

000 001 002 003 004 005 006 007 008 009 010 011 012 IDENTIFYING UNPERTURBED CELLULAR PROGRAMS ENABLES ACCURATE SINGLE-CELL PERTURBATION PREDICTION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
Anonymous authors
Paper under double-blind review

044 ABSTRACT

045 Predicting cellular responses to single/combinatorial gene perturbations is a cen-
046 tral challenge in functional genomics. A critical limitation of current mod-
047 els is their inability, both theoretically and methodologically, to disentangle
048 perturbation-induced effects from the pervasive background cellular transcrip-
049 tional programs that remain invariant to perturbations but dominate observed gene
050 expression patterns. To address this, we propose a latent variable generative model
051 that explicitly partitions latent space into an variant subspace where a latent causal
052 model is employed to capture perturbations, and an invariant subspace capturing
053 unperturbed cellular programs. We establish a principled foundation for disen-
054 tangling these two subspaces, and identifying the latent causal model, by dif-
055 ferentiability analysis. We then translate our theoretical findings into a practical
056 method that more accurately predicts perturbation effects, supported by the theo-
057 retical guarantees. On both simulated and large-scale genetic perturbation bench-
058 marks, the proposed method achieves state-of-the-art accuracy in predicting cellu-
059 lar responses to unseen combinations, significantly outperforming existing meth-
060 ods. Crucially, by disentangling unperturbed cellular programs from perturbation-
061 induced effects, our method prevents the latter from being confounded or absorbed
062 into the dominant invariant patterns. This separation allows the true causal impact
063 of perturbations to be isolated and reliably estimated, thereby enabling accurate
064 prediction of unseen combinatorial gene perturbations at the single-cell level.

065 1 INTRODUCTION

066 Understanding the generative process that links genotype to cellular phenotype is a central challenge
067 in modern biology and medicine (Orgogozo et al., 2015). A key experimental strategy toward this
068 goal is systematic gene perturbation, where genes are perturbed and the resulting cellular pheno-
069 types are measured. The emergence of CRISPR-based perturbation technologies has made such
070 large-scale experiments feasible (Jinek et al., 2012; Gilbert et al., 2014; Dixit et al., 2016; Replogle
071 et al., 2020). However, despite their transformative power, these approaches remain prohibitively ex-
072 pensive, time-consuming, and sometimes ethically constrained, making exhaustive screening across
073 genes and perturbation combinations infeasible (Uddin et al., 2020; Caplan et al., 2015).

074 To overcome these experimental bottlenecks, recent studies have turned to machine learning, train-
075 ing models on observational and limited perturbation data to predict cellular outcomes under novel
076 perturbations (Lin & Wong, 2018; Castillo-Hair et al., 2024; Lotfollahi et al., 2023; Rood et al.,
077 2024; Szałata et al., 2024). Such models aim to generalize beyond available experiments, includ-
078 ing to complex multi-gene perturbations that have never been observed. However, this is inherently
079 difficult: it corresponds to prediction under distribution shift, where the test distribution (unseen per-
080 turbations) differs from the training distribution (observed perturbations). The challenge is magni-
081 fied in the combinatorial setting, as multi-gene perturbations can induce far more severe distribution
082 shifts than single-gene ones (Roohani et al., 2024).

083 **Related works.** One promising research direction to addressing distribution shift is to infer the
084 causal mechanisms underlying the data, as models are inherently capable of predicting outcomes un-

054 der distribution shifts induced by interventions (e.g., gene perturbations)¹ (Pearl, 2009; Schölkopf,
 055 2022). Adopting this perspective, recent work has formulated single-cell perturbation prediction us-
 056 ing latent causal generative models (Lachapelle et al., 2022; Zhang et al., 2023; Lopez et al., 2022;
 057 de la Fuente et al., 2025), aiming to learn causal representations from observational and limited
 058 perturbation data. These learned representations correspond to the underlying latent causal me-
 059 chanisms, an approach commonly referred to as causal representation learning (Schölkopf et al., 2021).
 060 Though conceptually promising, a fundamental question concerns identifiability guarantees: can the
 061 true latent causal mechanisms be uniquely recovered from observational and limited interventional
 062 data, up to a simple transformation? Very recently, theoretical results have begun to address this
 063 question (Lachapelle et al., 2022; Zhang et al., 2023), and building on this foundation, several meth-
 064 ods have subsequently been proposed (Lopez et al., 2022; Zhang et al., 2023; de la Fuente et al.,
 065 2025). Additional related works, including disentangling perturbation effects, identifiable causal
 066 representations, and contrastive representation learning, are provided in App. A.

067 **Motivations.** However, current identifiability results generally assume access to such precious inter-
 068 ventional data, in which all latent causal variables must have been perturbed (Liu et al., 2022; Varici
 069 et al., 2025; Liu et al., 2024)². Such interventional data are rarely obtainable in real cellular exper-
 070 iments, as comprehensive perturbation of all genes is often prohibitively expensive; typically, only
 071 a small subset of genes can be experimentally perturbed (Replogle et al., 2022; Reymond, 2015).
 072 Consequently, a vast subspace of genes remains unperturbed. As a result, existing identifiability
 073 theory, which typically assumes access to interventional data for all latent causal variables, may not
 074 be directly applicable to real cellular datasets, and, in turn, methods built upon these theoretical re-
 075 sults (Lopez et al., 2022; Zhang et al., 2023; de la Fuente et al., 2025) may also struggle to perform
 076 effectively in practice, given the limited and partial interventional data typically available.

077 **Contributions.** To address this critical gap, this paper makes the following contributions. A *New*
 078 *Generative Model* (§ 2). We introduce a novel latent variable model that explicitly partitions the
 079 latent space into two components: a causal subspace, capturing the perturbable portion of the gene
 080 space, and an invariant subspace, representing the unperturbed portion. *Identifiability Guarantees*
 081 (§ 3). We derive sufficient conditions for the identifiability of the causal model within the causal
 082 subspace, providing a key theoretical contribution that extends prior results (Lachapelle et al., 2022;
 083 Zhang et al., 2023). A *Practical Learning Framework* (§ 4). We translate our theoretical insights into
 084 a practical method, a general framework for learning both the latent causal variables in the causal
 085 subspace and their causal structure from single-cell data. *Extensive Empirical Validation* (§ 5). We
 086 conduct comprehensive experiments on single- and multi-gene perturbation benchmarks, showing
 087 that the proposed method significantly outperforms existing methods in predicting responses to un-
 088 seen combinations and recovers biologically meaningful latent factors.

089 2 PROBLEM SETUP: A NOVEL LATENT CAUSAL GENERATIVE MODEL

090 In single-cell perturbation prediction, interventional data are typically available only for a small
 091 subset of genes. These data are generated through targeted gene perturbations followed by single-
 092 cell transcriptomic profiling, as exemplified by Perturb-seq (Dixit et al., 2016) and its direct-capture
 093 variants (Replogle et al., 2020). Exhaustively perturbing all genes is prohibitively expensive, neces-
 094 sitating modeling approaches that can effectively leverage limited-perturbation data. In this section,
 095 we formulate the problem using a latent causal generative modeling framework. Refer to App. B.1
 096 for a summary of notation and a complete list of symbols used throughout the paper.

100 2.1 LATENT CAUSAL GENERATIVE MODELING UNDER LIMITED INTERVENTIONS

101 We now introduce a latent causal generative model, in which each cell is associated with an observed
 102 expression profile \mathbf{x} . These observed profiles are generated from an underlying latent space \mathbf{z} ,
 103 which provides a compact representation of the cell’s internal state. In particular, \mathbf{z} captures both

104 ¹In the scope of this work, perturbations can be viewed as *interventions* in the causal sense, we thus use
 105 “perturbations” and “interventions” interchangeably throughout this paper.

106 ²If some latent causal variables remain unperturbed, additional assumptions such as sparse graph struc-
 107 tures (Lachapelle et al., 2022) are generally required, though often hard to justify in real cellular processes.

108 background cellular transcriptional programs—stable regulatory and transcriptional patterns largely
 109 unperturbed under experimental conditions—and perturbation-induced effects.
 110

111 To model limited-perturbation scenarios, we split the latent space into two subspaces, as in Figure 1a:

- 112 • \mathbf{z}_ι (*perturbation-invariant block*), supported on $\mathcal{Z}_\iota \subseteq \mathbb{R}^{d_\iota}$, represents the invariant sub-
 113 space corresponding to background programs, which are typically difficult or costly to
 114 perturb. Examples include donor genotype, stable chromatin context, and core regulatory
 115 programs.
- 116 • \mathbf{z}_ν (*perturbation-responsive block*), supported on $\mathcal{Z}_\nu \subseteq \mathbb{R}^{d_\nu}$, represents the variant sub-
 117 space that is susceptible to perturbations, including features such as pathway activity, dose-
 118 response effects, and compensatory programs. The variant latent subspace \mathbf{z}_ν involves an
 119 unknown causal structure, constrained to follow a directed acyclic graph (DAG).

120 To formalize perturbations on \mathbf{z}_ν , we introduce a surrogate variable $\mathbf{u} \in \mathcal{U}$ that identifies which
 121 perturbation has been applied (e.g., a one-hot encoding). We do not require knowledge of the specific
 122 intervention mechanism; it is sufficient to know that a perturbation has occurred. Each latent block
 123 is associated with independent exogenous variables: \mathbf{n}_ι for \mathbf{z}_ι and $\mathbf{n}_{\nu,i}$ for each coordinate of \mathbf{z}_ν ,
 124 capturing external sources of variation. Finally, all latent endogenous variables, \mathbf{z}_ι and \mathbf{z}_ν , are
 125 combined through an unknown generative process to produce the observed expression profile \mathbf{x} .
 126

127 Without further assumptions, the latent variables \mathbf{z}_ι and \mathbf{z}_ν , and in particular the causal structure
 128 among \mathbf{z}_ν , cannot, in general, be identified solely from the observed variables \mathbf{x} and \mathbf{u} . To enable the
 129 theoretical analysis that follows, we parameterize the proposed causal generative model as follows.

$$130 \mathbf{z}_\iota := \boldsymbol{\lambda}_{\iota\iota} \mathbf{z}_\iota + \mathbf{n}_\iota, \quad \mathbf{n}_\iota \sim \mathcal{N}(\boldsymbol{\mu}_\iota, \text{diag } \boldsymbol{\beta}_\iota), \quad (1)$$

$$131 \mathbf{z}_\nu := \boldsymbol{\lambda}_{\nu\iota}(\mathbf{u}) \mathbf{z}_\iota + \boldsymbol{\lambda}_{\nu\nu}(\mathbf{u}) \mathbf{z}_\nu + \mathbf{n}_\nu, \quad \mathbf{n}_\nu \sim \mathcal{N}(\boldsymbol{\mu}_\nu(\mathbf{u}), \text{diag } \boldsymbol{\beta}_\nu(\mathbf{u})), \quad (2)$$

$$132 \mathbf{x} := g(\mathbf{z}), \quad (3)$$

133 where,

- 135 • $\mathbf{n}_\iota \in \mathbb{R}^{d_\iota}$ and $\mathbf{n}_\nu \in \mathbb{R}^{d_\nu}$ are latent exogenous variables, sampled from $\mathcal{N}(\boldsymbol{\mu}_\iota, \text{diag } \boldsymbol{\beta}_\iota)$ with
 136 mean $\boldsymbol{\mu}_\iota$ and variance $\text{diag } \boldsymbol{\beta}_\iota$, $\mathcal{N}(\boldsymbol{\mu}_\nu(\mathbf{u}), \text{diag } \boldsymbol{\beta}_\nu(\mathbf{u}))$ with mean $\boldsymbol{\mu}_\nu(\mathbf{u})$ and variance
 137 $\text{diag } \boldsymbol{\beta}_\nu(\mathbf{u})$, respectively.
- 138 • The intra-block square matrices, i.e., $\boldsymbol{\lambda}_{\iota\iota}$ and $\boldsymbol{\lambda}_{\nu\nu}(\mathbf{u})$, are strictly upper triangular, while
 139 the cross-block $\boldsymbol{\lambda}_{\nu\iota}(\mathbf{u})$, by construction, is consistent with a fixed acyclic order $\mathbf{z}_\iota \prec \mathbf{z}_\nu$.³
- 140 • In Eq. (3), $\mathbf{z} = (\mathbf{z}_\iota, \mathbf{z}_\nu)$ and g denotes an unknown nonlinear mapping from \mathbf{z} to \mathbf{x} .
 141

142 2.2 THEORETICAL TARGET: IDENTIFIABILITY

144 Our aim is to establish *identifiability* for the proposed latent causal generative model, i.e., to de-
 145 termine under which conditions the latent variables and the causal structure among them can be
 146 uniquely recovered from observational variables \mathbf{x} and \mathbf{u} , up to a trivial transformation. Formally,
 147 we introduce the definitions as follows.

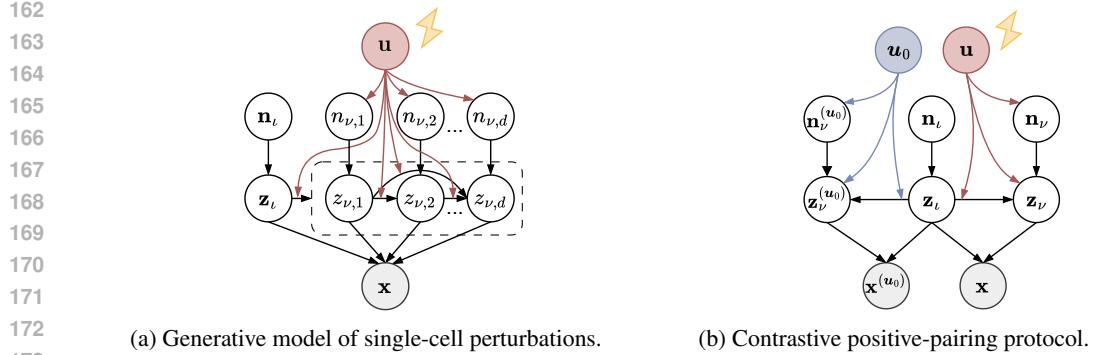
148 **Definition 2.1** (Block identifiability). Let $\mathcal{S} \subseteq \{1, \dots, d_\iota + d_\nu\}$ index a subset of latent coordinates
 149 and $\mathbf{z}_\mathcal{S} \in \mathcal{Z}_\mathcal{S}$ its subvector. The block $\mathbf{z}_\mathcal{S}$ is *block-identifiable* via a representation map $f : \mathcal{X} \rightarrow$
 150 $\mathbb{R}^{|\mathcal{S}|}$ if the learned code $\hat{\mathbf{z}}_\mathcal{S} = f(\mathbf{x})$ is an invertible reparameterization of $\mathbf{z}_\mathcal{S}$ depending on no other
 151 latents. Formally, there exists a bijection $h : \mathcal{Z}_\mathcal{S} \rightarrow \mathbb{R}^{|\mathcal{S}|}$ with $\hat{\mathbf{z}}_\mathcal{S} = h(\mathbf{z}_\mathcal{S})$ a.s.

152 **Definition 2.2** (Component-wise identifiability). In the sense of Defn. 2.1, $\mathbf{z}_\mathcal{S}$ is *component-wise*
 153 *identifiable* if h reduces to a per-coordinate affine transformation and permutation, i.e., there exist a
 154 permutation $\mathbf{P} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}|}$, diagonal $\mathbf{D} \succ 0$, and vector $\mathbf{c} \in \mathbb{R}^{|\mathcal{S}|}$ such that $\hat{\mathbf{z}}_\mathcal{S} = \mathbf{P} \mathbf{D} \mathbf{z}_\mathcal{S} + \mathbf{c}$ a.s.

156 3 THEORY: IDENTIFIABILITY OF THE PROPOSED LATENT CAUSAL MODEL

158 We now state sufficient conditions under which the latent factors in § 2 are identifiable. Our analysis
 159 proceeds by (i) specifying mild structural and regularity assumptions on the latent SCM and the
 160 generative map g , (ii) defining a contrastive positive-pairing protocol aligned with limited interventions,
 161

³Without loss of generality, we fix such an acyclic order across environments following Liu et al. (2022).



172 (a) Generative model of single-cell perturbations. (b) Contrastive positive-pairing protocol.
 173

174 Figure 1: Latent generative modeling. (a) Under perturbation identity \mathbf{u} , the perturbation-responsive
 175 factors \mathbf{z}_{ν} are influenced by \mathbf{u} through latent mechanisms and their associated exogenous noises \mathbf{n} ,
 176 while the invariant block \mathbf{z}_t maintains unchanged. Together, the latent variables $\mathbf{z} := (\mathbf{z}_{\nu}, \mathbf{z}_t)$
 177 generate the observed \mathbf{x} . (b) The invariant variables \mathbf{z}_t are shared between the perturbed state \mathbf{x} and
 178 its controlled counterpart $\mathbf{x}^{(u_0)}$, while the responsive components differ as \mathbf{z}_{ν} and $\mathbf{z}_{\nu}^{(u_0)}$, where u_0
 179 is a control setting for contrastive objective.

180 and (iii) proving that global maximizers of a joint likelihood-regularization objective recover \mathbf{z}_t up
 181 to block reparameterization and \mathbf{z}_{ν} up to per-coordinate indeterminacies.

