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ABSTRACT

Classical Chinese poetry is a treasured cultural heritage of humanity, attracting
extensive research interest. However, the study of classical Chinese poetry is hin-
dered by the lack of open, large-scale, and fine-grained multimodal datasets. Prior
datasets are either limited by modality constraints, dataset size, or the level of
dataset refinement, making them inadequate for effectively supporting studies and
the development of applications in classical Chinese poetry. To address these
issues, we propose a method for constructing a large-scale and fine-grained mul-
timodal knowledge graph of classical Chinese poetry. We first design an infor-
mative ontology graph for classical Chinese poetry and comprehensively collect
knowledge about poetry based on it. Furthermore, the method utilizes knowledge
augmentation, prompt optimization, and text-image alignment to acquire com-
prehensive and fine-grained knowledge. Both qualitative and quantitative evalu-
ations are conducted on the Multimodal Knowledge Graph of Classical Chinese
Poetry (CPMK), highlighting its comprehensiveness and high quality. We also
conduct downstream evaluations on poetry-image retrieval, poetry question an-
swering, and poetry theme classification tasks. Significant results were achieved
in all three tasks, particularly in poetry-image retrieval and poetry theme classifi-
cation, which attained state-of-the-art performance. This outstanding performance
highlights the effectiveness of CPMK, which provides a robust foundation for re-
search on classical Chinese poetry. CPMK will be released to promote research in
Chinese culture1.

1 INTRODUCTION

Classical Chinese poetry is a treasured cultural heritage that passes down ancient literature and
fosters cross-cultural understanding between the East and the West. As times change, understanding
Chinese poetry has become increasingly difficult. Differences between ancient poetry and modern
Chinese, the evolution of poetry imagery meanings, and factors such as the poetry background all
affect our understanding of Chinese poetry.

Numerous studies have shown that integrating information from multiple modalities can signifi-
cantly improve the performance of downstream tasks. However, most existing research on classical
Chinese poetry is predominantly focused on the textual modality(Wang et al., 2023b; Wei et al.,
2024). The scarcity of multimodal datasets hinders research efforts that extend beyond the textual
modality. Therefore, constructing a MultiModal Knowledge Graph (MM-KG) of classical Chinese
poetry is essential for promoting Chinese culture and advancing research in this area.

To facilitate the discussion, we introduce several key concepts relevant to classical Chinese poetry.
Ancient Poetry (AP) refers to classical Chinese poetry, characterized by its traditional form and
archaic language, which differ significantly from modern Chinese. Poetry Imagery (PI) denotes
specific objects or concepts that poets use to express emotions and thoughts. Imagery Meaning (IM)
is the modern Chinese meaning of the PI, while Imagery Image (II) refers to the visual representation
of the IM. Modern Chinese Translation (MCT) refers to the translation of classical Chinese poetry
into modern Chinese. We provide an example in Appendix B to illustrate these concepts.

1https://github.com/***/CPMK
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To the best of our knowledge, the currently available MM-KG of classical Chinese poetry is lim-
ited to PKG(Li et al., 2022), which is the only text-vision modality knowledge graph in this field.
However, it has many shortcomings, making it difficult to support downstream tasks.

1) PKG focuses solely on PI-related knowledge, neglecting other critical aspects such as poetry-
related knowledge and author-related knowledge, all of which are essential for poetry research. For
instance, Jiang et al. (2024) utilizes poetry appreciation to assist in generating images of AP. 2)
IIs in the PKG are represented as URLs in website Unsplash2, but many of these images are no
longer available. Among 127,100 randomly sampled URLs, 9,837(7.7%) were found to be invalid,
severely impacting the knowledge graph’s utility in downstream tasks. 3) For the acquired textual
data, PKG does not perform sufficient data processing, so the data quality largely depends on the
original websites and the crawler scripts, leading to a large amount of textual noise. Moreover,
it fails to differentiate between the various IMs of the same PI. Using multiple IMs together as
a query to retrieve IIs results in a weak correspondence between IMs and IIs. Currently, some
studies (Liu et al., 2025) attempt to remove textual noise using regular expressions, but heuristic rules
struggle to cover all cases in large-scale datasets. 4) Chinese Poetry originated in the pre-Qin period
(before 1000 BCE). Over time, the dissemination process may have led to variations in poetry-
related knowledge. However, to the best of our knowledge, existing studies on classical Chinese
poetry (Wei et al., 2024; He et al., 2023) overlooked these variations, leading to constructed datasets
that lack completeness. 5) Auditory elements are crucial components of classical Chinese poetry.
These elements are mandated in many poetry forms, such as five-character and seven-character
poems. However, the auditory data are overlooked in PKG.

To address the issues above, this paper proposes a novel method for constructing a large-scale and
fine-grained MM-KG of classical Chinese poetry, which integrates textual, visual, and auditory
modalities. To obtain comprehensive knowledge of classical Chinese poetry, we constructed an on-
tology graph encompassing multiple aspects of poetry-related knowledge. Guided by this graph, we
systematically collected knowledge related to its concepts. To ensure the completeness of textual
knowledge, we employ a poetry knowledge augmentation strategy. For the visual data in the on-
tology graph, we utilize generative models to acquire images, rather than traditional web scraping,
enhancing the correlation between text and images. In the process of image generation, prompts
are first processed by prompt optimization to improve the quality of generated images. For the
obtained text-image pairs, text-image alignment is used to filter out high-quality text-image pairs.
For auditory data, we gathered auditory knowledge for characters found in classical Chinese poetry.
The proposed method leads to the construction of an MM-KG of Chinese Poetry (CPMK), which
includes textual, visual, and auditory modalities.

