 We analyse the data requirements from recent studies on classical Chinese poetry, such as Li et al.
150 (2022); Jiang et al. (2024); Li et al. (2021), to construct an ontology graph. This graph serves as
151 the guidance for the construction of the MM-KG of classical Chinese poetry. The ontology graph
152 is in Appendix C. Guided by the ontology graph, this method overcomes the limitations of previous
153 studies, which lacked comprehensive coverage of Chinese poetry knowledge. The construction
154 method of MM-KG of Chinese poetry is divided into the following parts:

155 3.1 ACQUISITION OF RAW DATA.

157 Knowledge related to AP and author is crawled from the authoritative poetry website SouYun³. We
158 extract words that appear more than 5 times and all the characters that have appeared in AP. These
159 words and characters are used to crawl for their semantic meanings on the website HanDian⁴. For

161 ³<https://sou-yun.cn/>

⁴<https://www.zdic.net/>

162 words, if their semantic meaning exists, they are categorized as PI, and their meaning serves as IM.
 163 For characters, in addition to their semantic meanings, we also crawl their auditory knowledge and
 164 visual knowledge in HanDian. Characters are visually represented in either GIF or SVG to demon-
 165 strate the stroke order of writing. Pinyin and Zhuyin are offered as audio to illustrate pronunciation.

166 When dealing with II data, manual collection of extensive II data is impractical, and web scraping
 167 poses significant challenges due to the unique characteristics of classical Chinese poetry. 1) There is
 168 a lack of comprehensive image databases for Chinese literature, as existing large-scale image web-
 169 sites primarily focus on modern elements and offer limited coverage of ancient Chinese literature.
 170 2) Some IMs are relatively abstract, making it challenging to find images that basically convey their
 171 visual meaning when using web scraping.

185 Figure 1: II for the “ChenMeng” and “ChiXiao”, both generated using a generative model.
 186

187 Generative models, having been trained on large-scale datasets, can effectively address the men-
 188 tioned issues. For instance, the PI “ChiXiao(赤霄)”’s IM refers to the legendary ancient sword of
 189 “LiuBang(刘邦)”, the PI “ChenMeng(尘梦)”’s IM symbolizes the illusion of the mortal world. As
 190 shown in Figure 1, generative models can generate content related to ancient legends and abstract
 191 concepts with relatively effective results. Therefore, this paper uses a generative model to create IIs.
 192 The selection of the generative model and the prompt setting can be found in Appendix D.

193 3.2 POETRY KNOWLEDGE AUGMENTATION

195 Currently, most data related to the AP comes from the internet, and its accuracy largely depends on
 196 the quality of the websites. Due to historical factors and the diverse transmission of poetry knowl-
 197 edge, variations and inconsistencies may exist. This paper adopts a cross-augmentation strategy,
 198 which integrates variations from multiple knowledge bases to provide the most comprehensive and
 199 reliable knowledge. We focus on two core aspects: knowledge related to AP and author.

200 We collect knowledge about AP and author from GuShiWen⁵ and GuoXueHui⁶. For AP-related
 201 knowledge, we employ a two-phase deduplication strategy inspired by (Liu et al., 2025): global
 202 alignment removes redundant poems, while local alignment segments poems by punctuation and
 203 evaluates overlaps between text chunks. Similar APs are clustered rather than overwritten, with
 204 their relevant knowledge integrated to ensure a comprehensive representation. Details of the process
 205 are provided in Appendix E. For author-related knowledge, we determine entity consistency by
 206 verifying the author’s name and dynasty, and then aggregate the relevant information.

208 3.3 PROMPT OPTIMIZATION FOR IMAGERY IMAGE GENERATION

210 Generative models often produce highly accurate images, but maintaining consistency with the input
 211 text remains a challenge. Many generative models utilize CLIP’s text encoder as their text encoder,
 212 with its parameters frozen while only the diffusion process is trained (Ramesh et al., 2022; Rombach
 213 et al., 2022). However, research from Zhang et al. (2024) shows that CLIP’s text encoder effectively
 214 handles fewer than 20 tokens, leading to hallucinations when processing longer texts.

215 ⁵<https://www.gushiwen.cn/>

⁶<https://www.gushicimingju.com/>

216

217 Table 1: Average token distribution. SP Knowledge represents supplementary knowledge. Visual
218 Desc represents visual description.

Data	Average Token Length	Total Num
Raw IM	21.72	177,664
Refined IM	6.70	257,028
SP Knowledge	23.72	58,827
Visual Desc	15.30	135,720

224

225 Table 1 shows that raw IMs from the internet exceed token limits(21.72). Raw IMs often contain
226 multiple meanings that have not been correctly separated. In addition, text data obtained through
227 web scraping may introduce irrelevant noise and extraneous information, such as the sources of IMs,
228 which can aid in understanding complex meanings but often hinder downstream tasks. To address
229 this, this paper uses LLMs to filter noise, separate complex Raw IMs into distinct meanings, and
230 retain useful auxiliary information as supplementary knowledge, producing refined IMs.

231

232 Table 1 shows that the refined IMs often become overly concise(6.70), failing to achieve the op-
233 timal token length. Intuitively, providing detailed descriptions within the model’s comprehension
234 range enhances the accuracy of the generated images. For example, prompts like “the sea god”
235 are too concise, whereas “The majestic sea god stands above the waves” offers a clearer and more
236 interpretable context for the generative model. Drawing inspiration from Retrieval Augmented Gen-
237 eration(RAG) technologies, we utilize LLMs to rewrite refined IMs into visual descriptions suited
238 for generative models. This method enhances clarity and relevance while keeping the prompt length
239 within a manageable 20 tokens, effectively reducing the likelihood of hallucinations.

240

241 LLMs are also used to determine if an IM can be visually represented, discarding inputs like stop-
242 words that lack visual significance. This ensures that only visually meaningful data is processed by
243 the generative models, enhancing efficiency. The instruction is shown in Appendix G.

244

245 3.4 IMAGERY MEANING-IMAGERY IMAGE ALIGNMENT.

246

247 When handling large-scale text-image pairs, aligning them accurately becomes a significant chal-
248 lenge. It is common to use the CLIPScore(Hessel et al., 2021) to evaluate the relevance between text
249 and images. CLIPScore has certain limitations: a high threshold may lead to the omission of entities,
250 while a low threshold can weaken the alignment between text and images, particularly when dealing
251 with large-scale text-image pairs. Inspired by GLIDE (Nichol et al., 2022), which evaluates im-
252 age generation quality through classification, we abandon the traditional threshold-setting approach.
253 Instead, we propose leveraging an image-to-text retrieval task to address this alignment challenge.

254

255 In the image-to-text retrieval task, text perturbations are introduced. Specifically, for each generated
256 II, II is used to retrieve IM along with the two text perturbations. The first perturbation randomly
257 selects another IM from the total set of IMs, while the second perturbation is composed of a random
258 character selected from the tokenization vocabulary in BERT(Devlin et al., 2019). If all of the
259 generated IIs correctly retrieve the candidate IM, the IIs and IM are considered aligned, and the text-
260 image pair with the highest CLIP score is selected as the final match. Otherwise, those text-image
261 pairs are deemed mismatched and discarded.

262

263 4 QUALITATIVE AND QUANTITATIVE EVALUATIONS

264

265 4.1 QUANTITATIVE EVALUATION

266

267 1) We counted the number of entities in each dataset, with the results presented in Table 2.. To our
268 knowledge, CPMK is the first dataset to integrate text, vision, and audio modalities within classical
269 Chinese poetry. According to the table, CPMK significantly exceeds prior research in the number
270 of entities. Large-scale datasets serve as a robust foundation for advancing research and application
271 development in classical Chinese poetry.

272

273 2) To evaluate the effectiveness of the proposed prompt optimization and text-image alignment meth-
274 ods, we design a comparative evaluation. The raw IMs are optimized using a heuristic approach as

270
 271 Table 2: Modal entity statistics across datasets. Results with * are inferred from their papers due to
 272 dataset unavailability.

Corpus	#Text	#Vision	#Audio
CCPM[19]	136,090	-	-
RPG*[13]	215,227	-	-
VMIJUNV[30]	1,515,463	-	-
ACP-Corpus*[22]	2,159,920	-	-
PKG[20]	111,5143	96,049	-
Image2Poem*[21]	117,867	1,036	-
CPMK	6,834,825	211,467	82,679

281
 282 prompts to generate new images, which are then refined through our text-image alignment method.
 283 The image generation part is the same as that used in this paper. We recorded the average token
 284 length of the text information processed by the heuristic methods and calculated the CLIPScore⁷ of
 285 the generated images. The details of the heuristic approach are shown in Appendix I.

286 The results in Table 3 demonstrate that images processed by prompt optimization have a higher
 287 CLIPScore compared to the heuristic approach. By simply reducing IM-II pairs from 407,160 to
 288 319,419, text-image alignment significantly enhanced CLIPScore, proving its effectiveness. No-
 289 tably, the final counts of IM-II pairs obtained through the heuristic approach (102,090) and prompt
 290 optimization (106,473) are very close. This suggests that LLMs with visual capabilities can effec-
 291 tively determine whether an IM is visually representable, enhancing computational efficiency. It
 292 also demonstrates that LLMs possess the ability to rewrite text prompts for image generation.

293
 294 Table 3: The average CLIPScore of IM-II pairs. Heu stands for Heuristic approach, PO stands for
 295 Prompt Optimization, Align stands for the proposed text-image alignment, and Hig stands for the
 296 highest CLIPScore text-image pair among the generated images.

Data	CLIPScore	Total Num
Heu	0.912	752,772
Heu + Align	1.056	306,270
Heu + Align + Hig	1.068	102,090
PO	1.022	407,160
PO + Align	1.136	319,419
PO + Align + Hig	1.191	106,473

306 4.2 QUALITATIVE EVALUATION

307
 308 In the qualitative evaluation, we designed a questionnaire to evaluate two aspects: the relevance
 309 between IM and II, and whether IM is reasonably split on CPMK and PKG. The relevance score and
 310 coverage score are used, both of which are scored from 0 to 5.

311 **Relevance Score:** This metric evaluates the connection between the IM and II, factoring in the II's
 312 quality. Full points are given if the II captures any essential meaning of the IM, with deductions for
 313 discrepancies. If there are two meanings and one is perfectly captured, full points 5 are awarded.