183 3.1 STRUCTURAL ASSUMPTIONS ON THE GENERATIVE MODEL

185 Under the generative model in Equations (1) to (3), we state technical assumptions for tractable
 186 theoretical analysis:

187 **Assumption 3.1** (Anchored weight-variant). *At the control u_0 , we have $\lambda_{\nu\nu}(u_0) = \mathbf{0}$ and
 188 $\lambda_{\nu\nu}(u_0) = 0$, which we regard as the baseline anchor.*

189 **Assumption 3.2** (Diffeomorphic generative mapping). *The generative map $g : \mathcal{Z} \rightarrow \mathcal{X}$ in Eq. (3)
 190 is a diffeomorphism, i.e., a C^1 bijection with a C^1 inverse.*

192 **Assumption 3.3** (Perturbation richness). *Fix a reference environment $u_0 \in \mathcal{U}$. For each $j \in [d_{\nu}]$, let
 193 $\lambda_j(u) \in \mathbb{R}^{|\text{pa}(j)|}$ denote the vector of incoming coefficients of $z_{\nu,j}$ from its parents $\text{pa}(j) \subseteq \{\mathbf{z}_t, \mathbf{z}_{\nu}\}$
 194 that precede j in the acyclic order. Write $\tau_j(u) := \beta_{\nu,j}^{-1}(u)$ and $\kappa_j(u) := \tau_j(u)\mu_{\nu,j}(u)$ for the
 195 Gaussian precision and natural mean of the noise of $z_{\nu,j}$ under environment u . We assume:*

197 (a) *There exists u_j such that the set $\{\lambda_j(u_j) - \lambda_j(u_0) : u_j \in \mathcal{U} \setminus \{u_0\}\}$ spans $\mathbb{R}^{|\text{pa}(j)|}$.*

198 (b) *There exist $u'_j, u''_j \in \mathcal{U}$ such that the difference vectors $(\kappa_j(u'_j) - \kappa_j(u_0), \tau_j(u'_j) - \tau_j(u_0))$
 199 and $(\kappa_j(u''_j) - \kappa_j(u_0), \tau_j(u''_j) - \tau_j(u_0))$ are linearly independent in \mathbb{R}^2 .*

201 3.2 CONTRASTIVE POSITIVE-PAIRING PROTOCOL

203 We formalize how a positive pair is generated under the DGP in § 2 (see Figure 1b). Fix an anchor
 204 setting $u_0 \in \mathcal{U}$ as in Asm. 3.1.⁴ For each anchor cell, we pair a sample drawn under a randomly se-
 205 lected second perturbation setting $u \sim q_u$ on $\mathcal{U} \setminus \{u_0\}$. When referring to the anchored perturbation
 206 setting u_0 , we denote the corresponding variables as $\mathbf{z}_{\nu}^{(u_0)}$, $\mathbf{z}_t^{(u_0)}$, $\mathbf{z}^{(u_0)}$, and $\mathbf{x}^{(u_0)}$ to emphasize
 207 their evaluation under u_0 . Otherwise, when variables are considered under a randomly selected
 208 perturbation setting, we use the general notations introduced in § 2.

209 **Assumption 3.4** (Perturbation excitation coverage). *For each coordinate $j \in [d_{\nu}]$, define the exci-
 210 tation set*

$$212 \mathcal{U}_j := \{u \in \mathcal{U} \setminus \{u_0\} : \lambda_j(u) \neq \lambda_j(u_0) \vee (\kappa_j(u), \tau_j(u)) \neq (\kappa_j(u_0), \tau_j(u_0))\},$$

213 where $\lambda_j(\cdot), \tau_j(\cdot), \kappa_j(\cdot)$ are as in Asm. 3.3. Assume the second perturbation setting for each positive
 214 pair is drawn i.i.d. as $u \sim q_u$ on $\mathcal{U} \setminus \{u_0\}$ with $q_u(\mathcal{U}_j) > 0$ for all $j \in [d_{\nu}]$.

215 ⁴Any perturbation identity could serve as the anchor; w.l.o.g., we select u_0 for notational clarity.

216 **Assumption 3.5** (Positive pairing protocol). Fix an anchor $\mathbf{u}_0 \in \mathcal{U}$, and randomly sample $\mathbf{u} \sim q_{\mathbf{u}}$ on $\mathcal{U} \setminus \{\mathbf{u}_0\}$. For a sample $\mathbf{x}^{(\mathbf{u}_0)} = g(\mathbf{z}_t^{(\mathbf{u}_0)}, \mathbf{z}_\nu^{(\mathbf{u}_0)})$ under the control state \mathbf{u}_0 , define the corresponding positive counterpart $\mathbf{x} = g(\mathbf{z}_t, \mathbf{z}_\nu)$ under perturbation \mathbf{u} . Assume the latent variables follow

$$221 \quad \mathbf{z}_t^{(\mathbf{u}_0)} = \mathbf{z}_t \sim p_{\phi^\circ}(\mathbf{z}_t), \quad \mathbf{z}_\nu^{(\mathbf{u}_0)} \sim p_{\phi^\circ}(\mathbf{z}_\nu \mid \mathbf{z}_t^{(\mathbf{u}_0)}, \mathbf{u}_0), \quad \mathbf{z}_\nu \sim p_{\phi^\circ}(\mathbf{z}_\nu \mid \mathbf{z}_t, \mathbf{u}),$$

222 where, p_{ϕ° denotes the distribution generated by the latent SCM, with ϕ° specifying the complete
223 parameterization of the true data-generating process.

225 3.3 IDENTIFIABILITY RESULTS

227 **Theorem 3.1** (Identifiability of the proposed latent causal generative model). Consider smooth in-
228 ference encoders $f : \mathcal{X} \rightarrow \mathbb{R}^{d_t + d_\nu}$, decomposed as $f(\mathbf{x}) = (f_t(\mathbf{x}), f_\nu(\mathbf{x}))$ with $\dim(f_t) = d_t$ and
229 $\dim(f_\nu) = d_\nu$. Suppose Asms. 3.1 to 3.3 hold. Define the joint objective

$$230 \quad \mathcal{J}_{\text{obj}}(\phi, f) := \underbrace{\mathbb{E}_{(\mathbf{x}, \mathbf{u}) \sim p_{\phi^\circ}} [\log p_{\phi}(\mathbf{x} \mid \mathbf{u})]}_{\text{Likelihood}} - \alpha \underbrace{\mathbb{E}_{(\mathbf{x}^{(\mathbf{u}_0)}, \mathbf{x})} [\|f_t(\mathbf{x}^{(\mathbf{u}_0)}) - f_t(\mathbf{x})\|_2^2]}_{\text{Alignment across } \mathbf{u}}, \quad (4)$$

233 where $\alpha > 0$ is a scaling constant, $(\mathbf{x}^{(\mathbf{u}_0)}, \mathbf{x})$ are positive pairs following Asm. 3.5, and $\mathbf{u} \sim q_{\mathbf{u}}$ as
234 in Asm. 3.4. Let (ϕ^*, f^*) be a global maximizer of Eq. (4). At the global maximizer, the optimization
235 is constrained so that for any $\mathbf{z}_\nu \in \mathcal{Z}_\nu$, the map $\mathbf{z}_t \mapsto f_t^* \circ g(\mathbf{z})$ is injective.

237 Then, for any two global maximizers (ϕ^*, f^*) and $(\tilde{\phi}^*, \tilde{f}^*)$ that realize the true marginal $p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})$,
238 i.e., $\mathbb{E}[\log p_{\tilde{\phi}^*}] = \mathbb{E}[\log p_{\phi^*}] = \mathbb{E}[\log p_{\phi^\circ}]$, the corresponding encodings satisfy:

- 240 1. (Block-identifiability of \mathbf{z}_t). There exist bijections $h_t, \tilde{h}_t : \mathcal{Z}_t \rightarrow \mathbb{R}^{d_t}$ such that $f_t^*(\mathbf{x}) = h_t(\mathbf{z}_t)$
241 and $\tilde{f}_t^*(\mathbf{x}) = \tilde{h}_t(\mathbf{z}_t)$ a.s., thus \mathbf{z}_t is block-identifiable through f^* in the sense of Defn. 2.1.
- 243 2. (Component-wise identifiability of \mathbf{z}_ν). There exist permutation $\mathbf{P} \in \mathbb{R}^{d_\nu \times d_\nu}$, diagonal $\mathbf{D} \succ 0$,
244 and $\mathbf{c} \in \mathbb{R}^{d_\nu}$ such that $f_\nu^*(\mathbf{x}) = \mathbf{P} \mathbf{D} \mathbf{z}_\nu + \mathbf{c}$ a.s.; likewise for \tilde{f}_ν^* (possibly with different
245 $(\mathbf{P}, \mathbf{D}, \mathbf{c})$). Thus \mathbf{z}_ν is component-wise identifiable through f^* in the sense of Defn. 2.2.

246 *Proof.* Proof can be found in App. B.2. □

247 *Remark 1.* Thm. 3.1 guarantees recovery of \mathbf{z}_t up to an invertible block reparameterization and of
248 \mathbf{z}_ν up to per-coordinate affine transformations by maximizing Eq. (4). In this context of single-cell
249 perturbation prediction, these guarantees ensure that the perturbation-responsive latent subspace \mathbf{z}_ν
250 can be disentangled from the invariant latent subspace \mathbf{z}_t . As a result, the true causal effects of per-
251 turbations can be isolated from dominant background cellular transcriptional programs, preventing
252 confounding and allowing reliable estimation of perturbation-induced responses.

253 *Remark 2.* The identifiability guarantees in Thm. 3.1 crucially rely on the objective in Eq. (4), which
254 combines a likelihood term and an alignment term across \mathbf{u} . The likelihood captures perturbation-
255 induced variation in \mathbf{z}_ν , while the alignment ensures \mathbf{z}_t remains invariant. This combination is the
256 key theoretical motivation for our method, enabling disentanglement of perturbation effects from
257 background programs.

259 4 APPROACH: CONTRASTIVE DAG VARIATIONAL AUTOENCODER

261 In this section, we translate our theoretical findings into a practical framework for single-cell per-
262 turbation prediction. Building on the theoretical guarantee that the latent variables \mathbf{z}_t and \mathbf{z}_ν can
263 be recovered under the objective in Eq. (4), we introduce the *Contrastive DAG Variational Autoen-
264 coder* (cDAG-VAE), which detail how this objective can be implemented in practice, including the
265 *Likelihood* term (Sec. 4.1) and the *Alignment* term (Sec. 4.2) in Eq. (4).

266 4.1 VARIATIONAL INFERENCE OF THE LIKELIHOOD TERM

267 Generally speaking, maximizing the likelihood term in Eq. (4) is intractable, as it involves inte-
268 gration in a high-dimensional space. Conventional approaches that resort to sum-product belief

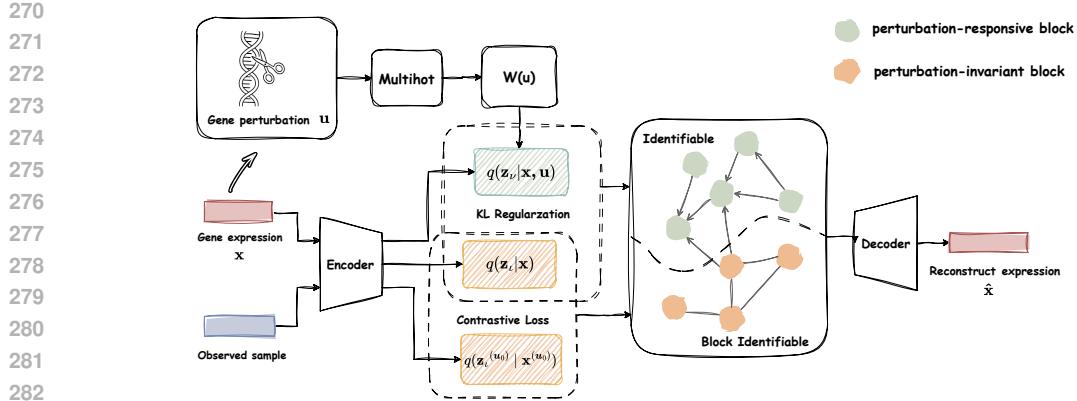


Figure 2: Framework of the proposed cDAG-VAE. *Perturbed cell expression profiles \mathbf{x}* are used to learn the perturbation-responsive block \mathbf{z}_v , capturing the effects of perturbations indexed by \mathbf{u} . In parallel, *unperturbed control samples $\mathbf{x}^{(u_0)}$* are used for contrastive alignment of the perturbation-invariant block \mathbf{z}_t , ensuring that invariant cellular programs are disentangled from perturbation.

propagation or sampling algorithms often face with high computational cost (Bishop & Nasrabadi, 2006). To reduce the computational burden, we use a variational inference (Jordan et al., 1998; Blei et al., 2017), as follows:

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_{\theta}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{x}, \mathbf{u})} [\log p_{\phi}(\mathbf{x} | \mathbf{z}_v, \mathbf{z}_t, \mathbf{u})] - D_{\text{KL}}(q_{\theta}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{x}, \mathbf{u}) \| p_{\phi}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{u})). \quad (5)$$

Here, $p_{\phi}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{u})$ denotes the prior distribution arising from assumptions on the latent space, $q_{\theta}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{x}, \mathbf{u})$ denotes a variational posterior approximating the true posterior $p_{\phi}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{x}, \mathbf{u})$, and D_{KL} denotes the KL divergence. Specifically, based on our model assumptions in Eqs. 1 and 2, the prior distribution can be factorized as follows:

$$p_{\phi}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{u}) = p_{\phi}(\mathbf{z}_v | \mathbf{u}, \mathbf{z}_t) p_{\phi}(\mathbf{z}_t), \quad (6)$$

For the variational posterior, our goal is not only to recover \mathbf{z}_t up to an invertible block reparameterization and \mathbf{z}_v up to permutation, as discussed in Thm. 3.1, but more importantly, to learn the causal structure over \mathbf{z}_v , since it encodes perturbation information that is central to single-cell perturbation prediction. Therefore, we consider the following structured variational posterior:

$$q_{\theta}(\mathbf{z}_v, \mathbf{z}_t | \mathbf{x}, \mathbf{u}) = q_{\theta}(\mathbf{z}_v | \mathbf{x}, \mathbf{u}) q_{\theta}(\mathbf{z}_t | \mathbf{x}). \quad (7)$$

We here employ variational inference with a structured posterior that factorizes as in Eq. 7. This factorization preserves the internal structures of \mathbf{z}_v and \mathbf{z}_t while ignoring their mutual dependencies, thereby balancing computational efficiency with the ability to capture meaningful latent factors. Such a design also facilitates subsequent learning of causal structures and perturbation effects.

4.2 LEARNING UNPERTURBED EFFECT VIA THE ALIGNMENT TERM

The alignment term in the objective in Eq. (4), as formalized in Thm. 3.1, is a key component that distinguishes this work from previous approaches. Although the likelihood term in Eq. 5 attempts to capture the invariant block \mathbf{z}_t , our theoretical findings in Thm. 3.1 show that proper identification of \mathbf{z}_t fundamentally requires the presence of the alignment term. In other words, without this contrastive alignment across perturbation conditions, \mathbf{z}_t cannot be reliably disentangled from the perturbation-responsive block \mathbf{z}_v . Essentially, the alignment term can theoretically recover \mathbf{z}_t through the loss $\|f_t(\mathbf{x}^{(u_0)}) - f_t(\mathbf{x})\|_2^2$, as defined in Eq. 4, which exploits the property that \mathbf{z}_t is invariant across perturbation conditions \mathbf{u} . This invariance can also be observed in Fig. 1a. Consequently, the alignment term can be implemented by directly enforcing invariance on \mathbf{z}_t across \mathbf{u} , as follows:

$$\mathcal{L}_{\text{contrast}}(\mathbf{x}, \mathbf{x}^{(u_0)}) = \|\mathbf{z}_t - \mathbf{z}_t^{(u_0)}\|_2^2. \quad (8)$$

We emphasize that the alignment term, implemented by Eq. 8, is crucial, as it ensures that information contained in \mathbf{z}_t is not inadvertently absorbed by \mathbf{z}_v . In other words, if \mathbf{z}_t cannot be properly

324 identified, information pertaining to \mathbf{z}_ν may leak into \mathbf{z}_ι . In such a scenario, the causal relationships
 325 among the components of \mathbf{z}_ι cannot be reliably learned, since the invariant information is contam-
 326 inated by the perturbation-responsive block. In our cDAG-VAE, we model the variational posteriors
 327 $q_\theta(\mathbf{z}_\nu \mid \mathbf{x}, \mathbf{u})$ and $q_\theta(\mathbf{z}_\iota \mid \mathbf{x})$ as multivariate normal distributions, and instantiate f_ν and f_ι by their
 328 corresponding posterior means.

330 4.3 THE PROPOSED CONTRASTIVE DAG VARIATIONAL ANTOENCODER

331 Building on the variational inference framework and the alignment principle across perturbation
 332 conditions \mathbf{u} above, we define the overall objective function for cDAG-VAE as a combination of
 333 the likelihood-based ELBO and the contrastive alignment loss, according to Thm. 3.1.

$$335 \mathcal{L}_{\theta, \phi} = \mathbb{E}_{(\mathbf{x}, \mathbf{u}) \sim p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})} \left[\|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \beta_\nu \mathcal{L}_{\text{KL}-\nu}(\mathbf{x}, \mathbf{u}) + \beta_\iota \mathcal{L}_{\text{KL}-\iota}(\mathbf{x}) + \alpha \mathcal{L}_{\text{contrast}}(\mathbf{x}, \mathbf{x}^{(u_0)}) \right]. \quad (9)$$

336 where $\hat{\mathbf{x}}$ denotes the reconstruction of \mathbf{x} , $\mathcal{L}_{\text{KL}-\nu}(\mathbf{x}, \mathbf{u}) = D_{\text{KL}}(q_\theta(\mathbf{z}_\nu \mid \mathbf{x}, \mathbf{u}) \parallel p_\phi(\mathbf{z}_\nu \mid \mathbf{u}, \mathbf{z}_\iota))$,
 337 $\mathcal{L}_{\text{KL}-\iota}(\mathbf{x}) = D_{\text{KL}}(q_\theta(\mathbf{z}_\iota \mid \mathbf{x}) \parallel p_\phi(\mathbf{z}_\iota))$, α is the weighting hyperparameter motivated from Thm. 3.1,
 338 and for each $\mathbf{x}, \mathbf{x}^{(u_0)}$ is a paired observation randomly sampled from $p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u}_0)$. We here introduce
 339 β_ν, β_ι motivate by Higgins et al. (2017) to balance the contributions of the KL terms.

340 In summary, the overall objective in Eq. 9 balances multiple goals: the reconstruction term ensures
 341 that the latent representations retain sufficient information from the original data, the KL term for
 342 \mathbf{z}_ν encourages encoding of perturbation-specific effects, the KL term for \mathbf{z}_ι regulates the invariant
 343 block, and the contrastive alignment term ensures that perturbation-invariant information is disentan-
 344 gled from perturbation-specific variation. Together, these components allow cDAG-VAE to recover
 345 meaningful latent factors while disentangling perturbation effects from invariant cellular programs.