Qualitative and quantitative evaluations demonstrate that CPMK is more comprehensive and accu-
rate than existing datasets. To further validate the effectiveness of CPMK in downstream tasks, we
incorporate it into poetry-image retrieval, poetry question answering, and poetry theme classifica-
tion tasks. Experimental results demonstrate that CPMK significantly improves the performance of
downstream tasks, particularly in poetry-image retrieval and poetry theme classification, where it
attained state-of-the-art performance. Through qualitative research, quantitative research, and vali-
dation in downstream tasks, it demonstrates that CPMK can provide a solid foundation for the study
and development of classical Chinese poetry applications. Our contributions are listed below:

• We propose a novel method for constructing a large-scale and fine-grained MM-KG of
classical Chinese poetry. We first design an ontology of classical Chinese poetry to gather
comprehensive knowledge, and adopt knowledge augmentation, prompt optimization, and
text-image alignment to acquire a large-scale and fine-grained MM-KG.

• Using this method, we construct a multimodal knowledge graph of classical Chinese poetry
with 6,834,825 textual nodes, 211,467 visual nodes, and 82,679 auditory nodes. Qualitative
evaluation, quantitative evaluation, and downstream task validation collectively confirm its
quality and effectiveness in the field of classical Chinese poetry.

• We construct two datasets for the classical Chinese poetry-image retrieval task using man-
ual collection and automated generation methods. To our knowledge, this is the first bench-
mark for this task. They facilitate the evaluation of retrieval models and promote further
research in the field of classical Chinese poetry.

2https://unsplash.com
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• We propose a knowledge-enhanced poetry-image retrieval model. By establishing connec-
tions between classical Chinese poetry and images through modern Chinese translation of
poetry, the model achieves state-of-the-art results on two datasets in the multimodal task of
poetry-image retrieval. It uses a large amount of textual data and only a small amount (or
even no) visual data, providing insights for other multimodal tasks.

• We validate the effectiveness of CPMK across multiple tasks by proposing a retrieval-
augmented poetry question answering framework and a retrieval-augmented poetry theme
classification framework. We achieve excellent results in both tasks, with the poetry theme
classification achieving state-of-the-art performance.

2 RELATED WORKS

2.1 KNOWLEDGE GRAPH CONSTRUCTION

Due to advancements in LLMs, many studies have utilized them to construct knowledge graphs.
Wang et al. (2025) leverages LLMs for triple extraction, relational embedding, and schema-
based normalization, which supports multi-domain construction without retraining or fine-tuning.
FolkScope(Yu et al., 2023) leverages the generative power of LLMs and human-in-the-loop annota-
tion to semi-automatically construct the knowledge graph. However, in the field of classical Chinese
poetry, the lack of a large-scale knowledge base like Wikipedia makes it difficult to collect substan-
tial amounts of data, rendering existing methods difficult to apply directly.

In the field of classical Chinese poetry, there have also been studies focused on constructing knowl-
edge graphs. KnowPoetry (Hong et al., 2020) proposes a framework to extract poems, poets, and
their relationships from Tang poetry, thereby constructing a domain ontology and a knowledge
graph. SKG-Poetry (Zhao et al., 2022) constructs a sememe knowledge graph of classical Chi-
nese poetry, linking classical and modern Chinese vocabularies to enhance semantic understanding.
These knowledge graphs are either constrained by their modalities or suffer from quality deficien-
cies, which makes it difficult for them to support downstream tasks effectively.

2.2 CLASSICAL CHINESE POETRY DATA

Research on classical Chinese poetry data mainly focuses on text, with limited exploration of vision
and audio modalities. The ancient corpora of text include four main datasets: Poetry(Werneror),
CCPM(Li et al., 2021), ACP-Corpus(Liu et al., 2025), Chinese-poetry-and-prose(VMIJUNV).

There is limited attention to vision and audio modalities in the study of classical Chinese poetry. In
terms of vision modality, the PKG (Li et al., 2022) compiles knowledge related to PI, and (Liu et al.,
2020) maps poems to specific categories and collects images corresponding to those categories.
Regarding the audio modality, to our knowledge, no relevant knowledge graph has been identified.

3 METHOD FOR CONSTRUCTING CPMK

We analyse the data requirements from recent studies on classical Chinese poetry, such as Li et al.
(2022); Jiang et al. (2024); Li et al. (2021), to construct an ontology graph. This graph serves as
the guidance for the construction of the MM-KG of classical Chinese poetry. The ontology graph
is in Appendix C. Guided by the ontology graph, this method overcomes the limitations of previous
studies, which lacked comprehensive coverage of Chinese poetry knowledge. The construction
method of MM-KG of Chinese poetry is divided into the following parts:

3.1 ACQUISITION OF RAW DATA.

Knowledge related to AP and author is crawled from the authoritative poetry website SouYun3. We
extract words that appear more than 5 times and all the characters that have appeared in AP. These
words and characters are used to crawl for their semantic meanings on the website HanDian4. For

3https://sou-yun.cn/
4https://www.zdic.net/
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words, if their semantic meaning exists, they are categorized as PI, and their meaning serves as IM.
For characters, in addition to their semantic meanings, we also crawl their auditory knowledge and
visual knowledge in HanDian. Characters are visually represented in either GIF or SVG to demon-
strate the stroke order of writing. Pinyin and Zhuyin are offered as audio to illustrate pronunciation.

When dealing with II data, manual collection of extensive II data is impractical, and web scraping
poses significant challenges due to the unique characteristics of classical Chinese poetry. 1) There is
a lack of comprehensive image databases for Chinese literature, as existing large-scale image web-
sites primarily focus on modern elements and offer limited coverage of ancient Chinese literature.
2) Some IMs are relatively abstract, making it challenging to find images that basically convey their
visual meaning when using web scraping.

Figure 1: II for the “ChenMeng” and “ChiXiao”, both generated using a generative model.

Generative models, having been trained on large-scale datasets, can effectively address the men-
tioned issues. For instance, the PI “ChiXiao(赤霄)”’s IM refers to the legendary ancient sword of
“LiuBang(刘邦)”, the PI “ChenMeng(尘梦)”’s IM symbolizes the illusion of the mortal world. As
shown in Figure 1, generative models can generate content related to ancient legends and abstract
concepts with relatively effective results. Therefore, this paper uses a generative model to create IIs.
The selection of the generative model and the prompt setting can be found in Appendix D.