314 **Coverage Score:** Ranging from 0 to the relevance score of the current image, this metric measures
 315 the image's coverage of IM. Full score indicates complete coverage, while partial coverage results
 316 in proportional deductions. If one of two meanings is perfectly captured, a score of 2.5 is given.

317 The relevance score minus the coverage score can help determine whether the segmentation of the
 318 IM is reasonable. We invited five university students knowledgeable about classical Chinese poetry
 319 to evaluate 500 IM-II pairs randomly selected from each dataset, totaling 1000 pairs.

320 As shown in Figure 2, CPMK significantly outperforms PKG in both relevance and coverage scores,
 321 with a smaller gap between the two compared to CPMK, indicating that CPMK achieves more

323 ⁷In this paper, we calculate CLIPScore using the CN-CLIP-1B model (Yang et al., 2022).

reasonable image segmentation. Additionally, the CLIPScore between IM and II further validates the higher similarity in CPMK. We provide a questionnaire example in Appendix F.2.

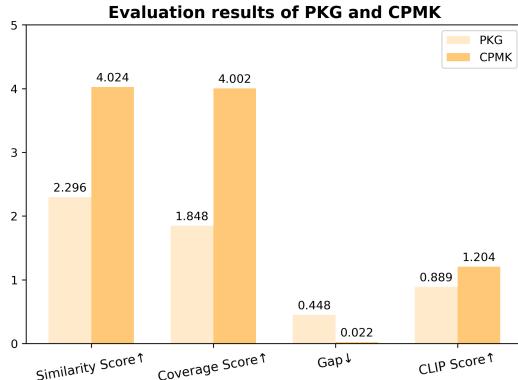


Figure 2: The evaluation results of IM-II for PKG and CPMK. Gap represents the Similarity Score minus the Coverage Score.

5 DOWNSTREAM TASK VALIDATION

To validate the effectiveness of CPMK in downstream tasks, we apply it to three downstream tasks: Poetry-Image Retrieval, Poetry Question Answering, and Poetry Theme Classification. Since our primary aim is to verify whether CPMK could play a role in downstream tasks, we don't focus on complex experimental designs. We conduct a preliminary experimental design and expect to achieve promising results to highlight the effectiveness of CPMK. Since both poetry question answering and poetry theme classification adopt retrieval-augmented techniques, without loss of generality, we introduce poetry question answering in the Appendix A.1.

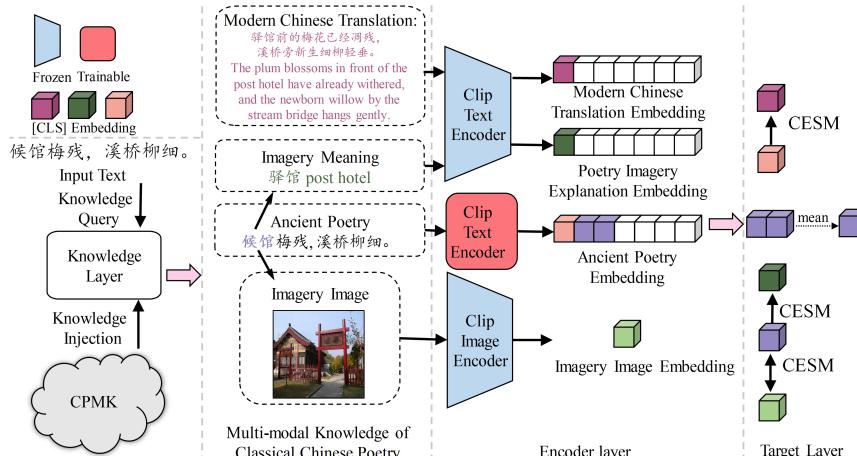


Figure 3: The overview framework of KPIR.

5.1 POETRY-IMAGE RETRIEVAL

While current retrieval models perform well in capturing the correspondence between text and images in modern languages, they face significant challenges in the poetry-image retrieval task. We attribute this primarily to the lack of domain-specific expertise in classical Chinese poetry. Furthermore, the limited size of existing Chinese poetry-image pair datasets poses a challenge for leveraging large-scale training methods such as CLIP (Radford et al., 2021). Based on the above analysis, we propose a Knowledge-enhanced Poetry-Image Retrieval model (KPIR).

378 Because the current retrieval model establishes a correspondence between modern Chinese and images, we leverage this by associating the encoding of the AP with its Modern Chinese Translation
 379 (MCT) to bridge the gap between APs and images. The core idea is to optimize the text encoder
 380 while keeping the image encoder fixed, ensuring that the embeddings of the AP align closely with
 381 its corresponding MCT. The structure of KPIR is shown in Figure 3.

383 Our model retrieves relevant knowledge from CPMK, including PI, IM, II, and MCT, forming the
 384 foundation for learning poetry expertise. We utilize a trainable text encoder and a frozen text en-
 385 coder, along with a frozen image encoder. The frozen text encoder extracts MCT feature f_{mct} and
 386 IM feature f_{im} , while the trainable text encoder extracts AP feature f_{ap} and PI feature f_{pi} . The im-
 387 age encoder extracts the II feature f_{ii} . Knowledge injection is implemented through Cross-Entropy
 388 Similarity Matching (CESM), which integrates similarity scores of bimodal embeddings into a cross-
 389 entropy framework, minimizing the difference between the predicted and true distributions.

390 Given a mini-batch containing N bimodal (X, Y) pairs, where Y includes poetry knowledge from
 391 CPMK (MCT, IM, II), based on either the AP or the PI in X. We form representation pairs
 392 $\{(f_i^x, f_j^y), y_{i,j}\}$ with labels $y_{i,j}$: 1 for matching pairs and 0 for non-matching ones. In a mini-batch,
 393 the CESM loss from modality X to Y is:

$$395 \quad \text{CESM}(X, Y) = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^N y_{i,j} \log \left(\frac{\exp(\text{sim}(f_i^x, f_j^y))}{\sum_{k=1}^N \exp(\text{sim}(f_i^x, f_k^y))} \right).$$

399 We applied the CESM in four stages: $\mathcal{L}_{ap2mct} = \text{CESM}(f_{ap}, f_{mct})$, $\mathcal{L}_{pi2im} = \text{CESM}(f_{pi}, f_{im})$,
 400 and $\mathcal{L}_{pi2ii} = \text{CESM}(f_{pi}, f_{ii})$, $\mathcal{L}_{ii2pi} = \text{CESM}(f_{ii}, f_{pi})$. Knowledge is injected through
 401 MCT(\mathcal{L}_{ap2mct}) and IM(\mathcal{L}_{pi2im}). We utilize \mathcal{L}_{ii2pi} and \mathcal{L}_{pi2ii} to preserve the correspondence be-
 402 tween text and image. The final loss function is:

$$404 \quad \mathcal{L} = \mathcal{L}_{ap2mct} + \mathcal{L}_{pi2im} + \mathcal{L}_{pi2ii} + \mathcal{L}_{ii2pi}$$

406 **Dataset and Evaluation Metrics.** We extract 30,000 pairs of AP and MCT from CPMK as the
 407 training dataset, with all PI-related knowledge sourced from CPMK. Due to the lack of existing
 408 datasets for poetry-image retrieval tasks, we construct two datasets for evaluation: 1) We manually
 409 collected 70 high-quality pairs of AP and image (PI-Manual) from the internet. 2) We generate
 410 500 images corresponding to APs using a generative model (PI-Generate), with specific generation
 411 details provided in the appendix H. Since there is a one-to-one correspondence between text and
 412 image, this study uses recall as the evaluation metric, counting the number of correct answers within
 413 the retrieved set. The higher the recall, the better the model performs.

415
 416 Table 4: Performance of Different Models on Poetry-Image Retrieval Tasks (†: MCT-Image Re-
 417 trieval Tasks. w/o II: Training conducted without II, utilizing only text data.)

418 419 420 421 422 423 424 425 426 427 428 429 430 431 Models	421 422 423 424 425 426 427 428 429 430 431 PI-Manual		421 422 423 424 425 426 427 428 429 430 431 PI-Generate					
	421 422 423 424 425 426 427 428 429 430 431 R@3	421 422 423 424 425 426 427 428 429 430 431 R@3	421 422 423 424 425 426 427 428 429 430 431 t2i			421 422 423 424 425 426 427 428 429 430 431 i2t		
			421 422 423 424 425 426 427 428 429 430 431 R@5	421 422 423 424 425 426 427 428 429 430 431 R@10	421 422 423 424 425 426 427 428 429 430 431 R@20	421 422 423 424 425 426 427 428 429 430 431 R@5	421 422 423 424 425 426 427 428 429 430 431 R@10	421 422 423 424 425 426 427 428 429 430 431 R@20
Taisu-0.2B[23]	0.714	0.700	0.281	0.370	0.494	0.284	0.384	0.474
AltClip-0.9B[7]	0.601	0.671	0.288	0.368	0.484	0.314	0.412	0.492
D2D2-0.4B[37]	0.586	0.814	0.198	0.258	0.324	0.348	0.452	0.558
CN-CLIP-0.1B[39]	0.714	0.729	0.208	0.294	0.382	0.282	0.370	0.492
CN-CLIP-0.4B[39]	0.686	0.771	0.214	0.274	0.348	0.352	0.452	0.538
CN-CLIP-1B[39]	0.743	0.714	0.218	0.288	0.358	0.308	0.384	0.482
CN-CLIP-0.1B[39]†	0.871	0.889	0.372	0.468	0.576	0.390	0.476	0.574
CN-CLIP-0.4B[39]†	0.886	0.887	0.388	0.464	0.536	0.414	0.492	0.596
CN-CLIP-1B[39]†	0.871	0.901	0.376	0.446	0.534	0.408	0.498	0.588
KPIR-0.1B w/o II	0.857	0.728	0.422	0.514	0.642	0.294	0.384	0.498
KPIR-0.1B	<u>0.871</u>	0.800	0.460	0.548	0.644	0.340	0.448	0.554
KPIR-0.4B	0.886	0.871	<u>0.500</u>	<u>0.594</u>	0.682	<u>0.458</u>	<u>0.548</u>	0.664
KPIR-1B	0.857	0.871	0.508	0.602	0.700	0.462	0.560	<u>0.656</u>

Main results. As shown in Table 4, we evaluate two tasks: the core poetry-image retrieval task and the MCT-image retrieval task. The results of the latter are marked with a \dagger . The MCT-image retrieval task uses modern Chinese translations of ancient poetry to perform bidirectional retrieval with images. The experimental results on poetry-image retrieval demonstrate that KPIR achieves state-of-the-art performance on the poetry-image retrieval task across two datasets. Even our smallest model, KPIR-0.1B, significantly surpasses previous methods. By integrating MCT knowledge and PI-related knowledge through CESM, KPIR effectively aligns the embeddings of APs with their corresponding MCTs, thereby establishing associations between APs and images. Notably, we also try training without II, utilizing only text data ($\mathcal{L} = \mathcal{L}_{ap2mct} + \mathcal{L}_{pi2im}$). The experimental results also outperform previous models, indicating that our proposed knowledge injection through poetry translation is effective.

