CoRL-MPPI: Enhancing MPPI With Learnable Behaviours For
Efficent And Provably-Safe Multi-Robot Collision Avoidance

Stepan Dergachev, Artem Pshenitsyn, Aleksandr Panov, Alexey Skrynnik, Konstantin Yakovlev

Abstract— Decentralized collision avoidance remains a core
challenge for scalable multi-robot systems. One of the promising
approaches to tackle this problem is Model Predictive Path
Integral (MPPI) — a framework that is naturally suited to
handle any robot motion model and provides strong theoretical
guarantees. Still, in practice MPPI-based controller may pro-
vide suboptimal trajectories as its performance relies heavily
on uninformed random sampling. In this work, we introduce
CoRL-MPPI, a novel fusion of Cooperative Reinforcement
Learning and MPPI to address this limitation. We train
an action policy (approximated as deep neural network) in
simulation that learns local cooperative collision avoidance
behaviors. This learned policy is then embedded into the MPPI
framework to guide its sampling distribution, biasing it towards
more intelligent and cooperative actions. Notably, CoRL-MPPI
preserves all the theoretical guarantees of regular MPPI. We
evaluate our approach in dense, dynamic simulation envi-
ronments against state-of-the-art baselines, including ORCA,
BVC, and a multi-agent MPPI implementation. Our results
demonstrate that CoRL-MPPI significantly improves navigation
efficiency (measured by success rate and makespan) and safety,
enabling agile and robust multi-robot navigation.

I. INTRODUCTION

The deployment of multi-robot systems in shared spaces
promises significant boost in efficiency in such domains as
warehouse logistics, search-and-rescue, disaster management
etc. A fundamental problem in any multi-robot system is
decentralized collision avoidance: each robot must navigate
to its goal efficiently while ensuring safety by proactively
avoiding conflicts with others, all without centralized coor-
dination. This problem is inherently challenging due to the
non-linear and dynamic nature of robot interactions, the curse
of dimensionality as the number of agents increases, and the
necessity for real-time computation under uncertainty.

Traditional approaches to this problem can be broadly cat-
egorized into reactive and planning-based methods. Reactive
algorithms, such as Velocity Obstacles and its widely-used
variant Optimal Reciprocal Collision Avoidance (ORCA) [1],
compute collision-free velocities based on the current states
of neighboring robots. While highly computationally effi-
cient, these methods are inherently myopic. They operate
on a one-step time horizon, which can lead to oscillatory
behavior, deadlocks in congested scenarios, and a general
lack of cooperation, as agents do not reason about the
future intentions of their neighbors. Conversely, planning-
based methods, like those employing Buffered Voronoi Cells
(BVC) [2], define safe corridors for each agent. These
approaches provide strong safety guarantees but can be
overly conservative, often sacrificing optimality and agility
for safety, leading to inefficient trajectories and longer travel

[+, Potential
*Collisions

OMPPI Rollouts
@ RL Rollouts
@ Final Control

Y
OMPPI Rollouts ‘
LO Final Control

Fig. 1: The figure illustrates the core idea of our method for
decentralized collision avoidance. The left panel shows the
baseline MPPI controller, where random rollouts (yellow)
lead to potential collisions (red crosses) and suboptimal
control (red trajectory). The right panel depicts proposed
fusion of RL and MPPI, where learned policy rollouts (blue)
bias the sampling distribution toward more cooperative and
collision-free behaviors, improving final control performance
while retaining the theoretical guarantees of MPPI.

times.

Model Predictive Control (MPC) frameworks offer a com-
pelling middle ground by explicitly optimizing a short-term
trajectory while accounting for future states. The Model
Predictive Path Integral (MPPI) [3], a sampling-based variant
of MPC, has gained a significant attention for its ability
to handle non-linear systems and complex cost functions
without the need for gradient computation. MPPI allows
flexible formulation of both motion models and cost func-
tions and has been extended in numerous works, including
methods that incorporate safety guarantees in multi-agent
scenarios [4], [5].

However, the performance of MPPI-based methods is
critically dependent on the quality of its sampled trajec-
tories. In its standard formulation, control sequences are
drawn from a Gaussian distribution centered around a prior
(often the previous solution). Such sampling may be very
inefficient in complex multi-agent settings, where the vast
majority of sampled trajectories may lead to uncooperative
behavior. Consequently, even when the number of samples
is high the resultant trajectories may be highly suboptimal
leading to an overall degradation of the multi-robot system’s
performance. Generally, one may claim that MPPI in multi-
robot navigation lacks a higher-level strategic understanding
of multi-agent cooperation.

Meanwhile, recent advances in Reinforcement Learning

have demonstrated remarkable success in learning complex,
cooperative behaviors directly from simulation. RL-based
agents may learn implicit cooperation strategies, learning to
anticipate the actions of other agents and negotiate passage
efficiently. Yet, purely learned policies are often sensitive to
distribution shifts and poor performance in new environments
not seen during training. Moreover, they typically lack the
guarantees provided by the model-based controllers.

In this work, we propose a novel hybrid approach to
multi-robot collision avoidance, that leverages the comple-
mentary strengths of both paradigms. We introduce CoRL-
MPPI - a framework where a pre-trained RL policy guides
the sampling process of the MPPI controller. This policy
encapsulates the high-level strategic knowledge of coopera-
tive avoidance, and is intended to generate a sophisticated
proposal distribution. Instead of sampling controls purely
randomly, suggested method additionally uses a distribution
of actions provided by it, thus biasing the search towards
intelligent and cooperative trajectories — see Fig 1. Such a
fusion creates a synergistic effect: the RL policy provides
the strategic intuition of the cooperative behavior while MPPI
provides the robust long-horizon planning with the full model
dynamics with formal safety guarantees [5].