3.2 POETRY KNOWLEDGE AUGMENTATION

Currently, most data related to the AP comes from the internet, and its accuracy largely depends on
the quality of the websites. Due to historical factors and the diverse transmission of poetry knowl-
edge, variations and inconsistencies may exist. This paper adopts a cross-augmentation strategy,
which integrates variations from multiple knowledge bases to provide the most comprehensive and
reliable knowledge. We focus on two core aspects: knowledge related to AP and author.

We collect knowledge about AP and author from GuShiWen5 and GuoXueHui6. For AP-related
knowledge, we employ a two-phase deduplication strategy inspired by (Liu et al., 2025): global
alignment removes redundant poems, while local alignment segments poems by punctuation and
evaluates overlaps between text chunks. Similar APs are clustered rather than overwritten, with
their relevant knowledge integrated to ensure a comprehensive representation. Details of the process
are provided in Appendix E. For author-related knowledge, we determine entity consistency by
verifying the author’s name and dynasty, and then aggregate the relevant information.

3.3 PROMPT OPTIMIZATION FOR IMAGERY IMAGE GENERATION

Generative models often produce highly accurate images, but maintaining consistency with the input
text remains a challenge. Many generative models utilize CLIP’s text encoder as their text encoder,
with its parameters frozen while only the diffusion process is trained (Ramesh et al., 2022; Rombach
et al., 2022). However, research from Zhang et al. (2024) shows that CLIP’s text encoder effectively
handles fewer than 20 tokens, leading to hallucinations when processing longer texts.

5https://www.gushiwen.cn/
6https://www.gushicimingju.com/
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Table 1: Average token distribution. SP Knowledge represents supplementary knowledge. Visual
Desc represents visual description.

Data Average Token Length Total Num
Raw IM 21.72 177,664
Refined IM 6.70 257,028
SP Knowledge 23.72 58,827
Visual Desc 15.30 135,720

Table 1 shows that raw IMs from the internet exceed token limits(21.72). Raw IMs often contain
multiple meanings that have not been correctly separated. In addition, text data obtained through
web scraping may introduce irrelevant noise and extraneous information, such as the sources of IMs,
which can aid in understanding complex meanings but often hinder downstream tasks. To address
this, this paper uses LLMs to filter noise, separate complex Raw IMs into distinct meanings, and
retain useful auxiliary information as supplementary knowledge, producing refined IMs.

Table 1 shows that the refined IMs often become overly concise(6.70), failing to achieve the op-
timal token length. Intuitively, providing detailed descriptions within the model’s comprehension
range enhances the accuracy of the generated images. For example, prompts like “the sea god”
are too concise, whereas “The majestic sea god stands above the waves” offers a clearer and more
interpretable context for the generative model. Drawing inspiration from Retrieval Augmented Gen-
eration(RAG) technologies, we utilize LLMs to rewrite refined IMs into visual descriptions suited
for generative models. This method enhances clarity and relevance while keeping the prompt length
within a manageable 20 tokens, effectively reducing the likelihood of hallucinations.

LLMs are also used to determine if an IM can be visually represented, discarding inputs like stop-
words that lack visual significance. This ensures that only visually meaningful data is processed by
the generative models, enhancing efficiency. The instruction is shown in Appendix G.

3.4 IMAGERY MEANING-IMAGERY IMAGE ALIGNMENT.

When handling large-scale text-image pairs, aligning them accurately becomes a significant chal-
lenge. It is common to use the CLIPScore(Hessel et al., 2021) to evaluate the relevance between text
and images. CLIPScore has certain limitations: a high threshold may lead to the omission of entities,
while a low threshold can weaken the alignment between text and images, particularly when dealing
with large-scale text-image pairs. Inspired by GLIDE (Nichol et al., 2022), which evaluates im-
age generation quality through classification, we abandon the traditional threshold-setting approach.
Instead, we propose leveraging an image-to-text retrieval task to address this alignment challenge.

In the image-to-text retrieval task, text perturbations are introduced. Specifically, for each generated
II, II is used to retrieve IM along with the two text perturbations. The first perturbation randomly
selects another IM from the total set of IMs, while the second perturbation is composed of a random
character selected from the tokenization vocabulary in BERT(Devlin et al., 2019). If all of the
generated IIs correctly retrieve the candidate IM, the IIs and IM are considered aligned, and the text-
image pair with the highest CLIP score is selected as the final match. Otherwise, those text-image
pairs are deemed mismatched and discarded.

4 QUALITATIVE AND QUANTITATIVE EVALUATIONS

4.1 QUANTITATIVE EVALUATION

1) We counted the number of entities in each dataset, with the results presented in Table 2.. To our
knowledge, CPMK is the first dataset to integrate text, vision, and audio modalities within classical
Chinese poetry. According to the table, CPMK significantly exceeds prior research in the number
of entities. Large-scale datasets serve as a robust foundation for advancing research and application
development in classical Chinese poetry.

2) To evaluate the effectiveness of the proposed prompt optimization and text-image alignment meth-
ods, we design a comparative evaluation. The raw IMs are optimized using a heuristic approach as

5
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Table 2: Modal entity statistics across datasets. Results with * are inferred from their papers due to
dataset unavailability.

Corpus #Text #Vision #Audio
CCPM[19] 136,090 - -
RPG*[13] 215,227 - -
VMIJUNV[30] 1,515,463 - -
ACP-Corpus*[22] 2,159,920 - -
PKG[20] 111,5143 96,049 -
Image2Poem*[21] 117,867 1,036 -
CPMK 6,834,825 211,467 82,679

prompts to generate new images, which are then refined through our text-image alignment method.
The image generation part is the same as that used in this paper. We recorded the average token
length of the text information processed by the heuristic methods and calculated the CLIPScore7 of
the generated images. The details of the heuristic approach are shown in Appendix I.