KPIR is initialized using the CN-CLIP(Yang et al., 2022) model. On the PI-Manual dataset, KPIR’s poetry-image retrieval performance is comparable to CN-CLIP’s MCT-image retrieval. However, on the PI-Generate dataset, KPIR significantly outperforms CN-CLIP. This result is counterintuitive, as it would be reasonable to expect CN-CLIP to achieve superior performance, given that it was trained on a large-scale contemporary Chinese dataset. This indicates that if KPIR relied solely on MCT knowledge, its performance would be upper-bounded by that of CN-CLIP. KPIR’s superior performance is attributed to both MCT knowledge and PI-related knowledge.

5.2 POETRY THEME CLASSIFICATION

Poetry Theme Classification is a fundamental task in classical Chinese poetry research, involving categorizing poems based on their themes. We applied CPMK and PKG to this task and evaluated their performance using the TCCP⁸ dataset. TCCP is a theme classification dataset for Chinese classical poetry, which contains 3,247 poems. Its theme is divided into nine categories: homesickness, chanting things, landscape, missing someone, meditating on the history, pastoral, frontier war, boudoir resentment, and farewell. We use PI in the poetry as a query to retrieve relevant IM from CPMK and PKG, and then combine this knowledge with the original poem to input into DeepSeek-Chat(Guo et al., 2025) for poetry theme classification. Details are in Appendix A.5.

Table 5: The performance of different models on TCCP, with * indicating results are cited.

Models	Micro-F1	Macro-F1
BERT+FT* [8]	67.98	65.46
HiAGM-TP*[48]	63.02	57.18
LCM*[10]	86.39	85.11
GreaseLM*[46]	74.87	73.90
KPT*[16]	80.19	82.05
ChatGLM*[43]	88.04	85.15
DeepSeek-Chat[11]	89.12	87.23
DeepSeek-Chat +PKG	<u>92.59</u>	<u>90.75</u>
DeepSeek-Chat +CPMK	94.24	92.71

The results indicate that both CPMK and PKG enhance the model’s classification capability. However, CPMK demonstrates a more significant improvement, achieving state-of-the-art results. This suggests that when inputting the same type of knowledge, CPMK provides both higher accuracy and a more comprehensive coverage than PKG.

6 CONCLUSION

This paper proposes a method for constructing an MM-KG for classical Chinese poetry, integrating textual, visual, and auditory modalities. By introducing knowledge augmentation, we ensure textual data completeness. We enhance the correlation between text and images through prompt optimization and text-image alignment. Qualitative evaluation, quantitative evaluation, and downstream tasks evaluation validate the quality and effectiveness of CPMK. The CPMK will be open-sourced to promote the development of the field of ancient poetry.

⁸https://github.com/shuizhonghaitong/classification_GAT/tree/master/data

486 7 REPRODUCIBILITY STATEMENT
487

488 To enhance the reproducibility of the knowledge graph construction and downstream tasks, we pro-
489 vide detailed descriptions of our methodologies. For II generation, Appendix D covers the selection
490 of generation models and the setting of prompts. Regarding prompt optimization, the selection of
491 LLM and prompt design can be found in Appendix G. Appendix 1 describes the algorithm for merg-
492 ing relevant knowledge for knowledge augmentation. In Section 3.4, we explain how text perturba-
493 tions are constructed and the evaluation metrics used for text-image alignment. Finally, Appendix A
494 includes the experimental designs for poetry-image retrieval, as well as the prompt settings for the
495 poetry theme classification task and the poetry question-answering task.

496
497 REFERENCES
498

499 shenzhi-wang llama3-8b-chinese-chat. [https://huggingface.co/shenzhi-wang/](https://huggingface.co/shenzhi-wang/LLama3-8B-Chinese-Chat)
500
501 Idea-ccnl ziya-llama-13b-v1.1. <https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1.1>.
502
503 Peterh0323 ancient-chat-llm. <https://github.com/PeterH0323/ancient-chat-llm>.
504
505 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
506 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
507 report. *arXiv:2303.08774*, 2023.
508
509 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
510 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv:2309.16609*, 2023.
511
512 Jiahuan Cao, Yang Liu, Yongxin Shi, Kai Ding, and Lianwen Jin. Wenmind: A comprehensive
513 benchmark for evaluating large language models in chinese classical literature and language arts.
514 *Advances in Neural Information Processing Systems*, 37:51358–51410, 2024.
515
516 Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Qinghong Yang, and Ledell Wu. Altclip: Altering the
517 language encoder in clip for extended language capabilities. In *Findings of the Association for
Computational Linguistics*, pp. 8666–8682, 2023.
518
519 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
520 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics*, pp. 4171–4186,
521 2019.
522
523 Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
524 General language model pretraining with autoregressive blank infilling. *arXiv:2103.10360*, 2021.
525
526 Biyang Guo, Songqiao Han, Xiao Han, Hailiang Huang, and Ting Lu. Label confusion learning to
527 enhance text classification models. In *Proceedings of the AAAI conference on artificial intelli-
gence*, volume 35, pp. 12929–12936, 2021.
528
529 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
530 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
531 via reinforcement learning. *arXiv:2501.12948*, 2025.
532
533 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
534 augmented generation. *arXiv:2410.05779*, 2024.
535
536 Ming He, Yan Chen, Hong-Ke Zhao, Qi Liu, Le Wu, Yu Cui, Gui-Hua Zeng, and Gui-Quan Liu.
537 Composing like an ancient chinese poet: Learn to generate rhythmic chinese poetry. *Journal of
Computer Science and Technology*, 38(6):1272–1287, 2023.
538
539 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing*, pp. 7514–7528, 2021.

540 Liang Hong, Wenjun Hou, and Lina Zhou. Knowpoetry: A knowledge service platform for tang
 541 poetry research based on domain-specific knowledge graph. *Library Trends*, 69:101–124, 2020.
 542

543 Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, and
 544 Maosong Sun. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer
 545 for text classification. *arXiv preprint arXiv:2108.02035*, 2021.

546 Jing Jiang, Yiran Ling, Binzhu Li, Pengxiang Li, Junming Piao, and Yu Zhang. Poetry2image: An
 547 iterative correction framework for images generated from chinese classical poetry, 2024.
 548

549 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv:1412.6980*, 2014.

550 Wenhao Li, Fanchao Qi, Maosong Sun, Xiaoyuan Yi, and Jiarui Zhang. Ccpm: A chinese classical
 551 poetry matching dataset. *arXiv:2106.01979*, 2021.
 552

553 Yuqing Li, Yuxin Zhang, Bin Wu, Ji-Rong Wen, Ruihua Song, and Ting Bai. A multi-modal knowl-
 554 edge graph for classical chinese poetry. In *Findings of the Association for Computational Lin-*
 555 *guistics*, pp. 2318–2326, 2022.

556 Lixin Liu, Xiaojun Wan, and Zongming Guo. Images2poem: Generating chinese poetry from image
 557 streams. In *Proceedings of the 26th ACM international conference on Multimedia*, pp. 1967–
 558 1975, 2018.

559

560 Yang Liu, Lan Lan, Jiahuan Cao, Hiuyi Cheng, Kai Ding, and Lianwen Jin. Large-scale corpus
 561 construction and retrieval-augmented generation for ancient chinese poetry: New method and
 562 data insights. In *Findings of the Association for Computational Linguistics*, pp. 779–817, 2025.

563 Yulong Liu, Guibo Zhu, Bin Zhu, Qi Song, Guojing Ge, Haoran Chen, GuanHui Qiao, Ru Peng,
 564 Lingxiang Wu, and Jinqiao Wang. Taisu: A 166m large-scale high-quality dataset for chinese
 565 vision-language pre-training. *Advances in Neural Information Processing Systems*, 35:16705–
 566 16717, 2022.

567

568 Yusen Liu, Dayiheng Liu, Jiancheng Lv, and Yongsheng Sang. Generating chinese poetry from
 569 images via concrete and abstract information. In *2020 International Joint Conference on Neural*
 570 *Networks*, pp. 1–8, 2020.

571 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 572 McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and
 573 editing with text-guided diffusion models. In *Proceedings of the 39th International Conference*
 574 *on Machine Learning*, pp. 16784–16804, 2022.

575

576 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 577 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 578 models from natural language supervision. In *International conference on machine learning*, pp.
 579 8748–8763, 2021.

580

581 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 582 conditional image generation with clip latents. *arXiv:2204.06125*, 1(2):3, 2022.

583

584 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 585 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 586 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

587

588 Zhan Shi, Xu Zhou, Xipeng Qiu, and Xiaodan Zhu. Improving image captioning with better use
 589 of caption. In *Proceedings of the 58th Annual Meeting of the Association for Computational*
 590 *Linguistics*, pp. 7454–7464, Online, 2020.

591

592 VMIJUNV. Chinese-poetry-and-prose. [https://github.com/VMIJUNV/](https://github.com/VMIJUNV/Chinese-poetry-and-prose)
 593 Chinese-poetry-and-prose.

594 Chengyu Wang, Zhongjie Duan, Bingyan Liu, Xinyi Zou, Cen Chen, Kui Jia, and Jun Huang. Pai-
 595 diffusion: Constructing and serving a family of open chinese diffusion models for text-to-image
 596 synthesis on the cloud. *arXiv:2309.05534*, 2023a.

594 Qing Wang, Weiping Liu, Xiumei Wang, Xinghong Chen, Guannan Chen, and Qingxiang Wu.
 595 A spatial-temporal graph model for pronunciation feature prediction of chinese poetry. *IEEE*
 596 *Transactions on Neural Networks and Learning Systems*, 34(12):10294–10308, 2023b.