To summarize, the core contributions of this paper are:

+ We introduce CoRL-MPPI, a novel hybrid architecture
that integrates a learned RL policy into the MPPI
control framework to guide its sampling distribution for
decentralized multi-robot navigation.

« We provide theoretical justification that CoRL-MPPI
preserves safety guarantees; moreover, when execution
noise is present, control safety is maintained with a
specified probability.

e A comprehensive empirical evaluation in simulation
demonstrating that CoRL-MPPI outperforms classical
approaches (ORCA, BVC) and MPPI in terms of suc-
cess rate and navigation efficiency (makespan).

II. RELATED WORK

Next lines of research are most relevant to this work:
model predictive path integral, decentralized classical and
learning-based multi-agent collision avoidance.

a) Model Predictive Path Integral: The Model Predic-
tive Path Integral (MPPI) algorithm was originally proposed
as a sampling-based optimal control method [3] and later
extended to Information-Theoretic MPC to handle general
non-linear dynamics [6]. Since then, numerous extensions
have been proposed to improve smoothness, robustness, and
sampling efficiency, including SMPPI [7], CC-MPPI [8],
Tube-MPPI [9], Robust-MPPI [10] and CBF-MPPI [11],
[12].

Although most MPPI-based methods have been developed
for single-agent systems, several studies have explored their
adaptation to multi-agent scenarios. These works typically
address dynamic collision avoidance, either assuming explicit
inter-agent communication [13], [14], [15] or relying on
motion prediction without formal safety guarantees [16]. A

notable exception is the decentralized MPPI-ORCA frame-
work [4], [5], which provides theoretical safety guarantees
through the incorporation of ORCA-based constraints. How-
ever, this method still relies on the basic MPPI sampling
scheme, which can lead to inefficiencies in complex interac-
tion scenarios.

Recent research has also investigated the integration of
reinforcement learning into the MPPI framework. For in-
stance, TD-MPC [17] and TD-MPC2 [18]learn a latent
dynamics model and a value function to perform short-
horizon rollouts, achieving high sample efficiency but lacking
formal safety guarantees. RL-driven MPPI [19] combines an
offline RL policy with MPPI by using the learned policy
for trajectories generation and the RL value function as a
terminal cost. While this approach mitigates the reliance
on random sampling, it remains restricted to single-agent
settings, lacks safety guarantees, and heavily depends on the
generalization capability of the underlying RL policy.

b) Multi-Agent Collision Avoidance: Multi-agent nav-
igation with collision avoidance is an important problem in
robotics. The main goal is to move several agents safely in
a shared continuous space without collisions.

Velocity-based approaches define a set of admissible ve-
locities that guarantee collision-free motion and then select
the optimal velocity within this feasible region. One of the
most established representatives of this class is the Opti-
mal Reciprocal Collision Avoidance (ORCA) algorithm [1],
which provides an efficient solution for reciprocal collision
avoidance. Despite its popularity, ORCA does not take
into account kinematic limitations of agents. To partially
overcome these drawbacks, Snape et al. [20], [21] proposed
modifying ORCA for differential-drive robots by expanding
the effective agent radius, thereby indirectly modeling non-
holonomic constraints. The Non-Holonomic ORCA (NH-
ORCA) algorithm [22], [23] extends this concept by ex-
plicitly considering non-holonomic motion through the use
of precomputed lookup tables that encode feasible veloci-
ties. Other variants, such as PRVO [24], CALU [25], and
COCALU [26], incorporate uncertainty in localization and
sensing into the velocity-obstacle framework.

Another family of methods, based on BVC [2], defines
safe navigation zones by constructing buffered Voronoi re-
gions around each agent. The PBVC algorithm [27] extends
this principle to a decentralized formulation that accounts for
perception uncertainty, but it neglects kinematic constraints.
A more recent modification, B-UAVC [28], integrates po-
sitional uncertainty and can be adapted to different motion
models. However, the general B-UAVC formulation relies on
Model Predictive Control (MPC), requiring the development
of a dedicated MPC controller consistent with the agent’s
dynamic model.

In addition, several learning-based methods [29], [30],
[31], [32], [33] have been proposed to address the multi-
agent collision avoidance problem. Some of them operate
directly on raw sensory inputs (e.g., LiDAR) [30], [31],
thereby eliminating the need for explicit state estimation.
For instance, Han et al. [33] combine decentralized re-

inforcement learning with reciprocal velocity obstacles to
reduce collisions. Nevertheless, such approaches lack formal
safety guarantees and often rely purely on reactive behaviors
learned from training data, which may fail to generalize to
unseen scenarios.

III. PROBLEM STATEMENT

Consider a set of homogeneous robots (agents) denoted
by o« = {1,2,...,N}, operating within a two-dimensional
workspace # C R2. Each robot is modeled as a disk with a
safety radius r. Time is discretized, and at each discrete step,
every robot selects a control input (action) us € R™ to update
its state x¢ € R"”. However, the executed control is subject to
stochastic perturbations that model actuation uncertainty:

Vi~ A (0,2), X=diag(c?,...,02) (1)

where V¢ € R™ represents the actual, randomly perturbed
control signal.