The results in Table 3 demonstrate that images processed by prompt optimization have a higher
CLIPScore compared to the heuristic approach. By simply reducing IM-II pairs from 407,160 to
319,419, text-image alignment significantly enhanced CLIPScore, proving its effectiveness. No-
tably, the final counts of IM-II pairs obtained through the heuristic approach (102,090) and prompt
optimization (106,473) are very close. This suggests that LLMs with visual capabilities can effec-
tively determine whether an IM is visually representable, enhancing computational efficiency. It
also demonstrates that LLMs possess the ability to rewrite text prompts for image generation.

Table 3: The average CLIPScore of IM-II pairs. Heu stands for Heuristic approach, PO stands for
Prompt Optimization, Align stands for the proposed text-image alignment, and Hig stands for the
highest CLIPScore text-image pair among the generated images.

Data CLIPScore Total Num
Heu 0.912 752,772
Heu + Align 1.056 306,270
Heu + Align + Hig 1.068 102,090
PO 1.022 407,160
PO + Align 1.136 319,419
PO + Align + Hig 1.191 106,473

4.2 QUALITATIVE EVALUATION

In the qualitative evaluation, we designed a questionnaire to evaluate two aspects: the relevance
between IM and II, and whether IM is reasonably split on CPMK and PKG. The relevance score and
coverage score are used, both of which are scored from 0 to 5.

Relevance Score: This metric evaluates the connection between the IM and II, factoring in the II’s
quality. Full points are given if the II captures any essential meaning of the IM, with deductions for
discrepancies. If there are two meanings and one is perfectly captured, full points 5 are awarded.

Coverage Score: Ranging from 0 to the relevance score of the current image, this metric measures
the image’s coverage of IM. Full score indicates complete coverage, while partial coverage results
in proportional deductions. If one of two meanings is perfectly captured, a score of 2.5 is given.

The relevance score minus the coverage score can help determine whether the segmentation of the
IM is reasonable. We invited five university students knowledgeable about classical Chinese poetry
to evaluate 500 IM-II pairs randomly selected from each dataset, totaling 1000 pairs.

As shown in Figure 2, CPMK significantly outperforms PKG in both relevance and coverage scores,
with a smaller gap between the two compared to CPMK, indicating that CPMK achieves more

7In this paper, we calculate CLIPScore using the CN-CLIP-1B model (Yang et al., 2022).
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reasonable image segmentation. Additionally, the CLIPScore between IM and II further validates
the higher similarity in CPMK. We provide a questionnaire example in Appendix F.2.

Figure 2: The evaluation results of IM-II for PKG and CPMK. Gap represents the Similarity Score
minus the Coverage Score.

5 DOWNSTREAM TASK VALIDATION

To validate the effectiveness of CPMK in downstream tasks, we apply it to three downstream tasks:
Poetry-Image Retrieval, Poetry Question Answering, and Poetry Theme Classification. Since our
primary aim is to verify whether CPMK could play a role in downstream tasks, we don’t focus on
complex experimental designs. We conduct a preliminary experimental design and expect to achieve
promising results to highlight the effectiveness of CPMK. Since both poetry question answering and
poetry theme classification adopt retrieval-augmented techniques, without loss of generality, we
introduce poetry question answering in the Appendix A.1.

Figure 3: The overview framework of KPIR.

5.1 POETRY-IMAGE RETRIEVAL

While current retrieval models perform well in capturing the correspondence between text and im-
ages in modern languages, they face significant challenges in the poetry-image retrieval task. We
attribute this primarily to the lack of domain-specific expertise in classical Chinese poetry. Further-
more, the limited size of existing Chinese poetry-image pair datasets poses a challenge for leveraging
large-scale training methods such as CLIP (Radford et al., 2021). Based on the above analysis, we
propose a Knowledge-enhanced Poetry-Image Retrieval model (KPIR).

7
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Because the current retrieval model establishes a correspondence between modern Chinese and im-
ages, we leverage this by associating the encoding of the AP with its Modern Chinese Translation
(MCT) to bridge the gap between APs and images. The core idea is to optimize the text encoder
while keeping the image encoder fixed, ensuring that the embeddings of the AP align closely with
its corresponding MCT. The structure of KPIR is shown in Figure 3.

Our model retrieves relevant knowledge from CPMK, including PI, IM, II, and MCT, forming the
foundation for learning poetry expertise. We utilize a trainable text encoder and a frozen text en-
coder, along with a frozen image encoder. The frozen text encoder extracts MCT feature fmct and
IM feature fim, while the trainable text encoder extracts AP feature fap and PI feature fpi. The im-
age encoder extracts the II feature fii. Knowledge injection is implemented through Cross-Entropy
Similarity Matching (CESM), which integrates similarity scores of bimodal embeddings into a cross-
entropy framework, minimizing the difference between the predicted and true distributions.

Given a mini-batch containing N bimodal (X, Y) pairs, where Y includes poetry knowledge from
CPMK (MCT, IM, II), based on either the AP or the PI in X. We form representation pairs
{(fx

i , f
y
j ), yi,j} with labels yi,j : 1 for matching pairs and 0 for non-matching ones. In a mini-batch,

the CESM loss from modality X to Y is:

CESM(X,Y ) = − 1

N

N∑
i=1

N∑
j=1

yi,j log

(
exp(sim(fx

i , f
y
j ))∑N

k=1 exp(sim(fx
i , f

y
k ))

)
.

We applied the CESM in four stages: Lap2mct = CESM(fap, fmct), Lpi2im = CESM(fpi, fim),
and Lpi2ii = CESM(fpi, fii) ,Lii2pi = CESM(fii, fpi). Knowledge is injected through
MCT(Lap2mct) and IM(Lpi2im). We utilize Lii2pi and Lpi2ii to preserve the correspondence be-
tween text and image. The final loss function is:

L = Lap2mct + Lpi2im + Lpi2ii + Lii2pi

Dataset and Evaluation Metrics. We extract 30,000 pairs of AP and MCT from CPMK as the
training dataset, with all PI-related knowledge sourced from CPMK. Due to the lack of existing
datasets for poetry-image retrieval tasks, we construct two datasets for evaluation: 1) We manually
collected 70 high-quality pairs of AP and image (PI-Manual) from the internet. 2) We generate
500 images corresponding to APs using a generative model (PI-Generate), with specific generation
details provided in the appendix H. Since there is a one-to-one correspondence between text and
image, this study uses recall as the evaluation metric, counting the number of correct answers within
the retrieved set. The higher the recall, the better the model performs.