597

598 Qingwang Wang, Chaohui Li, Yi Liu, Qiubai Zhu, Jian Song, and Tao Shen. An adaptive framework
 599 embedded with llm for knowledge graph construction. *IEEE Transactions on Multimedia*, 27:
 600 2912–2923, 2025. doi: 10.1109/TMM.2025.3557717.

601 Yuting Wei, Linmei Hu, Yangfu Zhu, Jiaqi Zhao, and Bin Wu. Knowledge-guided transformer for
 602 joint theme and emotion classification of chinese classical poetry. *IEEE/ACM Transactions on*
 603 *Audio, Speech, and Language Processing*, 32:4783–4794, 2024.

604 Werneror. Poetry. <https://github.com/Werneror/Poetry>.

605

606 Xiaojun Wu, Duxiang Zhang, Ruyi Gan, Junyu Lu, Ziwei Wu, Renliang Sun, Jiaxing Zhang, Pingjian
 607 Zhang, and Yan Song. Taiyi-diffusion-xl: advancing bilingual text-to-image generation with large
 608 vision-language model support. *arXiv:2401.14688*, 2024.

609 Chunyu Xie, Heng Cai, Jincheng Li, Fanjing Kong, Xiaoyu Wu, Jianfei Song, Henrique Morimitsu,
 610 Lin Yao, Dexin Wang, Xiangzheng Zhang, et al. Ccmb: A large-scale chinese cross-modal bench-
 611 mark. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 4219–4227,
 612 2023.

613 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
 614 Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv:2309.10305*,
 615 2023.

616 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, and Chang Zhou.
 617 Chinese clip: Contrastive vision-language pretraining in chinese. *arXiv:2211.01335*, 2022.

618

619 Fulong Ye, Guang Liu, Xinya Wu, and Ledell Wu. Altdiffusion: A multilingual text-to-image
 620 diffusion model. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp.
 621 6648–6656, 2024.

622 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang,
 623 Heng Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai.
 624 *arXiv:2403.04652*, 2024.

625

626 Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao,
 627 and Bing Yin. FolkScope: Intention knowledge graph construction for E-commerce common-
 628 sense discovery. In *Findings of the Association for Computational Linguistics*, pp. 1173–1191,
 629 2023.

630 Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
 631 Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. *arXiv preprint*
 632 *arXiv:2210.02414*, 2022.

633 Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking the
 634 long-text capability of clip. In *European Conference on Computer Vision*, pp. 310–325, 2024.

635

636 Jiaxing Zhang, Ruyi Gan, Junjie Wang, Yuxiang Zhang, Lin Zhang, Ping Yang, Xinyu Gao, Ziwei
 637 Wu, Xiaoqun Dong, Junqing He, et al. Fengshenbang 1.0: Being the foundation of chinese
 638 cognitive intelligence. *arXiv:2209.02970*, 2022a.

639 Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D
 640 Manning, and Jure Leskovec. Greaselm: Graph reasoning enhanced language models for question
 641 answering. *arXiv preprint arXiv:2201.08860*, 2022b.

642 Jiaqi Zhao, Ting Bai, Yuting Wei, and Bin Wu. Poetrybert: Pre-training with sememe knowledge for
 643 classical chinese poetry. In *International conference on data mining and big data*, pp. 369–384,
 644 2022.

645 Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun Xie, and
 646 Gongshen Liu. Hierarchy-aware global model for hierarchical text classification. In *Proceedings*
 647 *of the 58th annual meeting of the association for computational linguistics*, pp. 1106–1117, 2020.

648 A DETAILS OF DOWNSTREAM TASKS VALIDATION
649650 A.1 PERFORMANCE OF POETRY QUESTION ANSWERING TASK
651652 To validate the comprehensiveness of the data in CPMK, we applied it to the poetry question
653 answering. Following the traditional RAG framework, we use an LLM to extract the author, title, and
654 AP as keywords from the original query. Like LightRAG(Guo et al., 2024), we use keywords as
655 query conditions to retrieve related knowledge from CPMK. The retrieved knowledge is combined
656 with the original query and fed into the LLM to answer questions.657 We evaluate five tasks related to classical poetry in WenMind(Cao et al., 2024), including Basic
658 Q&A (T1), Ancient Poetry Translation (T2), Sentiment Classification (T3), Ancient Poetry to En-
659 glish (T4), and Poet Introduction (T5), totaling 1,310 questions. T1 involves questions related to the
660 basic knowledge of ancient poetry, such as answering the title and author based on the content. T2
661 is about translating ancient poetry into modern Chinese. T3 deals with sentiment classification of
662 the poetry. T4 involves translating the poetry into English. T5 provides an introduction to the poet.
663 We conducted experiments on ChatGPT-4, using the same model scoring metric from WenMind.664
665 Table 6: The performance of different models, with * indicating results cited from original paper.666
667

Models	T1	T2	T3	T4	T5
ChatGLM3-6B*[9]	10.6	55.5	43.0	44.9	33.3
Ancient-Chat-7B*[3]	14.7	52.7	36.0	28.6	23.9
LLaMA3-Chinese-8B*[1]	1.7	62.4	42.5	52.3	23.4
Baichuan2-13B-Chat*[38]	20.1	66.9	43.0	51.3	55.4
Ziya-LLaMA-13B*[2]	6.4	57.5	40.5	40.2	31.6
Qwen1.5-32B-Chat*[5]	<u>32.0</u>	67.9	<u>64.0</u>	54.7	58.1
Yi-1.5-34B-Chat*[41]	30.5	69.0	53.5	54.2	64.6
ChatGPT-4[4]	23.6	75.9	61.3	<u>66.3</u>	44.1
ChatGPT-4-RAG	73.4	<u>75.8</u>	64.3	71.2	65.9

668 As shown in Table 6, our ChatGPT-4-RAG demonstrates significant performance across most tasks,
669 thanks to the high quality of CPMK, which enhances the model’s understanding of ancient poetry.
670 However, its performance on T2 is inferior to that of ChatGPT-4, likely due to the overlap between
671 WenMind’s internet-based dataset and the extensive datasets used for training current LLMs. We
672 think the results are sufficient to illustrate the quality of CPMK. This study employed a simple RAG
673 framework without task-specific adjustments, yet achieved significant performance improvements
674 in most tasks. The experimental results demonstrate that CPMK is of high quality and can provide
675 the model with better knowledge related to classical Chinese poetry.676
685 A.2 POETRY-IMAGE RETRIEVAL TASK IMPLEMENT DETAILS
686687 KPIR is initialized using the CN-CLIP (Yang et al., 2022) model. We have experimented with
688 different scales of the CN-CLIP model. We use the Adam optimizer (Kingma, 2014) with a weight
689 decay rate of 0.01 and a learning rate of 2e-5. The seed is set to 123. Since our CESM model
690 involves comparisons between mini-batches, we shuffle the order of the training set at the end of
691 each epoch. Our experiments are conducted on an RTX 4090 24 GB GPU.692
693 A.3 POETRY-IMAGE RETRIEVAL TASK ABLATION STUDY
694695 We conduct an ablation study to demonstrate the impact of each loss function on the poetry-image
696 retrieval task. The experimental results are shown in Table 7. Without loss of generality, we con-
697 duct ablation experiments on the CN_CLIP_0.1B model. The results indicate that incorporating both
698 global poetry translation knowledge and local PI-related knowledge leads to a significant improve-
699 ment in the model’s performance, particularly enhancing its ability to retrieve text from images while
700 maintaining its poetry-image retrieval capability as much as possible. Even when trained solely on
701 text, the model’s performance also improves. We attribute this improvement to the preservation of
text-image correspondence in CN_CLIP during fine-tuning, as well as our focus on fine-tuning the
textual side, which correctly outputs poetry embeddings. Additionally, \mathcal{L}_{pi2im} plays a crucial role

702 in the knowledge injection process. Given the abundant presence of PI in poetry, aligning PI with its
 703 meaning enables the model to accurately understand the poetry at a fine-grained level.
 704

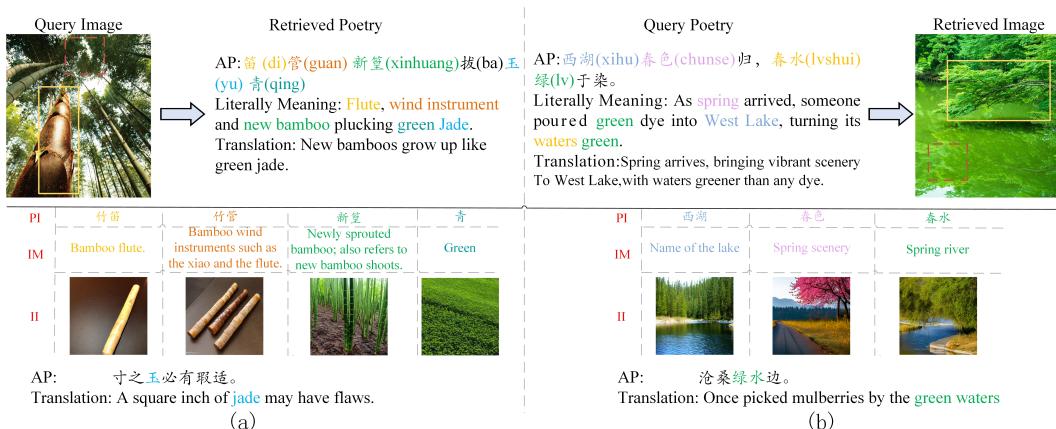
706 Table 7: Ablation experiments on the poetry-image retrieval task.

loss function	PI-Manual		PI-Generate					
	t2i	i2t	t2i	R10	R20	R5	R10	R20
\mathcal{L}_{pi2ii}	\mathcal{L}_{ii2pi}	✓	✓	0.857	728	0.422	0.514	0.642
		✓	✓	0.843	757	0.428	0.542	0.664
✓		✓	✓	0.914	0.757	0.476	0.550	0.646
✓	✓		✓	0.886	0.771	0.468	0.558	0.656
✓	✓	✓		0.643	0.714	0.264	0.376	0.474
✓	✓	✓	✓	0.871	0.800	0.460	0.548	0.644
						0.340	0.488	0.544

714 A.4 POETRY-IMAGE RETRIEVAL CASE STUDY

716 Figure 4 presents two case studies for the poetry-image retrieval task. In these cases, a significant
 717 discrepancy exists between the literal meaning and the poetry translation, posing a challenge to the
 718 model’s retrieval abilities. KPIR overcomes this challenge by leveraging both PI-related and MCT
 719 knowledge to achieve a more accurate understanding of the ancient poetry. In the figure, areas
 720 associated with PI-related knowledge are highlighted with yellow solid lines, while those related to
 721 MCT-knowledge are marked with brown dashed lines.