The robot dynamics are described by a discrete-time,
continuous-state nonlinear affine system:

Xer1 = F(x¢) + G(x¢) Vi, (2

where F : R" — R" and G : R" — R"™ are given functions.
The control input is bounded as follows:

Vmin[k] S vt[k] S Vmax[kL k =])' . 7m7 (3)

where [k] denotes the k-th element of a vector.

At each time step, robot i has perfect knowledge of its
own state x‘;, including its position pit. Furthermore, it can
perceive the relative positions p] and velocities v§ of nearby
robots within its sensing range of w.

Now, consider robot 7 in state X{ observing another robot
J. A control ui is defined as probabilistically safe (or simply
safe) with respect to robot j if, after executing the perturbed
control vt ~ .4 (uy,X) and transitioning to the next state
X{ +1- the probability that the inter-robot distance falls below
2r does not exceed a predefined safety threshold &.

The objective is to compute, at each time step, a control
input u{ for every robot i € o7 such that:

1) it satisfies the control constraints given by (3);

2) it ensures progress toward the assigned goal state Tj;

3) it remains probabilistically safe with respect to all

observed neighboring robots.

IV. BACKGROUND

Our method is based on Model Predictive Path Integral
(MPPI) control and Reinforcement Learning (RL). This we
begin by providing a brief overview of these two frameworks.

A. Model-Predictive Path Integral

The MPPI algorithm addresses discrete-time stochastic
optimal control problems formulated as:

H-1 y
u* =argminE [q& (xp)+ Y, (q(xt) + EutTZ_luJ } “)
uewtt =0

where % denotes the set of admissible controls, u =
(ug,...,ug_1) represents the control sequence, x =

(Xg,-..,Xy) is the corresponding trajectory over a prediction
horizon of length H, ¢(-) denotes the terminal cost, g(-)
is the running cost, and Y € R* is the control cost weight
parameter.

init __

Let x¢ denote the current system state and u
(uirit’ . ui) an initial control sequence. The MPPI
framework generates K stochastic perturbations EF =
(ef,...,€8_1), with each noise term sampled as & ~
A (0,X%). Here, the sampling covariance X* is a scaled
version of the nominal control noise covariance ¥ (matrix

¥* must remain diagonal).

Using these samples, a set of K candidate control se-
qpt?trlcesk{uk}kK:l is obtained as: u* = (ufj,...,uly_;), uf =

mi

Each control sequence u* induces a corresponding state

trajectory xX, which is evaluated using the cost functional
S(x,u):

SCe) = o () + X [aCxe,ue) + L (ul= " u+
=0 (5)

A
2ulz e) + EetT(IfJi/_l)E_lst
where A € R™ is called the inverse temperature parameter,

is the identity matrix, and % scales the sampling variance
such that ¥* = 'Y,

The weight associated with each trajectory is computed

as:

o(x,u)

(6)

_exp (= (S(x,u) — min; S(x/, u")))
Y& exp (=5 (S(k,uk) — min; S(x!,ul)))

The resulting optimal control sequence is then obtained as
the weighted average. After executing the first control uy, the

initial control sequence is updated u™" = (uj,...,uj;_,,u™").

B. Updating MPPI Distributions Parameters to Ensure
Collision-Free Behavior

To ensure collision-free behavior during control sampling,
we adopt an approach proposed in [4], [5].

During the MPPI sampling process, the parameters of the
control distribution, denoted as ﬁi“it and £*, are adjusted to
remain close to the nominal ones uit“i‘,Z*, while simultane-
ously increasing the likelihood of satisfying predefined safety
constraints. In this work, safety constraints are represented
using the ORCA-based linear inequalities in the velocity
space [1].

The determination of the adjusted parameters is formulated

as the following optimization problem:

up™|| + || diag(£*) -

| | ~init

argmin diag(Z")||

ﬁ:mt S

s.t. a’Tﬁ{’“‘—i—d) (84),/aj)f‘,*ajT < b..
“1(8)y/al zal, V) €

Amlt[k]+q) (5) i* <Vmax[k]

A lmt /
U > me

Ek.k Z 07
k=1,...m

(7

where a; and b'; are the coefficients derived from the ORCA
linear constraints, ®(-) denotes the standard normal cumula-
tive distribution function, and .o7; represents the set of visible
neighbors of agent i.

Solving this optimization problem yields updated param-
eters of the sampling distribution such that, with probability
at least 8, = |.<%| x 8y x §,, the sampled control inputs satisfy
all safety constraints.

The optimization problem (7) is convex and can be formu-
lated as a Second-Order Cone Programming (SOCP) problem
(or as Linear Programming (LP) for certain types of dynamic
models). A detailed derivation of the constraint formulation,
as well as the transformation of the problem into SOCP and
LP forms with all theoretical justifications, is provided in [5].

C. Reinforcement Learning

The problem introduced in Section III, i.e. decentralized
multi-agent navigation with collision avoidance problem, can
be formulated as a decentralized partially observable Markov
decision process (Dec-POMDP) [34], [35]. Formally, Dec-
POMDP is defined as a tuple (X, {U'}Y TR AQY L),
where X 5 x; is the global state space U’ > ! is the action
space of agent i, U= X {U’ ', S u/ is the joint action
space, T(x;4+1|%;,u;) is the transition model, R(x,, 0, x;+1)
is the reward function, Q' : X — o' is the observation function
of agent i, Y€ [0,1) is the discount factor.

a) State space: X contains the states of all agents
and environment properties that matter for navigation and
collisions. For example, agent positions p!, velocities v/, safe
radii 7, obstacles in the workspace, etc.

b) Dynamic and Constraints: T describes how the
system transitions form one state to the other based on the
actions (controls) picked by the agents. In the consider case
T is defined by Eq. 2.