Table 4: Performance of Different Models on Poetry-Image Retrieval Tasks (†: MCT-Image Re-
trieval Tasks. w/o II: Training conducted without II, utilizing only text data.)

Models
PI-Manual PI-Generate
t2i i2t t2i i2t

R@3 R@3 R@5 R@10 R@20 R@5 R@10 R@20
Taisu-0.2B[23] 0.714 0.700 0.281 0.370 0.494 0.284 0.384 0.474
AltClip-0.9B[7] 0.601 0.671 0.288 0.368 0.484 0.314 0.412 0.492
D2D2-0.4B[37] 0.586 0.814 0.198 0.258 0.324 0.348 0.452 0.558
CN-CLIP-0.1B[39] 0.714 0.729 0.208 0.294 0.382 0.282 0.370 0.492
CN-CLIP-0.4B[39] 0.686 0.771 0.214 0.274 0.348 0.352 0.452 0.538
CN-CLIP-1B[39] 0.743 0.714 0.218 0.288 0.358 0.308 0.384 0.482
CN-CLIP-0.1B[39]† 0.871 0.889 0.372 0.468 0.576 0.390 0.476 0.574
CN-CLIP-0.4B[39]† 0.886 0.887 0.388 0.464 0.536 0.414 0.492 0.596
CN-CLIP-1B[39]† 0.871 0.901 0.376 0.446 0.534 0.408 0.498 0.588
KPIR-0.1B w/o II 0.857 0.728 0.422 0.514 0.642 0.294 0.384 0.498
KPIR-0.1B 0.871 0.800 0.460 0.548 0.644 0.340 0.448 0.554
KPIR-0.4B 0.886 0.871 0.500 0.594 0.682 0.458 0.548 0.664
KPIR-1B 0.857 0.871 0.508 0.602 0.700 0.462 0.560 0.656
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Main results. As shown in Table 4, we evaluate two tasks: the core poetry-image retrieval task
and the MCT-image retrieval task. The results of the latter are marked with a †. The MCT-image
retrieval task uses modern Chinese translations of ancient poetry to perform bidirectional retrieval
with images. The experimental results on poetry-image retrieval demonstrate that KPIR achieves
state-of-the-art performance on the poetry-image retrieval task across two datasets. Even our small-
est model, KPIR-0.1B, significantly surpasses previous methods. By integrating MCT knowledge
and PI-related knowledge through CESM, KPIR effectively aligns the embeddings of APs with their
corresponding MCTs, thereby establishing associations between APs and images. Notably, we also
try training without II, utilizing only text data (L = Lap2mct + Lpi2im). The experimental results
also outperform previous models, indicating that our proposed knowledge injection through poetry
translation is effective.

KPIR is initialized using the CN-CLIP(Yang et al., 2022) model. On the PI-Manual dataset, KPIR’s
poetry-image retrieval performance is comparable to CN-CLIP’s MCT-image retrieval. However, on
the PI-Generate dataset, KPIR significantly outperforms CN-CLIP. This result is counterintuitive,
as it would be reasonable to expect CN-CLIP to achieve superior performance, given that it was
trained on a large-scale contemporary Chinese dataset. This indicates that if KPIR relied solely on
MCT knowledge, its performance would be upper-bounded by that of CN-CLIP. KPIR’s superior
performance is attributed to both MCT knowledge and PI-related knowledge.

5.2 POETRY THEME CLASSIFICATION

Poetry Theme Classification is a fundamental task in classical Chinese poetry research, involving
categorizing poems based on their themes. We applied CPMK and PKG to this task and evaluated
their performance using the TCCP8 dataset. TCCP is a theme classification dataset for Chinese
classical poetry, which contains 3,247 poems. Its theme is divided into nine categories: homesick-
ness, chanting things, landscape, missing someone, meditating on the history, pastoral, frontier war,
boudoir resentment, and farewell. We use PI in the poetry as a query to retrieve relevant IM from
CPMK and PKG, and then combine this knowledge with the original poem to input into DeepSeek-
Chat(Guo et al., 2025) for poetry theme classification. Details are in Appendix A.5.

Table 5: The performance of different models on TCCP, with * indicating results are cited.
Models Micro-F1 Macro-F1
BERT+FT* [8] 67.98 65.46
HiAGM-TP*[48] 63.02 57.18
LCM*[10] 86.39 85.11
GreaseLM*[46] 74.87 73.90
KPT*[16] 80.19 82.05
ChatGLM*[43] 88.04 85.15
DeepSeek-Chat[11] 89.12 87.23
DeepSeek-Chat +PKG 92.59 90.75
DeepSeek-Chat +CPMK 94.24 92.71

The results indicate that both CPMK and PKG enhance the model’s classification capability. How-
ever, CPMK demonstrates a more significant improvement, achieving state-of-the-art results. This
suggests that when inputting the same type of knowledge, CPMK provides both higher accuracy and
a more comprehensive coverage than PKG.

6 CONCLUSION

This paper proposes a method for constructing an MM-KG for classical Chinese poetry, integrating
textual, visual, and auditory modalities. By introducing knowledge augmentation, we ensure textual
data completeness. We enhance the correlation between text and images through prompt optimiza-
tion and text-image alignment. Qualitative evaluation, quantitative evaluation, and downstream tasks
evaluation validate the quality and effectiveness of CPMK. The CPMK will be open-sourced to pro-
mote the development of the field of ancient poetry.

