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ABSTRACT

Predicting cellular responses to single/combinatorial gene perturbations is a cen-
tral challenge in functional genomics. A critical limitation of current mod-
els is their inability, both theoretically and methodologically, to disentangle
perturbation-induced effects from the pervasive background cellular transcrip-
tional programs that remain invariant to perturbations but dominate observed gene
expression patterns. To address this, we propose a latent variable generative model
that explicitly partitions latent space into an variant subspace where a latent causal
model is employed to capture perturbations, and an invariant subspace capturing
unperturbed cellular programs. We establish a principled foundation for disen-
tangling these two subspaces, and identifying the latent causal model, by dif-
ferentiability analysis. We then translate our theoretical findings into a practical
method that more accurately predicts perturbation effects, supported by the theo-
retical guarantees. On both simulated and large-scale genetic perturbation bench-
marks, the proposed method achieves state-of-the-art accuracy in predicting cellu-
lar responses to unseen combinations, significantly outperforming existing meth-
ods. Crucially, by disentangling unperturbed cellular programs from perturbation-
induced effects, our method prevents the latter from being confounded or absorbed
into the dominant invariant patterns. This separation allows the true causal impact
of perturbations to be isolated and reliably estimated, thereby enabling accurate
prediction of unseen combinatorial gene perturbations at the single-cell level.

1 INTRODUCTION

Understanding the generative process that links genotype to cellular phenotype is a central challenge
in modern biology and medicine (Orgogozo et al., 2015). A key experimental strategy toward this
goal is systematic gene perturbation, where genes are perturbed and the resulting cellular pheno-
types are measured. The emergence of CRISPR-based perturbation technologies has made such
large-scale experiments feasible (Jinek et al., 2012; Gilbert et al., 2014; Dixit et al., 2016; Replogle
et al., 2020). However, despite their transformative power, these approaches remain prohibitively ex-
pensive, time-consuming, and sometimes ethically constrained, making exhaustive screening across
genes and perturbation combinations infeasible (Uddin et al., 2020; Caplan et al., 2015).

To overcome these experimental bottlenecks, recent studies have turned to machine learning, train-
ing models on observational and limited perturbation data to predict cellular outcomes under novel
perturbations (Lin & Wong, 2018; Castillo-Hair et al., 2024; Lotfollahi et al., 2023; Rood et al.,
2024; Szałata et al., 2024). Such models aim to generalize beyond available experiments, includ-
ing to complex multi-gene perturbations that have never been observed. However, this is inherently
difficult: it corresponds to prediction under distribution shift, where the test distribution (unseen per-
turbations) differs from the training distribution (observed perturbations). The challenge is magni-
fied in the combinatorial setting, as multi-gene perturbations can induce far more severe distribution
shifts than single-gene ones (Roohani et al., 2024).

Related works. One promising research direction to addressing distribution shift is to infer the
causal mechanisms underlying the data, as models are inherently capable of predicting outcomes un-
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der distribution shifts induced by interventions (e.g., gene perturbations)1 (Pearl, 2009; Schölkopf,
2022). Adopting this perspective, recent work has formulated single-cell perturbation prediction us-
ing latent causal generative models (Lachapelle et al., 2022; Zhang et al., 2023; Lopez et al., 2022;
de la Fuente et al., 2025), aiming to learn causal representations from observational and limited
perturbation data. These learned representations correspond to the underlying latent causal mecha-
nisms, an approach commonly referred to as causal representation learning (Schölkopf et al., 2021).
Though conceptually promising, a fundamental question concerns identifiability guarantees: can the
true latent causal mechanisms be uniquely recovered from observational and limited interventional
data, up to a simple transformation? Very recently, theoretical results have begun to address this
question (Lachapelle et al., 2022; Zhang et al., 2023), and building on this foundation, several meth-
ods have subsequently been proposed (Lopez et al., 2022; Zhang et al., 2023; de la Fuente et al.,
2025). Additional related works, including disentangling perturbation effects, identifiable causal
representations, and contrastive representation learning, are provided in App. A.

Motivations. However, current identifiability results generally assume access to such precious inter-
ventional data, in which all latent causal variables must have been perturbed (Liu et al., 2022; Varici
et al., 2025; Liu et al., 2024)2. Such interventional data are rarely obtainable in real cellular exper-
iments, as comprehensive perturbation of all genes is often prohibitively expensive; typically, only
a small subset of genes can be experimentally perturbed (Replogle et al., 2022; Reymond, 2015).
Consequently, a vast subspace of genes remains unperturbed. As a result, existing identifiability
theory, which typically assumes access to interventional data for all latent causal variables, may not
be directly applicable to real cellular datasets, and, in turn, methods built upon these theoretical re-
sults (Lopez et al., 2022; Zhang et al., 2023; de la Fuente et al., 2025) may also struggle to perform
effectively in practice, given the limited and partial interventional data typically available.

Contributions. To address this critical gap, this paper makes the following contributions. A New
Generative Model (§ 2). We introduce a novel latent variable model that explicitly partitions the
latent space into two components: a causal subspace, capturing the perturbable portion of the gene
space, and an invariant subspace, representing the unperturbed portion. Identifiability Guarantees
(§ 3). We derive sufficient conditions for the identifiability of the causal model within the causal
subspace, providing a key theoretical contribution that extends prior results (Lachapelle et al., 2022;
Zhang et al., 2023). A Practical Learning Framework (§ 4). We translate our theoretical insights into
a practical method, a general framework for learning both the latent causal variables in the causal
subspace and their causal structure from single-cell data. Extensive Empirical Validation (§ 5). We
conduct comprehensive experiments on single- and multi-gene perturbation benchmarks, showing
that the proposed method significantly outperforms existing methods in predicting responses to un-
seen combinations and recovers biologically meaningful latent factors.

2 PROBLEM SETUP: A NOVEL LATENT CAUSAL GENERATIVE MODEL

In single-cell perturbation prediction, interventional data are typically available only for a small
subset of genes. These data are generated through targeted gene perturbations followed by single-
cell transcriptomic profiling, as exemplified by Perturb-seq (Dixit et al., 2016) and its direct-capture
variants (Replogle et al., 2020). Exhaustively perturbing all genes is prohibitively expensive, neces-
sitating modeling approaches that can effectively leverage limited-perturbation data. In this section,
we formulate the problem using a latent causal generative modeling framework. Refer to App. B.1
for a summary of notation and a complete list of symbols used throughout the paper.

2.1 LATENT CAUSAL GENERATIVE MODELING UNDER LIMITED INTERVENTIONS

We now introduce a latent causal generative model, in which each cell is associated with an observed
expression profile x. These observed profiles are generated from an underlying latent space z,
which provides a compact representation of the cell’s internal state. In particular, z captures both

1In the scope of this work, perturbations can be viewed as interventions in the causal sense, we thus use
“perturbations” and “interventions” interchangeably throughout this paper.

2If some latent causal variables remain unperturbed, additional assumptions such as sparse graph struc-
tures (Lachapelle et al., 2022) are generally required, though often hard to justify in real cellular processes.
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background cellular transcriptional programs—stable regulatory and transcriptional patterns largely
unperturbed under experimental conditions—and perturbation-induced effects.

To model limited-perturbation scenarios, we split the latent space into two subspaces, as in Figure 1a:

• zι (perturbation-invariant block), supported on Zι ⊆ Rdι , represents the invariant sub-
space corresponding to background programs, which are typically difficult or costly to
perturb. Examples include donor genotype, stable chromatin context, and core regulatory
programs.

• zν (perturbation-responsive block), supported on Zν ⊆ Rdν , represents the variant sub-
space that is susceptible to perturbations, including features such as pathway activity, dose-
response effects, and compensatory programs. The variant latent subspace zν involves an
unknown causal structure, constrained to follow a directed acyclic graph (DAG).

To formalize perturbations on zν , we introduce a surrogate variable u ∈ U that identifies which
perturbation has been applied (e.g., a one-hot encoding). We do not require knowledge of the specific
intervention mechanism; it is sufficient to know that a perturbation has occurred. Each latent block
is associated with independent exogenous variables: nι for zι and nν,i for each coordinate of zν ,
capturing external sources of variation. Finally, all latent endogenous variables, zι and zν , are
combined through an unknown generative process to produce the observed expression profile x.

Without further assumptions, the latent variables zι and zν , and in particular the causal structure
among zν , cannot, in general, be identified solely from the observed variables x and u. To enable the
theoretical analysis that follows, we parameterize the proposed causal generative model as follows.

zι := λιι zι + nι, nι ∼ N
(
µι,diag βι

)
, (1)

zν := λνι(u) zι + λνν(u) zν + nν , nν ∼ N
(
µν(u),diag βν(u)

)
, (2)

x := g(z), (3)
where,

• nι ∈ Rdι and nν ∈ Rdν are latent exogenous variables, sampled fromN
(
µι,diag βι

)
with

mean µι and variance diag βι, N
(
µν(u),diag βν(u)

)
with mean µν(u) and variance

diag βν(u), respectively.
• The intra-block square matrices, i.e., λιι and λνν(u), are strictly upper triangular, while

the cross-block λνι(u), by construction, is consistent with a fixed acyclic orderzι ≺ zν .3

• In Eq. (3), z = (zι, zν) and g denotes an unknown nonlinear mapping from z to x.

2.2 THEORETICAL TARGET: IDENTIFIABILITY

Our aim is to establish identifiability for the proposed latent causal generative model, i.e., to de-
termine under which conditions the latent variables and the causal structure among them can be
uniquely recovered from observational variables x and u, up to a trivial transformation. Formally,
we introduce the definitions as follows.
Definition 2.1 (Block identifiability). Let S ⊆ {1, . . . , dι+dν} index a subset of latent coordinates
and zS ∈ ZS its subvector. The block zS is block-identifiable via a representation map f : X →
R|S| if the learned code ẑS = f(x) is an invertible reparameterization of zS depending on no other
latents. Formally, there exists a bijection h : ZS → R|S| with ẑS = h(zS) a.s.

Definition 2.2 (Component-wise identifiability). In the sense of Defn. 2.1, zS is component-wise
identifiable if h reduces to a per-coordinate affine transformation and permutation, i.e., there exist a
permutation P ∈ R|S|×|S|, diagonal D ≻ 0, and vector c ∈ R|S| such that ẑS = PDzS + c a.s.

3 THEORY: IDENTIFIABILITY OF THE PROPOSED LATENT CAUSAL MODEL

We now state sufficient conditions under which the latent factors in § 2 are identifiable. Our analysis
proceeds by (i) specifying mild structural and regularity assumptions on the latent SCM and the gen-
erative map g, (ii) defining a contrastive positive-pairing protocol aligned with limited interventions,

3Without loss of generality, we fix such an acyclic order across environments following Liu et al. (2022).
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...

...

(a) Generative model of single-cell perturbations. (b) Contrastive positive-pairing protocol.