348 5 EMPERICAL FINDINGS

350 **Numerical Simulation.** We first conduct simulations to verify our theoretical results under ideal-
 351 ized assumptions. To this end, we generate synthetic data according to our latent causal generative
 352 model in Eqs. 1- 3. More details can be found in App. C.2. This setup allows us to systematically
 353 assess the recovery of latent subspaces and causal structures under controlled conditions. For eval-
 354 uation, following Sorrenson et al. (2020); Khemakhem et al. (2020), we use the mean correlation
 355 coefficient (MCC) to quantify component-wise recovery of \mathbf{z}_ν . Specifically, MCC measures the cor-
 356 relation between each learned component of \mathbf{z}_ν and its corresponding ground-truth component, with
 357 a value of 1 indicating perfect recovery. For block-wise evaluation of \mathbf{z}_ι , we report the kernel regres-
 358 sion R^2 , following Von Kügelgen et al. (2021), which captures the nonlinear relationship between
 359 the learned block and its ground-truth counterpart. Values closer to 1 indicate better block-level
 360 disentanglement.

361 Table 1 shows that the contrastive align-
 362 ment term substantially improves identifi-
 363 ability. For the variant block \mathbf{z}_ν , MCC in-
 364 creases from 0.81 to 0.86 and block-wise R^2
 365 from 0.93 to 0.95, indicating more accurate
 366 recovery of intervention-specific factors. The
 367 effect is even more pronounced for the in-
 368 variant block \mathbf{z}_ι , whose R^2 rises from 0.66
 369 to 0.97, highlighting the crucial role of con-
 370 trastive alignment in disentangling invariant programs from perturbation-induced effects. These
 371 results confirm our theoretical claims: contrastive alignment enhances recovery of \mathbf{z}_ι and prevents
 372 its information from being absorbed into \mathbf{z}_ν , thereby facilitating both accurate the component-wise
 373 and block-identifiability guarantees in Thm. 3.1.

Table 1: Results on simulation data.

Contrastive Alignment	MCC			R^2 (nonlinear)		
	Var. \mathbf{z}_ν (identifiable)	Var. \mathbf{z}_ν (block-identifiable)	Inv. \mathbf{z}_ι (block-identifiable)	Var. \mathbf{z}_ν (identifiable)	Var. \mathbf{z}_ν (block-identifiable)	Inv. \mathbf{z}_ι (block-identifiable)
✗	0.81 ± 0.0306	0.93 ± 0.0120	0.66 ± 0.0281			
✓	0.86 ± 0.0285	0.95 ± 0.0020	0.97 ± 0.0077			

374 **Real-world Perturbation** For real-world perturbation data, we consider the large-scale Perturb-
 375 seq dataset from (Norman et al., 2019), referred to as Norman2019. It comprises 105,528 cells
 376 from an erythrocytic leukemia cell line (K562) subjected to CRISPR activation (Gilbert et al., 2014)
 377 targeting 112 genes, resulting in 105 single-gene and 131 double-gene perturbations. The regulatory
 378 effect on each target gene’s expression can be modeled as a intervention (Zhang et al., 2023). Each

378 perturbation condition contains between 50 and 2,000 cells. Across all conditions, each cell is
 379 represented as a 5,000-dimensional vector \mathbf{x} , corresponding to the gene expression levels.
 380

381 **EXPERIMENTAL SETUP.** We partition the Norman2019 dataset into training and testing splits as
 382 follows. The training set consists of all unperturbed cells together with the 105 single-gene pertur-
 383 bation datasets $\mathcal{X}_1, \dots, \mathcal{X}_{105}$. For each single-gene dataset with more than 800 cells, we randomly
 384 hold out 96 cells to form a *single-gene test set*, while the remaining cells are included in training.
 385 The *double-gene test set* comprises the 112 datasets $\mathcal{X}_{106}, \dots, \mathcal{X}_{217}$, which are entirely reserved for
 386 evaluation and never used during training. This setup ensures that the model is trained on existing
 387 perturbations, but is evaluated on both held-out single-gene cells and, more importantly, on unseen
 388 combinatorial perturbations. **In addition, for the differentially expressed (DE) gene-focused analy-
 389 sis in App. C.6, we construct a complementary 20-dimensional version of the Norman2019 dataset,
 390 where each cell is represented by its expression over the top 20 most DE genes.**

391 A key architectural choice in cDAG-VAE is how capacity is allocated between the variant and in-
 392 variant subspaces. We assign the invariant subspace substantially more latent dimensions than the
 393 variant subspace, reflecting its role in modeling complex background programs⁵. To test sensitivity,
 394 we vary the total latent dimension across $\{10, 35, 70, 105\}$, scaling both subspaces proportionally,
 395 and evaluate the effect on reconstruction fidelity and disentanglement. We benchmark cDAG-VAE
 396 against three representative baselines, Discrepancy-VAE (Zhang et al., 2023), SENA-discrepancy-
 397 VAE (SENA) (de la Fuente et al., 2025), sVAE+ (Lopez et al., 2022), SAMS-VAE (Bereket &
 398 Karaletsos, 2023) reporting results averaged over five random seeds for each model. We also im-
 399 plement a variant of the proposed cDAG-VAE, namely DAG-VAE, which excludes the contrastive
 400 alignment term. All results correspond to the final trained model, with extended evaluations and
 401 ablation studies provided in App. C.5.

402 **SINGLE-GENE PERTURBATION.** To evaluate the generative capacity of our model on pertur-
 403 bation types, we focus on the 14 single-gene conditions with more than 800 available cells. For each
 404 such condition, we generate 96 synthetic cells from the learned model and compare them against 96
 405 held-out real cells that were not used during training. Evaluation is conducted using R^2 ⁶ across all
 406 genes. Our model demonstrates high fidelity, with an average R^2 of 0.99 across the 14 conditions.
 407 This result confirms that the proposed latent-variable formulation can faithfully reproduce cellular
 408 responses for known perturbations, even on held-out samples not seen during training. Complement-
 409 ing the R^2 results, we further report the root mean squared error (RMSE), which quantifies
 410 absolute deviations in predicted expression levels. Consistently low RMSE values demonstrate that
 411 cDAG-VAE not only explains variance but also faithfully captures absolute gene expression mag-
 412 nitudes, an essential requirement for biological interpretability. Intriguingly, when we developed a
 413 cDAG-VAE variant incorporating an MMD loss to explicitly model higher-order statistics such as
 414 variance and covariance, its RMSE slightly increased compared to our original model, while still
 415 comprehensively outperforming all baselines. This suggests a potential trade-off between achieving
 416 the lowest error in mean expression and faithfully capturing the full distributional complexity of
 417 cellular populations. See App. C.5 for more experimental results for single-gene perturbations.

418 **DOUBLE-GENE PERTURBATION.** Building upon
 419 single-gene perturbations, we next subjected our model
 420 to a far more stringent test: out-of-distribution general-
 421 ization to 112 unseen double-gene perturbations. This
 422 task constitutes a true zero-shot prediction challenge,
 423 as no cells from these combinatorial interventions were
 424 seen during training. To evaluate performance, we
 425 again compared the population-average expression pro-
 426 file of generated cells against that of the held-out real
 427 genes. Despite this challenge, our model achieves strong
 428 performance, with R^2 of 0.98 across all measured
 429 genes, as shown in Figure 3. These results indicate
 430 that the model successfully composes knowledge from

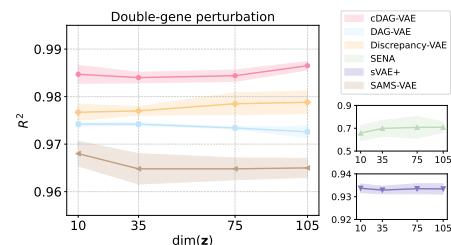


Figure 3: R^2 on double-gene perturbation

⁵See App. C.5 for an extended ablation study on the effect of allocating latent capacity between \mathbf{z}_v and \mathbf{z}_t .

⁶On real data, R^2 is computed at the population-average level: we compare the mean predicted expression per perturbation to the mean observed expression of the corresponding cells. In simulations, R^2 is computed against the ground truth (cell-wise or after optimal nonlinear alignment). See App. B.4 for details.

Table 2: RMSE on Double-gene perturbations prediction.

Method	Latent dimension			
	10	35	75	105
Discrepancy-VAE (Zhang et al., 2023)	0.6084 ± 0.0045	0.6037 ± 0.0025	0.6075 ± 0.0072	0.6082 ± 0.0045
SENA (de la Fuente et al., 2025)	0.8573 ± 0.0205	0.8514 ± 0.0248	0.8507 ± 0.0396	0.8483 ± 0.0248
sVAE+ (Lopez et al., 2022)	0.5663 ± 0.0009	0.5667 ± 0.0008	0.5665 ± 0.0011	0.5664 ± 0.0012
SAMS-VAE (Bereket & Karaletsos, 2023)	0.4605 ± 0.0020	0.4631 ± 0.0024	0.4632 ± 0.0017	0.4629 ± 0.0014
DAG-VAE (Ours)	0.4557 ± 0.0005	0.4563 ± 0.0005	0.4577 ± 0.0005	0.4623 ± 0.0041
cDAG-VAE (Ours)	0.4493 ± 0.0019	0.4494 ± 0.0008	0.4489 ± 0.0009	0.4474 ± 0.0007

single-gene interventions to predict the transcriptional consequences of unseen combinatorial perturbations, highlighting its ability to capture causal structure rather than merely memorizing training distributions. Complementing these results, we also evaluate the RMSE to quantify absolute prediction accuracy under out-of-distribution conditions, as shown in Table 2. Consistently low RMSE values indicate that cDAG-VAE not only generalizes the relative variance structure captured by R^2 but also preserves absolute gene-expression magnitudes in unseen double-gene perturbations. This robustness underscores the model’s ability to extrapolate causal effects beyond the training distribution. Beyond VAE-based baselines, we also compare cDAG-VAE to non-generative predictors: a classical additive linear model and the GEARS architecture for combinatorial perturbation prediction. As detailed in App. C.7, we show a perspective on latent causal model for double-gene perturbation.

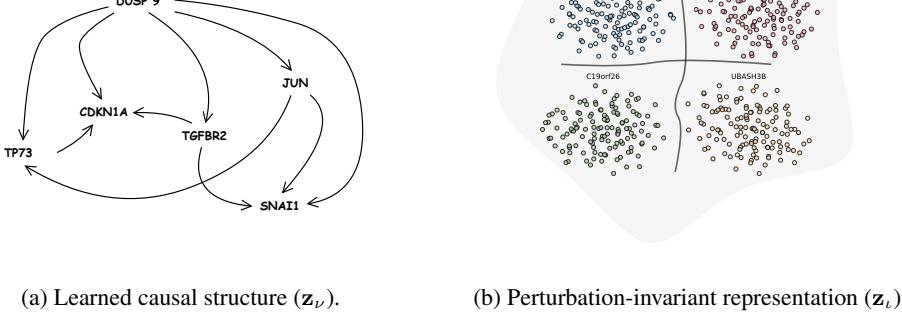


Figure 4: Illustration of the learned latent space. (a) The DAG structure over the variant subspace z_v . (b) Two-dimensional visualization of the estimated invariant subspace z_t .

STRUCTURE LEARNING. Following (Zhang et al., 2023), we evaluated the DAG structure, which corresponds to a learned coarse-grained gene regulatory network between the learned programs of the target genes by hard assignment via maximal intervention effect, obtained by the proposed cDAG-VAE. The DAG Fig. 4a demonstrates high biological fidelity by recapitulating key known regulatory interactions. These include the TGFBR2→SNAI1 axis essential for epithelial–mesenchymal transition (EMT) (Vincent et al., 2009; Fan et al., 2025), the canonical TP73→CDKN1A tumor suppressor pathway governing cell-cycle arrest (Schmidt et al., 2021), and the DUSP9-mediated inhibition of JUN, a critical negative feedback mechanism in MAPK signaling (Emanuelli et al., 2008). This recovery of established biological mechanisms validates the utility of our approach for causal discovery from single-cell data. Full mechanistic notes for all program-level edges are provided in App. C.3.

UNPERTURBED LATENT SPACE. For the invariant block z_t , we systematically evaluated whether its representation remains stable across perturbations, by examining all single-gene conditions in the test set. As shown in Fig. 4b, a t-SNE projections (Maaten & Hinton, 2008) for four representative perturbations, where cells from distinct perturbations remain intermixed rather than forming separate

486 clusters. This indicates that perturbation identity does not explain variation in the invariant block,
487 and demonstrates that \mathbf{z}_v captures background cellular programs that generalize beyond training
488 conditions. See App. C.4 for more details.
489

490 6 CONCLUSION. 491

492 In this work, we introduce cDAG-VAE, a contrastive variational framework that decomposes
493 single-cell variation into perturbation-responsive (variant) factors and invariant background pro-
494 grams. Under the assumptions stated in this work, we provide block-identifiability guarantees for
495 the variant and invariant components and further show that the variant subspace itself is identifi-
496 able, thereby offering theoretical support for reliable causal discovery under sparse interventions.
497 Empirically, on synthetic data and large-scale single-cell perturbation benchmarks, cDAG-VAE re-
498 covers biologically interpretable programs and consistently improves out-of-distribution prediction
499 on unseen double-gene combinations over strong baselines. Together, these results establish a the-
500oretically grounded and empirically validated route toward data-efficient in-silico prioritization of
501 combinatorial interventions.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 **Ethics Statement.** We confirm that this study complies with the ethical standards of ICLR, with
 541 no involvement of private or sensitive information.
 542

543 **Reproducibility statement.** We have taken extensive measures to ensure the reproducibility of our
 544 work. Appendix C.1 presents the pseudocode of our method, while Appendix C.2 describes the data
 545 generation procedure for simulation experiments along with the corresponding training setup and
 546 hyperparameter configurations. For experiments on real datasets, detailed hyperparameter choices
 547 are included in Appendix C.5.
 548

549 REFERENCES
 550

551 Constantin Ahlmann-Eltze, Wolfgang Huber, and Simon Anders. Deep-learning-based gene per-
 552 turbation effect prediction does not yet outperform simple linear baselines. *Nature Methods*, pp.
 553 1–5, 2025.

554 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representa-
 555 tion learning. In *International conference on machine learning*, pp. 372–407. PMLR, 2023.

556 Hananeh Aliee, Ferdinand Kapl, Soroor Hediye-Zadeh, and Fabian J Theis. Conditionally invariant
 557 representation learning for disentangling cellular heterogeneity. *arXiv preprint arXiv:2307.00558*,
 558 2023.

559 Michael Bereket and Theofanis Karaletsos. Modelling cellular perturbations with the sparse additive
 560 mechanism shift variational autoencoder. *Advances in Neural Information Processing Systems*,
 561 36:1–12, 2023.

562 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, vol-
 563 ume 4. Springer, 2006.

564 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
 565 cians. *Journal of the American statistical Association*, 112(518):859–877, 2017.

566 Yichao Cai, Yuhang Liu, Zhen Zhang, and Javen Qinfeng Shi. Clap: Isolating content from style
 567 through contrastive learning with augmented prompts. In *European Conference on Computer
 568 Vision (ECCV)*, pp. 130–147, 2024.

569 Yichao Cai, Yuhang Liu, Erdun Gao, Tianjiao Jiang, Zhen Zhang, Anton van den Hengel, and
 570 Javen Qinfeng Shi. On the value of cross-modal misalignment in multimodal representation
 571 learning. *arXiv preprint arXiv:2504.10143*, 2025.

572 Arthur L Caplan, Brendan Parent, Michael Shen, and Carolyn Plunkett. No time to waste—the
 573 ethical challenges created by crispr: Crispr/cas, being an efficient, simple, and cheap technology
 574 to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to
 575 manipulate human germ line cells. *EMBO reports*, 16(11):1421–1426, 2015.

576 Sebastian Castillo-Hair, Stephen Fedak, Ban Wang, Johannes Linder, Kyle Havens, Michael Certo,
 577 and Georg Seelig. Optimizing 5’utrs for mrna-delivered gene editing using deep learning. *Nature
 578 Communications*, 15(1):5284, 2024.

579 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 580 contrastive learning of visual representations. In *International conference on machine learning*,
 581 pp. 1597–1607. PmLR, 2020.

582 Jesus de la Fuente, Robert Lehmann, Carlos Ruiz-Arenas, Jan Voges, Irene Marin-Goñi, Xabier
 583 Martinez-de Morentin, David Gomez-Cabrero, Idoia Ochoa, Jesper Tegner, Vincenzo Lagani,
 584 et al. Interpretable causal representation learning for biological data in the pathway space. *arXiv
 585 preprint arXiv:2506.12439*, 2025.

586 Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon, Nemanja D
 587 Marjanovic, Danielle Dionne, Tyler Burks, Rakim Raychowdhury, et al. Perturb-seq: dissecting
 588 molecular circuits with scalable single-cell rna profiling of pooled genetic screens. *cell*, 167(7):
 589 1853–1866, 2016.

594 Mingze Dong, Kriti Agrawal, Rong Fan, Esen Sefik, Richard A Flavell, and Yuval Kluger. Scaling
 595 deep identifiable models enables zero-shot characterization of single-cell biological states.
 596 *bioRxiv*, pp. 2023–11, 2024.

597

598 Brice Emanuelli, Delphine Eberlé, Ryo Suzuki, and C Ronald Kahn. Overexpression of the dual-
 599 specificity phosphatase mkp-4/dusp-9 protects against stress-induced insulin resistance. *Proceed-
 600 ings of the National Academy of Sciences*, 105(9):3545–3550, 2008.

601

602 Chuannan Fan, Qian Wang, Peter HL Krijger, Davy Cats, Miriam Selle, Olga Khorosjutina, Soniya
 603 Dhanjal, Bernhard Schmierer, Hailiang Mei, Wouter de Laat, et al. Identification of a snai1
 604 enhancer rna that drives cancer cell plasticity. *Nature Communications*, 16(1):2890, 2025.

605

606 Erdun Gao, Howard Bondell, Shaoli Huang, and Mingming Gong. Domain generalization via con-
 607 tent factors isolation: a two-level latent variable modeling approach. *Machine Learning*, 114(4):
 608 1–33, 2025a.

609

610 Yicheng Gao, Kejing Dong, Caihua Shan, Dongsheng Li, and Qi Liu. Causal disentanglement for
 611 single-cell representations and controllable counterfactual generation. *Nature communications*,
 612 16(1):6775, 2025b.

613

614 Luke A Gilbert, Max A Horlbeck, Britt Adamson, Jacqueline E Villalta, Yuwen Chen, Evan H
 615 Whitehead, Carla Guimaraes, Barbara Panning, Hidde L Ploegh, Michael C Bassik, et al.
 616 Genome-scale crispr-mediated control of gene repression and activation. *Cell*, 159(3):647–661,
 617 2014.

618

619 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 620 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 621 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural
 622 information processing systems*, 33:21271–21284, 2020.

