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ABSTRACT

The advancement of deep learning technologies is bringing new models by the
day, which not only facilitates the importance of model selection but also makes
it more challenging than ever. However, existing solutions for model selection
either require a large amount of model operations proportional to the number of
candidates when selecting models for each task, or require group preparations
that jointly optimize the embedding vectors of many candidate models. As a re-
sult, the scalability of existing solutions is limited with the increasing amounts of
candidates. In this work, we present a new paradigm for model selection, namely
independently-prepared query-efficient model selection. The advantage of our
paradigm is twofold: first, it is query-efficient, meaning that it requires only a con-
stant amount of model operations every time it selects models for a new task; sec-
ond, it is independently-prepared, meaning that any information about a candidate
model that is necessary for the selection can be prepared independently requiring
no interaction with others. Consequently, the new paradigm offers by definition
many desirable properties for applications: updatability, decentralizability, flexi-
bility, and certain preservation of both candidate privacy and query privacy. With
the benefits uncovered, we present Standardized Embedder as a proof-of-concept
solution to support the practicality of the proposed paradigm. We empirically
evaluate this solution by selecting models for multiple downstream tasks, from a
pool of 100 pre-trained models that cover different model architectures and vari-
ous training recipes, highlighting the potential of the proposed paradigm.

(a) Preparation-free (b) Query-efficient (c) Independently-prepared
& Query-efficient (ours)

Figure 1: Illustrations of different paradigms for model selection. (a) Preparation-free Model Se-
lection: Every candidate model needs to be directly examined for each query. (b) Query-efficient
Model Selection: Embedding vectors of the candidates are jointly prepared in advance and models
are selected based on vector comparisons. (c) Independently-prepared Query-efficient Model Se-
lection (ours): The embedding vectors can be independently prepared for different candidates and
models are selected based on vector comparisons.
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1 INTRODUCTION

New models are being created and becoming available at a rate beyond previous imaginations. Hug-
ging Face Hub1, a web platform for hosting machine learning models, datasets, and demo applica-
tions, included more than 300k pre-trained models in August 2023, when its owner, the company
named Hugging Face, obtained a $4.5 billion valuation while raising a funding of $235 million
backed by Salesforce, Google, Nvidia, Intel, AMD, Qualcomm, IBM, Amazon and more2. The vast
amounts of new models can be highly valuable assets if we can identify the ones suitable for tasks
of interest. Nevertheless, as the number of candidates grows, selecting proper models for a new task
becomes increasingly challenging. How can we make model selection truly scalable to meet the
demands now and in the future?

Existing Paradigm 1: Preparation-free Model Selection. The most naive solution for model se-
lection is to try every candidate model on the task of interest. This can select the best possible
candidates but becomes prohibitively expensive when dealing with more than a handful of mod-
els. A previous direction towards addressing this issue is the study of transferability metrics for
models (Bao et al., 2019; Nguyen et al., 2020; You et al., 2021; Pándy et al., 2022; Huang et al.,
2022; Agostinelli et al., 2022; Bolya et al., 2021). Transferability metrics are scores that can be
computed without training models (typically requiring only forward passes of models) and correlate
with the performance of models after being transferred to downstream tasks. By computing such
metrics for candidate models instead of training them, one can greatly reduce the computational
overhead by eliminating the cost of training multiple models. We refer to them as preparation-free
model selection since they require no additional preparation before queries (i.e. selecting models
for downstream tasks), as illustrated in Figure 1(a). However, despite the enhanced efficiency with
transferability metrics, the number of model operations (e.g. forward/backward passes of models
and uploads/downloads of model weights) required per query still depends linearly on the number
of candidates in this paradigm. Thus it can remain costly as the number of candidates increases.