Figure 1: Latent generative modeling. (a) Under perturbation identity u, the perturbation-responsive
factors zν are influenced by u through latent mechanisms and their associated exogenous noises n,
while the invariant block zι maintains unchanged. Together, the latent variables z := (zν , zι)
generate the observed x. (b) The invariant variables zι are shared between the perturbed state x and
its controlled counterpart x(u0), while the responsive components differ as zν and z

(u0)
ν , where u0

is a control setting for contrastive objective.

and (iii) proving that global maximizers of a joint likelihood-regularization objective recover zι up
to block reparameterization and zν up to per-coordinate indeterminacies.

3.1 STRUCTURAL ASSUMPTIONS ON THE GENERATIVE MODEL

Under the generative model in Equations (1) to (3), we state technical assumptions for tractable
theoretical analysis:
Assumption 3.1 (Anchored weight-variant). At the control u0, we have λνι(u0) = 0 and
λνν(u0) = 0, which we regard as the baseline anchor.

Assumption 3.2 (Diffeomorphic generative mapping). The generative map g : Z → X in Eq. (3)
is a diffeomorphism, i.e., a C1 bijection with a C1 inverse.

Assumption 3.3 (Perturbation richness). Fix a reference environment u0 ∈ U . For each j ∈ [dν ], let
λj(u) ∈ R|pa(j)| denote the vector of incoming coefficients of zν,j from its parents pa(j) ⊆ {zι, zν}
that precede j in the acyclic order. Write τj(u) := β−1

ν,j (u) and κj(u) := τj(u)µν,j(u) for the
Gaussian precision and natural mean of the noise of zν,j under environment u. We assume:

(a) There exists uj such that the set {λj(uj)− λj(u0) : uj ∈ U \ {u0}} spans R|pa(j)|.

(b) There exist u′
j ,u

′′
j ∈ U such that the difference vectors (κj(u′

j)− κj(u0), τj(u
′
j)− τj(u0))

and (κj(u
′′
j )− κj(u0), τj(u

′′
j )− τj(u0)) are linearly independent in R2.

3.2 CONTRASTIVE POSITIVE-PAIRING PROTOCOL

We formalize how a positive pair is generated under the DGP in § 2 (see Figure 1b). Fix an anchor
setting u0 ∈ U as in Asm. 3.1.4 For each anchor cell, we pair a sample drawn under a randomly se-
lected second perturbation setting u ∼ qu on U \{u0}. When referring to the anchored perturbation
setting u0, we denote the corresponding variables as z

(u0)
ν , z(u0)

ι , z(u0), and x(u0) to emphasize
their evaluation under u0. Otherwise, when variables are considered under a randomly selected
perturbation setting, we use the general notations introduced in § 2.
Assumption 3.4 (Perturbation excitation coverage). For each coordinate j ∈ [dν ], define the exci-
tation set

Uj :=
{
u ∈ U \ {u0} : λj(u) ̸= λj(u0) ∨ (κj(u), τj(u)) ̸= (κj(u0), τj(u0))

}
,

where λj(·), τj(·), κj(·) are as in Asm. 3.3. Assume the second perturbation setting for each positive
pair is drawn i.i.d. as u ∼ qu on U \ {u0} with qu(Uj) > 0 for all j ∈ [dν ].

4Any perturbation identity could serve as the anchor; w.l.o.g., we select u0 for notational clarity.
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Assumption 3.5 (Positive pairing protocol). Fix an anchor u0 ∈ U , and randomly sample u ∼
qu on U \ {u0}. For a sample x(u0) = g(z

(u0)
ι , z

(u0)
ν ) under the control state u0, define the

corresponding positive counterpart x = g(zι, zν) under perturbation u. Assume the latent variables
follow

z(u0)
ι = zι ∼ pϕ◦(zι), z(u0)

ν ∼ pϕ◦(zν | z(u0)
ι ,u0), zν ∼ pϕ◦(zν | zι,u),

where, pϕ◦ denotes the distribution generated by the latent SCM, with ϕ◦ specifying the complete
parameterization of the true data-generating process.

3.3 IDENTIFIABILITY RESULTS

Theorem 3.1 (Identifiability of the proposed latent causal generative model). Consider smooth in-
ference encoders f : X → Rdι+dν , decomposed as f(x) = (fι(x), fν(x)) with dim(fι) = dι and
dim(fν) = dν . Suppose Asms. 3.1 to 3.3 hold. Define the joint objective

Jobj(ϕ, f) := E(x,u)∼pϕ◦ [log pϕ(x | u)]︸ ︷︷ ︸
Likelihood

−α E(x(u0),x)

[
∥fι(x(u0))− fι(x)∥22

]
︸ ︷︷ ︸

Alignment across u

, (4)

where α > 0 is a scaling constant, (x(u0),x) are positive pairs following Asm. 3.5, and u ∼ qu as
in Asm. 3.4. Let (ϕ⋆, f⋆) be a global maximizer of Eq. (4). At the global maximizer, the optimization
is constrained so that for any zν ∈ Zν , the map zι 7→ f⋆ι ◦ g(z) is injective.

Then, for any two global maximizers (ϕ⋆, f⋆) and (ϕ̃⋆, f̃⋆) that realize the true marginal pϕ◦(x|u),
i.e., E[log pϕ̃⋆ ] = E[log pϕ⋆ ] = E[log pϕ◦ ], the corresponding encodings satisfy:

1. (Block-identifiability of zι). There exist bijections hι, h̃ι : Zι → Rdι such that f⋆ι (x) = hι(zι)

and f̃⋆ι (x) = h̃ι(zι) a.s., thus zι is block-identifiable through f⋆ in the sense of Defn. 2.1.

2. (Component-wise identifiability of zν). There exist permutation P ∈ Rdν×dν , diagonal D ≻ 0,
and c ∈ Rdν such that f⋆ν (x) = PDzν + c a.s.; likewise for f̃⋆ν (possibly with different
(P ,D, c)). Thus zν is component-wise identifiable through f⋆ in the sense of Defn. 2.2.

Proof. Proof can be found in App. B.2.
Remark 1. Thm. 3.1 guarantees recovery of zι up to an invertible block reparameterization and of
zν up to per-coordinate affine transformations by maximizing Eq. (4). In this context of single-cell
perturbation prediction, these guarantees ensure that the perturbation-responsive latent subspace zν
can be disentangled from the invariant latent subspace zι. As a result, the true causal effects of per-
turbations can be isolated from dominant background cellular transcriptional programs, preventing
confounding and allowing reliable estimation of perturbation-induced responses.

Remark 2. The identifiability guarantees in Thm. 3.1 crucially rely on the objective in Eq. (4), which
combines a likelihood term and an alignment term across u. The likelihood captures perturbation-
induced variation in zν , while the alignment ensures zι remains invariant. This combination is the
key theoretical motivation for our method, enabling disentanglement of perturbation effects from
background programs.

4 APPROACH: CONTRASTIVE DAG VARIATIONAL AUTOENCODER

In this section, we translate our theoretical findings into a practical framework for single-cell per-
turbation prediction. Building on the theoretical guarantee that the latent variables zι and zν can
be recovered under the objective in Eq. (4), we introduce the Contrastive DAG Variational Autoen-
coder (cDAG-VAE), which detail how this objective can be implemented in practice, including the
Likelihood term (Sec. 4.1) and the Alignment term (Sec. 4.2) in Eq. (4).

4.1 VARIATIONAL INFERENCE OF THE LIKELIHOOD TERM

Generally speaking, maximizing the likelihood term in Eq. (4) is intractable, as it involves inte-
gration in a high-dimensional space. Conventional approaches that resort to sum-product belief

5
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perturbation-responsive block
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Figure 2: Framework of the proposed CDAG-VAE. Perturbed cell expression profiles x are used to
learn the perturbation-responsive block zν , capturing the effects of perturbations indexed by u. In
parallel, unperturbed control samples x(u0) are used for contrastive alignment of the perturbation-
invariant block zι, ensuring that invariant cellular programs are disentangled from perturbation.

propagation or sampling algorithms often face with high computational cost (Bishop & Nasrabadi,
2006). To reduce the computational burden, we use a variational inference (Jordan et al., 1998; Blei
et al., 2017), as follows:

LELBO =Eqθ(zν ,zι|x,u)
[
log pϕ(x | zν , zι,u)

]
−DKL(qθ(zν , zι | x,u) ∥ pϕ(zν , zι | u)) . (5)

Here, pϕ(zν , zι | u) denotes the prior distribution arising from assumptions on the latent space,
qθ(zν , zι | x,u) denotes a variational posterior approximating the true posterior pϕ(zν , zι | x,u),
and DKL denotes the KL divergence. Specifically, based on our model assumptions in Eqs. 1 and 2,
the prior distribution can be factorized as follows:

pϕ(zν , zι | u) = pϕ(zν | u, zι) pϕ(zι), (6)

For the variational posterior, our goal is not only to recover zι up to an invertible block reparameter-
ization and zν up to permutation, as discussed in Thm. 3.1, but more importantly, to learn the causal
structure over zν , since it encodes perturbation information that is central to single-cell perturbation
prediction. Therefore, we consider the following structured variational posterior:

qθ(zν , zι | x,u) = qθ(zν | x,u) qθ(zι | x). (7)

We here employ variational inference with a structured posterior that factorizes as in Eq. 7. This
factorization preserves the internal structures of zν and zι while ignoring their mutual dependencies,
thereby balancing computational efficiency with the ability to capture meaningful latent factors.
Such a design also facilitates subsequent learning of causal structures and perturbation effects.

4.2 LEARNING UNPERTURBED EFFECT VIA THE ALIGNMENT TERM

The alignment term in the objective in Eq. (4), as formalized in Thm. 3.1, is a key component that
distinguishes this work from previous approaches. Although the likelihood term in Eq. 5 attempts
to capture the invariant block zι, our theoretical findings in Thm. 3.1 show that proper identifi-
cation of zι fundamentally requires the presence of the alignment term. In other words, without
this contrastive alignment across perturbation conditions, zι cannot be reliably disentangled from
the perturbation-responsive block zν . Essentially, the alignment term can theoretically recover zι
through the loss ∥fι(x(u0)) − fι(x)∥22, as defined in Eq. 4, which exploits the property that zι is
invariant across perturbation conditions u. This invariance can also be observed in Fig. 1a. Conse-
quently, the alignment term can be implemented by directly enforcing invariance on zι across u, as
follows:

Lcontrast(x,x
(u0)) = ∥zι − zι

(u0)∥22. (8)
We emphases that the alignment term, implemented by Eq. 8, is crucial, as it ensures that informa-
tion contained in zι is not inadvertently absorbed by zν . In other words, if zι cannot be properly

6
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identified, information pertaining to zι may leak into zν . In such a scenario, the causal relationships
among the components of zι cannot be reliably learned, since the invariant information is contami-
nated by the perturbation-responsive block. In our CDAG-VAE, we model the variational posteriors
qθ(zν | x,u) and qθ(zι | x) as multivariate normal distributions, and instantiate fν and fι by their
corresponding posterior means.