722 For example, as shown in Figure 4 (a), PI-related knowledge such as “di (笛)” and “guan (管)” is
 723 often translated as flute or other musical instruments in Modern Chinese. However, in the context of
 724 ancient poetry, they are more literally associated with bamboo. PI like “xinhuang(新篁)” are rarely
 725 used in contemporary language. These linguistic factors increase the difficulty of comprehending
 726 ancient poetry. By learning PI-related knowledge, KPIR overcomes these challenges and correctly
 727 interprets the meaning. In Figure 4 (b), MCT knowledge provides a crucial semantic supplement for
 728 the PI-related knowledge. Although the water corresponding to “xihu(西湖)” and “chunshui(春水)”
 729 is blue, the MCT knowledge introduces the concept of “green water” through poetry translation,
 730 thereby deepening the model’s understanding of the ancient poetry.



747 Figure 4: Two case studies of KPIR in the poetry-image retrieval task.

749 A.5 POETRY THEME CLASSIFICATION TASK IMPLEMENT DETAILS

751 For the TCCP dataset, we divide it into the training, validation, and test sets in a ratio of 7:2:1.
 752 We use DeepSeek-Chat (Guo et al., 2025) as the base classification model. To enhance the model’s
 753 ability to comprehend and analyze problems, we ask it not only to answer questions but also to
 754 provide explanations for its answers. Given that the TCCP dataset contains nine categories, we
 755 provide one learning example for each category, utilizing few-shot learning to improve the model’s
 performance. The instruction to DeepSeek-Chat is

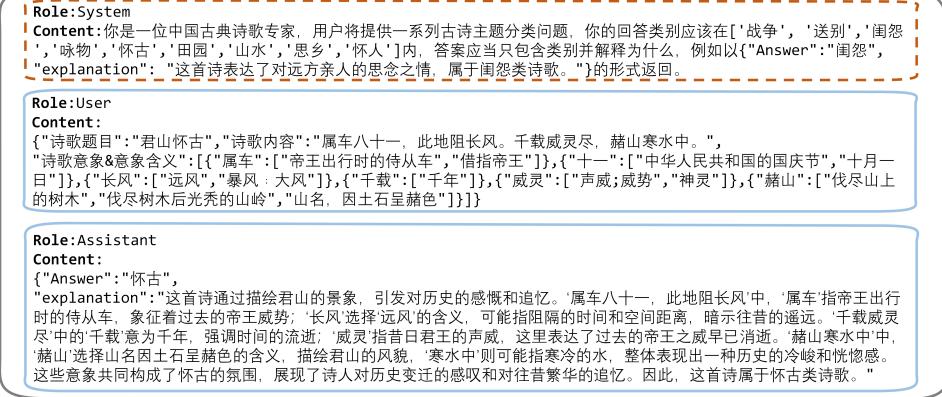
756 You are an expert in Chinese classical poetry. The user will provide a series of questions related
 757 to themes of classical poems. Your answer categories should be within ["homesickness", "chant-
 758 ing things", "landscape", "missing someone", "meditating on the history", "pastoral", "frontier
 759 war", "boudoir resentment", and "farewell"]. The answer should only include the category and
 760 an explanation for your choice. For example, respond in the format: { "Answer": "boudoir resent-
 761 ment", "Explanation": "This poem expresses longing for a loved one far away, which is typical of
 762 the 'boudoir resentment' category."}

763 To establish a standard evaluation, we use the same questions in TCCP as queries to retrieve relevant
 764 IM from CPMK and PKG, and use ChatGPT-4 to generate explanations for few-shot learning. This
 765 involves analyzing questions, integrating relevant knowledge from PKG or CPMK, and their answers
 766 to provide a coherent explanation. The instruction to ChatGPT-4 is

767 As an expert in Classical Chinese poetry, you need to analyze the poetry theme classification prob-
 768 lem provided by the user, along with the classification result. By considering the relevant poetry
 769 imagery and imagery meaning in the poem, explain why the poem fits the given theme and summa-
 770 rize the final result in a single paragraph.

771 We provide a sample learning example for both CPMK and PKG in 5 and 6. System prompts are
 772 indicated with a brown dashed line, while learning samples are represented with a blue solid line.

773

774 
 775 | Role: System
 776 | Content: 你是一位中国古典诗歌专家, 用户将提供一系列古诗主题分类问题, 你的回答类别应该在['战争', '送别', '闺怨',
 777 | '咏物', '怀古', '田园', '山水', '思乡', '怀人']内, 答案应当只包含类别并解释为什么, 例如以{"Answer": "闺怨",
 778 | "explanation": "这首诗表达了对远方亲人的思念之情, 属于闺怨类诗歌。"}的形式返回。

779

780 | Role: User
 781 Content:
 782 {"诗歌题目": "君山怀古", "诗歌内容": "属车八十一, 此地阻长风。千载威灵尽, 起山寒水中。",
 783 "诗歌意象&意象含义": [{"属车": ["帝王出行时的侍从车", "借指帝王"]}, {"十一": ["中华人民共和国的国庆节", "十月一日"]}, {"长风": ["远风", "暴风, 大风"]}, {"千载": ["千年"]}, {"威灵": ["声威; 威势", "神灵"]}, {"起山": ["伐尽山上的树木", "伐尽树木后光秃的山岭", "山名, 因土石呈赭色"]}]}

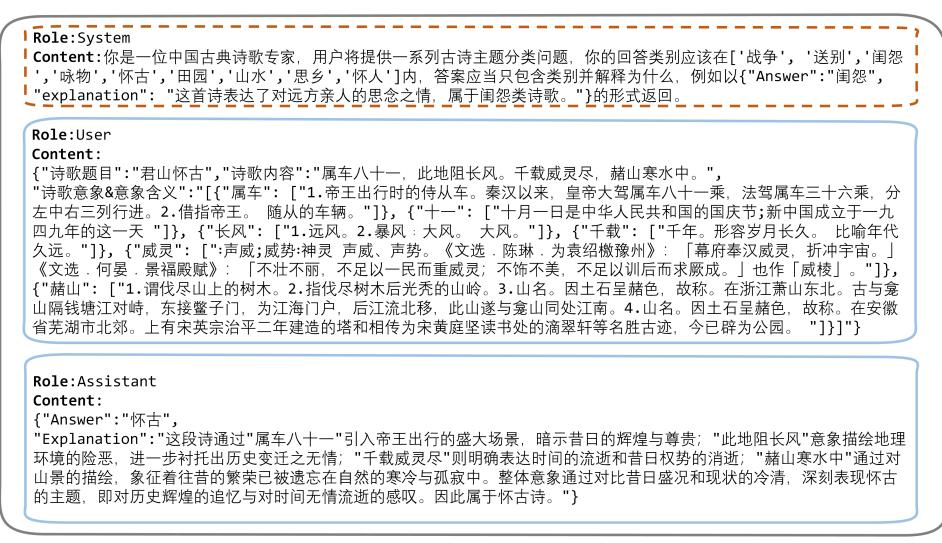
784

785 | Role: Assistant
 786 Content:
 787 {"Answer": "怀古",
 788 "explanation": "这首诗通过描绘君山的景象, 引发对历史的感慨和追忆。'属车八十一, 此地阻长风'中, '属车'指帝王出行
 789 时的侍从车, 象征着过去的帝王威势; '长风'选择'远风'的含义, 可能指阻隔的时间和空间距离, 暗示往昔的遥远。'千载威灵
 790 尽'中的'千载'意为千年, 强调时间的流逝; '威灵'指昔日君王的声威, 这里表达了过去的帝王之威早已消逝。'起山寒水中'中,
 791 '起山'选择山名因土石呈赭色的含义, 描绘君山的风貌; '寒水中'则可能指寒冷的水, 整体表现出一种历史的冷峻和恍惚感。
 792 这些意象共同构成了怀古的氛围, 展现了诗人对历史变迁的感叹和对往昔繁华的追忆。因此, 这首诗属于怀古类诗歌。"}

793

794 Figure 5: Learning example for poetry theme classification using CPMK.

795

796 
 797 | Role: System
 798 | Content: 你是一位中国古典诗歌专家, 用户将提供一系列古诗主题分类问题, 你的回答类别应该在['战争', '送别', '闺怨',
 799 | '咏物', '怀古', '田园', '山水', '思乡', '怀人']内, 答案应当只包含类别并解释为什么, 例如以{"Answer": "闺怨",
 800 | "explanation": "这首诗表达了对远方亲人的思念之情, 属于闺怨类诗歌。"}的形式返回。

801

802 | Role: User
 803 Content:
 804 {"诗歌题目": "君山怀古", "诗歌内容": "属车八十一, 此地阻长风。千载威灵尽, 起山寒水中。",
 805 "诗歌意象&意象含义": [{"属车": ["1. 帝王出行时的侍从车。秦汉以来, 皇帝大驾属车八十一乘, 法驾属车三十六乘, 分
 806 左中右三列行进。2. 借指帝王。 随从的车辆。"], "十一": ["十月一日是中华人民共和国的国庆节; 新中国成立于一九
 807 四九年的这一天"], "长风": ["1. 远风。2. 暴风: 大风。 大风。"], "千载": ["千年。形容岁月长久。 比喻年代
 808 久远。"], "威灵": ["声威; 威势; 神灵 声威、声势。《文选·陈琳·为袁绍檄豫州》: '幕府奉汉威灵, 折冲宇宙。' 《文选·何晏·景福殿赋》: '不壮不丽, 不足以一民而重威灵; 不饰不美, 不足以训后而求厥成。' 也作'威棱。"], "起山": ["1. 伐尽山上的树木。2. 指伐尽树木后光秃的山岭。3. 山名。因土石呈赭色, 故称。在浙江萧山东北。古与龛
 809 山隔钱塘江对峙, 东接蟹子门, 为江海门户; 后江流北移, 此山遂与龛山同处江南。4. 山名。因土石呈赭色, 故称。在安徽省芜湖市北郊。上有宋英宗治平二年建造的塔和相传为宋黄庭坚读书处的滴翠轩等名胜古迹, 今已辟为公园。"]}]}