8https://github.com/shuizhonghaitong/classification GAT/tree/master/data
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7 REPRODUCIBILITY STATEMENT

To enhance the reproducibility of the knowledge graph construction and downstream tasks, we pro-
vide detailed descriptions of our methodologies. For II generation, Appendix D covers the selection
of generation models and the setting of prompts. Regarding prompt optimization, the selection of
LLM and prompt design can be found in Appendix G. Appendix 1 describes the algorithm for merg-
ing relevant knowledge for knowledge augmentation. In Section 3.4, we explain how text perturba-
tions are constructed and the evaluation metrics used for text-image alignment. Finally, Appendix A
includes the experimental designs for poetry-image retrieval, as well as the prompt settings for the
poetry theme classification task and the poetry question-answering task.
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A DETAILS OF DOWNSTREAM TASKS VALIDATION

A.1 PERFORMANCE OF POETRY QUESTION ANSWERING TASK

To validate the comprehensiveness of the data in CPMK, we applied it to the poetry question an-
swering. Following the traditional RAG framework, we use an LLM to extract the author, title, and
AP as keywords from the original query. Like LightRAG(Guo et al., 2024), we use keywords as
query conditions to retrieve related knowledge from CPMK. The retrieved knowledge is combined
with the original query and fed into the LLM to answer questions.

We evaluate five tasks related to classical poetry in WenMind(Cao et al., 2024), including Basic
Q&A (T1), Ancient Poetry Translation (T2), Sentiment Classification (T3), Ancient Poetry to En-
glish (T4), and Poet Introduction (T5), totaling 1,310 questions. T1 involves questions related to the
basic knowledge of ancient poetry, such as answering the title and author based on the content. T2
is about translating ancient poetry into modern Chinese. T3 deals with sentiment classification of
the poetry. T4 involves translating the poetry into English. T5 provides an introduction to the poet.
We conducted experiments on ChatGPT-4, using the same model scoring metric from WenMind.

Table 6: The performance of different models, with * indicating results cited from original paper.
Models T1 T2 T3 T4 T5
ChatGLM3-6B*[9] 10.6 55.5 43.0 44.9 33.3
Ancient-Chat-7B*[3] 14.7 52.7 36.0 28.6 23.9
LLaMA3-Chinese-8B*[1] 1.7 62.4 42.5 52.3 23.4
Baichuan2-13B-Chat*[38] 20.1 66.9 43.0 51.3 55.4
Ziya-LLaMA-13B*[2] 6.4 57.5 40.5 40.2 31.6
Qwen1.5-32B-Chat*[5] 32.0 67.9 64.0 54.7 58.1
Yi-1.5-34B-Chat*[41] 30.5 69.0 53.5 54.2 64.6
ChatGPT-4[4] 23.6 75.9 61.3 66.3 44.1
ChatGPT-4-RAG 73.4 75.8 64.3 71.2 65.9

As shown in Table 6, our ChatGPT-4-RAG demonstrates significant performance across most tasks,
thanks to the high quality of CPMK, which enhances the model’s understanding of ancient poetry.
However, its performance on T2 is inferior to that of ChatGPT-4, likely due to the overlap between
WenMind’s internet-based dataset and the extensive datasets used for training current LLMs. We
think the results are sufficient to illustrate the quality of CPMK. This study employed a simple RAG
framework without task-specific adjustments, yet achieved significant performance improvements
in most tasks. The experimental results demonstrate that CPMK is of high quality and can provide
the model with better knowledge related to classical Chinese poetry.

A.2 POETRY-IMAGE RETRIEVAL TASK IMPLEMENT DETAILS

KPIR is initialized using the CN-CLIP (Yang et al., 2022) model. We have experimented with
different scales of the CN-CLIP model. We use the Adam optimizer (Kingma, 2014) with a weight
decay rate of 0.01 and a learning rate of 2e-5. The seed is set to 123. Since our CESM model
involves comparisons between mini-batches, we shuffle the order of the training set at the end of
each epoch. Our experiments are conducted on an RTX 4090 24 GB GPU.

A.3 POETRY-IMAGE RETRIEVAL TASK ABLATION STUDY

We conduct an ablation study to demonstrate the impact of each loss function on the poetry-image
retrieval task. The experimental results are shown in Table 7. Without loss of generality, we con-
duct ablation experiments on the CN CLIP 0.1B model. The results indicate that incorporating both
global poetry translation knowledge and local PI-related knowledge leads to a significant improve-
ment in the model’s performance, particularly enhancing its ability to retrieve text from images while
maintaining its poetry-image retrieval capability as much as possible. Even when trained solely on
text, the model’s performance also improves. We attribute this improvement to the preservation of
text-image correspondence in CN CLIP during fine-tuning, as well as our focus on fine-tuning the
textual side, which correctly outputs poetry embeddings. Additionally, Lpi2im plays a crucial role

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

in the knowledge injection process. Given the abundant presence of PI in poetry, aligning PI with its
meaning enables the model to accurately understand the poetry at a fine-grained level.

Table 7: Ablation experiments on the poetry-image retrieval task.
loss function PI-Manual PI-Generate

t2i i2t t2i i2t
Lpi2ii Lii2pi Lap2mct Lpi2im R3 R3 R5 R10 R20 R5 R10 R20

✓ ✓ 0.857 728 0.422 0.514 0.642 0.294 0.384 0.498
✓ ✓ ✓ 0.843 0.757 0.428 0.542 0.664 0.298 0.406 0.5169

✓ ✓ ✓ 0.914 0.757 0.476 0.550 0.646 0.294 0.041 0.512
✓ ✓ ✓ 0.886 0.771 0.468 0.558 0.656 0.280 0.418 0.514
✓ ✓ ✓ 0.643 0.714 0.264 0.376 0.474 0.276 0.356 0.438
✓ ✓ ✓ ✓ 0.871 0.800 0.460 0.548 0.644 0.340 0.488 0.544

A.4 POETRY-IMAGE RETRIEVAL CASE STUDY

Figure 4 presents two case studies for the poetry-image retrieval task. In these cases, a significant
discrepancy exists between the literal meaning and the poetry translation, posing a challenge to the
model’s retrieval abilities. KPIR overcomes this challenge by leveraging both PI-related and MCT
knowledge to achieve a more accurate understanding of the ancient poetry. In the figure, areas
associated with PI-related knowledge are highlighted with yellow solid lines, while those related to
MCT-knowledge are marked with brown dashed lines.