4.3 THE PROPOSED CONTRASTIVE DAG VARIATIONAL ANTOENCODER

Building on the variational inference framework and the alignment principle across perturbation
conditions u above, we define the overall objective function for CDAG-VAE as a combination of
the likelihood-based ELBO and the contrastive alignment loss, according to Thm. 3.1.

Lθ,ϕ = E(x,u)∼pϕ◦ (x|u)

[
∥x− x̂∥22 + βν LKL-v(x,u) + βι LKL-i(x) + αLcontrast(x,x

(u0))
]
. (9)

where x̂ denotes the reconstruction of x, LKL-v(x,u) = DKL(qθ(zν | x,u) ∥ pϕ(zν | u, zι)),
LKL-i(x) = DKL(qθ(zι | x) ∥ pϕ(zι)), α is the weighting hyperparameter motivated from Thm. 3.1,
and for each x, x(u0) is a paired observation randomly sampled from pϕ◦(x|u0)). We here introduce
βν , βι motivate by Higgins et al. (2017) to balance the contributions of the KL terms.

In summary, the overall objective in Eq. 9 balances multiple goals: the reconstruction term ensures
that the latent representations retain sufficient information from the original data, the KL term for
zν encourages encoding of perturbation-specific effects, the KL term for zι regulates the invariant
block, and the contrastive alignment term ensures that perturbation-invariant information is disentan-
gled from perturbation-specific variation. Together, these components allow CDAG-VAE to recover
meaningful latent factors while disentangling perturbation effects from invariant cellular programs.

5 EMPERICAL FINDINGS

Numerical Simulation. We first conduct simulations to verify our theoretical results under ideal-
ized assumptions. To this end, we generate synthetic data according to our latent causal generative
model in Eqs. 1- 3. More details can be found in App. C.2. This setup allows us to systematically
assess the recovery of latent subspaces and causal structures under controlled conditions. For eval-
uation, following Sorrenson et al. (2020); Khemakhem et al. (2020), we use the mean correlation
coefficient (MCC) to quantify component-wise recovery of zν . Specifically, MCC measures the cor-
relation between each learned component of zν and its corresponding ground-truth component, with
a value of 1 indicating perfect recovery. For block-wise evaluation of zι, we report the kernel regres-
sion R2, following Von Kügelgen et al. (2021), which captures the nonlinear relationship between
the learned block and its ground-truth counterpart. Values closer to 1 indicate better block-level
disentanglement.

Table 1: Results on simulation data.

Contrastive
Alignment

MCC R2 (nonlinear)

Var. zν
(identifiable)

Var. zν
(block-identifiable)

Inv. zι
(block-identifiable)

✗ 0.81±0.0306 0.93±0.0120 0.66±0.0281

✓ 0.86±0.0285 0.95±0.0020 0.97±0.0077

Table 1 shows that the contrastive align-
ment term substantially improves identifia-
bility. For the variant block zν , MCC in-
creases from 0.81 to 0.86 and block-wise R2

from 0.93 to 0.95, indicating more accurate
recovery of intervention-specific factors. The
effect is even more pronounced for the in-
variant block zι, whose R2 rises from 0.66
to 0.97, highlighting the crucial role of con-
trastive alignment in disentangling invariant programs from perturbation-induced effects. These
results confirm our theoretical claims: contrastive alignment enhances recovery of zι and prevents
its information from being absorbed into zν , thereby facilitating both accurate the component-wise
and block-identifiability guarantees in Thm. 3.1.

Real-world Perturbation For real-world perturbation data, we consider the large-scale Perturb-
seq dataset from (Norman et al., 2019), referred to as Norman2019. It comprises 105,528 cells
from an erythrocytic leukemia cell line (K562) subjected to CRISPR activation (Gilbert et al., 2014)
targeting 112 genes, resulting in 105 single-gene and 131 double-gene perturbations. The regulatory
effect on each target gene’s expression can be modeled as a intervention (Zhang et al., 2023). Each
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perturbation condition contains between 50 and 2,000 cells. Across all conditions, each cell is
represented as a 5,000-dimensional vector x, corresponding to the gene expression levels.

EXPERIMENTAL SETUP. We partition the Norman2019 dataset into training and testing splits as
follows. The training set consists of all unperturbed cells together with the 105 single-gene pertur-
bation datasets X1, . . . ,X105. For each single-gene dataset with more than 800 cells, we randomly
hold out 96 cells to form a single-gene test set, while the remaining cells are included in training.
The double-gene test set comprises the 112 datasets X106, . . . ,X217, which are entirely reserved for
evaluation and never used during training. This setup ensures that the model is trained on existing
perturbations, but is evaluated on both held-out single-gene cells and, more importantly, on unseen
combinatorial perturbations. In addition, for the differentially expressed (DE) gene–focused analy-
sis in App. C.6, we construct a complementary 20-dimensional version of the Norman2019 dataset,
where each cell is represented by its expression over the top 20 most DE genes.

A key architectural choice in CDAG-VAE is how capacity is allocated between the variant and in-
variant subspaces. We assign the invariant subspace substantially more latent dimensions than the
variant subspace, reflecting its role in modeling complex background programs 5. To test sensitivity,
we vary the total latent dimension across {10, 35, 70, 105}, scaling both subspaces proportionally,
and evaluate the effect on reconstruction fidelity and disentanglement. We benchmark CDAG-VAE
against three representative baselines, Discrepancy-VAE (Zhang et al., 2023), SENA-discrepancy-
VAE (SENA) (de la Fuente et al., 2025), sVAE+ (Lopez et al., 2022), SAMS-VAE (Bereket &
Karaletsos, 2023) reporting results averaged over five random seeds for each model. We also im-
plement a variant of the proposed CDAG-VAE, namely DAG-VAE, which excludes the contrastive
alignment term. All results correspond to the final trained model, with extended evaluations and
ablation studies provided in App. C.5.

SINGLE-GENE PERTURBATION. To evaluate the generative capacity of our model on perturba-
tion types, we focus on the 14 single-gene conditions with more than 800 available cells. For each
such condition, we generate 96 synthetic cells from the learned model and compare them against 96
held-out real cells that were not used during training. Evaluation is conducted using R2 6 across all
genes. Our model demonstrates high fidelity, with an average R2 of 0.99 across the 14 conditions.
This result confirms that the proposed latent-variable formulation can faithfully reproduce cellular
responses for known perturbations, even on held-out samples not seen during training. Comple-
menting the R2 results, we further report the root mean squared error (RMSE), which quantifies
absolute deviations in predicted expression levels. Consistently low RMSE values demonstrate that
CDAG-VAE not only explains variance but also faithfully captures absolute gene expression mag-
nitudes, an essential requirement for biological interpretability. Intriguingly, when we developed a
CDAG-VAE variant incorporating an MMD loss to explicitly model higher-order statistics such as
variance and covariance, its RMSE slightly increased compared to our original model, while still
comprehensively outperforming all baselines. This suggests a potential trade-off between achieving
the lowest error in mean expression and faithfully capturing the full distributional complexity of
cellular populations. See App. C.5 for more experimental results for single-gene perturbations.

10 35 75 105
dim(z)

0.96

0.97

0.98

0.99

R
2

Double-gene perturbation cDAG-VAE
DAG-VAE
Discrepancy-VAE
SENA
sVAE+
SAMS-VAE

10 35 75 105
0.5

0.7

0.9

10 35 75 105
0.92

0.93

0.94

Figure 3: R2 on double-gene perturbation

DOUBLE-GENE PERTURBATION. Building upon
single-gene perturbations, we next subjected our model
to a far more stringent test: out-of-distribution general-
ization to 112 unseen double-gene perturbations. This
task constitutes a true zero-shot prediction challenge,
as no cells from these combinatorial interventions were
seen during training. To evaluate performance, we
again compared the population-average expression pro-
file of generated cells against that of the held-out real
cells. Despite this challenge, our model achieves strong
performance, with R2 of 0.98 across all measured
genes, as shown in Figure 3. These results indicate
that the model successfully composes knowledge from

5See App. C.5 for an extended ablation study on the effect of allocating latent capacity between zν and zι.
6On real data, R2 is computed at the population-average level: we compare the mean predicted expression

per perturbation to the mean observed expression of the corresponding cells. In simulations, R2 is computed
against the ground truth (cell-wise or after optimal nonlinear alignment). See App. B.4 for details.
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Table 2: RMSE on Double-gene perturbations prediction.

Method Latent dimension
10 35 75 105

Discrepancy-VAE (Zhang et al., 2023) 0.6084±0.0045 0.6037±0.0025 0.6075±0.0072 0.6082±0.0045

SENA (de la Fuente et al., 2025) 0.8573±0.0205 0.8514±0.0248 0.8507±0.0396 0.8483±0.0248

sVAE+ (Lopez et al., 2022) 0.5663±0.0009 0.5667±0.0008 0.5665±0.0011 0.5664±0.0012

SAMS-VAE (Bereket & Karaletsos, 2023) 0.4605±0.0020 0.4631±0.0024 0.4632±0.0017 0.4629±0.0014

DAG-VAE (Ours) 0.4557±0.0005 0.4563±0.0005 0.4577±0.0005 0.4623±0.0041

cDAG-VAE (Ours) 0.4493±0.0019 0.4494±0.0008 0.4489±0.0009 0.4474±0.0007

single-gene interventions to predict the transcriptional consequences of unseen combinatorial
perturbations, highlighting its ability to capture causal structure rather than merely memorizing
training distributions. Complementing these results, we also evaluate the RMSE to quantify
absolute prediction accuracy under out-of-distribution conditions, as shown in Table 2. Consistently
low RMSE values indicate that CDAG-VAE not only generalizes the relative variance structure
captured by R2 but also preserves absolute gene-expression magnitudes in unseen double-gene
perturbations. This robustness underscores the model’s ability to extrapolate causal effects
beyond the training distribution. Beyond VAE-based baselines, we also compare CDAG-VAE
to non-generative predictors: a classical additive linear model and the GEARS architecture for
combinatorial perturbation prediction. As detailed in App. C.7, we show a perspective on latent
causal model for double-gene perturbation.

DUSP 9

TP73

CDKN1A

SNAI1

JUN

TGFBR2

(a) Learned causal structure (zν ). (b) Perturbation-invariant representation (zι).

Figure 4: Illustration of the learned latent space. (a) The DAG structure over the variant subspace
zν . (b) Two-dimensional visualization of the estimated invariant subspace zι.

STRUCTURE LEARNING. Following (Zhang et al., 2023), we evaluated the DAG structure, which
corresponds to a learned coarse-grained gene regulatory network between the learned programs
of the target genes by hard assignment via maximal intervention effect, obtained by the pro-
posed CDAG-VAE. The DAG Fig. 4a demonstrates high biological fidelity by recapitulating
key known regulatory interactions. These include the TGFBR2→SNAI1 axis essential for ep-
ithelial–mesenchymal transition (EMT) (Vincent et al., 2009; Fan et al., 2025), the canonical
TP73→CDKN1A tumor suppressor pathway governing cell-cycle arrest (Schmidt et al., 2021), and
the DUSP9-mediated inhibition of JUN, a critical negative feedback mechanism in MAPK signal-
ing (Emanuelli et al., 2008). This recovery of established biological mechanisms validates the utility
of our approach for causal discovery from single-cell data. Full mechanistic notes for all program-
level edges are provided in App. C.3.