810

811 Figure 6: Learning example for poetry theme classification using PKG.

810 B POETRY CONCEPT ILLUSTRATION
811

812 We present an example of using multimodal information to understand poetry in Figure 7. “SuShi(苏
813 轼)”s poem “(水光潋滟晴方好,山色空蒙雨亦奇)” describes the beauty of nature in diverse
814 weather conditions. The evolving meanings of poetry imagery(PI), such as ’KongMeng (空蒙’),
815 alongside the background of ancient poetry, have made it difficult to fully understand the poem. By
816 presenting Imagery Meaning (IM) through text and images, as well as introducing relevant infor-
817 mation about the poetry background, people from diverse cultural backgrounds can gain a deeper
818 understanding of classical Chinese poetry.
819

820 AP:	水光 潋滟 晴方好, 山色 空蒙 雨亦奇。		
821 MCT:	Under the sunlight, West Lake glistens with shimmering waves, appearing 822 stunningly beautiful. On rainy days, the misty mountains around the lake fade 823 in and out of view, creating a mysterious charm.		
824 PI:	水光	潋滟	空蒙
825 IM:	水面映现出的光色 The reflected light and colors on the water's surface.	形容水波荡漾 Describe the rippling of the water.	细雨迷蒙的样子 The hazy appearance of a light drizzle.
826 II:			
827 APBG:	As Hangzhou's Vice Magistrate (1071–1074), Su Shi wrote many poems 828 about West Lake, including this in early 1073.		

830 Figure 7: An example illustrating the use of multimodal information to enhance the understanding of
831 ancient poetry. AP (Ancient Poetry), MCT (Modern Chinese Translation), PI (Poetry Imagery), IM
832 (Imagery Meaning), II (Imagery Image), and APBG (Ancient Poetry Background) are introduced.
833

840 C ONTOLOGY GRAPH
841

844 We present the ontology graph in Figure 8, which classifies concepts into key concepts and attributes
845 based on their significance.

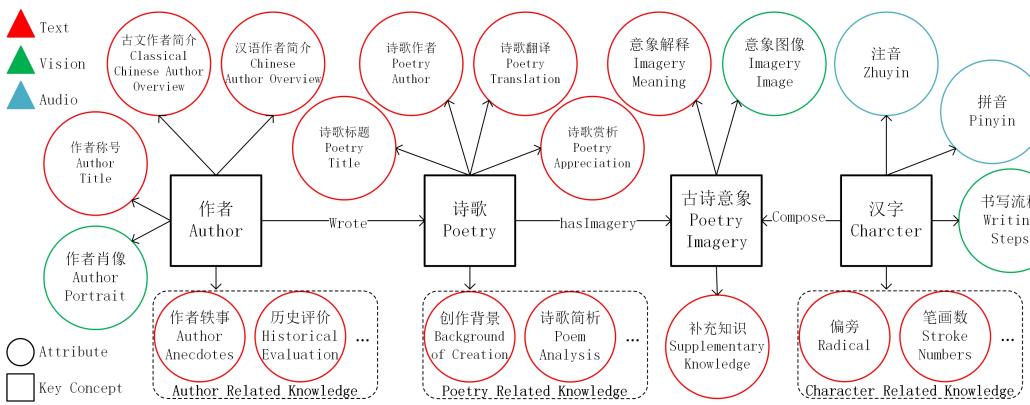


Figure 8: The ontology graph of classical Chinese poetry, where shapes represent types and colors
represent modalities.

864 **D GENERATIVE MODEL SELECTION**
865866 In this section, we discuss the selection of the image generation model and prompt settings. We
867 chose the Taiyi-1B model (Zhang et al., 2022a) for its balance of quality and efficiency. As shown
868 in Table 8, Taiyi-1B performs comparably to larger models while offering faster inference due to
869 its smaller parameter size. However, due to computational limitations, the entire image generation
870 process still took about a month.871
872 Table 8: Comparison of different models in Chinese(COCO-CN) datasets. Data is cited from Wu
873 et al. (2024)

875 Models	876 CLIP Sim(↑)	877 FID(↓)	878 IS(↑)
Taiyi-1B[45]	0.197	69.226	21.060
Alt-1.5B[40]	0.220	68.488	22.126
Pai-1B[31]	0.196	72.572	19.145
Taiyi-3.5B[36]	0.225	67.675	22.965

880 The text prompts were primarily set based on the model’s recommendations. To generate realistic
881 images reflecting common real-world scenes, we included the word “realistic(现实)” in positive
882 prompts. However, as the model often generated anime-style images, we added “anime(动漫)” to
883 steer it toward the desired output. The final positive prompt words are “({}, 现实)” where the IM
884 is inserted into the {} position, while the negative prompt words are “(广告, , , ! , . , ; , 资讯,
885 新闻, 水印, 动漫)”.886
887 **E KNOWLEDGE AUGMENTATION**
888889 In this section, we detail the process of merging relevant data. First, APs are mapped to hash values
890 to identify duplicates by comparing these hashes. Next, APs are segmented by punctuation marks
891 (, . ! ?), and similar APs are merged based on the number of matching text segments. Duplicate
892 or similar APs are merged, and their associated knowledge is integrated. This process is carried out
893 according to Algorithm 1.894
895 **Algorithm 1** Similarity Matching for the AP

896 **Input:** Raw databases $\{D_i\}$, num of databases l .
 897 **Output:** Deduplicated databases D' .
 898 $P \leftarrow \bigcup_{i=1}^l$ Extract APs from D_i .
 899 $D' \leftarrow \bigcup_{i=1}^l$ data from D_i .
 900 **for** each pair $(P_s, P_l) \in P \times P$ **where** $P_s \neq P_l$ **and** $|P_l| \geq |P_s|$ **do**
 901 $N_s \leftarrow$ number of sentence segments in P_s
 902 $N_l \leftarrow$ number of sentence segments in P_l
 903 $C \leftarrow$ number of identical sentence blocks between P_s and P_l
 904 **if** $C > \frac{N_s}{2}$ **then**
 905 $RK_s = \text{GetRelevantKnowledge}(P_s)$
 906 $D'[l] \leftarrow D'[l] \cup \{RK_s\}$
 907 Delete($D'[s]$)
 908 **end if**
 909 **end for**

910
911 **F QUESTIONNAIRE DETAILS**
912913 **F.1 QUESTIONNAIRE GUIDANCE**
914915 This section outlines the instructions provided to participants for evaluating the quality of knowl-
916 edge graphs in our questionnaire. We provide guidelines for assessing two types of scores: similarity
917 score and coverage score. As illustrated in Figure 9, we instruct participants to assign the highest
918 similarity score (ranging from 0 to 5) if an image fully matches either the surface meaning (physical

918 description) or the deep meaning (emotional significance) of any given meaning. Partial matches re-
 919 quire point deductions based on the degree of alignment. Figure 9 explains the scoring for coverage,
 920 where the similarity score is constrained to fall within the range of 0 to the relevance score assigned
 921 to the image. If the image only covers a subset of interpretations, deductions are made proportion-
 922 ally depending on the number and significance of the uncovered interpretations. To ensure clarity,
 923 we provide three illustrative examples for each type of score, addressing common scenarios.

词语: 鸡 解释: 家禽
Word: Chicken Definition: Poultry

词语: 爱 解释: 1.对人或事有深挚的感情 2.容易
Word: Love Definition:
1.A deep affection for someone or something.
2.Easy to be prone to or inclined toward something

词语: 鸳鸯 解释: 是传说牛郎、织女分居天河两岸, 每年七夕, 喜
鹊飞临天河, ……事见《岁华纪丽·七夕》注引汉应劭《风俗
通》。后因以“鹊桥”为七夕的典实。
Word: Ride the Magpie Definition: Refers to the legend of
the Cowherd and Weaver Girl...reuniting on Qixi
Festival via a magpie bridge.

Figure 1

Figure 2

Figure 3

相似性得分:

如果图片符合词语的某一个解释的表层含义-物理描述或深层含义-情感, 则相似性得分打满分。分值为0~5
如图1符合表层含义打5分, 如图2玫瑰符合解释1的深层含义, 虽不满足解释2“容易”, 但较为满足解释1, 打4分。
图3既不符合七夕的表层含义与深层含义打0分, 若勉强符合可以凭感觉折中打分

Similarity Score:

If an image matches either the **surface meaning (physical description)** or **deeper meaning (emotional aspect)** of a word, it gets a full similarity score (0~5).

Examples:

- Image 1 matches the **surface meaning** —score: 5.
- Image 2 (e.g., a rose) fits the **deeper meaning** of Definition 1 but not Definition 2 ("easiness") —score: 4.
- Image 3 doesn't match Qixi's surface or deeper meanings —score: 0.
- If barely relevant, score based on intuition.

覆盖性得分:

覆盖性得分的打分范围为(0, 当前图像的相似性得分)

如果图片能够覆盖该词语的所有解释上则赋予当前图像的相似性得分, 否则根据覆盖度酌情减分
如图1符合所有解释打5分, 图2因相关性得分为4, 得分范围为(0,4), 因为只满足一个减半最终打2分,
图3因相似性得分为0分则覆盖性也为0分。

Coverage Score:

The coverage score **ranges from 0 to the current similarity score of the image**. If the image covers all interpretations of the word, it gets the full similarity score. Otherwise, points are deducted based on the degree of coverage.

Examples:

- Image 1 fully covers all interpretations —score: 5.
- Image 2, with a similarity score of 4, has a **coverage range of (0, 4)**. Since it only satisfies one interpretation, the score is halved to 2.
- Image 3, with a similarity score of 0, also gets a coverage score of 0.

Figure 9: Instructions for evaluating the Similarity Score and Coverage Score.