623

624 Leon Hetzel, Simon Boehm, Niki Kilbertus, Stephan Günnemann, Fabian Theis, et al. Predicting
 625 cellular responses to novel drug perturbations at a single-cell resolution. *Advances in Neural
 626 Information Processing Systems*, 35:26711–26722, 2022.

627

628 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 629 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 630 constrained variational framework. In *International conference on learning representations*, 2017.

631

632 Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
 633 and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.

634

635 Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources.
 636 In *Artificial intelligence and statistics*, pp. 460–469. PMLR, 2017.

637

638 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
 639 uniqueness results. *Neural networks*, 12(3):429–439, 1999.

640

641 Aapo Hyvärinen, Jarmo Hurri, and Patrik O Hoyer. Independent component analysis. In *Natural
 642 Image Statistics: A Probabilistic Approach to Early Computational Vision*, pp. 151–175. Springer,
 643 2001.

644

645 Hiroaki Ikushima and Kohei Miyazono. Tgf β signalling: a complex web in cancer progression.
 646 *Nature reviews cancer*, 10(6):415–424, 2010.

647

648 Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A Doudna, and Em-
 649 manuelle Charpentier. A programmable dual-rna–guided dna endonuclease in adaptive bacterial
 650 immunity. *science*, 337(6096):816–821, 2012.

651

652 Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
 653 to variational methods for graphical models. In *Learning in graphical models*, pp. 105–161.
 654 Springer, 1998.

648 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
 649 coders and nonlinear ica: A unifying framework. In *International conference on artificial intelli-*
 650 *gence and statistics*, pp. 2207–2217. PMLR, 2020.

651

652 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

653 Max Koeppel, Simon J van Heeringen, Daniela Kramer, Leonie Smeenk, Eva Janssen-Megens,
 654 Marianne Hartmann, Hendrik G Stunnenberg, and Marion Lohrum. Crosstalk between c-jun and
 655 tap73 α/β contributes to the apoptosis–survival balance. *Nucleic acids research*, 39(14):6069–
 656 6085, 2011.

657

658 Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akin-
 659 wande, and Kun Zhang. Partial disentanglement for domain adaptation. In *International confer-*
 660 *ence on machine learning*, pp. 11455–11472. PMLR, 2022.

661 Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E Everett, Rémi LE PRIOL, Alexandre
 662 Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
 663 new principle for nonlinear ICA. In *First Conference on Causal Learning and Reasoning*, 2022.
 664 URL https://openreview.net/forum?id=dHsFFekd_o.

665 Cheh Peng Lim, Neeraj Jain, and Xinmin Cao. Stress-induced immediate-early gene, egr-1, involves
 666 activation of p38/jnk1. *Oncogene*, 16(22):2915–2926, 1998.

667

668 Jiecong Lin and Ka-Chun Wong. Off-target predictions in crispr-cas9 gene editing using deep learn-
 669 ing. *Bioinformatics*, 34(17):i656–i663, 2018.

670 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Stratis Gavves.
 671 Citris: Causal identifiability from temporal intervened sequences. In *International Conference on*
 672 *Machine Learning*, pp. 13557–13603. PMLR, 2022.

673

674 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun
 675 Zhang, and Javen Qinfeng Shi. Identifying weight-variant latent causal models. *arXiv preprint*
 676 *arXiv:2208.14153*, 2022.

677

678 Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun
 679 Zhang, and Javen Qinfeng Shi. Identifiable latent polynomial causal models through the lens of
 680 change. In *The Twelfth International Conference on Learning Representations*, 2024.

681

682 Romain Lopez, Natasa Tagasovska, Stephen Ra, Kyunghyun Cho, Jonathan Pritchard, and Aviv
 683 Regev. Learning causal representations of single cells via sparse mechanism shift model-
 684 ing. In *NeurIPS 2022 Workshop on Causality for Real-world Impact*, 2022. URL <https://openreview.net/forum?id=gdTXCy7fZf7>.

685

686 Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
 687 tion responses. *Nature methods*, 16(8):715–721, 2019.

688

689 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ignacio L Ibarra,
 690 Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al. Predicting cellular responses to complex perturbations in high-throughput screens. *Molecular systems*
 691 *biology*, 19(6):e11517, 2023.

692

693 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 694 *learning research*, 9(Nov):2579–2605, 2008.

695

696 Haiyi Mao, Romain Lopez, Kai Liu, Jan-Christian Huetter, David Richmond, Panayiotis Benos, and
 697 Lin Qiu. Learning identifiable factorized causal representations of cellular responses. *Advances*
 698 *in Neural Information Processing Systems*, 37:121630–121669, 2024.

699

700 Thomas M Norman, Max A Horlbeck, Joseph M Replogle, Alex Y Ge, Albert Xu, Marco Jost,
 701 Luke A Gilbert, and Jonathan S Weissman. Exploring genetic interaction manifolds constructed
 702 from rich single-cell phenotypes. *Science*, 365(6455):786–793, 2019.

703

704 Virginie Orgogozo, Baptiste Morizot, and Arnaud Martin. The differential view of genotype–
 705 phenotype relationships. *Frontiers in genetics*, 6:179, 2015.

702 Judea Pearl. *Causality*. Cambridge university press, 2009.
 703

704 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 705 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 706 models from natural language supervision. In *International conference on machine learning*, pp.
 707 8748–8763. PmLR, 2021.

708 Fulvio Della Ragione, Valeria Cucciolla, Vittoria Criniti, Stefania Indaco, Adriana Borriello, and
 709 Vincenzo Zappia. p21cip1 gene expression is modulated by egr1: a novel regulatory mechanism
 710 involved in the resveratrol antiproliferative effect. *The Journal of Biological Chemistry*, 278(26):
 711 23360–23368, 2003.

712

713 Joseph M Replogle, Thomas M Norman, Albert Xu, Jeffrey A Hussmann, Jin Chen, J Zachery Co-
 714 gan, Elliott J Meer, Jessica M Terry, Daniel P Riordan, Niranjan Srinivas, et al. Combinatorial
 715 single-cell crispr screens by direct guide rna capture and targeted sequencing. *Nature biotechnol-
 716 ogy*, 38(8):954–961, 2020.

717

718 Joseph M Replogle, Reuben A Saunders, Angela N Pogson, Jeffrey A Hussmann, Alexander Lenail,
 719 Alina Guna, Lauren Mascibroda, Eric J Wagner, Karen Adelman, Gila Lithwick-Yanai, et al.
 720 Mapping information-rich genotype-phenotype landscapes with genome-scale perturb-seq. *Cell*,
 721 185(14):2559–2575, 2022.

722

723 Jean-Louis Reymond. The chemical space project. *Accounts of chemical research*, 48(3):722–730,
 2015.

724

725 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
 726 proximate inference in deep generative models. In *International conference on machine learning*,
 727 pp. 1278–1286. PMLR, 2014.

728

729 Jennifer E Rood, Anna Hupalowska, and Aviv Regev. Toward a foundation model of causal cell and
 730 tissue biology with a perturbation cell and tissue atlas. *Cell*, 187(17):4520–4545, 2024.

731

732 Yusuf Roohani, Abbas Kazerouni, Zhen Xie, and Nir Yosef. Predicting transcriptional outcomes of
 733 novel multigene perturbations. *Nature Biotechnology*, 42:927–935, 2024.

734

735 Ann-Kathrin Schmidt, Karoline Pudelko, Jan-Eric Boekenkamp, Katharina Berger, Maik Kschischo,
 736 and Holger Bastians. The p53/p73-p21cip1 tumor suppressor axis guards against chromosomal
 737 instability by restraining cdk1 in human cancer cells. *Oncogene*, 40(2):436–451, 2021.

738

739 Bernhard Schölkopf. Causality for machine learning. In *Probabilistic and causal inference: The
 740 works of Judea Pearl*, pp. 765–804. 2022.

741

742 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 743 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of
 744 the IEEE*, 109(5):612–634, 2021.

745

746 Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by nonlinear ica with general
 747 incompressible-flow networks (gin). *arXiv preprint arXiv:2001.04872*, 2020.

748

749 Anders Sundqvist, Agata Zieba, Eleftheria Vasilaki, Carmen Herrera Hidalgo, Ola Söderberg,
 750 D Koinuma, Kohei Miyazono, Carl-Henrik Heldin, Ulf Landegren, Peter ten Dijke, et al. Specific
 751 interactions between smad proteins and ap-1 components determine tgf β -induced breast cancer
 752 cell invasion. *Oncogene*, 32(31):3606–3615, 2013.

753

754 Artur Szałata, Karin Hrovatin, Sören Becker, Alejandro Tejada-Lapuerta, Haotian Cui, Bo Wang,
 755 and Fabian J Theis. Transformers in single-cell omics: a review and new perspectives. *Nature
 756 methods*, 21(8):1430–1443, 2024.

757

758 M Tschannen, J Djolonga, P Rubenstein, S Gelly, and M Lucic. On mutual information maximiza-
 759 tion for representation learning. In *Eighth International Conference on Learning Representations*.
 760 OpenReview. net, 2020.

756 Xinming Tu, Jan-Christian Hütter, Zitong Jerry Wang, Takamasa Kudo, Aviv Regev, and Romain
 757 Lopez. A supervised contrastive framework for learning disentangled representations of cell per-
 758 turbation data. *BioRxiv*, pp. 2024–01, 2024.

759 Fathema Uddin, Charles M Rudin, and Triparna Sen. Crispr gene therapy: applications, limitations,
 760 and implications for the future. *Frontiers in oncology*, 10:1387, 2020.

762 Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-
 763 based causal representation learning: Linear and general transformations. *Journal of Machine
 764 Learning Research*, 26(112):1–90, 2025.

765 Theresa Vincent, Etienne PA Neve, Jill R Johnson, Alexander Kukalev, Federico Rojo, Joan Al-
 766 banell, Kristian Pietras, Ismo Virtanen, Lennart Philipson, Philip L Leopold, et al. A snail1–
 767 smad3/4 transcriptional repressor complex promotes tgf- β mediated epithelial–mesenchymal
 768 transition. *Nature cell biology*, 11(8):943–950, 2009.

770 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 771 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 772 isolates content from style. *Advances in neural information processing systems*, 34:16451–16467,
 773 2021.

774 Zitong Jerry Wang, Romain Lopez, Jan-Christian Hütter, Takamasa Kudo, Heming Yao, Philipp
 775 Hanslovsky, Burkhard Höckendorf, Rahul Moran, David Richmond, and Aviv Regev. Multi-
 776 contrastivevae disentangles perturbation effects in single cell images from optical pooled screens.
 777 *bioRxiv*, pp. 2023–11, 2023.

778 Ethan Weinberger, Chris Lin, and Su-In Lee. Isolating salient variations of interest in single-cell
 779 data with contrastivevi. *Nature Methods*, 20(9):1336–1345, 2023.

781 Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam,
 782 and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions.
 783 *Advances in Neural Information Processing Systems*, 36:50254–50292, 2023.

784 Ying E Zhang. Non-smad pathways in tgf- β signaling. *Cell research*, 19(1):128–139, 2009.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
812
813
814
815
816
817
818
819
820
821
822

Identifying Unperturbed Cellular Programs Enables Accurate Single-Cell Perturbation Prediction

Appendices

CONTENTS

We organize the Appendix as follows.

- In App. A, we provide additional related work.
- In App. B, we provide the complete proofs of the theoretical results presented in the main body, together with their extensions and technical lemmas.
 - App. B.1: Notation.
 - App. B.2: Proof of Identifiability of the proposed latent causal generative model.
 - App. B.3: Derivation of the Evidence Lower Bound.
 - App. B.4: Coefficient of Determination.
- In App. C we provide supplementary materials for experiments.
 - App. C.1: Forward and Training Procedure of CDAG-VAE.
 - App. C.2: Experiment with synthetic data.
 - App. C.3: Additional results and implementation details for structure learning.
 - App. C.4: Additional results and visualization details for unperturbed latent space.
 - App. C.5: Extended Experiments and Additional Results on Real Data.
 - App. C.6: Validating Contrastive Disentanglement on Differentially Expressed Genes.
 - App. C.7: Perspective on Latent Causal Model for Double-Gene Perturbation.
- In App. D, we provide Large Language Model Usage Statement.

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 A RELATED WORK
865

866 **Disentangling single-cell perturbation effects.** A central challenge in single-cell perturbation
867 modeling is to separate intervention effects from intrinsic cellular variability. Deep generative ap-
868 proaches have shown strong performance on this task. scGen (Lotfollahi et al., 2019) models per-
869 turbations as additive shifts in a latent space, while CPA (Lotfollahi et al., 2023) factorizes each cell
870 into basal state and perturbation effect. chemCPA (Hetzell et al., 2022) extends CPA with chemi-
871 cal structure embeddings and dosage information, enabling zero-shot predictions for unseen com-
872 pounds. Other methods incorporate biological priors or contrastive objectives: GEARS (Roohani
873 et al., 2024) uses gene-gene interaction graphs for improved generalization across perturbation
874 combinations, and contrastive VAEs have been applied in optical pooled screening to disentangle stable
875 identity from perturbation-driven variation (Wang et al., 2023). Despite empirical successes, most
876 of these models treat disentanglement statistically rather than causally, which limits interpretability.
877 Recent work has incorporated sparsity into latent-variable models to encourage identifiable and
878 interpretable representations. CausCell (Gao et al., 2025b) enables counterfactual generation via
879 SCM-guided diffusion, but critically depends on a predefined causal graph, limiting its applica-
880 bility when causal structures are unknown or hard to specify. sVAE+ (Lopez et al., 2022), SAMS-
881 VAE (Bereket & Karaletsos, 2023), scShift (Dong et al., 2024) impose sparse structure or mechanism
882 shifts in the latent space to model perturbation-induced variation, scShift learns flat latent embed-
883 dings and performs causal discovery only post hoc, without an end-to-end structural causal model for
884 composing unseen combinatorial perturbations. Recent advances such as discrepancy-VAE (Zhang
885 et al., 2023), and its interpretable variant (de la Fuente et al., 2025) align latent-variable models with
886 identifiable causal semantics, pointing toward representations that are both intervention-sensitive
887 and explanatory. Building on these advances, our approach moves beyond purely statistical factor-
888 ization, ensuring that the learned representations reflect genuine causal effects of perturbations.
889

890 **Identifiable causal representations.** A key aim in modeling complex systems is to learn low-
891 dimensional latent variables \mathbf{z} from high-dimensional data \mathbf{x} that match the true generative factors
892 (independent components) (Hyvärinen et al., 2001). Nonlinear ICA showed that such components
893 are not identifiable from i.i.d. data without extra assumptions (Hyvärinen & Pajunen, 1999). Identi-
894 fiable variants address this by introducing an auxiliary variable \mathbf{u} so that latent factors $\{z_i\}_{i=1}^p$ are
895 conditionally independent given \mathbf{u} (Hyvarinen & Morioka, 2016; 2017). The iVAE framework (Khe-
896 makhem et al., 2020), built on VAEs (Kingma et al., 2013; Rezende et al., 2014), proves identifi-
897 ability of both \mathbf{z} and $p(\mathbf{x} \mid \mathbf{z})$ under mild conditions. Recent approaches impose structure in latent
898 space: DAG-based models enforce acyclicity (Lippe et al., 2022; Liu et al., 2022; 2024; Ahuja
899 et al., 2023), while factorized designs split latent variables into invariant, intervention-specific, and
900 interaction parts (Von Kügelgen et al., 2021; Kong et al., 2022; Gao et al., 2025a). While prior meth-
901 ods establish identifiability via auxiliary conditioning or broad structural constraints, our model ties
902 perturbations directly to latent mechanisms. This design moves beyond heuristic augmentations or
903 globally factorized latents, making our framework specifically tailored to single-cell perturbation.
904

905 **Contrastive representation learning.** Contrastive multi-view learning learns invariances across
906 views or modalities (e.g., SimCLR, BYOL, CLIP-style training) but typically relies on heuristic
907 augmentations whose invariants need not align with causal structure (Chen et al., 2020; Grill et al.,
908 2020; Radford et al., 2021; Cai et al., 2024; 2025; Tschannen et al., 2020; Von Kügelgen et al., 2021).
909 Aliee et al. (2023) learn conditionally invariant representations by leveraging variability across ob-
910 servational environments (patients, batches, platforms) to suppress domain-specific artefacts while
911 preserving biological signal. In single-cell analysis, Weinberger et al. (2023) contrast background
912 and target datasets—extending to multi-omics—to isolate salient structure, but provide no identi-
913 fiability guarantees. For perturbation screens, supervised contrastive VAEs use guide labels with
914 HSIC to isolate perturbation effects from background heterogeneity (Tu et al., 2024). Concurrently,
915 Mao et al. (2024) posit a three-way factorization (covariate, treatment, interaction) and promote
916 independence via structural constraints and adversarial training; while principled, this fixed design
917 may underfit non-classical responses and its identifiability hinges on stringent experimental designs.
918 Unlike contrastive or domain-invariant models, we obtain block identifiability for the perturbation-
919 invariant block and component-wise identifiability for the perturbation-responsive block under a
920 weight-variant latent SCM, thereby performing CRL in the latent space and recovering the latent
921 causal graph among responsive variables.
922

918 **B PROOFS AND TECHNICAL DETAILS**919 **B.1 NOTATION**

920 Random vectors are denoted by bold lowercase letters (e.g., \mathbf{a}), with their realizations written as bold
 921 symbols (e.g., \mathbf{a}). Matrix-valued random variables are denoted by bold uppercase letters (e.g., \mathbf{A}),
 922 with realizations \mathbf{A} . Scalar random variables are denoted by serif letters (e.g., a), with realizations
 923 written as plain letters (e.g., a). A complete list of the notations employed throughout this paper is
 924 provided below:

925 Table 3: Complete notation used in §2–4.

926 Spaces	
927 $\mathcal{X} \subseteq \mathbb{R}^{d_x}$	928 Gene expression space (observations).
929 \mathcal{U}	930 Space of perturbation identities/environments (e.g., one-hot).
931 $\mathcal{Z}_\iota \subseteq \mathbb{R}^{d_\iota}$	932 Invariant latent subspace.
933 $\mathcal{Z}_\nu \subseteq \mathbb{R}^{d_\nu}$	934 Variant/perturbation-responsive latent subspace.
935 $\mathcal{Z} = \mathcal{Z}_\iota \times \mathcal{Z}_\nu$	936 Full latent space; $d_z = d_\iota + d_\nu$.
937 $\mathcal{N}_\iota \subseteq \mathbb{R}^{d_\iota}$, $\mathcal{N}_\nu \subseteq \mathbb{R}^{d_\nu}$	938 Supports of exogenous noises for \mathbf{z}_ι and \mathbf{z}_ν .
939 Random variables and their realizations	
940 $\mathbf{x}^{(u_0)} \in \mathcal{X}$	941 Control/anchor expression under u_0 ; realization $x^{(u_0)}$.
942 $\mathbf{x} \in \mathcal{X}$	943 Perturbed expression under $u \neq u_0$; realization x .
944 $\mathbf{z}_\iota \in \mathcal{Z}_\iota$	945 Invariant latent variables; realization z_ι .
946 $\mathbf{z}_\nu \in \mathcal{Z}_\nu$	947 Variant latent variables; realization z_ν .
948 $\mathbf{z} = (\mathbf{z}_\iota, \mathbf{z}_\nu) \in \mathcal{Z}$	949 All latent variables; realization $z = (z_\iota, z_\nu)$.
950 $\mathbf{z}_\nu^{(u_0)}, \mathbf{z}_\nu$	951 Variant latents under control u_0 and perturbation u (realizations $z_\nu^{(u_0)}, z_\nu$).
952 $\tilde{\mathbf{z}}_\nu$	953 Variant latents of the paired sample in contrastive protocol (realization \tilde{z}_ν).
954 $z_{\nu,i}$	955 i -th coordinate of \mathbf{z}_ν (realization $z_{\nu,i}$; similarly $\tilde{z}_{\nu,i}$ for $\tilde{\mathbf{z}}_\nu$).
956 $\mathbf{n}_\iota \in \mathcal{N}_\iota$, $\mathbf{n}_\nu \in \mathcal{N}_\nu$	957 Exogenous noises; realizations n_ι, n_ν .
958 Maps and mechanisms	
959 $g : \mathcal{Z} \rightarrow \mathcal{X}$	960 Generative map producing \mathbf{x} from \mathbf{z} ; assumed diffeomorphic.
961 $g_z : \mathcal{U} \times \mathcal{N}_\nu \rightarrow \mathcal{Z}_\nu$	962 Abstract latent causal mechanism for \mathbf{z}_ν .
963 $f = (f_\iota, f_\nu) : \mathcal{X} \rightarrow \mathbb{R}^{d_\iota} \times \mathbb{R}^{d_\nu}$	964 Inference encoders / learned codes (realizations f evaluated at x).
965 Latent SCM parameters (weight-variant)	
966 $\lambda_{\iota\iota}, \lambda_{\nu\iota}(\mathbf{u}), \lambda_{\nu\nu}(\mathbf{u})$	967 Block weight matrices (strictly upper triangular; order $\mathbf{z}_\iota \prec \mathbf{z}_\nu$). Realizations $\Lambda_{..}(\mathbf{u})$.
968 $\mu_\iota, \beta_\iota; \mu_\nu(\mathbf{u}), \beta_\nu(\mathbf{u})$	969 Gaussian noise means and variances for $\mathbf{n}_\iota, \mathbf{n}_\nu$ (environment-dependent for ν). Realizations $m_., b_..$
970 $\tau_j(\mathbf{u}) = \beta_{\nu,j}^{-1}(\mathbf{u})$	971 Precision and natural mean for the j -th ν -noise (used in richness/coverage assumptions).
972 $\kappa_j(\mathbf{u}) = \tau_j(\mathbf{u})\mu_{\nu,j}(\mathbf{u})$	
973 Objectives and losses	
974 $\mathcal{L}_{\text{ELBO}}$	975 Evidence lower bound.
976 $\mathcal{L}_{\text{contrast}}$	977 Contrastive alignment loss on $f_\iota(\mathbf{x}^{(u_0)})$ and $f_\iota(\mathbf{x})$.
978 \mathcal{J}_{obj}	979 Joint objective likelihood minus alignment term.
980 $\mathcal{L}_{\theta, \phi}$	981 Total loss function combining all objectives.

972 B.2 PROOF OF THM. 3.1
973974 Before proving, we first restate the theorem for clarity:
975976 **Theorem 3.1** (Identifiability of the proposed latent causal generative model). *Consider smooth in-
977 ference encoders $f : \mathcal{X} \rightarrow \mathbb{R}^{d_\nu+d_\nu}$, decomposed as $f(\mathbf{x}) = (f_\nu(\mathbf{x}), f_\nu(\mathbf{x}))$ with $\dim(f_\nu) = d_\nu$ and
978 $\dim(f_\nu) = d_\nu$. Suppose Asms. 3.1 to 3.3 hold. Define the joint objective*

979
$$\mathcal{J}_{\text{obj}}(\phi, f) := \underbrace{\mathbb{E}_{(\mathbf{x}, \mathbf{u}) \sim p_{\phi^\circ}} [\log p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})]}_{\text{Likelihood}} - \alpha \underbrace{\mathbb{E}_{(\mathbf{x}^{(u_0)}, \mathbf{x})} [\|f_\nu(\mathbf{x}^{(u_0)}) - f_\nu(\mathbf{x})\|_2^2]}_{\text{Alignment across } \mathbf{u}}, \quad (4)$$

980
981

982 where $\alpha > 0$ is a scaling constant, $(\mathbf{x}^{(u_0)}, \mathbf{x})$ are positive pairs following Asm. 3.5, and $\mathbf{u} \sim q_{\mathbf{u}}$ as
983 in Asm. 3.4. Let (ϕ^*, f^*) be a global maximizer of Eq. (4). At the global maximizer, the optimization
984 is constrained so that for any $\mathbf{z}_\nu \in \mathcal{Z}_\nu$, the map $\mathbf{z}_\nu \mapsto f_\nu^* \circ g(\mathbf{z})$ is injective.
985986 Then, for any two global maximizers (ϕ^*, f^*) and $(\tilde{\phi}^*, \tilde{f}^*)$ that realize the true marginal $p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})$,
987 i.e., $\mathbb{E}[\log p_{\tilde{\phi}^*}] = \mathbb{E}[\log p_{\phi^*}] = \mathbb{E}[\log p_{\phi^\circ}]$, the corresponding encodings satisfy:988 1. (Block-identifiability of \mathbf{z}_ν). There exist bijections $h_\nu, \tilde{h}_\nu : \mathcal{Z}_\nu \rightarrow \mathbb{R}^{d_\nu}$ such that $f_\nu^*(\mathbf{x}) = h_\nu(\mathbf{z}_\nu)$
989 and $\tilde{f}_\nu^*(\mathbf{x}) = \tilde{h}_\nu(\mathbf{z}_\nu)$ a.s., thus \mathbf{z}_ν is block-identifiable through f^* in the sense of Defn. 2.1.
990
991 2. (Component-wise identifiability of \mathbf{z}_ν). There exist permutation $\mathbf{P} \in \mathbb{R}^{d_\nu \times d_\nu}$, diagonal $\mathbf{D} \succ 0$,
992 and $\mathbf{c} \in \mathbb{R}^{d_\nu}$ such that $f_\nu^*(\mathbf{x}) = \mathbf{P} \mathbf{D} \mathbf{z}_\nu + \mathbf{c}$ a.s.; likewise for \tilde{f}_ν^* (possibly with different
993 $(\mathbf{P}, \mathbf{D}, \mathbf{c})$). Thus \mathbf{z}_ν is component-wise identifiable through f^* in the sense of Defn. 2.2.
994995 996 *Proof.* We first decompose the learning objective into two terms:
997

998
$$\mathcal{J}_{\text{obj}}(\phi, f) := \underbrace{\mathbb{E}_{(\mathbf{x}, \mathbf{u})} [\log p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})]}_{\text{Term I}} - \alpha \underbrace{\mathbb{E}_{(\mathbf{x}^{(u_0)}, \mathbf{x})} [\|f_\nu(\mathbf{x}^{(u_0)}) - f_\nu(\mathbf{x})\|_2^2]}_{\text{Term II}}, \quad \alpha > 0, \quad (10)$$

999
1000

1001 Now, we construct the proof in the following two steps:
10021003 **Step 1 (\mathbf{z}_ν is block-identifiable).** Term I depends only on ϕ , not on a specific f . At any
1004 likelihood-optimal ϕ realizing $p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})$, we may analyze encoders via the true diffeomorphism
1005 g from Asm. 3.2. Set

1006
$$h := f \circ g : \mathcal{Z} \rightarrow \mathbb{R}^{d_\nu+d_\nu}.$$

1007 Since the true generative mapping g is diffeomorphic and the inference encoder f is smooth, we
1008 have h is C^1 with respect to the latent measure.
10091010 (a) *The infimum of Term II is 0 and is attained at a global maximizer.* By Asm. 3.5, positive pairs
1011 satisfy $\mathbf{z}_\nu^{(u_0)} = \mathbf{z}_\nu$ a.s. Consider encoders whose invariant part depends only on the invariant latents,
1012 i.e., choose $h_\nu(\mathbf{z}) = \psi(\mathbf{z}_\nu)$ with some measurable ψ , and let h_ν be arbitrary. Then for any positive
1013 pair, $\|h_\nu(\mathbf{z}^{(u_0)}) - h_\nu(\mathbf{z})\|_2 = \|\psi(\mathbf{z}_\nu^{(u_0)}) - \psi(\mathbf{z}_\nu)\|_2 = 0$ a.s., so the infimum of Term II is 0 and
1014 is achieved by such h . Since g is invertible (onto its image), there exists an encoder $f = h \circ g^{-1}$
1015 realizing this h at the data level.
10161017 Moreover, Term I depends only on ϕ (not on the choice of f), so among all pairs (ϕ, f) that realize
1018 $p_{\phi^\circ}(\mathbf{x} \mid \mathbf{u})$, the objective is maximized by choosing f that attains the infimum of Term II. Hence
1019 any global maximizer (ϕ^*, f^*) must satisfy

1020
$$\mathbb{E} [\|f_\nu^*(\mathbf{x}^{(u_0)}) - f_\nu^*(\mathbf{x})\|_2^2] = 0 \implies f_\nu^*(\mathbf{x}^{(u_0)}) = f_\nu^*(\mathbf{x}) \text{ a.s.} \quad (11)$$

1021
1022

1023 (b) *Invariance along excited directions forces dependence only on \mathbf{z}_ν .* Write $h^* = f^* \circ g = (h_\nu^*, h_\nu^*)$,
1024 where $h_\nu^* := f_\nu^* \circ g$ and $h_\nu^* := f_\nu^* \circ g$. From Eq. (11),
1025

1026
$$h_\nu^*(\mathbf{z}_\nu, \mathbf{z}_\nu^{(u_0)}) = h_\nu^*(\mathbf{z}_\nu, \mathbf{z}_\nu) \text{ a.s.} \quad (12)$$

1026 By Asms. 3.4 and 3.5, for each $j \in [d_\nu]$ there is a set $\mathcal{U}_j \subseteq \mathcal{U} \setminus \{\mathbf{u}_0\}$ with $q_{\mathbf{u}}(\mathcal{U}_j) > 0$ such that
 1027 either the incoming weights $\boldsymbol{\lambda}_j(\mathbf{u})$ change or the univariate noise natural parameters $(\kappa_j(\mathbf{u}), \tau_j(\mathbf{u}))$
 1028 change relative to \mathbf{u}_0 . Under the acyclic order, the scalar equation for node j reads

$$1029 \quad z_{\nu,j} = \boldsymbol{\lambda}_j(\mathbf{u})^\top z_{\text{pa}(j)} + \mathbf{n}_{\nu,j}, \quad \mathbf{n}_{\nu,j} \sim \mathcal{N}(\mu_{\nu,j}(\mathbf{u}), \beta_{\nu,j}(\mathbf{u})),$$

1030 hence, conditional on $z_{\text{pa}(j)}$ and \mathbf{u} ,

$$1033 \quad z_{\nu,j} \mid z_{\text{pa}(j)}, \mathbf{u} \sim \mathcal{N}\left(m_j(\mathbf{u}; z_{\text{pa}(j)}), \tau_j(\mathbf{u})^{-1}\right), \quad m_j(\mathbf{u}; z_{\text{pa}(j)}) := \boldsymbol{\lambda}_j(\mathbf{u})^\top z_{\text{pa}(j)} + \kappa_j(\mathbf{u})/\tau_j(\mathbf{u}),$$

1034 where $\tau_j(\mathbf{u}) = \beta_{\nu,j}^{-1}(\mathbf{u})$ and $\kappa_j(\mathbf{u}) = \tau_j(\mathbf{u})\mu_{\nu,j}(\mathbf{u})$.

1035 Fix any latent realization $(z_\iota^{(\mathbf{u}_0)}, z_\nu^{(\mathbf{u}_0)})$ and draw $\mathbf{u} \sim q_{\mathbf{u}}$ conditioned on $\mathbf{u} \in \mathcal{U}_j$, with Asm. 3.4
 1036 ensuring $q_{\mathbf{u}}(\mathcal{U}_j) > 0$. Then one of the following holds:

- 1039 • *Noise parameters change*: If $(\kappa_j(\mathbf{u}), \tau_j(\mathbf{u})) \neq (\kappa_j(\mathbf{u}_0), \tau_j(\mathbf{u}_0))$, the two univariate Gaussians
 1040 for $z_{\nu,j}$ and $z_{\nu,j}^{(\mathbf{u}_0)}$ (given the same parents) have different mean and/or variance. Since they are
 1041 continuous and sampled independently in the positive-pair protocol, $\mathbb{P}(z_{\nu,j} = z_{\nu,j}^{(\mathbf{u}_0)} \mid z_{\text{pa}(j)}) = 0$
 1042 (by non-degenerate Gaussian), hence $\mathbb{P}(z_{\nu,j} \neq z_{\nu,j}^{(\mathbf{u}_0)}) = 1$.
- 1043 • *Weights change*: If $\boldsymbol{\lambda}_j(\mathbf{u}) \neq \boldsymbol{\lambda}_j(\mathbf{u}_0)$, then $m_j(\mathbf{u}; z_{\text{pa}(j)}) - m_j(\mathbf{u}_0; z_{\text{pa}(j)}) = (\boldsymbol{\lambda}_j(\mathbf{u}) -$
 1044 $\boldsymbol{\lambda}_j(\mathbf{u}_0))^\top z_{\text{pa}(j)}$. Since $z_{\text{pa}(j)}$ has a non-degenerate Gaussian distribution, this difference is
 1045 nonzero with positive probability, making the two conditionals distinct; again, by continuity and
 1046 independent sampling across the pair, $\mathbb{P}(z_{\nu,j} = z_{\nu,j}^{(\mathbf{u}_0)}) = 0$, hence $\mathbb{P}(z_{\nu,j} \neq z_{\nu,j}^{(\mathbf{u}_0)}) = 1$.

1047 In both cases, for each j there exist (indeed, with positive probability under $q_{\mathbf{u}}$ there are) environments \mathbf{u} such that

$$1048 \quad \mathbf{z}_\iota = \mathbf{z}_\iota^{(\mathbf{u}_0)} \quad \text{and} \quad z_{\nu,j} \neq z_{\nu,j}^{(\mathbf{u}_0)} \quad \text{a.s.} \quad (13)$$

1049 Together with Eq. (12), this implies that for fixed \mathbf{z}_ι the map $\mathbf{z}_\nu \mapsto h_\iota^*(\mathbf{z}_\iota, \mathbf{z}_\nu)$ is almost surely
 1050 constant in the j -th coordinate. Since this holds for every $j \in [d_\nu]$, h_ι^* is (a.s.) independent of \mathbf{z}_ν ,
 1051 so there exists a measurable $\psi : \mathcal{Z}_\iota \rightarrow \mathbb{R}^{d_\iota}$ with

$$1052 \quad h_\iota^*(\mathbf{z}_\iota, \mathbf{z}_\nu) = \psi(\mathbf{z}_\iota) \quad \text{a.s.}$$

1053 By the standing regularity at the global maximizer, for any fixed \mathbf{z}_ν the map $\mathbf{z}_\iota \mapsto f_\iota^*(\mathbf{z}_\iota, \mathbf{z}_\nu)$
 1054 is injective and C^1 , hence ψ is injective and C^1 on \mathcal{Z}_ι . Consequently, there exists a measurable
 1055 bijection $T : \psi(\mathcal{Z}_\iota) \rightarrow \mathbb{R}^{d_\iota}$, and defining $h_\iota := T \circ \psi$ yields

$$1056 \quad f_\iota^*(\mathbf{x}) = h_\iota(\mathbf{z}_\iota) \quad \text{a.s.}$$

1057 Therefore \mathbf{z}_ι is block-identifiable from $f_\iota^*(\mathbf{x})$ in the sense of Defn. 2.1.

1058 **Step 2 (\mathbf{z}_ν identifiable with \mathbf{z}_ι “observed”).** From Step 1 we may treat \mathbf{z}_ι as observed up to a
 1059 bijection. The responsive block obeys the latent structural equations

$$1060 \quad \mathbf{z}_\nu = \boldsymbol{\lambda}_{\nu\iota}(\mathbf{u})\mathbf{z}_\iota + \boldsymbol{\lambda}_{\nu\nu}(\mathbf{u})\mathbf{z}_\nu + \mathbf{n}_\nu, \quad \mathbf{n}_\nu \sim \mathcal{N}(\boldsymbol{\mu}_\nu(\mathbf{u}), \text{diag } \boldsymbol{\beta}_\nu(\mathbf{u})), \quad (14)$$

1061 with the anchor $\boldsymbol{\lambda}_{\nu\iota}(\mathbf{u}_0) = \mathbf{0}$ and $\boldsymbol{\lambda}_{\nu\nu}(\mathbf{u}_0) = \mathbf{0}$ (Asm. 3.1). Hence

$$1062 \quad p(\mathbf{z}_\nu \mid \mathbf{z}_\iota, \mathbf{u}) \propto \exp\left\{-\frac{1}{2} \mathbf{z}_\nu^\top \boldsymbol{\Gamma}(\mathbf{u}) \mathbf{z}_\nu + \rho(\mathbf{u}, \mathbf{z}_\iota)^\top \mathbf{z}_\nu\right\},$$