UNPERTURBED LATENT SPACE. For the invariant block zι, we systematically evaluated whether
its representation remains stable across perturbations. by examining all single-gene conditions in the
test set. As shown in Fig. 4b, a t-SNE projections (Maaten & Hinton, 2008) for four representative
perturbations, where cells from distinct perturbations remain intermixed rather than forming separate
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clusters. This indicates that perturbation identity does not explain variation in the invariant block,
and demonstrates that zι captures background cellular programs that generalize beyond training
conditions. See App. C.4 for more details.

6 CONCLUSION.

In this work, we introduce CDAG-VAE, a contrastive variational framework that decomposes
single-cell variation into perturbation-responsive (variant) factors and invariant background pro-
grams. Under the assumptions stated in this work, we provide block-identifiability guarantees for
the variant and invariant components and further show that the variant subspace itself is identifi-
able, thereby offering theoretical support for reliable causal discovery under sparse interventions.
Empirically, on synthetic data and large-scale single-cell perturbation benchmarks, CDAG-VAE re-
covers biologically interpretable programs and consistently improves out-of-distribution prediction
on unseen double-gene combinations over strong baselines. Together, these results establish a the-
oretically grounded and empirically validated route toward data-efficient in-silico prioritization of
combinatorial interventions.
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Ethics Statement. We confirm that this study complies with the ethical standards of ICLR, with
no involvement of private or sensitive information.

Reproducibility statement. We have taken extensive measures to ensure the reproducibility of our
work. Appendix C.1 presents the pseudocode of our method, while Appendix C.2 describes the data
generation procedure for simulation experiments along with the corresponding training setup and
hyperparameter configurations. For experiments on real datasets, detailed hyperparameter choices
are included in Appendix C.5.
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Identifying Unperturbed Cellular Programs Enables
Accurate Single-Cell Perturbation Prediction

Appendices

CONTENTS

We organize the Appendix as follows.

• In App. A, we provide additional related work.
• In App. B, we provide the complete proofs of the theoretical results presented in the main

body, together with their extensions and technical lemmas.
– App. B.1: Notation.
– App. B.2: Proof of Identifiability of the proposed latent causal generative model.
– App. B.3: Derivation of the Evidence Lower Bound.
– App. B.4: Coefficient of Determination.

• In App. C we provide supplementary materials for experiments.
– App. C.1: Forward and Training Procedure of CDAG-VAE.
– App. C.2: Experiment with synthetic data.
– App. C.3: Additional results and implementation details for structure learning.
– App. C.4: Additional results and visualization details for unperturbed latent space.
– App. C.5: Extended Experiments and Additional Results on Real Data.
– App. C.6: Validating Contrastive Disentanglement on Differentially Expressed Genes.
– App. C.7:Perspective on Latent Causal Model for Double-Gene Perturbation.

• In App. D, we provide Large Language Model Usage Statement.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A RELATED WORK

Disentangling single-cell perturbation effects. A central challenge in single-cell perturbation
modeling is to separate intervention effects from intrinsic cellular variability. Deep generative ap-
proaches have shown strong performance on this task. scGen (Lotfollahi et al., 2019) models per-
turbations as additive shifts in a latent space, while CPA (Lotfollahi et al., 2023) factorizes each cell
into basal state and perturbation effect. chemCPA (Hetzel et al., 2022) extends CPA with chemi-
cal structure embeddings and dosage information, enabling zero-shot predictions for unseen com-
pounds. Other methods incorporate biological priors or contrastive objectives: GEARS (Roohani
et al., 2024) uses gene-gene interaction graphs for improved generalization across perturbation com-
binations, and contrastive VAEs have been applied in optical pooled screening to disentangle stable
identity from perturbation-driven variation (Wang et al., 2023). Despite empirical successes, most
of these models treat disentanglement statistically rather than causally, which limits interpretabil-
ity. Recent work has incorporated sparsity into latent-variable models to encourage identifiable and
interpretable representations. CausCell (Gao et al., 2025b) enables counterfactual generation via
SCM-guided diffusion, but critically depends on a predefined causal graph, limiting its applica-
bility when causal structures are unknown or hard to specify. sVAE+ (Lopez et al., 2022), SAMS-
VAE (Bereket & Karaletsos, 2023), scShift (Dong et al., 2024) impose sparse structure or mechanism
shifts in the latent space to model perturbation-induced variation, scShift learns flat latent embed-
dings and performs causal discovery only post hoc, without an end-to-end structural causal model for
composing unseen combinatorial perturbations. Recent advances such as discrepancy-VAE (Zhang
et al., 2023), and its interpretable variant (de la Fuente et al., 2025) align latent-variable models with
identifiable causal semantics, pointing toward representations that are both intervention-sensitive
and explanatory. Building on these advances, our approach moves beyond purely statistical factor-
ization, ensuring that the learned representations reflect genuine causal effects of perturbations.

Identifiable causal representations. A key aim in modeling complex systems is to learn low-
dimensional latent variables z from high-dimensional data x that match the true generative factors
(independent components) (Hyvärinen et al., 2001). Nonlinear ICA showed that such components
are not identifiable from i.i.d. data without extra assumptions (Hyvärinen & Pajunen, 1999). Iden-
tifiable variants address this by introducing an auxiliary variable u so that latent factors {zi}pi=1 are
conditionally independent given u (Hyvarinen & Morioka, 2016; 2017). The iVAE framework (Khe-
makhem et al., 2020), built on VAEs (Kingma et al., 2013; Rezende et al., 2014), proves identifia-
bility of both z and p(x | z) under mild conditions. Recent approaches impose structure in latent
space: DAG-based models enforce acyclicity (Lippe et al., 2022; Liu et al., 2022; 2024; Ahuja
et al., 2023), while factorized designs split latent variables into invariant, intervention-specific, and
interaction parts (Von Kügelgen et al., 2021; Kong et al., 2022; Gao et al., 2025a). While prior meth-
ods establish identifiability via auxiliary conditioning or broad structural constraints, our model ties
perturbations directly to latent mechanisms. This design moves beyond heuristic augmentations or
globally factorized latents, making our framework specifically tailored to single-cell perturbation.

Contrastive representation learning. Contrastive multi-view learning learns invariances across
views or modalities (e.g., SimCLR, BYOL, CLIP-style training) but typically relies on heuristic
augmentations whose invariants need not align with causal structure (Chen et al., 2020; Grill et al.,
2020; Radford et al., 2021; Cai et al., 2024; 2025; Tschannen et al., 2020; Von Kügelgen et al., 2021).
Aliee et al. (2023) learn conditionally invariant representations by leveraging variability across ob-
servational environments (patients, batches, platforms) to suppress domain-specific artefacts while
preserving biological signal. In single-cell analysis, Weinberger et al. (2023) contrast background
and target datasets—extending to multi-omics—to isolate salient structure, but provide no identi-
fiability guarantees. For perturbation screens, supervised contrastive VAEs use guide labels with
HSIC to isolate perturbation effects from background heterogeneity (Tu et al., 2024). Concurrently,
Mao et al. (2024) posit a three-way factorization (covariate, treatment, interaction) and promote
independence via structural constraints and adversarial training; while principled, this fixed design
may underfit non-classical responses and its identifiability hinges on stringent experimental designs.
Unlike contrastive or domain-invariant models, we obtain block identifiability for the perturbation-
invariant block and component-wise identifiability for the perturbation-responsive block under a
weight-variant latent SCM, thereby performing CRL in the latent space and recovering the latent
causal graph among responsive variables.
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B PROOFS AND TECHNICAL DETAILS

B.1 NOTATION

Random vectors are denoted by bold lowercase letters (e.g., a), with their realizations written as bold
symbols (e.g., a). Matrix-valued random variables are denoted by bold uppercase letters (e.g., A),
with realizations A. Scalar random variables are denoted by serif letters (e.g., a), with realizations
written as plain letters (e.g., a). A complete list of the notations employed throughout this paper is
provided below:

Table 3: Complete notation used in §2–4.

Spaces

X ⊆ Rdx Gene expression space (observations).
U Space of perturbation identities/environments (e.g., one-hot).
Zι ⊆ Rdι Invariant latent subspace.
Zν ⊆ Rdν Variant/perturbation-responsive latent subspace.
Z = Zι ×Zν Full latent space; dz = dι + dν .
Nι ⊆ Rdι , Nν ⊆ Rdν Supports of exogenous noises for zι and zν .

Random variables and their realizations

x(u0) ∈ X Control/anchor expression under u0; realization x(u0).
x ∈ X Perturbed expression under u ̸= u0; realization x.
zι ∈ Zι Invariant latent variables; realization zι.
zν ∈ Zν Variant latent variables; realization zν .
z = (zι, zν) ∈ Z All latent variables; realization z = (zι, zν).
z
(u0)
ν , zν Variant latents under control u0 and perturbation u (realizations

z
(u0)
ν , zν).

z̃ν Variant latents of the paired sample in contrastive protocol (real-
ization z̃ν).

zν,i i-th coordinate of zν (realization zν,i; similarly z̃ν,i for z̃ν).
nι ∈ Nι, nν ∈ Nν Exogenous noises; realizations nι, nν .

Maps and mechanisms

g : Z→X Generative map producing x from z; assumed diffeomorphic.
gz : U ×Nν→Zν Abstract latent causal mechanism for zν .
f = (fι, fν) : X →Rdι×Rdν Inference encoders / learned codes (realizations f evaluated at x).

Latent SCM parameters (weight-variant)

λιι, λνι(u), λνν(u) Block weight matrices (strictly upper triangular; order zι ≺ zν).
Realizations Λ··(u).

µι,βι; µν(u),βν(u) Gaussian noise means and variances for nι, nν (environment-
dependent for ν). Realizations m·, b·.

τj(u) = β−1
ν,j (u)

κj(u) = τj(u)µν,j(u)

Precision and natural mean for the j-th ν-noise (used in rich-
ness/coverage assumptions).

Objectives and losses

LELBO Evidence lower bound.
Lcontrast Contrastive alignment loss on fι(x(u0)) and fι(x).
Jobj Joint objective likelihood minus alignment term.
Lθ,ϕ Total loss function combining all objectives.
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B.2 PROOF OF THM. 3.1

Before proving, we first restate the theorem for clarity:

Theorem 3.1 (Identifiability of the proposed latent causal generative model). Consider smooth in-
ference encoders f : X → Rdι+dν , decomposed as f(x) = (fι(x), fν(x)) with dim(fι) = dι and
dim(fν) = dν . Suppose Asms. 3.1 to 3.3 hold. Define the joint objective

Jobj(ϕ, f) := E(x,u)∼pϕ◦ [log pϕ(x | u)]︸ ︷︷ ︸
Likelihood

−α E(x(u0),x)

[
∥fι(x(u0))− fι(x)∥22

]
︸ ︷︷ ︸

Alignment across u

, (4)

where α > 0 is a scaling constant, (x(u0),x) are positive pairs following Asm. 3.5, and u ∼ qu as
in Asm. 3.4. Let (ϕ⋆, f⋆) be a global maximizer of Eq. (4). At the global maximizer, the optimization
is constrained so that for any zν ∈ Zν , the map zι 7→ f⋆ι ◦ g(z) is injective.