¢) Reward: There are several possible design choices
for the reward function when training RL agents. To reflect
the requirements of the collision-avoidance problem, one
can penalize agents for collisions and reward them for
successfully reaching their destinations.

d) Observations: Each agent has partial and local
information. Q' returns the observation o' for agent i It
can include its own state xi, and relative positions p; and
velocities v/ of nearby agents j # i.

e) Interaction Loop: At each timestep ¢, each agent i
selects an action (control) u} € U’ using its policy 7' (o).
The joint action u; drives the next state via T. Then each
agent gets a new observation, and a team receives a scalar
reward.

f) Optimization Goal: The aim is to learn decentralized
policies that maximize the expected discounted return. A
clear statement is

x'm' (0') = argmax Y [V R(x;, 0, xr11)] ®)
ul~oxini 7

g) Policy Gradient and PPO: There are many ways
to solve the optimization problem in eq. 8. One strong
family is policy gradient methods that directly improve
a parameterized policy by ascending the expected return.
Another method is Proximal Policy Optimization (PPO) [36],
strong actor-critic approach that uses a clipped surrogate loss
to make updates stable and effective.

h) Indepedent PPO: Many MARL methods build on
policy gradients, and several use PPO to handle multi-agent
problems, including centralized critic PPO, parameter shar-
ing PPO, etc. A simple yet effective choice is Independent
PPO (IPPO) ([37]), where each agent learns its own policy
and value from local observations, and treats other agents as
part of the environment.

i) PPO Objective: Let agent i use policy Tyi(o!) and
value Vi (o). The clipped surrogate loss, value loss, and total
loss are:

Li(6") =E [min (pjAlclip (p/,1—¢€,1+¢€)Al)],

. . . .\ 2
L%/((pl) =E |:<V¢f(0;) _Vtarget(oi)) :| >)
N
Luoa = X (Llippea(67) + MLy, (0") + aH (1))

where p/ = % denotes a probability ratio, Al - a GAE-A

estimator of the advantage function [38], H(7,:) - an entropy
bonus for agent i, A;,A, are coefficients.

V. CoRL-MPPI: COOPERATIVE RL-GUIDED MPPI
FOR MULTI-ROBOT COLLISION AVOIDANCE

Learning-based methods demonstrate strong capability in
handling complex multi-agent scenarios, particularly in sit-
uations requiring cooperative behaviors and implicit coor-
dination among densely arranged agents. However, such
approaches typically lack formal safety guarantees for the
actions they produce, and their performance is highly de-
pendent on the training data. In contrast, the MPPI control
framework does not rely on training data and can be ex-
tended to incorporate theoretical safety guarantees. Never-
theless, due to its stochastic optimization process, MPPI may
struggle to efficiently resolve complex local interactions or
tightly coupled agent clusters. To overcome this limitation,
we propose integrating a pre-trained RL policy into the
MPPI sampling process, thereby combining the cooperative
decision-making capabilities of RL with the robustness and
theoretical properties of MPPI. L.e. we suggest to, first, learn

a decentralized navigation and collision avoidance policy
via reinforcement learning and, second, use the distribution
of actions provided by the trained policy in the MPPI
framework.

A. Pre-trained RL-based Policy

a) Observation Space: FEach agent’s observation is
represented as a vector encoding information about its goal
and nearby agents. Specifically, each observation includes
the relative distance and angular offset to the goal, as well
as to the k nearest agents within a local sensing range of size
w. All components of the observation vector are normalized
to ensure numerical stability and invariance to environment
scale.

b) Action Space: Each agent’s action consists of con-
tinuous control variables corresponding to its motion com-
mands. These actions are bounded within predefined intervals
appropriate for the agent’s dynamic model used during
training.

c) Reward: At every simulation step, the reward for
agent i is defined as a weighted sum of components encour-
aging goal reaching and smooth navigation while penalizing
collisions:

+ R

9’{1’ = g{i R g,dist;

on.g lcollision
This structure promotes continuous progress toward each
agent’s target while discouraging unsafe interactions with
neighbors. The formulation is compatible with various dy-
namic models and control parameterizations.
d) RL Algorithm: A single policy shared among agents
is trained with Independent Proximal Policy Optimization
(IPPO), a multi-agent extension of PPO, as described in the

Background section.

B. Multi-Step Safety-Constrained and RL-Guided Planning
Step

Consider the planning step for agent i. To enable the
algorithm, predicted positions of neighboring agents p; in the
set <7 must be available for the planning horizon ¢t =0,... H.
Various prediction models can be employed, in this work, a
simple constant-velocity model is used:

Pl =pi+vl, Vjedvi=0,. H (10)

At each control iteration, two predictive trajectories, X"pp
and x”, are constructed. The first trajectory, XPP!, follows the
previously optimized control sequence u™! (see Section IV-
A). A corresponding sequence of covariance matrices X™PPi
is also maintained:

umppi — Mim’t’ Emppi — {Z;k — ¥ 5-1:61 (11)

The second trajectory, x™, along with the control and vari-
ance sequences u” and X7, is generated using the pre-trained
RL policy 7. For this purpose, the predicted positions plffl
of neighboring agents, the previous trajectory element x” |,
and the goal position 7 are combined into an observation

(a) MPPI and RL-based distributions (b) Safe MPPI and RL-based distributions

1 = = Safe constraints
N (PP s

—_— A

== = Safe constraints

Unsafe

Fig. 2: Visualization of safety-constrained update of distri-
bution parameters. The probability mass of unsafe controls
(red region) is reduced to meet the required confidence level.

vector 0,. The policy then outputs the parameters of the
control distribution:

(W™, 27) = {(u],X]) = n(x"t,0,) } " (12)

For each time step within the safety horizon Hy,f., the
mean controls &, @ and corresponding covariances
3PP ST for both sampling branches are refined by solving
the optimization problem (7), which enforces probabilistic
safety constraints to ensure collision-free behavior.