1063 an exponential family with sufficient statistics $\{\mathbf{z}_\nu, \mathbf{z}_\nu^\top\}$ and natural parameters

$$1064 \quad \boldsymbol{\Gamma}(\mathbf{u}) = (\mathbf{I} - \boldsymbol{\lambda}_{\nu\nu}(\mathbf{u}))^\top \text{diag}(\boldsymbol{\tau}(\mathbf{u})) (\mathbf{I} - \boldsymbol{\lambda}_{\nu\nu}(\mathbf{u})), \quad \boldsymbol{\tau}(\mathbf{u}) := \boldsymbol{\beta}_\nu^{-1}(\mathbf{u}),$$

$$1065 \quad \rho(\mathbf{u}, \mathbf{z}_\iota) = (\mathbf{I} - \boldsymbol{\lambda}_{\nu\nu}(\mathbf{u}))^\top \text{diag}(\boldsymbol{\tau}(\mathbf{u})) (\boldsymbol{\mu}_\nu(\mathbf{u}) + \boldsymbol{\lambda}_{\nu\iota}(\mathbf{u})\mathbf{z}_\iota).$$

1066 Let (ϕ^*, f^*) and $(\tilde{\phi}^*, \tilde{f}^*)$ be two global maximizers of the joint objective. Because both fit the
 1067 same $p(\mathbf{x} \mid \mathbf{u})$ and the decoders are diffeomorphisms, their induced conditionals $p(\hat{\mathbf{z}}_\nu \mid \mathbf{z}_\iota, \mathbf{u})$ and
 1068 $p(\tilde{\mathbf{z}}_\nu \mid \mathbf{z}_\iota, \mathbf{u})$ must coincide with the family above up to a change of variables. By the standard first

1080 step in the proof of Thm. 1 of [Liu et al. \(2022\)](#) (matching the quadratic and linear coefficients across
 1081 environments), there exist an invertible *constant* matrix $\mathbf{A} \in \mathbb{R}^{d_\nu \times d_\nu}$ and vector $\mathbf{b} \in \mathbb{R}^{d_\nu}$, both
 1082 independent of $(\mathbf{z}_\nu, \mathbf{u})$, such that

$$1083 \quad \hat{\mathbf{z}}_\nu = \mathbf{A} \tilde{\mathbf{z}}_\nu + \mathbf{b} \quad \text{a.s.} \quad (15)$$

1085 (a) *Anchor \mathbf{u}_0 pins down mixing.* At control \mathbf{u}_0 , Asm. 3.1 gives $\lambda_{\nu\nu} = \lambda_{\nu\nu} = \mathbf{0}$, so $\Gamma(\mathbf{u}_0) =$
 1086 $\text{diag}(\tau(\mathbf{u}_0))$ is diagonal and $\rho(\mathbf{u}_0, \mathbf{z}_\nu) = \text{diag}(\tau(\mathbf{u}_0))\mu_\nu(\mathbf{u}_0)$ is \mathbf{z}_ν -independent. Applying the
 1087 change of variables $\tilde{\mathbf{z}}_\nu \mapsto \hat{\mathbf{z}}_\nu = \mathbf{A} \tilde{\mathbf{z}}_\nu + \mathbf{b}$ yields
 1088

$$1089 \quad \text{diag}(\tau(\mathbf{u}_0)) = \mathbf{A}^\top \hat{\Gamma}(\mathbf{u}_0) \mathbf{A},$$

1090 with $\hat{\Gamma}(\mathbf{u}_0)$ the (diagonal, positive-definite) precision under the $\tilde{\mathbf{z}}_\nu$ -coding. From $\mathbf{A}^\top \hat{\Gamma}(\mathbf{u}_0) \mathbf{A}$ being
 1091 diagonal and positive-definite, it follows that \mathbf{A} must be a *monomial* matrix, i.e., a *scaled permutation*:
 1092

$$1093 \quad \mathbf{A} = \mathbf{P} \mathbf{D}, \quad \mathbf{P} \text{ permutation, } \mathbf{D} \succ 0 \text{ diagonal.} \quad (16)$$

1095 (b) *Perturbation richness rules out residual mixing.* By Asm. 3.3, for each node $j \in [d_\nu]$: (i) differences of incoming weights span at each node j , which produce independent off-diagonal patterns
 1096 in $\Gamma(\mathbf{u})$ as \mathbf{u} varies, at least between \mathbf{u}_j and \mathbf{u}_0 ; and (ii) for each node j , there exist $\mathbf{u}'_j, \mathbf{u}''_j$ such
 1097 that $(\kappa_j(\mathbf{u}'_j) - \kappa_j(\mathbf{u}_0), \tau_j(\mathbf{u}'_j) - \tau_j(\mathbf{u}_0))$ and $(\kappa_j(\mathbf{u}''_j) - \kappa_j(\mathbf{u}_0), \tau_j(\mathbf{u}''_j) - \tau_j(\mathbf{u}_0))$ are linearly
 1098 independent in \mathbb{R}^2 , giving two independent directions of variation in the diagonal part.
 1099

1100 Matching transformed precisions across $\mathbf{u} \in \{\mathbf{u}_0, \mathbf{u}_j, \mathbf{u}'_j, \mathbf{u}''_j\}$ with Eq. (16) shows that no additional
 1101 mixing beyond $\mathbf{P} \mathbf{D}$ is compatible with all constraints; in particular, \mathbf{A} cannot depend on \mathbf{u} or
 1102 \mathbf{z}_ν and remains $\mathbf{P} \mathbf{D}$. This mirrors the Step III argument of the proof of Thm 1 in [Liu et al. \(2022\)](#).
 1103

1104 (c) *Fixing the shift.* With $\mathbf{A} = \mathbf{P} \mathbf{D}$ fixed, matching the linear terms $\rho(\mathbf{u}, \mathbf{z}_\nu)$ across at least two
 1105 distinct environments determines a constant shift \mathbf{c} such that

$$1106 \quad \hat{\mathbf{z}}_\nu = \mathbf{P} \mathbf{D} \tilde{\mathbf{z}}_\nu + \mathbf{c} \quad \text{a.s.}$$

1107 Taking $\tilde{\mathbf{z}}_\nu \equiv \mathbf{z}_\nu$ yields

$$1108 \quad f_\nu^*(\mathbf{x}) = \mathbf{P} \mathbf{D} \mathbf{z}_\nu + \mathbf{c} \quad \text{a.s.,}$$

1109 which is precisely component-wise identifiability of \mathbf{z}_ν in the sense of Defn. 2.2.

1110 Therefore, the proof concludes. □

1113 B.3 DERIVATION OF THE EVIDENCE LOWER BOUND

1115 In this appendix, we provide a general derivation of the Evidence Lower Bound (ELBO) for our
 1116 generative model, valid for any intervention vector \mathbf{u} .
 1117

1118 **Generative model.** For an observation \mathbf{x} under intervention \mathbf{u} , the generative model factorizes as:

$$1119 \quad p_\phi(\mathbf{x}, \mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{u}) = p_\phi(\mathbf{x} \mid \mathbf{z}_\nu, \mathbf{z}_\iota) p_\phi(\mathbf{z}_\nu \mid \mathbf{u}, \mathbf{z}_\iota) p_\phi(\mathbf{z}_\iota), \quad (17)$$

1120 where \mathbf{z}_ν denotes the *variant* (intervention-specific) latents and \mathbf{z}_ι the *invariant* latents. The variational
 1121 posterior adopts the structured mean-field factorization from Eq. 7:
 1122

$$1123 \quad q_\theta(\mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{x}, \mathbf{u}) = q_\theta(\mathbf{z}_\nu \mid \mathbf{x}, \mathbf{u}) q_\theta(\mathbf{z}_\iota \mid \mathbf{x}). \quad (18)$$

1125 **Derivation.** The marginal likelihood is

$$1127 \quad \log p_\phi(\mathbf{x} \mid \mathbf{u}) = \log \int \frac{p_\phi(\mathbf{x}, \mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{u})}{q_\theta(\mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{x}, \mathbf{u})} q_\theta(\mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{x}, \mathbf{u}) d\mathbf{z}_\nu d\mathbf{z}_\iota.$$

1129 Applying Jensen's inequality to the logarithm yields the ELBO:

$$1131 \quad \mathcal{L}_{\text{ELBO}}(\mathbf{x}, \mathbf{u}) = \mathbb{E}_{q_\theta(\mathbf{z}_\nu, \mathbf{z}_\iota \mid \mathbf{x}, \mathbf{u})} \left[\log p_\phi(\mathbf{x} \mid \mathbf{z}_\nu, \mathbf{z}_\iota) \right] \\ 1132 \quad - \mathbb{E}_{q_\theta(\mathbf{z}_\nu \mid \mathbf{x})} \left[D_{\text{KL}}(q_\theta(\mathbf{z}_\nu \mid \mathbf{x}, \mathbf{u}) \parallel p_\phi(\mathbf{z}_\nu \mid \mathbf{u}, \mathbf{z}_\iota)) \right] \\ 1133 \quad - D_{\text{KL}}(q_\theta(\mathbf{z}_\iota \mid \mathbf{x}) \parallel p_\phi(\mathbf{z}_\iota)). \quad (19)$$

1134 **Modeling interventions.** The intervention vector $\mathbf{u} \in \{0, 1\}^M$ is a multi-hot binary vector of
 1135 dimension M , where M is the number of possible targets. - A single-gene perturbation is encoded
 1136 as a one-hot vector. - A combinatorial perturbation (e.g., genes j and k) corresponds to a vector with
 1137 the j -th and k -th entries set to 1. - The observational (unperturbed) case is represented by the zero
 1138 vector $\mathbf{u} = \mathbf{0}$.

1139 Thus, single-gene and multi-gene perturbations are subsumed by the same formulation, and no case-
 1140 specific ELBO derivations are required.
 1141

1142 **Parameterization.** All variational posteriors and priors are chosen as diagonal Gaussians, yielding
 1143 closed-form KL terms. For example:

$$q_\theta(\mathbf{z}_\iota \mid \mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_\iota(\mathbf{x}), \text{diag}(\boldsymbol{\sigma}_\iota^2(\mathbf{x}))),$$

1146 with analogous parameterizations for $q_\theta(\mathbf{z}_\nu \mid \mathbf{x}, \mathbf{u})$, $p_\phi(\mathbf{z}_\nu \mid \mathbf{u})$, and $p_\phi(\mathbf{z}_\iota)$.
 1147

1148 B.4 COEFFICIENT OF DETERMINATION

1150 The coefficient of determination (R^2) (Eq. 20) is consistently computed in the observation space,
 1151 but its interpretation depends on the availability of latent ground truth.
 1152

$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \quad (20)$$

1153 We treat ($R^2 \geq 0.95$ as a successful recovery, indicating alignment within the theoretical identifiability
 1154 bound.
 1155

1156 **Simulation. (Table 1)** In synthetic experiments, we have access to both observed outcomes and
 1157 the latent variables $\mathbf{z}_\nu, \mathbf{z}_\iota$ that generate them. R^2 therefore plays a dual role: it measures predictive
 1158 accuracy in the observation space and indirectly validates causal recovery, since correctly identified
 1159 latent factors and structures should yield high predictive performance.
 1160

1161 **Real data. (Figure 10)** In experimental single-cell datasets, latent ground truth is unobservable.
 1162 Here, R^2 is computed by comparing the mean expression profiles of generated and real cell populations
 1163 under the same perturbation condition. Specifically, the model first generates a set of “virtual”
 1164 cells given a perturbation, from which we compute the mean expression vector across all genes. In
 1165 parallel, we compute the corresponding mean expression vector from the experimentally observed
 1166 cells. A linear regression between these two mean vectors yields R^2 , quantifying how well the
 1167 generated perturbation response explains the real perturbation response. Thus, in real data, R^2 does
 1168 not directly validate causal recovery but serves as a measure of *practical utility*, assessing whether
 1169 the learned representations support accurate prediction of population-level transcriptional changes
 1170 under unseen perturbations.
 1171

1172 R^2 unifies evaluation across settings: in simulation, it additionally certifies recovery of known latent
 1173 factors, while in real data it functions as the primary proxy for predictive validity and biological
 1174 usefulness.
 1175

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 C ADDITIONAL DETAILS ON EMPIRICAL FINDINGS
11891190 C.1 METHOD DETAILS
11911192 We provide details about our training procedure in Algorithm 1
11931194

1195 **Algorithm 1 Forward and Training Procedure of cDAG-VAE**

1196

- 1: $(\mathbf{x}, \mathbf{u}, \mathbf{x}^{(u_0)}) \sim \mathcal{D}$
- 2: $\mathbf{h}_1 \leftarrow f_{\text{enc}}(\mathbf{x}); \mathbf{h}_2 \leftarrow f_{\text{enc}}(\mathbf{x}^{(u_0)})$
- 3: $(\mu_\nu, \log \sigma_\nu^2) \leftarrow g_\nu(\mathbf{h}_1)$
- 4: $(\mu_{\iota,1}, \log \sigma_{\iota,1}^2) \leftarrow g_\iota(\mathbf{h}_1); (\mu_{\iota,2}, \log \sigma_{\iota,2}^2) \leftarrow g_\iota(\mathbf{h}_2)$
- 5: $\varepsilon_\nu, \varepsilon_{\iota,1}, \varepsilon_{\iota,2} \sim \mathcal{N}(0, I)$
- 6: $\tilde{\mathbf{z}}_\nu \leftarrow \mu_\nu + \sigma_\nu \odot \varepsilon_\nu; \mathbf{z}_\iota^{(1)} \leftarrow \mu_{\iota,1} + \sigma_{\iota,1} \odot \varepsilon_{\iota,1}$
- 7: $\mathbf{z}_\iota^{(2)} \leftarrow \mu_{\iota,2} + \sigma_{\iota,2} \odot \varepsilon_{\iota,2}$
- 8: $\mathbf{W} \leftarrow f_W(\mathbf{u})$ ▷ Adjacency matrix conditioned on soft-intervention
- 9: $\mathbf{b} \leftarrow B(\mathbf{z}_\iota^{(1)})$ ▷ Contribution from invariant latent
- 10: $\mathbf{z}_\nu \leftarrow (I - \mathbf{W})^{-1}(\tilde{\mathbf{z}}_\nu + \mathbf{b})$
- 11: $\hat{\mathbf{x}} \leftarrow f_{\text{dec}}([\mathbf{z}_\nu, \mathbf{z}_\iota^{(1)}])$
- 12: $\mathcal{L}_{\text{rec}} \leftarrow \|\mathbf{x} - \hat{\mathbf{x}}\|^2$
- 13: $\mathcal{L}_{\text{KL}-\nu} \leftarrow D_{\text{KL}}(q(\mathbf{z}_\nu | \mathbf{x}) \| \mathcal{N}(0, I))$
- 14: $\mathcal{L}_{\text{KL}-\iota} \leftarrow D_{\text{KL}}(q(\mathbf{z}_\iota^{(1)} | \mathbf{x}) \| \mathcal{N}(0, I)) + D_{\text{KL}}(q(\mathbf{z}_\iota^{(2)} | \mathbf{x}^{(u_0)}) \| \mathcal{N}(0, I))$
- 15: $\mathcal{L}_{\text{contrast}} \leftarrow \text{contrastive}(\mu_{\iota,1}, \mu_{\iota,2})$
- 16: $(\beta_\nu, \beta_\iota, \alpha) \leftarrow \text{Schedule}(t)$ ▷ Time-dependent annealing schedule
- 17: $\mathcal{L}_{\text{total}} \leftarrow \mathcal{L}_{\text{rec}} + \beta_\nu \mathcal{L}_{\text{KL}-\nu} + \beta_\iota \mathcal{L}_{\text{KL}-\iota} + \alpha \mathcal{L}_{\text{contrast}}$
- 18: $\text{Update } \Theta \leftarrow \Theta - \eta \nabla_\Theta \mathcal{L}_{\text{total}}$

1224 C.2 EXPERIMENT WITH SYNTHETIC DATA
12251226 **Basic setup.** We sample data following the DGP described in Sec. 2 with the following details in
1227 Table 4.
12281229 Table 4: Simulation data generation parameters.
1230

1231 Quantity	1232 Symbol	1233 Value
1234 Observation dimension	1235 \mathbf{x}	1236 500
1237 Latent dimension (variant)	1238 \mathbf{z}_ν	1239 4
1238 Latent dimension (invariant)	1239 \mathbf{z}_ι	1240 7
1239 Intervention dimension	1240 \mathbf{u}	1241 12
1240 Training size	1241 $-$	1242 3000
1241 Test size	1242 $-$	1243 1000

1244 **Hyperparameters.** We use the Adam optimizer with hyperparameters detailed in Table 5.
1245

Table 5: Simulation Hyperparameters.

Hyperparameter	Value	Hyperparameter	Value
Batch size	64	z_ν dim	4
Epochs	100	z_ι dim	7
Learning rate	1×10^{-3}	β_ν	1.5×10^{-5}
β_ι	5×10^{-4}	α_{contrast}	0.1

Evaluation metrics. Identifiability of the variant block \mathbf{z}_v is quantified by the mean correlation coefficient (MCC), which measures one-to-one correspondence between each learned latent and its ground-truth counterpart (Def. 2.2). For block-wise disentanglement, we regress the ground-truth latents ($\mathbf{z}_v, \mathbf{z}_t$) on their learned estimates ($\hat{\mathbf{z}}_v, \hat{\mathbf{z}}_t$) using kernel ridge regression with an RBF kernel, and report the coefficient of determination (R^2). High R^2 values close to one indicate block-identifiability (Def. 2.1).

C.3 STRUCTURE LEARNING

Following [Zhang et al. \(2023\)](#), we first present in Figure 5 the hit map between perturbed genes and the identifiable latent causal components $z_\nu, (i)$ learned by our model. This figure summarizes the dominant associations between external perturbations and latent components: columns correspond to perturbed genes, while rows denote individual causal components. Each entry highlights the component most strongly linked to a given perturbation, thereby revealing how perturbations are distributed across the causal block. This representation facilitates interpretation of the latent space by mapping perturbations onto distinct, identifiable components.

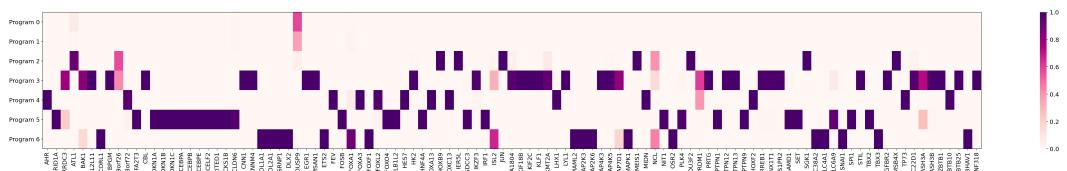


Figure 5: Perturbed gene hits on identifiable causal components.