Then, for any two global maximizers (ϕ⋆, f⋆) and (ϕ̃⋆, f̃⋆) that realize the true marginal pϕ◦(x|u),
i.e., E[log pϕ̃⋆ ] = E[log pϕ⋆ ] = E[log pϕ◦ ], the corresponding encodings satisfy:

1. (Block-identifiability of zι). There exist bijections hι, h̃ι : Zι → Rdι such that f⋆ι (x) = hι(zι)

and f̃⋆ι (x) = h̃ι(zι) a.s., thus zι is block-identifiable through f⋆ in the sense of Defn. 2.1.

2. (Component-wise identifiability of zν). There exist permutation P ∈ Rdν×dν , diagonal D ≻ 0,
and c ∈ Rdν such that f⋆ν (x) = PDzν + c a.s.; likewise for f̃⋆ν (possibly with different
(P ,D, c)). Thus zν is component-wise identifiable through f⋆ in the sense of Defn. 2.2.

Proof. We first decompose the learning objective into two terms:

Jobj(ϕ, f) := E(x,u)[log pϕ(x|u)]︸ ︷︷ ︸
Term I

−α E(x(u0),x)

[
∥fι(x(u0))− fι(x)∥22

]
︸ ︷︷ ︸

Term II

, α > 0, (10)

Now, we construct the proof in the following two steps:

Step 1 (zι is block-identifiable). Term I depends only on ϕ, not on a specific f . At any
likelihood-optimal ϕ realizing pϕ◦(x|u), we may analyze encoders via the true diffeomorphism
g from Asm. 3.2. Set

h := f ◦ g : Z → Rdι+dν .

Since the true generative mapping g is diffeomorphic and the inference encoder f is smooth, we
have h is C1 with respect to the latent measure.

(a) The infimum of Term II is 0 and is attained at a global maximizer. By Asm. 3.5, positive pairs
satisfy z

(u0)
ι = zι a.s. Consider encoders whose invariant part depends only on the invariant latents,

i.e., choose hι(z) = ψ(zι) with some measurable ψ, and let hν be arbitrary. Then for any positive
pair, ∥hι(z(u0)) − hι(z)∥2 = ∥ψ(z(u0)

ι ) − ψ(zι)∥2 = 0 a.s., so the infimum of Term II is 0 and
is achieved by such h. Since g is invertible (onto its image), there exists an encoder f = h ◦ g−1

realizing this h at the data level.

Moreover, Term I depends only on ϕ (not on the choice of f ), so among all pairs (ϕ, f) that realize
pϕ◦(x | u), the objective is maximized by choosing f that attains the infimum of Term II. Hence
any global maximizer (ϕ⋆, f⋆) must satisfy

E
[∥∥f⋆ι (x(u0))− f⋆ι (x)

∥∥2
2

]
= 0 =⇒ f⋆ι (x

(u0)) = f⋆ι (x) a.s. (11)

(b) Invariance along excited directions forces dependence only on zι. Write h⋆ = f⋆◦g = (h⋆ι , h
⋆
ν),

where h⋆ι := f⋆ι ◦ g and h⋆ν := f⋆ν ◦ g. From Eq. (11),

h⋆ι (zι, z
(u0)
ν ) = h⋆ι (zι, zν) a.s. (12)
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By Asms. 3.4 and 3.5, for each j ∈ [dν ] there is a set Uj ⊆ U \ {u0} with qu(Uj) > 0 such that
either the incoming weights λj(u) change or the univariate noise natural parameters (κj(u), τj(u))
change relative to u0. Under the acyclic order, the scalar equation for node j reads

zν,j = λj(u)
⊤zpa(j) + nν,j , nν,j ∼ N

(
µν,j(u), βν,j(u)

)
,

hence, conditional on zpa(j) and u,

zν,j | zpa(j),u ∼ N
(
mj(u; zpa(j)), τj(u)

−1
)
, mj(u; zpa(j)) := λj(u)

⊤zpa(j)+κj(u)/τj(u),

where τj(u) = β−1
ν,j (u) and κj(u) = τj(u)µν,j(u).

Fix any latent realization (z
(u0)
ι , z

(u0)
ν ) and draw u ∼ qu conditioned on u ∈ Uj , with Asm. 3.4

ensuring qu(Uj) > 0. Then one of the following holds:

• Noise parameters change: If (κj(u), τj(u)) ̸= (κj(u0), τj(u0)), the two univariate Gaussians
for zν,j and z(u0)

ν,j (given the same parents) have different mean and/or variance. Since they are

continuous and sampled independently in the positive-pair protocol, P
(
zν,j = z

(u0)
ν,j | zpa(j)

)
= 0

(by non-degenerate Gaussian), hence P
(
zν,j ̸= z

(u0)
ν,j

)
= 1.

• Weights change: If λj(u) ̸= λj(u0), then mj(u; zpa(j)) − mj(u0; zpa(j)) =
(
λj(u) −

λj(u0)
)⊤
zpa(j). Since zpa(j) has a non-degenerate Gaussian distribution, this difference is

nonzero with positive probability, making the two conditionals distinct; again, by continuity and
independent sampling across the pair, P

(
zν,j = z

(u0)
ν,j

)
= 0, hence P

(
zν,j ̸= z

(u0)
ν,j

)
= 1.

In both cases, for each j there exist (indeed, with positive probability under qu there are) environ-
ments u such that

zι = z(u0)
ι and zν,j ̸= z

(u0)
ν,j a.s. (13)

Together with Eq. (12), this implies that for fixed zι the map zν 7→ h⋆ι (zι, zν) is almost surely
constant in the j-th coordinate. Since this holds for every j ∈ [dν ], h⋆ι is (a.s.) independent of zν ,
so there exists a measurable ψ : Zι → Rdι with

h⋆ι (zι, zν) = ψ(zι) a.s.

By the standing regularity at the global maximizer, for any fixed zν the map zι 7→ f⋆ι (zι, zν)
is injective and C1, hence ψ is injective and C1 on Zι. Consequently, there exists a measurable
bijection T : ψ(Zι)→ Rdι , and defining hι := T ◦ ψ yields

f⋆ι (x) = hι(zι) a.s.

Therefore zι is block-identifiable from f⋆ι (x) in the sense of Defn. 2.1.

Step 2 (zν identifiable with zι “observed”). From Step 1 we may treat zι as observed up to a
bijection. The responsive block obeys the latent structural equations

zν = λνι(u) zι + λνν(u) zν + nν , nν ∼ N
(
µν(u),diagβν(u)

)
, (14)

with the anchor λνι(u0) = 0 and λνν(u0) = 0 (Asm. 3.1). Hence

p(zν | zι,u) ∝ exp
{
− 1

2 z
⊤
ν Γ(u) zν + ρ(u, zι)

⊤zν

}
,

an exponential family with sufficient statistics {zν , zνz⊤ν } and natural parameters

Γ(u) =
(
I − λνν(u)

)⊤
diag

(
τ (u)

) (
I − λνν(u)

)
, τ (u) := β−1

ν (u),

ρ(u, zι) =
(
I − λνν(u)

)⊤
diag

(
τ (u)

) (
µν(u) + λνι(u)zι

)
.

Let (ϕ⋆, f⋆) and (ϕ̃⋆, f̃⋆) be two global maximizers of the joint objective. Because both fit the
same p(x | u) and the decoders are diffeomorphisms, their induced conditionals p(ẑν | zι,u) and
p(z̃ν | zι,u) must coincide with the family above up to a change of variables. By the standard first
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step in the proof of Thm. 1 of Liu et al. (2022) (matching the quadratic and linear coefficients across
environments), there exist an invertible constant matrix A ∈ Rdν×dν and vector b ∈ Rdν , both
independent of (zι,u), such that

ẑν = A z̃ν + b a.s. (15)

(a) Anchor u0 pins down mixing. At control u0, Asm. 3.1 gives λνι = λνν = 0, so Γ(u0) =
diag

(
τ (u0)

)
is diagonal and ρ(u0, zι) = diag

(
τ (u0)

)
µν(u0) is zι-independent. Applying the

change of variables z̃ν 7→ ẑν = Az̃ν + b yields

diag
(
τ (u0)

)
= A⊤ Γ̂(u0)A,

with Γ̂(u0) the (diagonal, positive-definite) precision under the z̃ν-coding. From A⊤Γ̂(u0)A being
diagonal and positive-definite, it follows that A must be a monomial matrix, i.e., a scaled permuta-
tion:

A = P D, P permutation, D ≻ 0 diagonal. (16)

(b) Perturbation richness rules out residual mixing. By Asm. 3.3, for each node j ∈ [dν ]: (i) dif-
ferences of incoming weights span at each node j, which produce independent off-diagonal patterns
in Γ(u) as u varies, at least between uj and u0; and (ii) for each node j, there exist u′

j ,u
′′
j such

that (κj(u′
j) − κj(u0), τj(u

′
j) − τj(u0)) and (κj(u

′′
j ) − κj(u0), τj(u

′′
j ) − τj(u0)) are linearly

independent in R2, giving two independent directions of variation in the diagonal part.

Matching transformed precisions across u ∈ {u0,uj ,u
′
j ,u

′′
j } with Eq. (16) shows that no addi-

tional mixing beyond PD is compatible with all constraints; in particular, A cannot depend on u or
zι and remains PD. This mirrors the Step III argument of the proof of Thm 1 in Liu et al. (2022).

(c) Fixing the shift. With A = PD fixed, matching the linear terms ρ(u, zι) across at least two
distinct environments determines a constant shift c such that

ẑν = PD z̃ν + c a.s.

Taking z̃ν ≡ zν yields
f⋆ν (x) = PD zν + c a.s.,

which is precisely component-wise identifiability of zν in the sense of Defn. 2.2.

Therefore, the proof concludes.

B.3 DERIVATION OF THE EVIDENCE LOWER BOUND

In this appendix, we provide a general derivation of the Evidence Lower Bound (ELBO) for our
generative model, valid for any intervention vector u.

Generative model. For an observation x under intervention u, the generative model factorizes as:

pϕ(x, zν , zι | u) = pϕ(x | zν , zι) pϕ(zν | u, zι) pϕ(zι), (17)

where zν denotes the variant (intervention-specific) latents and zι the invariant latents. The varia-
tional posterior adopts the structured mean-field factorization from Eq. 7:

qθ(zν , zι | x,u) = qθ(zν | x,u) qθ(zι | x). (18)

Derivation. The marginal likelihood is

log pϕ(x | u) = log

∫
pϕ(x, zν , zι | u)
qθ(zν , zι | x,u)

qθ(zν , zι | x,u) dzνdzι.