Existing Paradigm 2: Query-efficient Model Selection. As a gift from the study of task similari-
ties (Zamir et al., 2018; Achille et al., 2019; Liu et al., 2022a; Zhou et al., 2022), Model2Vec (Achille
et al., 2019) offers a solution with a more desirable query complexity. Informally, each candidate
model is associated with an embedding vector, and these embedding vectors are trained jointly to
predict the best candidates from their distances to the task embedding. After this, for each query,
the model selection is reduced to the comparisons of embedding vectors, which requires only vector
operations that are orders of magnitude faster than forward/backward passes of typical neural mod-
els (i.e. model operations). We refer to this paradigm as query-efficient model selection since the
number of model operations required for each query is O(1) with respect to the number of candidates
(which is spent to compute the embedding of the query task), as illustrated in Figure 1(b). How-
ever, query-efficient model selection suffers from another scalability issue that originates from its
preparations: updatability. Unlike preparation-free model selection schemes such as transferability
metrics, Model2Vec (Achille et al., 2019) requires a group preparation stage where the embedding
vectors of all candidate models are learned jointly so that their distances to task embedding vectors
correlate with their performance. However, such group preparations can be increasingly costly and
difficult to update as new candidate models continue to join.

New Paradigm: Independently-prepared Query-efficient Model Selection. In this work, we
propose a new paradigm, namely independently-prepared query-efficient model selection. In
addition to being query-efficient by comparing embedding vectors as in the previous paradigm, the
new paradigm requires the solutions to be independently-prepared, meaning that each candidate
model can be mapped to its embedding vectors independently, without relying on any interaction
with other candidate models, as illustrated in Figure 1(c). Such property improves the scalability of
query-efficient model selection not only by enabling trivial distribution of computations to multiple
machines and easy updates with new candidate models, but also by allowing model owners to freely
enroll their models as candidates of selection by themselves without directly revealing their models
to the public: They simply prepare and publish the embedding vectors corresponding to their own
models. Users who want to select models for downstream tasks can therefore collect the embedding
vectors from potentially different sources and select models efficiently based on vector comparisons.

1https://huggingface.co
2https://www.nasdaq.com/articles/ai-startup-hugging-face-valued-at-$4.5-bln-in-latest-round-of-funding
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Eventually, only the owners of the selected candidates need to be notified for access to the models
while all other model owners do not reveal their models and are not even aware of the selections. To
summarize, attributing to the nature of independent preparations, the proposed paradigm offers
desirable properties including updatability, decentralizability, flexibility, and preservation of
both candidate privacy and query privacy, which will be elaborated in detail in Section 3.2.

How to design solutions for independently-prepared query-efficient model selection? In this work,
we provide a proof-of-concept design called Standardized Embedder. The key intuition of Standard-
ized Embedder is standardization, i.e. using one public model as the baseline to embed all different
candidate models, thus ensuring the independently learned embedding vectors conform to the same
standard and are therefore comparable. We empirically evaluate the effectiveness of Standardized
Embedder to select from a pool of 100 models for multiple downstream tasks, highlighting the prac-
ticality and potentials of the proposed paradigm.

In summary, our main contributions include:

• We propose a new model selection paradigm, namely independently-prepared query-efficient
model selection, which offers by definition desirable properties including updatability, decen-
tralizability, flexibility, and preservation of both candidate and query privacy;

• We present Standardized Embedder as a proof-of-concept solution in the proposed paradigm;

• We evaluate the solution to highlight the potential of the proposed paradigm by gathering 100
pre-trained models, which cover different architectures and training recipes, and using them as
candidates of model selection for different downstream tasks.