To further illustrate the structure of the learned causal representation, we visualize the latent causal graph among identifiable components \mathbf{z}_v . Figure 6 (left) shows the full adjacency matrix estimated by the model (before thresholding), where color intensity reflects the signed effect strength of each edge. For interpretability, we additionally apply a threshold ($\tau = 0.25$) to prune weak connections, yielding a sparse graph that highlights the dominant causal structure (Figure 6, right). This comparison provides both a complete view of the learned connectivity and a simplified backbone that facilitates biological interpretation.

In Figure 7, we illustrate the inferred causal structure among the latent programs discovered by cDAG-VAE. Each node corresponds to a latent component, and directed edges represent the estimated causal dependencies between them. Importantly, these latent programs can be mapped back to gene-level interpretations, providing biological meaning to the abstract components. For completeness, Table 6 lists the full set of genes associated with each program. This mapping highlights how the learned structure captures both high-level regulatory dependencies and their molecular underpinnings, offering a bridge between statistical causal discovery and biological interpretability.

Beyond the three representative program-level edges discussed in the main text in Figure 4, we provide in Table 7 a summary of the remaining directed edges, together with their mechanistic rationale and supporting references.

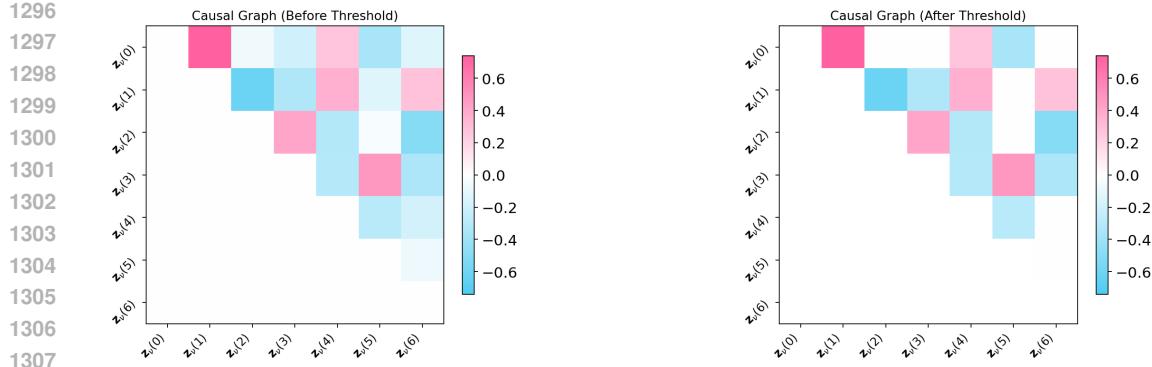


Figure 6: Visualization of the learned causal graph among identifiable components z_v . **Left:** full adjacency matrix before thresholding, showing all estimated edges. **Right:** sparse graph after thresholding ($\tau = 0.25$), retaining only dominant edges for interpretability.

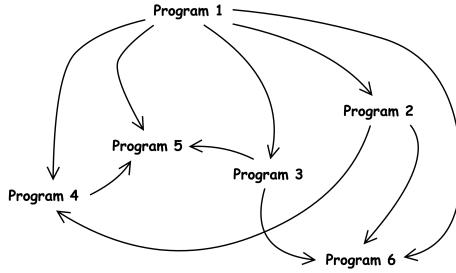


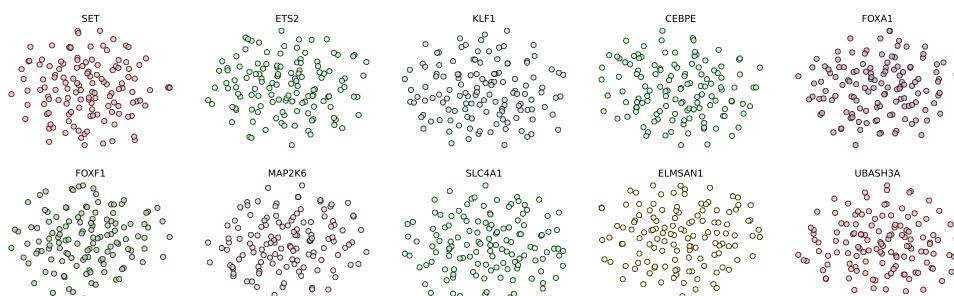
Figure 7: Perturbed gene hits on identifiable causal components.

Table 6: Complete list of genes assigned to each program node inferred from structure learning.

Program	Genes
1	DUSP9
2	ATL1, C19orf26, HOXB9, IER5L, JUN, MEIS1, POU3F2, SGK1, TMSB4X
3	ARRDC3, BAK1, BCL2L11, BPGM, CBL, CNN1, CNNM4, EGR1, ELMSAN1, HK2, IKZF3, KIAA1804, KIF18B, KIF2C, KLF1, KMT2A, LYL1, MAP4K3, MAP4K5, MAP7D1, PRDM1, PRTG, PTPN12, PTPN13, RREB1, RUNX1T1, S1PR2, STIL, TGFBR2, TSC22D1, UBASH3A, UBASH3B, ZBTB1, ZBTB25, ZNF318
4	AHR, C3orf72, FEV, FOXA3, FOXL2, HES7, HOXA13, HOXC13, LHX1, MIDN, RHOXF2, TP73, ZBTB10
5	ARID1A, CBFA2T3, CDKN1A, CDKN1B, CDKN1C, CEBPA, CEBPB, CEBPE, CELF2, CITED1, CKS1B, CLDN6, FOSB, FOXO4, GLB1L2, HNF4A, IGDCC3, IRF1, NIT1, PLK4, PTPN1, PTPN9, SAMD1, SET, SLC6A9, SPI1, TBX2
6	BCORL1, COL1A1, COL2A1, CSRNP1, DLX2, ETS2, FOXA1, FOXF1, ISL2, MAML2, MAP2K3, MAP2K6, MAPK1, NCL, OSR2, SLC38A2, SLC4A1, SNAI1, TBX3, ZC3HAV1

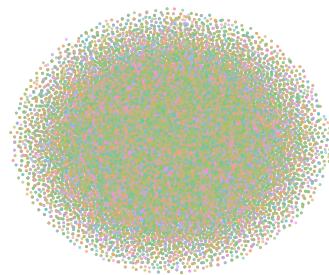
1350
1351 Table 7: Program-level representative edges: mechanistic rationale and supporting references.
1352
1353
1354

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
Edge	Mechanistic rationale (summary)	Refs.
DUSP9 → TGFBR2	TGFBR2 activates ERK through a non-Smad branch; DUSP9 dephosphorylates ERK/JNK, attenuating this output.	(Emanuelli et al., 2008) (Zhang, 2009)
DUSP9 → TP73	c-Jun enhances TP73 stability and activity; DUSP9 lowers JNK/ERK→AP-1 signaling, indirectly downregulating TP73.	(Koeppel et al., 2011) (Emanuelli et al., 2008)
DUSP9 → CDKN1A	ERK → ELK1/EGR1 induces p21 transcription; DUSP9 suppresses ERK phosphorylation, blunting this induction.	(Lim et al., 1998) (Ragione et al., 2003)
DUSP9 → SNAI1	Epithelial–mesenchymal transition (EMT) induction requires SMAD3–AP-1 cooperation; DUSP9 attenuates AP-1, weakening SNAI1 transcription.	(Sundqvist et al., 2013) (Fan et al., 2025)
JUN → TP73	c-Jun stabilizes and potentiates TP73, enhancing apoptosis-related transcription.	(Koeppel et al., 2011)
JUN → SNAI1	AP-1 (c-Jun) cooperates with SMAD factors to elevate SNAI1 expression in TGF- β -driven EMT.	(Sundqvist et al., 2013) (Fan et al., 2025)
TGFBR2 → CDKN1A	Canonical SMAD2/3/4 downstream of TGFBR2 transactivates p21, enforcing cytostasis.	(Ikushima & Miyazono, 2010)

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
C.4 UNPERTURBED LATENT SPACE1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Figure 8: t-SNE visualization of invariant block z_t for 10 single-gene perturbations.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

(a) Single-gene test set.



(b) Double-gene test set.

1416 Figure 9: t-SNE visualization of the invariant block z_t for single-gene (a) and double-gene (b)
1417 perturbation conditions in the test set.

1420 We further report additional t-SNE projections of the invariant block z_t . Fig. 8 presents the latent
1421 spaces for all remaining single-gene perturbations in the test set, complementing the representative
1422 examples shown in the main text. Figure 9 further shows the t-SNE embeddings for the entire single-
1423 gene and double-gene test sets. Across all settings, cells from distinct perturbation conditions remain
1424 well-mixed rather than forming separate clusters, providing additional evidence that z_t captures
1425 perturbation-invariant background transcriptional programs.

1426 C.5 EXTENDED EXPERIMENTS AND ADDITIONAL RESULTS ON REAL DATA (ALL GENES)

1428 **Hyperparameter settings for real data experiments.** We use the Adam optimizer with hyperpa-
1429 rameters detailed in Table 8.

1431 Table 8: Real Data Hyperparameter.

1433 Hyperparameter	1434 Value
1435 Batch size	64
1436 Epochs	100
1437 Learning rate	1×10^{-4}
1438 Hidden dimension	256
1439 z dimension	10, 35, 75, 100
1440 α_{contrast}	0.05
1441 β_ν, β_t	1×10^{-2}

1444 **Results on Single-Gene Perturbation Prediction.** Table 9 reports the RMSE and Fig-
1445 ure B.4 illustrates the R^2 performance of CDAG-VAE on single-gene perturbation predic-
1446 tion across different latent dimensionalities. We experimented with four latent configura-
1447 tions: $(z_\nu, z_t) \in \{(4, 6), (7, 28), (15, 60), (20, 85)\}$, corresponding to total latent dimensionalities $z \in$
1448 $\{10, 35, 75, 100\}$. These settings enforce $z_\nu < z_t$, reflecting the modeling assumption that
1449 perturbation-responsive variation resides in a lower-dimensional subspace compared to invariant
1450 background programs.

1451 Across all settings, CDAG-VAE consistently achieved the best performance relative to baselines.
1452 On RMSE, our model yielded the lowest reconstruction error, highlighting its fidelity in capturing
1453 single-gene expression responses. On R^2 , CDAG-VAE attained values close to 1.0, demon-
1454 strating robust predictive accuracy. Performance remained stable as dimensionality increased, indicating that
1455 the framework is not overly sensitive to the precise choice of z_ν and z_t , as long as the variant sub-
1456 space is smaller than the invariant one. Together, these results validate that explicitly disentangling
1457 perturbation-responsive and invariant subspaces yields clear empirical advantages for single-gene
1458 perturbation prediction.

cDAGVAE MMD variant. To complement the main experiments, we evaluate a maximum mean discrepancy (MMD)-based variant of our model, denoted as cDAG-VAE(MMD). This variant augments the objective with an MMD regularization term to enforce distributional alignment, similar to the approach in [Zhang et al. \(2023\)](#). This allows us to fairly compare the proposed model with the existing Discrepancy-VAE from [Zhang et al. \(2023\)](#) using MMD-based metrics. For completeness, we report its performance on single-gene perturbation benchmarks in Table 10.

Table 9: RMSE on single-gene perturbation prediction.

Method	Latent dimension			
	10	35	75	105
Discrepancy-VAE (Zhang et al., 2023)	0.5603 \pm 0.0030	0.5560 \pm 0.0027	0.5582 \pm 0.0038	0.5558 \pm 0.0022
SENA (de la Fuente et al., 2025)	0.5839 \pm 0.0021	0.5837 \pm 0.0086	0.5778 \pm 0.0109	0.5837 \pm 0.0074
sVAE+ (Lopez et al., 2022)	0.5012 \pm 0.0018	0.5005 \pm 0.0025	0.5003 \pm 0.0024	0.5002 \pm 0.0022
SAMS-VAE (Bereket & Karaletsos, 2023)	0.4114 \pm 0.0020	0.4136 \pm 0.0019	0.4140 \pm 0.0022	0.4123 \pm 0.0290
DAG-VAE (Ours)	0.4098 \pm 0.0001	0.4115 \pm 0.0008	0.4115 \pm 0.0005	0.4155 \pm 0.0038
cDAG-VAE (Ours)	0.4027 \pm 0.0028	0.3998 \pm 0.0013	0.3997 \pm 0.0013	0.3995 \pm 0.0013

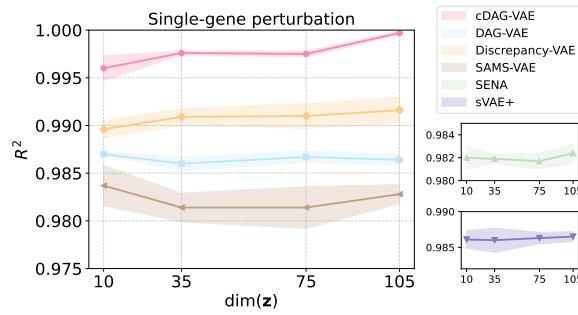
Figure 10: R^2 on single-gene perturbation

Table 10: Evaluation of the cDAG-VAE with MMD variant on single-gene perturbation prediction.

Method	Metrics		
	RMSE	R^2	MMD
Discrepancy-VAE (Zhang et al., 2023)	0.5558 \pm 0.0022	0.9916 \pm 0.0014	0.3243 \pm 0.0050
cDAG-VAE (MMD)	0.5485 \pm 0.0013	0.9958 \pm 0.0003	0.3077 \pm 0.0036

Ablation on Latent Capacity Allocation. Our ablation studies show that asymmetric allocation of latent capacity is crucial, with the invariant block (\mathbf{z}_i) serving as the primary bottleneck. As reported in Table 2 and Table 9, together with Figure 10 and Figure 3, the invariant-heavy configuration ((20, 85); total $\mathbf{z} = 105$) clearly outperforms alternative splits, achieving the lowest RMSE and highest R^2 on both in-distribution and out-of-distribution predictions. This suggests that sufficient capacity for modeling background transcriptional states is critical.

In contrast, when \mathbf{z}_i is under-resourced—such as in the variant-heavy setting ($z_v = 85, z_i = 20$) or the equal-split setting ($z_v = 50, z_i = 55$)—performance declines noticeably, with outcomes that are largely indistinguishable (Table 11). These results suggest two observations: (1) in our tested configurations, the variant block \mathbf{z}_v already appears adequate at relatively small dimensionalities, and allocating further capacity beyond this does not yield additional gains; and (2) the invariant block \mathbf{z}_i is the performance-limiting factor, as reduced capacity creates a bottleneck that additional z_v dimensions are insufficient to compensate for.

1512 Table 11: Results on single- and double-gene perturbations under different capacity allocations of
 1513 \mathbf{z}_v and \mathbf{z}_i

Dimension	Single-Gene Perturbation		Double-Gene Perturbation	
	RMSE	R^2	RMSE	R^2
$\mathbf{z}_v = \mathbf{z}_i$	0.4084 ± 0.0011	0.9875 ± 0.0007	0.4627 ± 0.0003	0.9649 ± 0.0003
$\mathbf{z}_v > \mathbf{z}_i$	0.4084 ± 0.0010	0.9875 ± 0.0007	0.4627 ± 0.0002	0.9649 ± 0.0002
$\mathbf{z}_v < \mathbf{z}_i$	0.3995 ± 0.0013	0.9977 ± 0.0002	0.4474 ± 0.0007	0.9865 ± 0.0009

1522
 1523 Together, these findings align with biological intuition: accurately representing cellular identity
 1524 requires a high-capacity invariant subspace \mathbf{z}_i , reflecting the complexity of background transcrip-
 1525 tional programs, whereas a comparatively smaller variant subspace \mathbf{z}_v suffices to capture the sparse,
 1526 perturbation-specific effects.

1527
 1528 **Ablation on Contrastive Alignment.** We further ablated the alignment term by comparing
 1529 CDAG-VAE with and without the alignment loss ($\alpha = 0.05$ vs. $\alpha = 0$) under a fixed latent dimen-
 1530 sion ($\mathbf{z} = 105$). Results (Figure 12) consistently show that including the alignment term improves
 1531 performance across both single- and double-gene perturbation prediction.

1532
 1533 In particular, when $\alpha = 0$, the invariant block \mathbf{z}_i collapses, carrying little information (empirically
 1534 $KL_i \rightarrow 0$), and the effective latent capacity is dominated by the variant block \mathbf{z}_v . As a result, per-
 1535 formance under $\alpha = 0$ closely resembles that of capacity splits with $\mathbf{z}_v \geq \mathbf{z}_i$, where the model
 1536 effectively ignores the invariant subspace. In contrast, with $\alpha = 0.05$, the alignment signal en-
 1537 forces informativeness of \mathbf{z}_i , preventing leakage of perturbation-specific effects into the invariant
 1538 block. This leads to consistently better generalization, especially on out-of-distribution double-gene
 1539 conditions.

1540 Our results indicate that the contrastive alignment loss is important for sustaining the informativeness
 1541 of the invariant block and maintaining block disentanglement. Even under fixed total latent
 1542 capacity, models with the alignment loss consistently achieve higher accuracy, suggesting that align-
 1543 ment is a key component for reliable generalization in CDAG-VAE.

1544 Table 12: Single- and double-gene performance under contrastive alignment ablation.

Contrastive Alignment	Single-Gene Perturbation		Double-Gene Perturbation	
	RMSE	R^2	RMSE	R^2
\times	0.4083 ± 0.0011	0.9875 ± 0.0007	0.4626 ± 0.0002	0.9650 ± 0.0002
\checkmark	0.3995 ± 0.0013	0.9977 ± 0.0002	0.4474 ± 0.0007	0.9865 ± 0.0009

1553
 1554 **C.6 VALIDATING CONTRASTIVE DISENTANGLEMENT ON DIFFERENTIALLY EXPRESSED
 1555 GENES**

1556
 1557 **Metric Definitions and Empirical Observations** To more finely assess the model’s fidelity in
 1558 capturing biologically meaningful perturbation effects beyond aggregate statistics, we compute per-
 1559 formance metrics on two complementary feature sets for each perturbation condition:

1560
 1561 • **All genes:** measurements computed using the entire 5,000-dimensional gene expression
 1562 vectors, reflecting the global cellular state.

1563
 1564 • **DE genes:** measurements computed using the 20-dimensional sub-vectors corresponding
 1565 to the top 20 most differentially expressed genes.