F.2 QUESTIONNAIRE EXAMPLE

We provided a questionnaire example in Figure 10, illustrating the PI “QuShu(氍毹)” related knowledge in CPMK and PKG. In PKG, different meanings are distinguished by different colors, and grey indicates areas representing the origin of IM, which are treated as textual noise. Due to the influence of textual noise and improper segmentation of IM, the text-image correspondence in PKG is weak. The image barely reflects carpet, resulting in a relevance score of 2. Therefore, the coverage score for this text-image pair ranges from 0 to the relevance score (2), but it does not effectively convey the intended meaning of the stage, resulting in a compromised coverage score of 1. In CPMK, the correlation between IM and II is high, with both relevance and coverage scores of 4.5 for IM-II pairs.

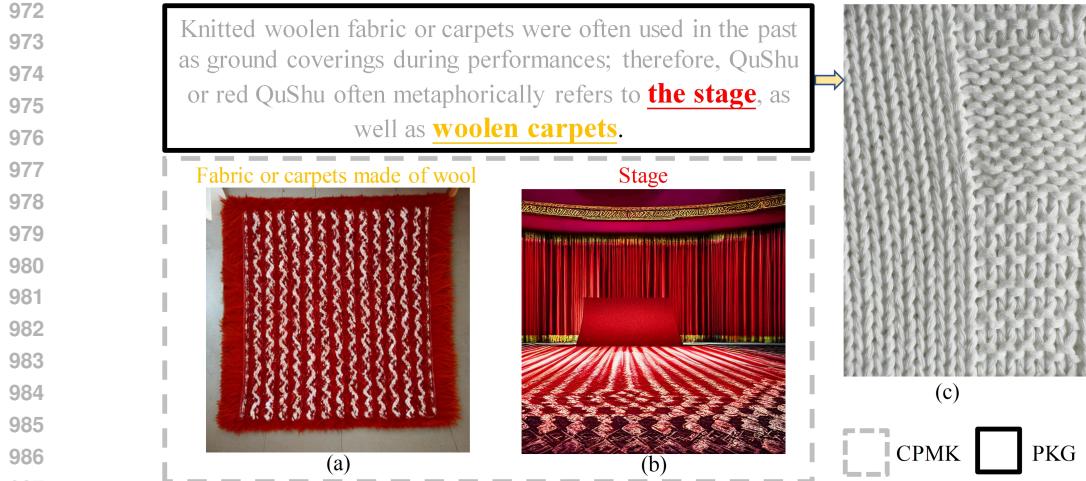


Figure 10: An example PI “QuShu(氍毹)” in the questionnaire.

G PROMPT OPTIMIZATION FOR IM

We introduce the instructions about prompt optimization for II generation, which is shown in Figure 11. We use DeepSeek-ChatGuo et al. (2025) for processing raw IMs.

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Input consists of keywords from classical Chinese poetry and their explanations. Each explanation may include multiple meanings as well as information about the poem's source.

Input format: Keyword&&Explanation

Task:

1. Data Cleaning:
 - Identify and extract the main meaning from the explanation.
 - Extract the poem's source, background explanation, and other related information as "Supplementary Knowledge". This information should retain its original format.
2. Determine if each main meaning has visual characteristics.
 - Visual characteristics refer to elements that can be visualized, such as natural landscapes, animals, plants, specific scenes, etc.
3. If a main meaning has visual characteristics, set "Visual Information" to true and generate a visual description no longer than 20 words.
 - The visual description should include details such as shape, color, action, background, etc., suitable for image generation.
4. If a main meaning does not have visual characteristics, set "visual information" to false and leave "visual description" empty.

Return format should be as follows:

Keyword:[

```
{"Meaning": "Extracted main meaning 1", "Supplementary Knowledge": "Related background or source 1", "Visual Information": true, "Visual Description": "Detailed visual description"}, {"Meaning": "Extracted main meaning 2", "Supplementary Knowledge": "Related background or source 2", "Visual Information": false, "Visual Description": ""}, ]
```

Example:
Input: 剥床&&1.语出《易剥》：“剥床以足，以灭下也。”陈梦雷浅述：“侵灭正道，自下而上也。”又：“剥床以肤，切近灾也。”陈梦雷浅述：“阴祸已迫其身也。”后用“剥床”称残害忠良或迫身之祸。

Output:[

```
{"Meaning": "残害忠良或迫身之祸", "Supplementary Knowledge": "语出《易剥》：“剥床以足，以灭下也。”陈梦雷浅述：“侵灭正道，自下而上也。”又：“剥床以肤，切近灾也。”陈梦雷浅述：“阴祸已迫其身也。”", "Visual Information": false, "Visual Description": ""}]
```

Figure 11: Instructions for processing raw IMs.

1026 **H PI-GENERATE DATASET CONSTRUCTION**
1027

1028
1029 We detail the process of utilizing large language models (LLMs) to generate a poetry-image retrieval
1030 dataset(PI-Generate). Given the critical role of emotion in AP, we distinguish between scene and
1031 emotion descriptions to ensure the generated images accurately reflect the intended meanings of the
1032 poems. Specifically, this study retrieves modern Chinese translations and poetry appreciations of AP
1033 from CPMK. These texts are then refined using ChatGPT-4 Achiam et al. (2023), which generates
1034 tailored prompts that encapsulate both scene and emotion descriptions for image generation. Finally,
1035 DALL.E 3 Shi et al. (2020) leverages these tailored prompts to produce corresponding images. The
1036 detailed instructions for extracting scene and emotion descriptions are illustrated in Figure 12.
1037

1038 As an expert in Chinese classical poetry, please help me extract scene and emotion description
1039 from the translation and appreciation of Chinese classical poetry to use as prompts for image
1040 generation.

1041 Input: {"translation":"Translation of the poetry",
1042 "appreciation":"Appreciation of the poetry"}

1043 Output: {"scene_description":"Scene description from the poetry",
1044 "emotion_description ":"Emotion description from the poetry"}

1045 Requirements:

1. The scene and emotion description should be concise and clear.
2. The scene and emotion should be suitable as prompts for image generation models.

1046 Example:

1047 Input: {"translation":"自古以来，人终不免一死！倘若能为国尽忠，死后仍可光照千秋，
1048 青史留名。",

1049 "appreciation":"此句悲壮激昂、掷地有声，以磅礴的气势、高亢的语调显示了诗人的民
1050 族气节和舍生取义的生死观，表达了诗人赤诚的爱国情怀和视死如归的崇高精神，激励
1051 了无数的爱国之士为了民族大业而抛头颅、洒热血。"}

1052 Output: {

1053 "scene_description ":"壮烈的战场，战士奋勇牺牲，历史长河中的英雄光辉."

1054 "emotion_description ":"悲壮激昂的爱国激情，视死如归的无畏精神。"}

1055
1056 Figure 12: Instructions for generating emotion description and scene description.
1057

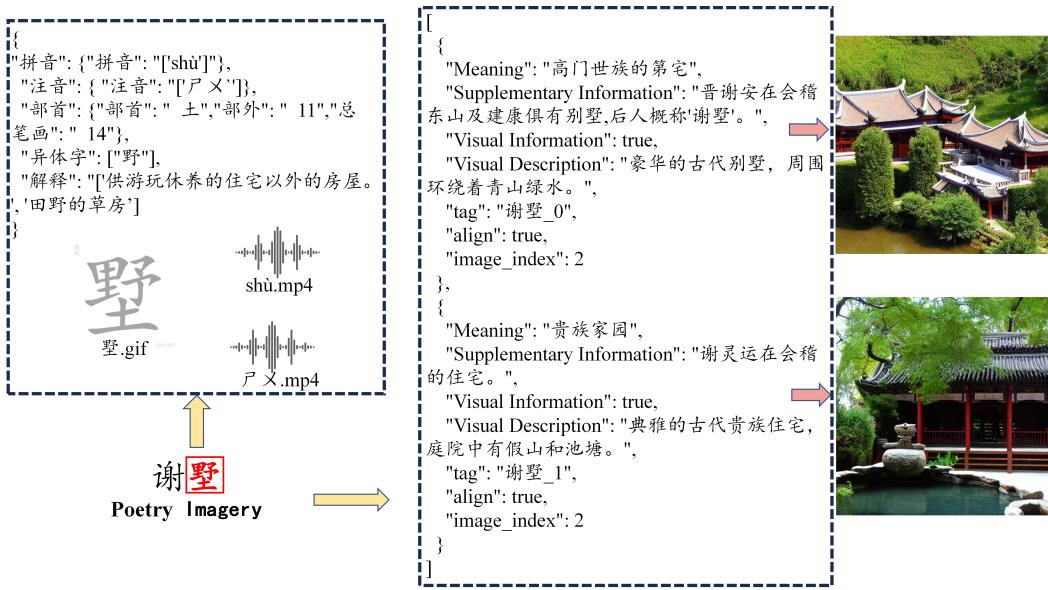
1058 **I HEURISTIC APPROACH**
1059

1060 This section introduces the heuristic approaches employed for processing raw IMs. The primary
1061 objective is to separate different IMs associated with the same PI, eliminate textual noise in PIs,
1062 and retain useful information from PIs as supplementary knowledge. Due to raw IMs with multiple
1063 meanings having various formats, it is challenging to develop heuristic rules that can be universally
1064 applied for splitting meanings. As a result, we split IMs based on the structure of the crawled data.
1065 Regarding textual noise, the data we gathered contains a large amount of noise. We use regular
1066 expressions to remove as much as possible. Regarding supplementary knowledge, we find that there
1067 is a significant amount marked by (《》)(book title). However, due to the large volume of similar
1068 information, it is difficult to fully represent them using regular expressions alone. Here are three
1069 regular expression examples:

1070 1) 语本《.*?》 ?: “.*?”