Applying Jensen’s inequality to the logarithm yields the ELBO:

LELBO(x,u) = Eqθ(zν ,zι|x,u)
[
log pϕ(x | zν , zι)

]
− Eqθ(zι|x)

[
DKL(qθ(zν | x,u) ∥ pϕ(zν | u, zι))

]
−DKL(qθ(zι | x) ∥ pϕ(zι)) . (19)
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Modeling interventions. The intervention vector u ∈ {0, 1}M is a multi-hot binary vector of
dimension M , where M is the number of possible targets. - A single-gene perturbation is encoded
as a one-hot vector. - A combinatorial perturbation (e.g., genes j and k) corresponds to a vector with
the j-th and k-th entries set to 1. - The observational (unperturbed) case is represented by the zero
vector u = 0.

Thus, single-gene and multi-gene perturbations are subsumed by the same formulation, and no case-
specific ELBO derivations are required.

Parameterization. All variational posteriors and priors are chosen as diagonal Gaussians, yielding
closed-form KL terms. For example:

qθ(zι | x) = N
(
µι(x),diag(σ

2
ι (x))

)
,

with analogous parameterizations for qθ(zν | x,u), pϕ(zν | u), and pϕ(zι).

B.4 COEFFICIENT OF DETERMINATION

The coefficient of determination (R2) (Eq. 20) is consistently computed in the observation space,
but its interpretation depends on the availability of latent ground truth.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

(20)

We treat (R2 ≥ 0.95 as a successful recovery, indicating alignment within the theoretical identifia-
bility bound.

Simulation. (Table 1) In synthetic experiments, we have access to both observed outcomes and
the latent variables zν , zι that generate them. R2 therefore plays a dual role: it measures predictive
accuracy in the observation space and indirectly validates causal recovery, since correctly identified
latent factors and structures should yield high predictive performance.

Real data. (Figure 10) In experimental single-cell datasets, latent ground truth is unobservable.
Here, R2 is computed by comparing the mean expression profiles of generated and real cell popula-
tions under the same perturbation condition. Specifically, the model first generates a set of “virtual”
cells given a perturbation, from which we compute the mean expression vector across all genes. In
parallel, we compute the corresponding mean expression vector from the experimentally observed
cells. A linear regression between these two mean vectors yields R2, quantifying how well the gen-
erated perturbation response explains the real perturbation response. Thus, in real data, R2 does
not directly validate causal recovery but serves as a measure of practical utility, assessing whether
the learned representations support accurate prediction of population-level transcriptional changes
under unseen perturbations.

R2 unifies evaluation across settings: in simulation, it additionally certifies recovery of known latent
factors, while in real data it functions as the primary proxy for predictive validity and biological
usefulness.
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C ADDITIONAL DETAILS ON EMPIRICAL FINDINGS

C.1 METHOD DETAILS

We provide details about our training procedure in Algorithm 1

Algorithm 1 Forward and Training Procedure of CDAG-VAE

1: (x,u,x(u0)) ∼ D
2: h1 ← fenc(x); h2 ← fenc(x

(u0))

— Step 1: Encode Latent Variables —
3: (µν , log σ

2
ν)← gν(h1)

4: (µι,1, log σ
2
i,1)← gι(h1); (µι,2, log σ

2
ι,2)← gι(h2)

5: εν , ει,1, ει,2 ∼ N (0, I)

6: z̃ν ← µν + σν ⊙ εν ; z
(1)
ι ← µι,1 + σι,1 ⊙ ει,1

7: z
(2)
ι ← µi,2 + σι,2 ⊙ ει,2

— Step 2: Structural Equation for zν —
8: W← fW (u) ▷ Adjacency matrix conditioned on soft-intervention

9: b← B(z
(1)
ι ) ▷ Contribution from invariant latent

10: zν ← (I −W)−1(z̃ν + b)

— Step 3: Reconstruction —
11: x̂← fdec([zν , z

(1)
ι ])

— Step 4: Loss Calculation —
12: Lrec ← ∥x− x̂∥22
13: LKL-ν ← DKL(q(zν |x) ∥N (0, I))

14: LKL-ι ← DKL(q(z
(1)
ι |x) ∥N (0, I)) +DKL(q(z

(2)
ι |x(u0)) ∥N (0, I)

15: Lcontrast ← contrastive(µι,1, µι,2)

16: (βν , βι, α)← Schedule(t) ▷ Time-dependent annealing schedule
17: Ltotal ← Lrec + βνLKL-ν + βιLKL-ι + αLcontrast

18: Update Θ← Θ− η∇ΘLtotal

C.2 EXPERIMENT WITH SYNTHETIC DATA

Basic setup. We sample data following the DGP described in Sec. 2 with the following details in
Table 4.

Table 4: Simulation data generation parameters.

Quantity Symbol Value

Observation dimension x 500
Latent dimension (variant) zν 4
Latent dimension (invariant) zι 7
Intervention dimension u 12
Training size – 3000
Test size – 1000

Hyperparameters. We use the Adam optimizer with hyperparameters detailed in Table 5.
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Table 5: Simulation Hyperparameters.

Hyperparameter Value Hyperparameter Value

Batch size 64 zν dim 4
Epochs 100 zι dim 7
Learning rate 1× 10−3 βν 1.5× 10−5

βι 5× 10−4 αcontrast 0.1

Evaluation metrics. Identifiability of the variant block zν is quantified by the mean correlation
coefficient (MCC), which measures one-to-one correspondence between each learned latent and
its ground-truth counterpart (Def. 2.2). For block-wise disentanglement, we regress the ground-
truth latents (zν , zι) on their learned estimates (ẑν , ẑι) using kernel ridge regression with an RBF
kernel, and report the coefficient of determination (R2). High R2 values close to one indicate block-
identifiability (Def. 2.1).

C.3 STRUCTURE LEARNING

Following Zhang et al. (2023), we first present in Figure 5 the hit map between perturbed genes and
the identifiable latent causal components zν(i) learned by our model. This figure summarizes the
dominant associations between external perturbations and latent components: columns correspond
to perturbed genes, while rows denote individual causal components. Each entry highlights the
component most strongly linked to a given perturbation, thereby revealing how perturbations are
distributed across the causal block. This representation facilitates interpretation of the latent space
by mapping perturbations onto distinct, identifiable components.

Figure 5: Perturbed gene hits on identifiable causal components.

To further illustrate the structure of the learned causal representation, we visualize the latent causal
graph among identifiable components zν . Figure 6 (left) shows the full adjacency matrix estimated
by the model (before thresholding), where color intensity reflects the signed effect strength of each
edge. For interpretability, we additionally apply a threshold (τ = 0.25) to prune weak connections,
yielding a sparse graph that highlights the dominant causal structure (Figure 6, right). This com-
parison provides both a complete view of the learned connectivity and a simplified backbone that
facilitates biological interpretation.

In Figure 7, we illustrate the inferred causal structure among the latent programs discovered by
CDAG-VAE. Each node corresponds to a latent component, and directed edges represent the esti-
mated causal dependencies between them. Importantly, these latent programs can be mapped back
to gene-level interpretations, providing biological meaning to the abstract components. For com-
pleteness, Table 6 lists the full set of genes associated with each program. This mapping highlights
how the learned structure captures both high-level regulatory dependencies and their molecular un-
derpinnings, offering a bridge between statistical causal discovery and biological interpretability.

Beyond the three representative program-level edges discussed in the main text in Figure 4, we
provide in Table 7 a summary of the remaining directed edges, together with their mechanistic
rationale and supporting references.
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Figure 6: Visualization of the learned causal graph among identifiable components zν . Left: full
adjacency matrix before thresholding, showing all estimated edges. Right: sparse graph after thresh-
olding (τ = 0.25), retaining only dominant edges for interpretability.

Figure 7: Perturbed gene hits on identifiable causal components.

Table 6: Complete list of genes assigned to each program node inferred from structure learning.

Program Genes

1 DUSP9

2 ATL1, C19orf26, HOXB9, IER5L, JUN, MEIS1, POU3F2, SGK1,
TMSB4X

3 ARRDC3, BAK1, BCL2L11, BPGM, CBL, CNN1, CNNM4, EGR1,
ELMSAN1, HK2, IKZF3, KIAA1804, KIF18B, KIF2C, KLF1, KMT2A,
LYL1, MAP4K3, MAP4K5, MAP7D1, PRDM1, PRTG, PTPN12, PTPN13,
RREB1, RUNX1T1, S1PR2, STIL, TGFBR2, TSC22D1, UBASH3A,
UBASH3B, ZBTB1, ZBTB25, ZNF318

4 AHR, C3orf72, FEV, FOXA3, FOXL2, HES7, HOXA13, HOXC13, LHX1,
MIDN, RHOXF2, TP73, ZBTB10

5 ARID1A, CBFA2T3, CDKN1A, CDKN1B, CDKN1C, CEBPA, CEBPB,
CEBPE, CELF2, CITED1, CKS1B, CLDN6, FOSB, FOXO4, GLB1L2,
HNF4A, IGDCC3, IRF1, NIT1, PLK4, PTPN1, PTPN9, SAMD1, SET,
SLC6A9, SPI1, TBX2

6 BCORL1, COL1A1, COL2A1, CSRNP1, DLX2, ETS2, FOXA1, FOXF1,
ISL2, MAML2, MAP2K3, MAP2K6, MAPK1, NCL, OSR2, SLC38A2,
SLC4A1, SNAI1, TBX3, ZC3HAV1
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Table 7: Program-level representative edges: mechanistic rationale and supporting references.

Edge Mechanistic rationale (sum-
mary)

Refs.

DUSP9 → TGFBR2 TGFBR2 activates ERK through
a non-Smad branch; DUSP9 de-
phosphorylates ERK/JNK, attenu-
ating this output.

(Emanuelli et al., 2008)

(Zhang, 2009)

DUSP9 → TP73 c-Jun enhances TP73 stabil-
ity and activity; DUSP9 lowers
JNK/ERK→AP-1 signaling, indi-
rectly downregulating TP73.

(Koeppel et al., 2011)

(Emanuelli et al., 2008)

DUSP9 → CDKN1A ERK → ELK1/EGR1 induces p21
transcription; DUSP9 suppresses
ERK phosphorylation, blunting
this induction.

(Lim et al., 1998)

(Ragione et al., 2003)

DUSP9 → SNAI1 Epithelial–mesenchymal transi-
tion (EMT) induction requires
SMAD3–AP-1 cooperation;
DUSP9 attenuates AP-1, weak-
ening SNAI1 transcription.

(Sundqvist et al., 2013)

(Fan et al., 2025)

JUN → TP73 c-Jun stabilizes and potentiates
TP73, enhancing apoptosis-related
transcription.

(Koeppel et al., 2011)

JUN → SNAI1 AP-1 (c-Jun) cooperates with
SMAD factors to elevate SNAI1
expression in TGF-β-driven EMT.

(Sundqvist et al., 2013)

(Fan et al., 2025)

TGFBR2 → CDKN1A Canonical SMAD2/3/4 down-
stream of TGFBR2 transactivates
p21, enforcing cytostasis.