1566
 1567 We make the following empirical observations:

- **In-distribution (single-gene).** The model achieves high accuracy on both feature sets. The R^2 scores for “DE genes” are nearly identical to the global “All genes” R^2 , while the RMSE on the DE subset is notably lower than the global average (Figure 12).
- **Out-of-distribution (double-gene).** While the global “All genes” R^2 remains consistently high (around ~ 0.98), the R^2 on the “DE genes” subset exhibits a mild degradation, with a fraction of perturbations showing scores in the 0.5–0.9 range. The DE-gene RMSE is typically lower than or comparable to the “All genes” RMSE, though a subset of double-gene conditions exhibits higher deviation in the DE subspace, reflecting the increased complexity of specific combinatorial interactions (Figure 11).

Interpretation via contrastive disentanglement. These patterns are broadly consistent with the intended disentanglement mechanism of cDAG-VAE.

Successful modeling of invariant background (\mathbf{z}_t). The persistently high R^2 on the 5,000-dimensional “All genes” vectors suggests that the contrastive alignment term effectively stabilizes *background cellular programs* across perturbations. Since the vast majority of genes exhibit relatively small perturbation effects and are primarily governed by such background programs, the model’s ability to reconstruct the global transcriptomic state—in both single- and double-gene settings—indicates that the invariant latent factors \mathbf{z}_t capture a robust, perturbation-stable representation rather than overfitting to individual conditions.

Causal uncertainty concentrated in the perturbation-responsive subspace (\mathbf{z}_v). By construction, our model is designed so that perturbation-responsive variation is represented in the variant latent block Z_v , while “DE genes” form a small, perturbation-enriched readout of this subspace. The fact that R^2 on DE genes degrades more noticeably than R^2_{All} under double-gene OOD prediction reflects the inherent difficulty of zero-shot combinatorial causal extrapolation, where novel, potentially non-additive interactions must be inferred from single-gene training data. At the same time, the observation that DE-gene RMSE typically remains low—despite reduced R^2_{DE} for a subset of double perturbations—suggests that the model often predicts the *magnitude* of key expression changes reasonably well, even when finer-grained variance patterns are harder to match in a zero-shot setting.

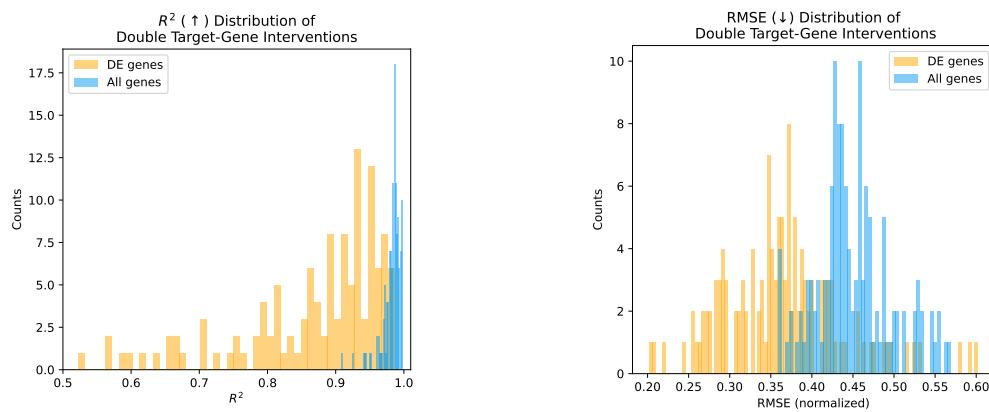


Figure 11: Results of double-gene perturbation on DE genes.

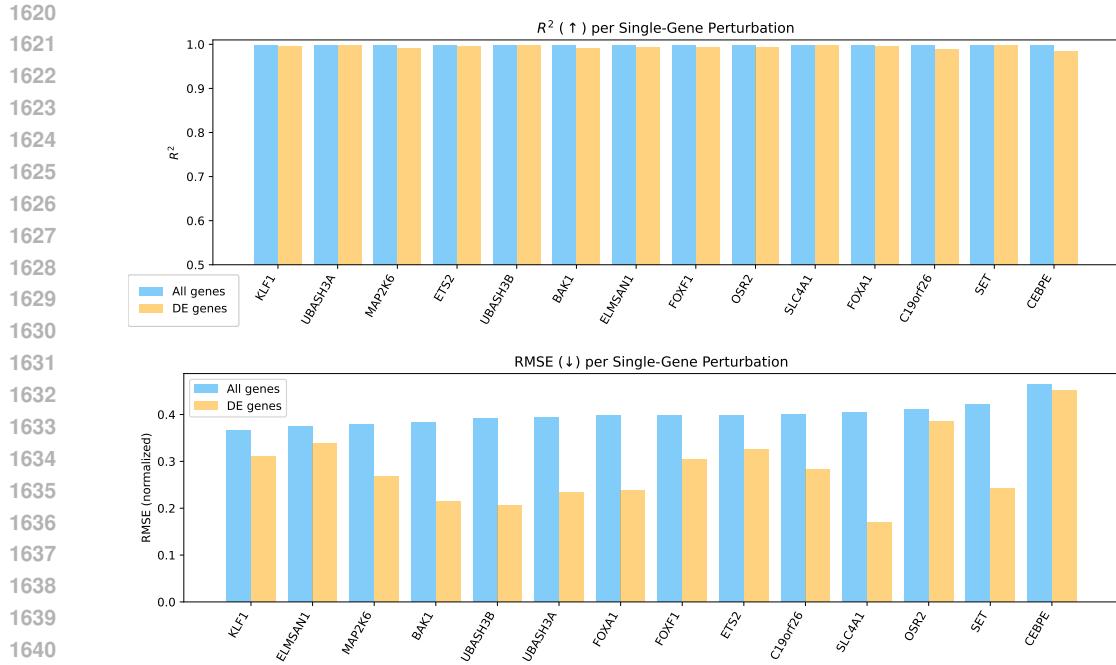


Figure 12: Results of single-gene perturbation on DE genes.

C.7 PERSPECTIVE ON LATENT CAUSAL MODEL FOR DOUBLE-GENE PERTURBATION

Recent benchmarking results (Ahlmann-Eltze et al., 2025) have brought renewed clarity to the structural characteristics of perturbation–effect prediction. On the Norman2019 dataset, the authors showed that even sophisticated architectures—including GEARS (Roohani et al., 2024) and several foundation-model variants—often fail to outperform a simple additive baseline when evaluated on pseudobulk expression responses to double perturbations. This outcome reflects an important property of the benchmark: for high-expression genes, the dominant component of the double-perturbation signal is well approximated by a linear superposition of single-gene log-fold changes, leaving limited opportunity for complex representation-heavy models to demonstrate gains under squared-error metrics.

Our work, however, differs fundamentally from this regression-centric setting. Rather than optimizing directly for pseudobulk reconstruction, we aim to learn *latent causal factors* that enable mechanism-level disentanglement and robust generalization to combinatorial interventions without any supervision on double perturbations. Nonetheless, the benchmark raises two questions that are highly pertinent to Causal Representation Learning (CRL): (i) under a strict OOD protocol in which *no* double-perturbation data are available during training, do classical linear baselines retain their apparent advantage? (ii) beyond explaining variance in high-expression pseudobulk profiles, can a structured latent model more faithfully recover the Average Treatment Effect (ATE) at the perturbation-label level, thereby distinguishing deterministic causal responses from stochastic single-cell noise?

A central distinction between our CRL approach and regression-based predictors lies in the underlying data-generating process (DGP) being modeled. Rather than mapping perturbations directly to high-dimensional gene expression vectors, our model assumes that observations arise from a set of low-dimensional latent causal variable z whose dynamics are modulated by interventions u and corrupted by biologically meaningful stochasticity n . In this formulation, z does not represent gene expression itself, but instead captures cellular programs, pathway activities, or regulatory modules that mediate the effect of perturbations. The observed expression x is treated as a nonlinear projection of these latent factors through the decoding mechanism of the VAE.

The noise term n plays an equally important conceptual role. It reflects the substantial cell-to-cell stochasticity inherent in single-cell transcriptomics, including transcriptional bursting, technical

1674 variation, and biologically unstructured fluctuations not explained by the regulatory graph. By ex-
 1675 plicitly modeling this DGP rather than collapsing the data into pseudobulk averages, our method
 1676 aims to separate deterministic causal responses from stochastic variation, enabling latent mecha-
 1677 nisms to be identifiable and supporting robust generalization to unseen combinatorial perturbations.
 1678

1679 **Feature Space** We evaluate model performance on two complementary gene sets to balance stan-
 1680 dard comparability with causal validity.

1681 **High-Expression Benchmark Subset.** Following the protocol of Ahlmann-Eltze et al. (2025), we
 1682 first compute metrics on the 1,000 most highly expressed genes in control cells. This subset rep-
 1683 presents a stable, high-signal-to-noise regime and serves as the standard benchmark for pseudobulk
 1684 perturbation prediction, specifically for comparing deep learning methods against linear baselines
 1685 like the additive model.

1686 **Genome-wide Expression Profile.** To validate the model’s capacity to capture the full regulatory
 1687 landscape, we focus on evaluating performance on the Genome-wide Expression Profile. This as-
 1688 sessment aligns directly with the core design objective of our cDAGVAE: to identify and disentangle
 1689 the latent background cellular programs that underpin biological processes. Crucially, these pro-
 1690 grams often manifest as pervasive but subtle signals—residing in low-abundance regimes or buried
 1691 within technical noise, that are systematically excluded by top-expression filters. Restricting evalua-
 1692 tion to high-expression genes would therefore risk measuring only the dominant perturbation effects
 1693 while overlooking these intricate background dynamics. Genome-wide evaluation is thus essential
 1694 to verify that the model has successfully recovered these weak yet fundamental cellular programs
 1695 across the full dynamic range of the transcriptome.

1696 **Evaluation Granularity** To provide a rigorous and biologically grounded assessment, we report
 1697 performance at two complementary levels of granularity: condition-level pseudobulk averages and
 1698 cell-level Heterogeneity.

1700 **Condition-level Pseudobulk Averages.** Following the benchmarking protocol of Ahlmann-Eltze
 1701 et al. (2025), we aggregate single-cell expression profiles within each perturbation into a pseudobulk
 1702 vector by averaging across cells. Metrics computed on these condition-level profiles (e.g. Delta
 1703 Pearson, L_2 , RMSE, R^2) quantify how well a model recovers the average transcriptional response
 1704 associated with each perturbation. This aggregation suppresses stochastic technical noise and cell-
 1705 to-cell variability, yielding a high-signal-to-noise summary that captures the dominant regulatory
 1706 signature. As such, pseudobulk-based evaluation serves as the standard reference for regression-
 1707 style perturbation-effect prediction and provides a direct point of comparison to linear baselines
 1708 such as the additive model.

1709 **Cell-level Heterogeneity Evaluation.** Unlike standard pseudobulk metrics, which deliberately av-
 1710 erage away cell-to-cell heterogeneity, our evaluation is designed to probe how well a model explains
 1711 the distribution of single-cell states under each perturbation. For every perturbation label u , the
 1712 model produces a predicted mean expression vector, which we treat as a deterministic summary
 1713 of $p_\theta(\mathbf{x} \mid \mathbf{u} = u)$. We then compare this predicted mean against the full ensemble of observed
 1714 single-cell profiles assigned to u , computing RMSE and R^2 at the single-cell level with respect to
 1715 the condition-mean baseline, and finally averaging these scores across held-out double-perturbation
 1716 conditions. In contrast to purely pseudobulk-based metrics, this *perturbation-conditioned single-
 1717 cell evaluation* directly measures how well the model reconciles biological noise with the structured
 1718 heterogeneity induced by different interventions.

1719 This perspective is especially important for our contrastive latent causal generative model, whose
 1720 primary goal is to decompose perturbation-driven heterogeneity rather than merely reproduce bulk-
 1721 like signatures. In cDAG-VAE, the invariant block \mathbf{z}_t is trained to capture shared background
 1722 cellular programs that persist across perturbations, while the variant block \mathbf{z}_v encodes perturbation-
 1723 responsive mechanisms that shift the distribution of single-cell states in a condition-specific manner.
 1724 Strong performance under the perturbation-conditioned single-cell metric therefore indicates that the
 1725 learned latent space has disentangled these two sources of variability: \mathbf{z}_t provides a stable scaffold
 1726 for global cellular state, and \mathbf{z}_v systematically explains how different perturbations reshape the
 1727 high-dimensional expression landscape, particularly in the DE-gene-enriched subspaces analyzed
 1728 in App. C.6. From a single-cell bioinformatics standpoint, this means that cDAG-VAE does not
 1729 merely fit average responses, but learns a coherent generative model of across-perturbation single-

1728
1729 cell heterogeneity, supporting downstream tasks such as mechanistic interpretation and zero-shot
1730 generalization to unseen combinatorial perturbations.

1731 Table 13: Supplementary robustness evaluation on Genome-wide expression profile.
1732

1733 1734 Method	1735 Condition-level			1736 Cell-level		
	1737 Prediction error (L_2)	1738 Pearson Delta	1739 RMSE	1740 R^2	1741 RMSE	1742 R^2
1743 Additive	2.5407 ± 0.0000	0.9076 ± 0.0000	0.0887 ± 0.0000	0.6431 ± 0.0000	0.4424 ± 0.0000	—
1744 GEARS	4.6797 ± 0.2620	0.4631 ± 0.0644	0.1514 ± 0.0086	0.9730 ± 0.0032	0.5861 ± 0.0031	—
1745 cDAGVAE	3.7238 ± 0.0012	0.6869 ± 0.0005	0.1285 ± 0.0015	0.9965 ± 0.0005	0.4494 ± 0.0008	0.9840 ± 0.0011

1737 **Note.** A dash (—) indicates that the model yields a negative R^2 , it performs worse than a trivial
1738 mean predictor. Exact magnitudes are omitted because they have no interpretable biological
1739 meaning in this setting.

1740 Table 14: Supplementary robustness evaluation on High-expression Genes.
1741

1742 1743 Method	1744 Condition-level			1745 Cell-level		
	1746 Prediction error (L_2)	1747 Pearson Delta	1748 RMSE	1749 R^2	1750 RMSE	1751 R^2
1752 Additive	2.4906 ± 0.0000	0.9101 ± 0.0000	0.0870 ± 0.0000	0.6470 ± 0.0000	0.4332 ± 0.0000	—
1753 GEARS	4.2649 ± 0.2044	0.5068 ± 0.0710	0.1381 ± 0.0065	0.9682 ± 0.0065	0.5746 ± 0.0018	—
1754 cDAGVAE	3.6491 ± 0.0010	0.6936 ± 0.0004	0.1259 ± 0.0013	0.9951 ± 0.0005	0.4411 ± 0.0007	0.9758 ± 0.0011

1750 Tables 13–14 report the performance of cDAG-VAE, the additive baseline, and GEARS on both the
1751 genome-wide expression profiles and the high-expression gene subset. Focusing on the deep learning
1752 models, cDAG-VAE achieves higher R^2 and lower RMSE than GEARS under our single-gene
1753 → double-gene OOD evaluation, both for the full transcriptome and for the high-expression subset.
1754 Within this strictly single-to-double OOD setting, these gains indicate that conditioning prediction
1755 on a learned causal latent representation of single-gene perturbations can more effectively support
1756 generalization to unseen double perturbations than directly learning a perturbation-to-expression
1757 mapping with the graph neural network baseline GEARS.

1758 In line with the report of Ahlmann-Eltze et al. (2025), the simple additive baseline remains highly
1759 competitive on condition-level pseudobulk metrics. In our experiments, it achieves the lowest L_2
1760 error and the highest Delta Pearson on pseudobulk profiles, especially on the High-Expression Gene
1761 subset on which the benchmark was originally defined. This behavior is unsurprising on Norman2019:
1762 for many gene pairs, the dominant component of the condition-level response is well
1763 approximated by a linear superposition of single-gene effects, which matches the inductive bias built
1764 into the additive model. By contrast, deep models such as GEARS and cDAG-VAE must recover
1765 this approximate linearity from data while also representing residual non-linear interactions and
1766 higher-order structure. Under purely average-effect metrics such as pseudobulk L_2 , this additional
1767 flexibility can manifest as a small performance gap relative to the hard-coded additive baseline, even
1768 when the deep models offer clear advantages at the single-cell and out-of-distribution evaluation
1769 levels.

1770 However, relying solely on condition-level error obscures an important distinction between linear
1771 baselines and causal generative models. Despite its strong L_2 and Delta Pearson performance, the
1772 additive model attains negative cell-level R^2 on Norman2019, similar to GEARS; on average, both
1773 methods offer little or no improvement over predicting each cell by its condition mean when eval-
1774 uated against the full single-cell population. In contrast, cDAG-VAE achieves substantially higher
1775 cell-wise R^2 (often close to 1.0), indicating that it explains a large fraction of cell-specific variance
1776 across cells while remaining highly competitive at the pseudobulk level. This pattern reflects a differ-
1777 ence in modeling objectives: in our setup, the additive model and GEARS are trained and evaluated
1778 primarily as regression estimators of the average conditional response $\mathbb{E}[x | u]$, whereas cDAGVAE
1779 is a generative causal model that explicitly targets the underlying conditional distribution $p(x | u)$ of
1780 single-cell expression given the perturbation condition u . By learning disentangled latent factors that
1781 encode both background cellular programs and perturbation-responsive mechanisms, cDAG-VAE
1782 can match linear baselines on condition-level metrics while more accurately capturing how double
1783 perturbations reshape the single-cell state distribution. For CRL, such single-cell-level fidelity is

1782 crucial for downstream tasks including mechanism interpretation, causal structure discovery, and
1783 robust OOD generalization.
1784

1785 D LARGE LANGUAGE MODEL USAGE 1786

1787 We disclose the use of large language models (LLMs) in the preparation of this manuscript. Their
1788 use was strictly limited to improving the clarity and style of the language, as well as assisting in
1789 formulating search queries for literature review. All core scientific contributions are exclusively
1790 human-generated, including the formulation of the research problem, the design of the methodol-
1791 ogy, theoretical proofs, experimental implementation, and analysis of results. LLMs were not used
1792 to generate scientific content such as methods, results, or arguments. All cited works were inde-
1793 pendently sourced, read, and verified by the authors. The authors carefully reviewed all LLM-assisted
1794 text and bear full responsibility for the accuracy and integrity of the manuscript. No confidential or
1795 unpublished data were shared with any LLM service.
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835