An illustration of this adjustment process is shown in
Figure 2. Initially, when sampling from both distributions
A (uF,£F) and A (u;"P?' | £["PP"), there is a high probability
of generating unsafe controls. After applying the optimiza-
tion procedure, the updated distributions .4 (&7,XF) and
N(@)"PP' 31"PP) reduce the likelihood of unsafe samples to
the specified safety level 6.

Both trajectories are propagated forward over the predic-
tion horizon H using the robot’s dynamic model (2):

x¢ = F(x{_1) +G(x¢_;)8f 4 (13)
xp P = F(x) + G(x ey (14)

Subsequently, two sets of control rollouts, {uk}kKi1 and
{uF}K_ .z, are sampled: one around the RL-guided control
sequence A" with variances ﬁf, and another around the
MPPI-based sequence @"PP* with variances £"””'. Each
sampled control sequence «* induces a trajectory x*, which is
evaluated using the MPPI cost function S(x*,u¥). The result-
ing costs are transformed into trajectory weights @(x*,u*),
and the final control sequence u* is obtained as a weighted
average of all sampled controls. After executing the first
control action uy, the optimized sequence is shifted forward
and reused as the initialization for the next planning iteration.
A detailed description of this procedure is presented in
Algorithm 1.

VI. EXPERIMENTAL EVALUATION

a) Experimental Setup: 1In the experiments, a
differential-drive robot model was employed. The agent’s
state, denoted as x, was defined as x = (py, py,G)T, where
px and p, represent the robot’s position (the center of the

Algorithm 1: CoRL-MPPI

Input: Current state x{ Goal state T;
Control sequence from previous step u
Positions and velocities (pl,vi) of neighbors j € 7;
MPPI parameters A, 7, £*,u™t; Learned policy 7;
Motion model F(-),G(+); Cost function S(-,-)

mppi

init .
5

1 xo,x0 —xi;

2 po — p’] Vje

3forrel,....H do

4 p{(—p‘Ll—FVj Vj € o;

5 Compute 0¢_; using {X¢_1, T, {P{q}jeaﬁ};

6 | ul X mXE g 01);

7| P e

8 if t < H,,r, then

9 Get ﬁ?—lzif—l by solving (7) using
Xt 17{Pt 1}Jea¢§

10 Get ﬁ:nplpl,Z;"p P by solving (7) using

X PP D e o

11 else

12 ﬁ:rfl’.if—l cul X0

IERN I I VR e v

14 x¢ = F(x{_y) + G(x{_) y; .

15 | :nppl F(x mppl) L G(X mppl)ﬁ;“_plm;

16 Sample rollouts {uk}k | using 4% and {Z”}l 0 ;

17 Sample rollouts {uf}K_ k, using AMPPiand {SmPPIH L

=0 °
18 for ke 1,...,H do
19 Predict trajectory x* using xi, u* and F(-),G()
using (2);

20 Compute cost S(x¥, uk)

exp(— (S(x,u)—min; S(x' u')))
Y exp(— £ (S(uF)—min; S(x7 ul))) >
2w YK ok k) uk;
23 ™ (uj,...,
24 return ug;

21 o(x,u) <

LHERE

corresponding disk) in a two-dimensional workspace, and
0 denotes the robot’s heading angle. The control input was
defined as u = (v,w)’, where v and w correspond to the
linear and angular velocities, respectively.

At each time step, the selected control input was perturbed
by zero-mean Gaussian noise € ~ .4(0,X). The resulting
control commands were constrained according to the fol-
lowing bounds, consistent with (3):

(v+€[0]) < Vinax, (wHe[1]) < wpgy. (15)

Viin < Winin <

The robot’s motion was governed by the discrete-time
kinematic model:

cosf, O
X;+1 =X+ sin@, 0 (U[+8). (16)
0 1

All robots in the experiments shared identical physical
and control parameters: the robot size (radius of the disk)

was set to r = 0.3m; linear velocity limits were vy, =
—1.0m/s and vy, = 1.0m/s; angular velocity limits were
Wmin = —2.0rad/s and w;,;,, = 2.0rad/s; and the control noise
covariance was ¥ = diag(0.1m/s,0.2rad/s). The observation
radius was assumed to be unbounded. The simulation time
step was fixed at 0.1,s

& Pl
e
o_@ o

@)

9
9

./O

(a) circle (b) Mesh (Sparse) (c) Mesh (Dense) (d) Random

Fig. 3: Illustrative visualization of the experimental scenar-
ios. Scales and proportions are adjusted for clarity

b) Experimental Environments: Four types of sce-
narios were used for training and/or evaluation: Circle,
Mesh (Sparse and Dense), and Random. An illustrative
depiction of these scenarios is presented in Figure 3, with
scales and proportions adjusted for clarity.