For example, as shown in Figure 4 (a), PI-related knowledge such as “di (笛)” and “guan (管)” is
often translated as flute or other musical instruments in Modern Chinese. However, in the context of
ancient poetry, they are more literally associated with bamboo. PI like “xinhuang(新篁)” are rarely
used in contemporary language. These linguistic factors increase the difficulty of comprehending
ancient poetry. By learning PI-related knowledge, KPIR overcomes these challenges and correctly
interprets the meaning. In Figure 4 (b), MCT knowledge provides a crucial semantic supplement for
the PI-related knowledge. Although the water corresponding to “xihu(西湖)” and “chunshui(春水)”
is blue, the MCT knowledge introduces the concept of “green water” through poetry translation,
thereby deepening the model’s understanding of the ancient poetry.

Figure 4: Two case studies of KPIR in the poetry-image retrieval task.

A.5 POETRY THEME CLASSIFICATION TASK IMPLEMENT DETAILS

For the TCCP dataset, we divide it into the training, validation, and test sets in a ratio of 7:2:1.
We use DeepSeek-Chat (Guo et al., 2025) as the base classification model. To enhance the model’s
ability to comprehend and analyze problems, we ask it not only to answer questions but also to
provide explanations for its answers. Given that the TCCP dataset contains nine categories, we
provide one learning example for each category, utilizing few-shot learning to improve the model’s
performance. The instruction to DeepSeek-Chat is
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You are an expert in Chinese classical poetry. The user will provide a series of questions related
to themes of classical poems. Your answer categories should be within [”homesickness”, ”chant-
ing things”, ”landscape”, ”missing someone”, ”meditating on the history”, ”pastoral”, ”frontier
war”, ”boudoir resentment”, and ”farewell”]. The answer should only include the category and
an explanation for your choice. For example, respond in the format: {”Answer”: ”boudoir resent-
ment”, ”Explanation”: ”This poem expresses longing for a loved one far away, which is typical of
the ’boudoir resentment’ category.”}
To establish a standard evaluation, we use the same questions in TCCP as queries to retrieve relevant
IM from CPMK and PKG, and use ChatGPT-4 to generate explanations for few-shot learning. This
involves analyzing questions, integrating relevant knowledge from PKG or CPMK, and their answers
to provide a coherent explanation. The instruction to ChatGPT-4 is

As an expert in Classical Chinese poetry, you need to analyze the poetry theme classification prob-
lem provided by the user, along with the classification result. By considering the relevant poetry
imagery and imagery meaning in the poem, explain why the poem fits the given theme and summa-
rize the final result in a single paragraph.

We provide a sample learning example for both CPMK and PKG in 5 and 6. System prompts are
indicated with a brown dashed line, while learning samples are represented with a blue solid line.

Figure 5: Learning example for poetry theme classification using CPMK.

Figure 6: Learning example for poetry theme classification using PKG.
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B POETRY CONCEPT ILLUSTRATION

We present an example of using multimodal information to understand poetry in Figure 7. “SuShi(苏
轼)”’s poem “(水光潋滟晴方好,山色空蒙雨亦奇)” describes the beauty of nature in diverse
weather conditions. The evolving meanings of poetry imagery(PI), such as ’KongMeng (空蒙)’,
alongside the background of ancient poetry, have made it difficult to fully understand the poem. By
presenting Imagery Meaning (IM) through text and images, as well as introducing relevant infor-
mation about the poetry background, people from diverse cultural backgrounds can gain a deeper
understanding of classical Chinese poetry.

Figure 7: An example illustrating the use of multimodal information to enhance the understanding of
ancient poetry. AP (Ancient Poetry), MCT (Modern Chinese Translation), PI (Poetry Imagery), IM
(Imagery Meaning), II (Imagery Image), and APBG (Ancient Poetry Background) are introduced.

C ONTOLOGY GRAPH

We present the ontology graph in Figure 8, which classifies concepts into key concepts and attributes
based on their significance.

Figure 8: The ontology graph of classical Chinese poetry, where shapes represent types and colors
represent modalities.
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D GENERATIVE MODEL SELECTION

In this section, we discuss the selection of the image generation model and prompt settings. We
chose the Taiyi-1B model (Zhang et al., 2022a) for its balance of quality and efficiency. As shown
in Table 8, Taiyi-1B performs comparably to larger models while offering faster inference due to
its smaller parameter size. However, due to computational limitations, the entire image generation
process still took about a month.

Table 8: Comparison of different models in Chinese(COCO-CN) datasets. Data is cited from Wu
et al. (2024)

Models CLIP Sim(↑) FID(↓) IS(↑)
Taiyi-1B[45] 0.197 69.226 21.060
Alt-1.5B[40] 0.220 68.488 22.126
Pai-1B[31] 0.196 72.572 19.145
Taiyi-3.5B[36] 0.225 67.675 22.965

The text prompts were primarily set based on the model’s recommendations. To generate realistic
images reflecting common real-world scenes, we included the word “realistic (现实)” in positive
prompts. However, as the model often generated anime-style images, we added “anime(动漫)” to
steer it toward the desired output. The final positive prompt words are “({}，现实)” where the IM
is inserted into the {} position, while the negative prompt words are “(广告,，, ！, 。, ；, 资讯,
新闻,水印,动漫)”.

E KNOWLEDGE AUGMENTATION

In this section, we detail the process of merging relevant data. First, APs are mapped to hash values
to identify duplicates by comparing these hashes. Next, APs are segmented by punctuation marks
(，。！？), and similar APs are merged based on the number of matching text segments. Duplicate
or similar APs are merged, and their associated knowledge is integrated. This process is carried out
according to Algorithm 1.

Algorithm 1 Similarity Matching for the AP
Input: Raw databases {Di} , num of databases l.
Output: Deduplicated databases D′.
P ←

⋃l
i=1 Extract APs from Di.