(Ikushima & Miyazono,
2010)

C.4 UNPERTURBED LATENT SPACE

SET ETS2 KLF1 CEBPE FOXA1

FOXF1 MAP2K6 SLC4A1 ELMSAN1 UBASH3A

Figure 8: t-SNE visualization of invariant block zι for 10 single-gene perturbations.
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(a) Single-gene test set. (b) Double-gene test set.

Figure 9: t-SNE visualization of the invariant block zι for single-gene (a) and double-gene (b)
perturbation conditions in the test set.

We further report additional t-SNE projections of the invariant block zι. Fig. 8 presents the latent
spaces for all remaining single-gene perturbations in the test set, complementing the representative
examples shown in the main text. Figure 9 further shows the t-SNE embeddings for the entire single-
gene and double-gene test sets. Across all settings, cells from distinct perturbation conditions remain
well-mixed rather than forming separate clusters, providing additional evidence that zι captures
perturbation-invariant background transcriptional programs.

C.5 EXTENDED EXPERIMENTS AND ADDITIONAL RESULTS ON REAL DATA (ALL GENES)

Hyperparameter settings for real data experiments. We use the Adam optimizer with hyperpa-
rameters detailed in Table 8.

Table 8: Real Data Hyperparameter.

Hyperparameter Value

Batch size 64
Epochs 100
Learning rate 1× 10−4

Hidden dimension 256
z dimension 10, 35, 75, 100
αcontrast 0.05
βν , βι 1× 10−2

Results on Single-Gene Perturbation Prediction. Table 9 reports the RMSE and Fig-
ure B.4 illustrates the R2 performance of CDAG-VAE on single-gene perturbation predic-
tion across different latent dimensionalities. We experimented with four latent configurations:
(zν , zι) ∈ {(4, 6), (7, 28), (15, 60), (20, 85)}, corresponding to total latent dimensionalities z ∈
{10, 35, 75, 100}. These settings enforce zν < zι, reflecting the modeling assumption that
perturbation-responsive variation resides in a lower-dimensional subspace compared to invariant
background programs.

Across all settings, CDAG-VAE consistently achieved the best performance relative to baselines.
On RMSE, our model yielded the lowest reconstruction error, highlighting its fidelity in capturing
single-gene expression responses. On R2, CDAG-VAE attained values close to 1.0, demonstrating
robust predictive accuracy. Performance remained stable as dimensionality increased, indicating that
the framework is not overly sensitive to the precise choice of zν and zι, as long as the variant sub-
space is smaller than the invariant one. Together, these results validate that explicitly disentangling
perturbation-responsive and invariant subspaces yields clear empirical advantages for single-gene
perturbation prediction.
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CDAGVAE MMD variant. To complement the main experiments, we evaluate a maximum mean
discrepancy (MMD)-based variant of our model, denoted as CDAG-VAE(MMD). This variant aug-
ments the objective with an MMD regularization term to enforce distributional alignment, similar to
the approach in Zhang et al. (2023). This allows us to fairly compare the proposed model with the
existing Discrepancy-VAE from Zhang et al. (2023) using MMD-based metrics. For completeness,
we report its performance on single-gene perturbation benchmarks in Table 10.

Table 9: RMSE on single-gene perturbation prediction.

Method Latent dimension

10 35 75 105

Discrepancy-VAE (Zhang et al., 2023) 0.5603±0.0030 0.5560±0.0027 0.5582±0.0038 0.5558±0.0022

SENA (de la Fuente et al., 2025) 0.5839±0.0021 0.5837±0.0086 0.5778±0.0109 0.5837±0.0074

sVAE+ (Lopez et al., 2022) 0.5012±0.0018 0.5005±0.0025 0.5003±0.0024 0.5002±0.0022

SAMS-VAE (Bereket & Karaletsos, 2023) 0.4114±0.0020 0.4136±0.0019 0.4140±0.0022 0.4123±0.0290

DAG-VAE (Ours) 0.4098±0.0001 0.4115±0.0008 0.4115±0.0005 0.4155±0.0038

cDAG-VAE (Ours) 0.4027±0.0028 0.3998±0.0013 0.3997±0.0013 0.3995±0.0013

10 35 75 105
dim(z)

0.975

0.980

0.985

0.990

0.995

1.000

R
2

Single-gene perturbation cDAG-VAE
DAG-VAE
Discrepancy-VAE
SAMS-VAE
SENA
sVAE+

10 35 75 105
0.980

0.982

0.984

10 35 75 105

0.985

0.990

Figure 10: R2 on single-gene perturbation

Table 10: Evaluation of the cDAG-VAE with MMD variant on single-gene perturbation prediction.

Method Metrics

RMSE R2 MMD

Discrepancy-VAE (Zhang et al., 2023) 0.5558±0.0022 0.9916±0.0014 0.3243±0.0050

cDAG-VAE (MMD) 0.5485±0.0013 0.9958±0.0003 0.3077±0.0036

Ablation on Latent Capacity Allocation. Our ablation studies show that asymmetric allocation
of latent capacity is crucial, with the invariant block (zι) serving as the primary bottleneck. As
reported in Table 2 and Table 9, together with Figure 10 and Figure 3, the invariant-heavy configura-
tion ((20, 85); total z = 105) clearly outperforms alternative splits, achieving the lowest RMSE and
highest R2 on both in-distribution and out-of-distribution predictions. This suggests that sufficient
capacity for modeling background transcriptional states is critical.

In contrast, when zι is under-resourced—such as in the variant-heavy setting (zν = 85, zι = 20)
or the equal-split setting (zν = 50, zι = 55)—performance declines noticeably, with outcomes that
are largely indistinguishable (Table 11). These results suggest two observations: (1) in our tested
configurations, the variant block zν already appears adequate at relatively small dimensionalities,
and allocating further capacity beyond this does not yield additional gains; and (2) the invariant
block zι is the performance-limiting factor, as reduced capacity creates a bottleneck that additional
zν dimensions are insufficient to compensate for.
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Table 11: Results on single- and double-gene perturbations under different capacity allocations of
zν and zι

Dimension Single-Gene Perturbation Double-Gene Perturbation

RMSE R2 RMSE R2

zν = zι 0.4084±0.0011 0.9875±0.0007 0.4627±0.0003 0.9649±0.0003

zν > zι 0.4084±0.0010 0.9875±0.0007 0.4627±0.0002 0.9649±0.0002

zν < zι 0.3995±0.0013 0.9977±0.0002 0.4474±0.0007 0.9865±0.0009

Together, these findings align with biological intuition: accurately representing cellular identity
requires a high-capacity invariant subspace zι, reflecting the complexity of background transcrip-
tional programs, whereas a comparatively smaller variant subspace zν suffices to capture the sparse,
perturbation-specific effects.

Ablation on Contrastive Alignment. We further ablated the alignment term by comparing
CDAG-VAE with and without the alignment loss (α = 0.05 vs. α = 0) under a fixed latent dimen-
sion (z = 105). Results (Figure 12) consistently show that including the alignment term improves
performance across both single- and double-gene perturbation prediction.

In particular, when α = 0, the invariant block zι collapses, carrying little information (empirically
KLi → 0), and the effective latent capacity is dominated by the variant block zν . As a result, per-
formance under α = 0 closely resembles that of capacity splits with zν ≥ zι, where the model
effectively ignores the invariant subspace. In contrast, with α = 0.05, the alignment signal en-
forces informativeness of zι, preventing leakage of perturbation-specific effects into the invariant
block. This leads to consistently better generalization, especially on out-of-distribution double-gene
conditions.

Our results indicate that the contrastive alignment loss is important for sustaining the informative-
ness of the invariant block and maintaining block disentanglement. Even under fixed total latent
capacity, models with the alignment loss consistently achieve higher accuracy, suggesting that align-
ment is a key component for reliable generalization in CDAG-VAE.

Table 12: Single- and double-gene performance under contrastive alignment ablation.

Contrastive
Alignment

Single-Gene Perturbation Double-Gene Perturbation

RMSE R2 RMSE R2

✗ 0.4083±0.0011 0.9875±0.0007 0.4626±0.0002 0.9650±0.0002

✓ 0.3995±0.0013 0.9977±0.0002 0.4474±0.0007 0.9865±0.0009

C.6 VALIDATING CONTRASTIVE DISENTANGLEMENT ON DIFFERENTIALLY EXPRESSED
GENES

Metric Definitions and Empirical Observations To more finely assess the model’s fidelity in
capturing biologically meaningful perturbation effects beyond aggregate statistics, we compute per-
formance metrics on two complementary feature sets for each perturbation condition:

• All genes: measurements computed using the entire 5,000-dimensional gene expression
vectors, reflecting the global cellular state.

• DE genes: measurements computed using the 20-dimensional sub-vectors corresponding
to the top 20 most differentially expressed genes.

We make the following empirical observations:
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• In-distribution (single-gene). The model achieves high accuracy on both feature sets.
The R2 scores for “DE genes” are nearly identical to the global “All genes” R2, while the
RMSE on the DE subset is notably lower than the global average (Figure 12).

• Out-of-distribution (double-gene). While the global “All genes” R2 remains consistently
high (around ∼ 0.98), the R2 on the “DE genes” subset exhibits a mild degradation, with a
fraction of perturbations showing scores in the 0.5–0.9 range. The DE-gene RMSE is typ-
ically lower than or comparable to the “All genes” RMSE, though a subset of double-gene
conditions exhibits higher deviation in the DE subspace, reflecting the increased complex-
ity of specific combinatorial interactions (Figure 11).

Interpretation via contrastive disentanglement. These patterns are broadly consistent with the
intended disentanglement mechanism of cDAG-VAE.

Successful modeling of invariant background (zι). The persistently high R2 on the 5,000-
dimensional “All genes” vectors suggests that the contrastive alignment term effectively stabilizes
background cellular programs across perturbations. Since the vast majority of genes exhibit rel-
atively small perturbation effects and are primarily governed by such background programs, the
model’s ability to reconstruct the global transcriptomic state—in both single- and double-gene
settings—indicates that the invariant latent factors zι capture a robust, perturbation-stable repre-
sentation rather than overfitting to individual conditions.

Causal uncertainty concentrated in the perturbation-responsive subspace (zν). By construc-
tion, our model is designed so that perturbation-responsive variation is represented in the variant
latent block Zν , while “DE genes” form a small, perturbation-enriched readout of this subspace.
The fact that R2 on DE genes degrades more noticeably than R2

All under double-gene OOD pre-
diction reflects the inherent difficulty of zero-shot combinatorial causal extrapolation, where novel,
potentially non-additive interactions must be inferred from single-gene training data. At the same
time, the observation that DE-gene RMSE typically remains low—despite reduced R2

DE for a subset
of double perturbations—suggests that the model often predicts the magnitude of key expression
changes reasonably well, even when finer-grained variance patterns are harder to match in a zero-
shot setting.
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Figure 11: Results of double-gene perturbation on DE genes.
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Figure 12: Results of single-gene perturbation on DE genes.