In the Circle scenario, N agents were positioned
equidistantly along the circumference of a circle, with their
respective goals located at diametrically opposite points.
Each agent’s initial heading was directed toward its goal.
This configuration challenges the algorithms to avoid dead-
locks and manage dense interactions as agents converge
toward the center.

The scenario was used both for training and evaluation.
During training, circles with diameters of 14m and 20m
were used, with 32 agents in each case. For evaluation, the
diameter was fixed at 14 m, while the number of agents varied
from 5 to 50 in increments of 5, with each instance repeated
10 times.

In the Mesh scenarios, agents were initially placed at the
centers of cells in a uniform square grid, with goal locations
assigned by a random permutation of these cells. All agents
started with a zero heading. This setup was designed to assess
the ability of algorithms to resolve cooperative conflicts in
structured, densely populated environments.

The Sparse version, employed during training, used a
6 x 6 grid with a cell size of 2m and 32 agents, leaving some
cells unoccupied. In contrast, the Dense version, used in
evaluation, employed smaller cell sizes (1.5m) with all grid
cells occupied. The number of agents was varied as 4 (2 x 2),
9 (3x3), 16 (4x4), and 25 (5 x 5). For each configuration,
10 random instances were generated and each instance was
executed 10 times.

The Random scenario represented unstructured environ-
ments with sparse agent distributions. Here, N agents were
uniformly randomly placed within a bounded 40m x 40m
area, and random goal positions were assigned indepen-
dently. This environment type was not encountered during
RL policy training and was used solely for evaluation to
test generalization to unseen configurations. The number of

Makespan (Random)

Makespan (Circle) Makespan (Mesh (Dense))

== ORCA-DD o == ORCA-DD 200 _
2 600l == B-UAVC w Y= B-UAVC 2 175
& == MPPLORCA 3500 == MPPL-ORCA g 150 _
Z | == CoRL-MPPI £ | == CoRLMPPI z _
: ¢ : -
< < a
%’300 ./(2300 2 75
g e 2 |
I v = = 50

200 25
10 20 30 40 50 5 10 15 20 25 30 35 40 45 50 0

Number of agents

Fig. 4: The average makespan of the evaluated algorithms across the Random, Circle, and Mesh

MPPI-ORCA CoRL-MPPI

Number of agents

(Dense) scenarios.

Only instances with a 100% successful runs are included. The lower is better

agents ranged from 10 to 50 in increments of 10, with 10
distinct random instances generated for each configuration.
Each instance was executed 10 times.

¢) RL Policy Training Details: To obtain the pre-
trained policy used in our method, we trained decentralized
agents in the CAMAR environment [39] using a differential-
drive dynamic model. We employed the IPPO [37] algorithm
implemented in the Sample Factory framework [40]. Agents
shared network parameters but acted independently during
training.

The observation space was modified compared to the
default CAMAR setup, as described in V-A. Additionally,
distances were normalized by dividing by the sensing range
size, and all angular quantities were scaled to the interval
[—1;1].

Similarly, we used a slightly adapted reward function, as
described in V-A.0.b, where the terms are defined as:

Ron =02, if [[x},; — 5l < e
Lomision. =L Af JjeN x| —x/ || <r'+7r/;
Ro g =05 (1% =) — I, —zll) -

We trained a single RL policy on tasks with 32 agents for
60M environment steps (= 1.9B individual agent steps). Each
episode consisted of 1,500 simulation steps. The training
utilized 128 parallel vectorized environments, running on
a single NVIDIA H100 GPU. Owing to Sample Factory’s
high-throughput asynchronous architecture and the efficiency
of the CAMAR simulator, the entire training process com-
pleted in under 2 hours.

d) Implementation Details: The CoRL-MPPI was im-
plemented in C++!. The ONNX Runtime framework [41]
was employed for executing the inference of the pre-trained
policy.

The cost function S(x,u) comprised several components:
(i) a running cost penalizing the deviation of trajectory
positions from the target, (ii) a running cost inversely pro-
portional to the distance to the nearest predicted position of
a neighboring agent, (iii) a collision penalty based on pre-
dicted neighboring trajectories, (iv) a running cost penalizing
negative linear velocities, (v) a terminal cost penalizing the

'We will provide a link to a Github repo in case of acceptance

deviation of the final trajectory position from the target.

In the experiments, a time horizon of 10 steps (correspond-
ing to 3 seconds) was used, with 1500 sampled rollouts per
iteration. Among these, 30% of the trajectories were sampled
from the RL-guided distribution.

e) Baselines: We compare our method with ORCA-
DD [20], B-UAVC [28] and a multi-agent collision avoid-
ance algorithm based on the MPPI framework MPPI-
ORCA [5].

ORCA-DD is derived from the well-known ORCA [1]
algorithm but employs an increased agent radius for control
computations, accounting for kinematic constraints.

The B-UAVC method is based on the BVC approach and
incorporates multiple enhancements over the base BV C algo-
rithm, particularly the consideration of kinematic constraints
for differential-drive robots.

The MPPI-ORCA algorithm was configured with a time
horizon of 30 steps and 1500 sampled rollouts. The algorithm
incorporated control execution noise, while the neighbors’
positions were assumed to be known exactly.