1071 2) 王逸注:.*?。

1072 3) 《.*?》 : .*? ”

1080 **J EXAMPLES OF CPMK**
10811082 In this section, we provide examples of the CPMK.
10831084 **J.1 EXAMPLE OF PI AND CHARACTER RELATED KNOWLEDGE IN CPMK**
10851086 In Figure 13, we present an example of PI and character-related Knowledge in CPMK. For PI (谢
1087 壁), we provide its IM, Supplementary Information, and II. For the character (壁), we provide its
1088 Pinyin, ZhuYin, Stroke Count, and Explanation.
10891110 Figure 13: An example of character-related knowledge and PI-related knowledge in CPMK.
11111112 **J.2 EXAMPLE OF POETRY-RELATED KNOWLEDGE IN CPMK**
11131114 In Figure 14, we present an example of poetry-related knowledge in CPMK. We integrate knowl-
1115 edge from SouYun, GuShiWen, and GuoXueHui, striving to present as complete a representation
1116 of poetry-related knowledge as possible through the consolidation of various databases. Notably,
1117 the version of the classical Chinese poem obtained from SouYun (两岸猿声啼不尽) differs from
1118 those found in GuShiWen and GuoXueHui (两岸猿声啼不住). Through the use of knowledge aug-
1119 mentation, we provide a comprehensive representation of the knowledge related to these poems.
11201122 **J.3 EXAMPLE OF AUTHOR-RELATED KNOWLEDGE IN CPMK**
11231124 In Figure 15, we present an example of author-related knowledge in CPMK. This includes the poet's
1125 name(李白), the historical era, a brief introduction, and an image of the poet. Besides knowledge
1126 from SouYun, we also integrate various data sources from SouYun to provide a comprehensive
1127 introduction to the authors.
11281129 **K THE USE OF LARGE LANGUAGE MODELS**
11301131 This paper utilizes LLMs as auxiliary writing tools. We used ChatGPT-4 to perform simple refine-
1132 ments on this paper, correcting basic grammatical and spelling errors.
1133

1134
 1135
 1136
 1137
 1138 [{ "标题": "早发白帝城 (一作白帝下江陵)",
 1139 "作者": "李白",
 1140 "朝代": "唐朝",
 1141 "内容": "朝辞白帝彩云间, 千里江陵一日还。两岸猿声啼不尽, 轻舟已过万重山。";
 1142 "来源": "搜韵",
 1143 {"标题": "早发白帝城",
 1144 "内容": "朝辞白帝彩云间, 千里江陵一日还。两岸猿声啼不住, 轻舟已过万重山。",
 1145 "朝代": "唐朝",
 1146 "作者": "李白",
 1147 "古诗简介": "《早发白帝城》是唐代伟大诗人李白在流放途中遇赦返回时所创作的一首七言绝句, 是李白诗作中流传最广的名篇之一。诗人是把遇赦后愉快的心情和江山的壮丽多姿、顺水行舟的流畅轻快融为一体来表达的。全诗无不夸张和奇想, 写得流丽飘逸, 惊世骇俗, 但又不假雕琢, 随心所欲, 自然天成。",
 1148 "翻译/译文": "清晨我告别高入云霄的白帝城; 江陵远在千里船行只一日时间。两岸猿声还在耳边不停地啼叫; 不知不觉轻舟已穿过万重青山。",
 1149 "注释": "发: 启程。白帝城: 故址在今重庆市奉节县白帝山上。朝: 早晨。辞: 告别。彩云间: 因白帝城在白帝山上, 地势高耸, 从山下江中仰望, 仿佛耸入云间。白帝: 今四川省奉节。江陵: 今湖北荆州市。一日还: 一天就可以到达; 还: 归; 返回。猿: 猿猴。啼: 鸣、叫。住: 停息。万重山: 层层叠叠的山, 形容有许多。",
 1150 "赏析": "《早发白帝城》是唐代伟大诗人李白在流放途中遇赦返回时所创作的一首七言绝句, 是李白诗作中流传最广的名篇之一。诗人是把遇赦后愉快的心情和江山的壮丽多姿、顺水行舟的流畅轻快融为一体来表达的。全诗无不夸张和奇想, 写得流丽飘逸, 惊世骇俗, 但又不假雕琢, 随心所欲, 自然天成。……",
 1151 "古诗分类": "['唐诗三百首', '小学生必背古诗70首', '七言绝句', '长江', '叙事诗', '山水诗'],
 1152 "来源": "国学荟",
 1153 {"标题": "早发白帝城",
 1154 "朝代": "唐朝",
 1155 "作者": "李白",
 1156 "内容": "朝辞白帝彩云间, 千里江陵一日还。两岸猿声啼不住, 轻舟已过万重山。",
 1157 "相关信息": {
 1158 "译文及注释": [
 1159 {"译文": "清晨, 我告别高入云霄的白帝城, 江陵远在千里之外, 船行只需要一天时间便能返回。两岸猿声还在耳边不停地回荡, 轻快的小舟已驶过万重青山。"},
 1160 {"译文二": "清晨, 我告别高入云霄的白帝城, 江陵远在千里, 船行只需一日。两岸猿声, 还在耳边不停地啼叫, 不知不觉, 轻舟已穿过万重青山。"},
 1161 {"注释": "发: 启程。白帝城: 故址在今重庆市奉节县白帝山上。杨齐贤注: '白帝城, 公孙述所筑。初, 公孙述至鱼复, 有白龙出井中, 自以承汉土运, 故称白帝, 改鱼复为白帝城。' 王琦注: '白帝城, 在夔州奉节县, 与巫山相近。所谓彩云, 正指巫山之云也。' 朝: 早晨。辞: 告别。彩云间: 因白帝城在白帝山上, 地势高耸, 从山下江中仰望……"},
 1162],
 1163 "创作背景": "公元759年 (唐肃宗乾元二年) 春天, 李白因永王李璘案被流放夜郎, 途经重庆。行至白帝城的时候, 忽然收到赦免的消息, 惊喜交加, 随即乘舟东下江陵。此诗即是作者回到江陵时所作, 所以诗题一作《下江陵》。",
 1164 "赏析": [
 1165 {"赏析": "唐代安史之乱初期, 唐玄宗奔蜀, 太子李亨留讨安禄山, 不久, 李亨既位, 史唐肃宗。玄宗又曾命令儿子永王李璘督兵平叛, 永王李璘在江陵, 召兵万人, 自树一帜, 肃宗怀疑他争夺帝位, 已重兵相压, 李璘兵败被杀。李白曾经参加过永王李璘的幕府, 被加上 '附逆' 罪流放夜郎 (今贵州遵义), ……"],
 1166 {"简析": "《早发白帝城》是一首七言绝句。此诗意在描摹自白帝至江陵一段长江水急流速、舟行若飞的情況。首句写白帝城之高; 次句则描述了江陵路遥, 舟行迅速; 三句以山影猿声为背景, 衬托行舟飞进; 四句写行舟轻如无物, 点明水势如泻。诗人遇赦后愉快的心情和顺水行舟的流畅轻快、……"},
 1167 "来源": "古诗文"],
 1168]
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184 Figure 14: An example of poetry-related knowledge in CPMK
 1185
 1186
 1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199 [{"诗人": "李白",
 1200 "朝代": "唐代",
 1201 "称号": ["饮中八仙", "大李杜"],
 1202 "介绍": "李白 (701年-762年) , 字太白, 号青莲居士, 又号“谪仙人”,
 1203 祖籍陇西成纪 (今甘肃省秦安县), 出生于蜀郡绵州昌隆县 (一说出生于西
 1204 域碎叶)。唐代伟大的浪漫主义诗人, 被后人誉为“诗仙”, 与杜甫并称为
 1205 “李杜”, 为了与另两位诗人李商隐与杜牧即“小李杜”区别, 杜甫与李白
 1206 又合称“大李杜”。据《新唐书》记载, 李白为兴圣皇帝 (凉武昭王李暠)
 1207 九世孙, 与李唐诸王同宗。其人爽朗大方, 爱饮酒作诗, 喜交友。李白深受
 1208 黄老列庄思想影响, 有《李太白集》传世, 诗作中多为醉时写就, 代表作有
 1209 《望庐山瀑布》《行路难》《蜀道难》《将进酒》《早发白帝城》等。",
 1210 "其他知识": {
 1211 "轶事典故": [{"友挚情": "....."}, {"生死考证": "....."}],
 1212 "家庭成员": [{"家人": "....."}, {"配偶": "....."}, {"子女": "....."}],
 1213 "后世纪念": [{"墓地": "....."}, {"纪念馆": "....."}],
 1214 "主要成就": [{"主要成就": "....."}, {"歌": "....."}, {"代表作品": "....."}, {"剑术": "....."}, {"道经": "....."}, {"思想": "....."}],
 1215 "人物生平": [{"早年天才": "....."}, {"辞亲远游": "....."}, {"蹉跎岁月": "....."}, {"西游献赋": "....."}, {"李杜相识": "....."}, {"安史入幕": "....."}, {"溘然病逝": "....."}],
 1216 "来源": "古诗文"},
 1217 {"其他介绍": [
 1218 {"中国历代名人辞典": "【生卒】: 701—762\n【介绍】: \n唐陇西成纪人, 其先人隋末流寓西域, 故
 1219 生于安西都护府所属碎叶城。中宗神龙初, 迁居蜀之绵州昌隆县青莲乡, 又尝寓居山东, 故亦称山....."},
 1220 {"唐诗大辞典修订本": "【生卒】: 701—762\n字太白, 号青莲居士, 排行十二, 陇西成纪(今甘肃秦安西
 1221 北)人, 其先隋末窜于碎叶(今吉尔吉斯斯坦托克马克附近), 李白即出生于此。中宗神龙元年(705)随家....."},
 1222 {"唐诗汇评": "李白 (701-762) , 字太白, 号青莲居士。祖籍陇西成纪 (今甘肃秦安)。出生地有蜀中、
 1223 西域、长安诸说, 迄无定论。少时居绵州彰明县清廉乡 (今属四川江油) , 读书吟诗, 遍观百家....."},
 1224 {"词学图录": "李白 (701-762) 字太白, 号青莲居士。祖籍陇西成纪 (今甘肃秦安) , 隋末其先人流寓
 1225 西域, 白出生于安西大都护府碎叶城, 五岁随父迁居绵州昌隆 (今江油) 青莲乡。天宝初供奉翰林。....."},
 1226 {"黄鹤楼志·人物篇": "李白 (701—762) 唐代诗人。字太白, 号青莲居士, 世人又称谪仙、诗仙。祖籍陇
 1227 西成纪 (今甘肃静宁西南) , 先世流迁中亚, 5岁随父定居绵州昌隆县 (今四川江油县) 青莲乡。....."},
 1228 {"全唐文·卷三百四十七": "白字太白。兴圣皇帝九世孙。白生梦长庚星。因以命之。举有道不应。天宝初至
 1229 长安。贺知章言于元宗。召见金銮殿。论当世事。奏颂一篇。诏供奉翰林。忤高力士。摘其诗激杨....."}
 1230]}
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 15: An example of author-related knowledge in CPMK