D′ ←
⋃l

i=1 data from Di.
for each pair (Ps, Pl) ∈ P × P where Ps ̸= Pl and |Pl| ≥ |Ps| do
Ns ← number of sentence segments in Ps

Nl ← number of sentence segments in Pl

C ← number of identical sentence blocks between Ps and Pl

if C > Ns

2 then
RKs = GetRelevantKnowledge(Ps)
D′[l]← D′[l] ∪ {RKs}
Delete(D′[s])

end if
end for

F QUESTIONNAIRE DETAILS

F.1 QUESTIONNAIRE GUIDANCE

This section outlines the instructions provided to participants for evaluating the quality of knowl-
edge graphs in our questionnaire. We provide guidelines for assessing two types of scores: similarity
score and coverage score. As illustrated in Figure 9, we instruct participants to assign the highest
similarity score (ranging from 0 to 5) if an image fully matches either the surface meaning (physical
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description) or the deep meaning (emotional significance) of any given meaning. Partial matches re-
quire point deductions based on the degree of alignment. Figure 9 explains the scoring for coverage,
where the similarity score is constrained to fall within the range of 0 to the relevance score assigned
to the image. If the image only covers a subset of interpretations, deductions are made proportion-
ally depending on the number and significance of the uncovered interpretations. To ensure clarity,
we provide three illustrative examples for each type of score, addressing common scenarios.

Figure 9: Instructions for evaluating the Similarity Score and Coverage Score.

F.2 QUESTIONNAIRE EXAMPLE

We provided a questionnaire example in Figure 10, illustrating the PI “QuShu(氍毹)” related knowl-
edge in CPMK and PKG. In PKG, different meanings are distinguished by different colors, and grey
indicates areas representing the origin of IM, which are treated as textual noise. Due to the influence
of textual noise and improper segmentation of IM, the text-image correspondence in PKG is weak.
The image barely reflects carpet, resulting in a relevance score of 2. Therefore, the coverage score
for this text-image pair ranges from 0 to the relevance score (2), but it does not effectively convey
the intended meaning of the stage, resulting in a compromised coverage score of 1. In CPMK, the
correlation between IM and II is high, with both relevance and coverage scores of 4.5 for IM-II pairs.
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Figure 10: An example PI “QuShu(氍毹)” in the questionnaire.

G PROMPT OPTIMIZATION FOR IM

We introduce the instructions about prompt optimization for II generation, which is shown in Figure
11. We use DeepSeek-ChatGuo et al. (2025) for processing raw IMs.

Figure 11: Instructions for processing raw IMs.
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H PI-GENERATE DATASET CONSTRUCTION

We detail the process of utilizing large language models (LLMs) to generate a poetry-image retrieval
dataset(PI-Generate). Given the critical role of emotion in AP, we distinguish between scene and
emotion descriptions to ensure the generated images accurately reflect the intended meanings of the
poems. Specifically, this study retrieves modern Chinese translations and poetry appreciations of AP
from CPMK. These texts are then refined using ChatGPT-4 Achiam et al. (2023), which generates
tailored prompts that encapsulate both scene and emotion descriptions for image generation. Finally,
DALL.E 3 Shi et al. (2020) leverages these tailored prompts to produce corresponding images. The
detailed instructions for extracting scene and emotion descriptions are illustrated in Figure 12.

Figure 12: Instructions for generating emotion description and scene description.

I HEURISTIC APPROACH

This section introduces the heuristic approaches employed for processing raw IMs. The primary
objective is to separate different IMs associated with the same PI, eliminate textual noise in PIs,
and retain useful information from PIs as supplementary knowledge. Due to raw IMs with multiple
meanings having various formats, it is challenging to develop heuristic rules that can be universally
applied for splitting meanings. As a result, we split IMs based on the structure of the crawled data.
Regarding textual noise, the data we gathered contains a large amount of noise. We use regular
expressions to remove as much as possible. Regarding supplementary knowledge, we find that there
is a significant amount marked by (《》)(book title). However, due to the large volume of similar
information, it is difficult to fully represent them using regular expressions alone. Here are three
regular expression examples:

1)语本《.*?》?：“.*?”

2)王逸注:.*?。

3)《.*?》：.*？”
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J EXAMPLES OF CPMK

In this section, we provide examples of the CPMK.

J.1 EXAMPLE OF PI AND CHARACTER RELATED KNOWLEDGE IN CPMK

In Figure 13, we present an example of PI and character-related Knowledge in CPMK. For PI (谢
墅), we provide its IM, Supplementary Information, and II. For the character (墅), we provide its
Pinyin, ZhuYin, Stroke Count, and Explanation.

Figure 13: An example of character-related knowledge and PI-related knowledge in CPMK.

J.2 EXAMPLE OF POETRY-RELATED KNOWLEDGE IN CPMK

In Figure 14, we present an example of poetry-related knowledge in CPMK. We integrate knowl-
edge from SouYun, GuShiWen, and GuoXueHui, striving to present as complete a representation
of poetry-related knowledge as possible through the consolidation of various databases. Notably,
the version of the classical Chinese poem obtained from SouYun (两岸猿声啼不尽) differs from
those found in GuShiWen and GuoXueHui (两岸猿声啼不住). Through the use of knowledge aug-
mentation, we provide a comprehensive representation of the knowledge related to these poems.

J.3 EXAMPLE OF AUTHOR-RELATED KNOWLEDGE IN CPMK

In Figure 15, we present an example of author-related knowledge in CPMK. This includes the poet’s
name(李白), the historical era, a brief introduction, and an image of the poet. Besides knowledge
from SouYun, we also integrate various data sources from SouYun to provide a comprehensive
introduction to the authors.

K THE USE OF LARGE LANGUAGE MODELS

This paper utilizes LLMs as auxiliary writing tools. We used ChatGPT-4 to perform simple refine-
ments on this paper, correcting basic grammatical and spelling errors.
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Figure 14: An example of poetry-related knowledge in CPMK
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Figure 15: An example of author-related knowledge in CPMK
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