ORCA-DD and B-UAVC methods have been modified
in such a way that a small random value &,¢&, ~ .47(0,0.3)
is added to the goal direction vector. This was necessary to
reduce the chance of getting into deadlocks in symmetric
cases. In addition, for all the methods involved in the
experiment, the radius of the agent used in the computations
was increased by & = 0.01 m relative to the real radius to
minimize the chance of collision by creating additional safety
buffer.

f) Experimental Results: The primary performance
metrics evaluated in the experiments were the success rate
and the makespan. The success rate represents the propor-
tion of launches in which all agents successfully reached
their respective goals without collisions, within a tolerance
of 0.3, m, and before reaching the predefined limit of 1000
simulation steps. After reaching their goals, agents were
allowed to depart from them. The makespan denotes the
total time required for all agents to reach their respective
goals. In addition, the presence of collisions during execution
was analyzed to assess both the safety of the compared
approaches.

The resulting success rates are summarized in Table I,

Random Circle Mesh (Dense)
Algorithm SR+ % Col. | SR+ % Col. | SR+ % Col. |
ORCA-DD 99.8% 0% 66% 15% 46.5% 0%
B-UAVC 97.2% 0.8% 40% 57% 54.5% 27.75%
MPPI-ORCA 100 % 0% 94% 6% 100 % 0%
CoRL-MPPI 100 % 0% 100 % 0% 99.25% 0.75 %

TABLE I: Success rate and percentage of runs terminated due to collisions for the evaluated algorithms. The arrows indicate

preferred directions of improvement.

along with the proportion of runs terminated due to col-
lisions. Among the tested environments, the Random sce-
nario proved to be the least challenging for all algorithms.
In contrast, the Circle and Mesh (Dense) scenarios,
which involve complex deadlock resolution and dense agent
interactions, were considerably more difficult.

The proposed method achieved flawless performance in
both the Random and Circle scenarios, completing all
tasks without any collisions. In the Mesh (Dense) sce-
nario, it successfully solved over 99% of tasks, with only
three launches resulting in collisions. These rare failures can
be attributed to the probabilistic nature of the method’s safety
guarantees: the imposed safety threshold is close to, but not
exactly, one. Its predecessor, MPPI-ORCA, demonstrated
comparable performance, performing slightly worse in the
Circle scenario while achieving a 100% success rate
in Mesh (Dense). In contrast, the ORCA-DD and B-
UAVC algorithms exhibited substantially lower success rates
and higher collision frequencies.

Figure 4 presents the average makespan. Each instance
within a scenario is included only if 100% of runs were
successfully completed. For the Random and Circle sce-
narios, the results are reported as a function of the number of
agents, whereas for the Mesh (Dense) scenario, they are
averaged over all trials. Due to the low success rates observed
for ORCA-DD and B-UAVC in the Mesh (Dense) sce-
nario, their corresponding makespan values were excluded
from the analysis.

The figures clearly illustrate that MPPI-based approaches
outperform the competing methods. In the Random sce-
nario, CoRL-MPPI performance closely matches that of
MPPI-ORCA. This similarity can be explained by the low
density of agents in this environment, where cooperative
behavior is less critical for avoiding collisions. It is also
worth noting that large-scale sparse configurations similar
to the Random scenario were not included in the RL pol-
icy’s training process. Nevertheless, the proposed approach
maintained comparable performance to the classical method,
demonstrating strong generalization capability. In contrast, in
densely populated scenarios requiring coordinated decision-
making, the proposed method significantly outperforms all
competitors, achieving nearly a twofold improvement over
MPPI-ORCA.

The experimental evaluation demonstrates that CoRL-
MPPI consistently outperforms the baseline algorithms

across all tested scenarios. It achieves the highest success
rates and the lowest makespan values, indicating both su-
perior reliability and efficiency. In simpler environments
such as Random, its performance remains comparable to
that of MPPI-ORCA, confirming the method’s robustness
and generalization capability. However, in more complex
and densely populated scenarios like Circle and Mesh
(Dense), the proposed approach exhibits a substantial
advantage, successfully resolving challenging interactions
and reducing task completion time.

VII. CONCLUSIONS

In this work we have introduced CoRL-MPPI — a novel
hybrid framework that enhances the Model Predictive Path
Integral controller with learnable, cooperative behaviors for
decentralized multi-robot collision avoidance. Our approach
successfully addresses a key limitation of vanilla MPPI — its
reliance on uninformed random sampling — by leveraging a
pre-trained reinforcement learning policy to intelligently bias
the sampling distribution. Extensive simulation experiments
in dense and dynamic scenarios confirm that the suggested
method significantly outperforms state-of-the-art baselines,
including ORCA, BVC, and a decentralized multi-agent
MPPI implementation. Promising directions include deploy-
ing suggested method on physical robot swarms to bridge the
sim-to-real gap and investigating the online adaptation of the
policy to further improve generalization across diverse and
evolving environments.

REFERENCES

[1] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research, 2011, pp. 3-19.

[2] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047—
1054, 2017.

[3] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1433-1440.

[4] S. Dergachev and K. Yakovlev, “Model predictive path integral for de-
centralized multi-agent collision avoidance,” PeerJ Computer Science,
vol. 10, p. 2220, 2024.

[5] , “Decentralized uncertainty-aware multi-agent collision
avoidance with model predictive path integral,” 2025. [Online].
Available: https://arxiv.org/abs/2507.20293

[6] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1714-1721.

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Kim, G. Park, K. Kwak, J. Bae, and W. Lee, “Smooth model
predictive path integral control without smoothing,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 10406-10413, 2022.

J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory dis-
tribution control for model predictive path integral control using
covariance steering,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 1478-1484.

1. M. Balci, E. Bakolas, B. Vlahov, and E. A. Theodorou, “Constrained
covariance steering based tube-mppi,” in 2022 American Control
Conference (ACC), 2022, pp. 4197-4202.