C.7 PERSPECTIVE ON LATENT CAUSAL MODEL FOR DOUBLE-GENE PERTURBATION

Recent benchmarking results (Ahlmann-Eltze et al., 2025) have brought renewed clarity to the struc-
tural characteristics of perturbation–effect prediction. On the Norman2019 dataset, the authors
showed that even sophisticated architectures—including GEARS (Roohani et al., 2024) and sev-
eral foundation-model variants—often fail to outperform a simple additive baseline when evaluated
on pseudobulk expression responses to double perturbations. This outcome reflects an important
property of the benchmark: for high-expression genes, the dominant component of the double-
perturbation signal is well approximated by a linear superposition of single-gene log-fold changes,
leaving limited opportunity for complex representation-heavy models to demonstrate gains under
squared-error metrics.

Our work, however, differs fundamentally from this regression-centric setting. Rather than opti-
mizing directly for pseudobulk reconstruction, we aim to learn latent causal factors that enable
mechanism-level disentanglement and robust generalization to combinatorial interventions without
any supervision on double perturbations. Nonetheless, the benchmark raises two questions that
are highly pertinent to Causal Representation Learning (CRL): (i) under a strict OOD protocol in
which no double-perturbation data are available during training, do classical linear baselines re-
tain their apparent advantage? (ii) beyond explaining variance in high-expression pseudobulk pro-
files, can a structured latent model more faithfully recover the Average Treatment Effect (ATE) at
the perturbation-label level, thereby distinguishing deterministic causal responses from stochastic
single-cell noise?

A central distinction between our CRL approach and regression-based predictors lies in the under-
lying data-generating process (DGP) being modeled. Rather than mapping perturbations directly
to high-dimensional gene expression vectors, our model assumes that observations arise from a set
of low-dimensional latent causal variable z whose dynamics are modulated by interventions u and
corrupted by biologically meaningful stochasticity n. In this formulation, z does not represent gene
expression itself, but instead captures cellular programs, pathway activities, or regulatory modules
that mediate the effect of perturbations. The observed expression x is treated as a nonlinear projec-
tion of these latent factors through the decoding mechanism of the VAE.

The noise term n plays an equally important conceptual role. It reflects the substantial cell-to-
cell stochasticity inherent in single-cell transcriptomics, including transcriptional bursting, technical
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variation, and biologically unstructured fluctuations not explained by the regulatory graph. By ex-
plicitly modeling this DGP rather than collapsing the data into pseudobulk averages, our method
aims to separate deterministic causal responses from stochastic variation, enabling latent mecha-
nisms to be identifiable and supporting robust generalization to unseen combinatorial perturbations.

Feature Space We evaluate model performance on two complementary gene sets to balance stan-
dard comparability with causal validity.

High-Expression Benchmark Subset. Following the protocol of Ahlmann-Eltze et al. (2025), we
first compute metrics on the 1,000 most highly expressed genes in control cells. This subset rep-
resents a stable, high–signal-to-noise regime and serves as the standard benchmark for pseudobulk
perturbation prediction, specifically for comparing deep learning methods against linear baselines
like the additive model.

Genome-wide Expression Profile. To validate the model’s capacity to capture the full regulatory
landscape, we focous on evaluating performance on the Genome-wide Expression Profile. This as-
sessment aligns directly with the core design objective of our cDAGVAE: to identify and disentangle
the latent background cellular programs that underpin biological processes. Crucially, these pro-
grams often manifest as pervasive but subtle signals—residing in low-abundance regimes or buried
within technical noise, that are systematically excluded by top-expression filters. Restricting evalua-
tion to high-expression genes would therefore risk measuring only the dominant perturbation effects
while overlooking these intricate background dynamics. Genome-wide evaluation is thus essential
to verify that the model has successfully recovered these weak yet fundamental cellular programs
across the full dynamic range of the transcriptome.

Evaluation Granularity To provide a rigorous and biologically grounded assessment, we report
performance at two complementary levels of granularity: condition-level pseudobulk averages and
cell-level Heterogeneity.

Condition-level Pseudobulk Averages. Following the benchmarking protocol of Ahlmann-Eltze
et al. (2025), we aggregate single-cell expression profiles within each perturbation into a pseudobulk
vector by averaging across cells. Metrics computed on these condition-level profiles (e.g.Delta
Pearson, L2, RMSE, R2) quantify how well a model recovers the average transcriptional response
associated with each perturbation. This aggregation suppresses stochastic technical noise and cell-
to-cell variability, yielding a high–signal-to-noise summary that captures the dominant regulatory
signature. As such, pseudobulk-based evaluation serves as the standard reference for regression-
style perturbation–effect prediction and provides a direct point of comparison to linear baselines
such as the additive model.

Cell-level Heterogeneity Evaluation. Unlike standard pseudobulk metrics, which deliberately av-
erage away cell-to-cell heterogeneity, our evaluation is designed to probe how well a model explains
the distribution of single-cell states under each perturbation. For every perturbation label u, the
model produces a predicted mean expression vector, which we treat as a deterministic summary
of pθ(x | u = u). We then compare this predicted mean against the full ensemble of observed
single-cell profiles assigned to u, computing RMSE and R2 at the single-cell level with respect to
the condition-mean baseline, and finally averaging these scores across held-out double-perturbation
conditions. In contrast to purely pseudobulk-based metrics, this perturbation-conditioned single-
cell evaluation directly measures how well the model reconciles biological noise with the structured
heterogeneity induced by different interventions.

This perspective is especially important for our contrastive latent causal generative model, whose
primary goal is to decompose perturbation-driven heterogeneity rather than merely reproduce bulk-
like signatures. In CDAG-VAE, the invariant block zι is trained to capture shared background
cellular programs that persist across perturbations, while the variant block zν encodes perturbation-
responsive mechanisms that shift the distribution of single-cell states in a condition-specific manner.
Strong performance under the perturbation-conditioned single-cell metric therefore indicates that the
learned latent space has disentangled these two sources of variability: zι provides a stable scaffold
for global cellular state, and zν systematically explains how different perturbations reshape the
high-dimensional expression landscape, particularly in the DE-gene–enriched subspaces analyzed
in App. C.6. From a single-cell bioinformatics standpoint, this means that cDAG-VAE does not
merely fit average responses, but learns a coherent generative model of across-perturbation single-
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cell heterogeneity, supporting downstream tasks such as mechanistic interpretation and zero-shot
generalization to unseen combinatorial perturbations.

Table 13: Supplementary robustness evaluation on Genome-wide expression profile.

Method Condition-level Cell-level
Prediction error (L2) Pearson Delta RMSE R2 RMSE R2

Additive 2.5407±0.0000 0.9076±0.0000 0.0887±0.0000 0.6431±0.0000 0.4424±0.0000 −
GEARS 4.6797±0.2620 0.4631±0.0644 0.1514±0.0086 0.9730±0.0032 0.5861±0.0031 −

cDAGVAE 3.7238±0.0012 0.6869±0.0005 0.1285±0.0015 0.9965±0.0005 0.4494±0.0008 0.9840±0.0011

Note. A dash (–) indicates that the model yields a negative R2, it performs worse than a trivial

mean predictor. Exact magnitudes are omitted because they have no interpretable biological
meaning in this setting.

Table 14: Supplementary robustness evaluation on High-expression Genes.

Method Condition-level Cell-level
Prediction error (L2) Pearson Delta RMSE R2 RMSE R2

Additive 2.4906±0.0000 0.9101±0.0000 0.0870±0.0000 0.6470±0.0000 0.4332±0.0000 −
GEARS 4.2649±0.2044 0.5068±0.0710 0.1381±0.0065 0.9682±0.0065 0.5746±0.0018 −

cDAGVAE 3.6491±0.0010 0.6936±0.0004 0.1259±0.0013 0.9951±0.0005 0.4411±0.0007 0.9758±0.0011

Tables 13–14 report the performance of CDAG-VAE, the additive baseline, and GEARS on both the
genome-wide expression profiles and the high-expression gene subset. Focusing on the deep learn-
ing models, CDAG-VAE achieves higher R2 and lower RMSE than GEARS under our single-gene
→ double-gene OOD evaluation, both for the full transcriptome and for the high-expression subset.
Within this strictly single-to-double OOD setting, these gains indicate that conditioning prediction
on a learned causal latent representation of single-gene perturbations can more effectively support
generalization to unseen double perturbations than directly learning a perturbation-to-expression
mapping with the graph neural network baseline GEARS.

In line with the report of Ahlmann-Eltze et al. (2025), the simple additive baseline remains highly
competitive on condition-level pseudobulk metrics. In our experiments, it achieves the lowest L2

error and the highest Delta Pearson on pseudobulk profiles, especially on the High-Expression Gene
subset on which the benchmark was originally defined. This behavior is unsurprising on Nor-
man2019: for many gene pairs, the dominant component of the condition-level response is well
approximated by a linear superposition of single-gene effects, which matches the inductive bias built
into the additive model. By contrast, deep models such as GEARS and cDAG-VAE must recover
this approximate linearity from data while also representing residual non-linear interactions and
higher-order structure. Under purely average-effect metrics such as pseudobulk L2, this additional
flexibility can manifest as a small performance gap relative to the hard-coded additive baseline, even
when the deep models offer clear advantages at the single-cell and out-of-distribution evaluation
levels.

However, relying solely on condition-level error obscures an important distinction between linear
baselines and causal generative models. Despite its strong L2 and Delta Pearson performance, the
additive model attains negative cell-level R2 on Norman2019, similar to GEARS; on average, both
methods offer little or no improvement over predicting each cell by its condition mean when eval-
uated against the full single-cell population. In contrast, cDAG-VAE achieves substantially higher
cell-wise R2 (often close to 1.0), indicating that it explains a large fraction of cell-specific variance
across cells while remaining highly competitive at the pseudobulk level. This pattern reflects a differ-
ence in modeling objectives: in our setup, the additive model and GEARS are trained and evaluated
primarily as regression estimators of the average conditional response E[x | u], whereas cDAGVAE
is a generative causal model that explicitly targets the underlying conditional distribution p(x | u) of
single-cell expression given the perturbation condition u. By learning disentangled latent factors that
encode both background cellular programs and perturbation-responsive mechanisms, cDAG-VAE
can match linear baselines on condition-level metrics while more accurately capturing how double
perturbations reshape the single-cell state distribution. For CRL, such single-cell–level fidelity is
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crucial for downstream tasks including mechanism interpretation, causal structure discovery, and
robust OOD generalization.

D LARGE LANGUAGE MODEL USAGE

We disclose the use of large language models (LLMs) in the preparation of this manuscript. Their
use was strictly limited to improving the clarity and style of the language, as well as assisting in
formulating search queries for literature review. All core scientific contributions are exclusively
human-generated, including the formulation of the research problem, the design of the methodol-
ogy, theoretical proofs, experimental implementation, and analysis of results. LLMs were not used
to generate scientific content such as methods, results, or arguments. All cited works were indepen-
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