M. S. Gandhi, B. Vlahov, J. Gibson, G. Williams, and E. A.
Theodorou, “Robust model predictive path integral control: Analysis
and performance guarantees,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 1423-1430, 2021.

C. Tao, H. Kim, H. Yoon, N. Hovakimyan, and P. Voulgaris, “Control
barrier function augmentation in sampling-based control algorithm
for sample efficiency,” in 2022 American Control Conference (ACC),
2022, pp. 3488-3493.

C. Tao, H.-J. Yoon, H. Kim, N. Hovakimyan, and P. Voulgaris, “Path
integral methods with stochastic control barrier functions,” in 2022
IEEE 61st Conference on Decision and Control (CDC), 2022, pp.
1654-1659.

Z. Wang, A. D. Saravanos, H. Almubarak, O. So, and E. A. Theodorou,
“Sampling-based optimization for multi-agent model predictive con-
trol,” arXiv preprint arXiv:2211.11878, 2022.

L. Song, P. Zhao, N. Wan, and N. Hovakimyan, “Safety embedded
stochastic optimal control of networked multi-agent systems via barrier
states,” in 2023 American Control Conference (ACC), 2023, pp. 2554—
2559.

I. S. Mohamed, M. Ali, and L. Liu, “Chance-constrained sampling-
based mpc for collision avoidance in uncertain dynamic environ-
ments,” IEEE Robotics and Automation Letters, vol. 10, no. 7, pp.
7492-7499, 2025.

L. Streichenberg, E. Trevisan, J. J. Chung, R. Siegwart, and J. Alonso-
Mora, “Multi-agent path integral control for interaction-aware motion
planning in urban canals,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 1379-1385.

N. Hansen, X. Wang, and H. Su, “Temporal difference learning for
model predictive control,” arXiv preprint arXiv:2203.04955, 2022.
N. Hansen, H. Su, and X. Wang, “Td-mpc2: Scalable, robust world
models for continuous control,” arXiv preprint arXiv:2310.16828,
2023.

Y. Qu, H. Chu, S. Gao, J. Guan, H. Yan, L. Xiao, S. E. Li, and J. Duan,
“RL-driven MPPI: Accelerating online control laws calculation with
offline policy,” vol. 9, no. 2, pp. 3605-3616.

J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “Smooth and
collision-free navigation for multiple robots under differential-drive
constraints,” in 2010 IEEE/RSJ international conference on intelligent
robots and systems, 2010, pp. 4584-4589.

J. Snape, S. J. Guy, J. Van Den Berg, and D. Manocha, “Smooth
coordination and navigation for multiple differential-drive robots,”
in Experimental Robotics: The 12th International Symposium on
Experimental Robotics, 2014, pp. 601-613.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Distributed autonomous robotic systems: The
10th international symposium, 2013, pp. 203-216.

J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision
avoidance for nonholonomic robots,” IEEE Transactions on Robotics,
vol. 34, no. 2, pp. 404420, 2018.

B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha, “Prvo: Probabilistic reciprocal velocity obstacle for multi
robot navigation under uncertainty,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1089—
1096.

D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot col-
lision avoidance with localization uncertainty,” in Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, 2012, pp. 147-154.

D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance
under bounded localization uncertainty,” in 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2012, pp. 1192—
1198.

M. Wang and M. Schwager, “Distributed collision avoidance of
multiple robots with probabilistic buffered voronoi cells,” in 2019 in-

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

ternational symposium on multi-robot and multi-agent systems (MRS),
2019, pp. 169-175.

H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilis-
tic multi-robot collision avoidance using buffered uncertainty-aware
voronoi cells,” Autonomous Robots, vol. 46, no. 2, pp. 401-420, 2022.
Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized
non-communicating multiagent collision avoidance with deep rein-
forcement learning,” in Proceedings of the 2017 IEEE International
Conference on Robotics and Automation ({ICRA} 2017), pp. 285-292.
P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “To-
wards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in 2018 IEEE international conference on
robotics and automation (ICRA), 2018, pp. 6252-6259.

T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, vol. 39,
no. 7, pp. 856-892, 2020.

S. Asayesh, M. Chen, M. Mehrandezh, and K. Gupta, “Least-restrictive
multi-agent collision avoidance via deep meta reinforcement learning
and optimal control,” in International Conference on Robot Intelli-
gence Technology and Applications, 2022, pp. 213-225.

R. Han, S. Chen, S. Wang, Z. Zhang, R. Gao, Q. Hao, and J. Pan, “Re-
inforcement learned distributed multi-robot navigation with reciprocal
velocity obstacle shaped rewards,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 5896-5903, 2022.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of operations research, vol. 27, no. 4, pp. 819-840, 2002.
L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99-134, 1998.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

C. S. De Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr,
M. Sun, and S. Whiteson, “Is independent learning all you need in
the starcraft multi-agent challenge?” arXiv preprint arXiv:2011.09533,
2020.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

A. Pshenitsyn, A. Panov, and A. Skrynnik, “Camar: Continuous actions
multi-agent routing,” arXiv preprint arXiv:2508.12845, 2025.

A. Petrenko, Z. Huang, T. Kumar, G. Sukhatme, and V. Koltun,
“Sample factory: Egocentric 3d control from pixels at 100000 fps with
asynchronous reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2020, pp. 7652-7662.

0. R. developers, “Onnx runtime,” https://onnxruntime.ai/, 2021, ver-
sion: X.y.z.