2 RELATED WORK

Preparation-free Model Selection: Transferability Metrics. Intuitively, transferability metrics
are scores that correlate with the performance of models/features after being transferred to a new
task and can be computed without training: H-score (Bao et al., 2019) is defined by incorporating
the estimated inter-class variance and the redundancy of features; LEEP (Nguyen et al., 2020) esti-
mates the distribution of target task label conditioned on the label of pre-trained tasks to construct
a downstream classifier without training and use its performance as the metric; LogME (You et al.,
2021) estimates the maximum value of the marginalized likelihood of the label given pre-trained
features and uses its logarithm as the score; GBC (Pándy et al., 2022) uses class-wise Gaussians to
approximate downstream samples in the pre-trained feature space so that class overlaps can be com-
puted with Bhattacharyya coefficients to serve as a score; TransRate (Huang et al., 2022) estimates
mutual information between features and labels by resorting to coding rate. Separate evaluations of
transferability metrics are conducted by Agostinelli et al. (2022) and Bolya et al. (2021).

Query-efficient Model Selection: Model2Vec. Model2Vec is proposed jointly with Task2Vec by
Achille et al. (2019). The goal of Task2Vec is to embed different tasks into a shared vector space and
it does so by estimating the Fisher information matrix with respect to a probe network. To embed
models, they first initialize the embedding of each model as the sum of the Task2Vec embedding F
of its pre-trained task (which is set to 0 if the task is unknown) and a learnable perturbation b. Then
they learn the perturbations of all models jointly by predicting the best model given the distances of
model embeddings to the task embeddings. This design, while intuitive, leads to updatability issues
when embedding new models. In addition, access to multiple downstream tasks is required in the
preparation stage, which further limits its applicability.

3 INDEPENDENTLY-PREPARED QUERY-EFFICIENT MODEL SELECTION

3.1 FORMAL DESCRIPTION

Here we present the formal description of independently-prepared query-efficient model selection,
which can be divided into two parts: (1) preparations, where candidate models are converted into
embedding vectors for later use in selecting models; (2) queries, where models are selected given
downstream data (i.e. data corresponding to the task of interest) and the model embeddings gener-
ated during preparations.
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Preparations. The preparation scheme is defined by a single function of the form P(model) → V ,
where ‘model’ denotes a single (candidate) model and V denotes an embedding space. We refer to
P as the preparation function. Intuitively, P maps a single model into its corresponding embedding
vectors. Let f1, f2, . . . , fM be all candidate models where M is the total number of models. In this
stage, embedding vectors of all candidate models are generated as {vi = P(fi)}Mi=1, where vi is the
embedding vector corresponding to candidate model fi. The preparations are independent in this
paradigm in the sense that the preparation function P takes a single candidate model as its input and
is applied independently to each candidate model.

Queries. Queries are defined by a single function of the form Q(data,model embeddings) →
model indices, where ‘data’ denotes the downstream data corresponding to the task of interest and
‘model embeddings’ denote the embeddings generated during preparations. We refer to Q as the
query function. Intuitively, Q selects one or more candidate models based on both downstream data
corresponding to the task of interest and the model embeddings generated during preparations. The
queries are efficient in the sense that the selection of models is reduced to the selection of vectors
with model embeddings and task embeddings: In this way, the number of model operations (e.g. for-
ward/backward passes) spent is O(1) with respect to the number of candidates (i.e. the complexity
of model operations does not grow as the number of candidates increases).

3.2 IMPLICATIONS

Intuitively, the proposed paradigm is obtained by combining independent preparations with the
query-efficient model selection paradigm. With independent preparations, the proposed paradigm
offers by definition many desirable properties: updatability, decentralizability, flexibility, and
certain preservation of candidate privacy, in addition to certain preservation of query privacy
inherited from query-efficient model selection paradigm.

Updatability: The paradigm is updatable as the cost of adding new candidate models does not
increase when the total number of candidates increases. Since the preparations are independent,
the only necessary update when a new candidate model joins is to apply the preparation function
P to the new model for the corresponding model embedding. No modification is required to any
previously generated model embeddings.

Decentralizability: The selection process is naturally decentralizable as model owners can enroll
their models as candidates of future model selections entirely on their own, requiring no collabora-
tion with other model owners and no centralized coordination. Given the preparation function P ,
model owners can independently embed their models and publish/broadcast the resulting embed-
dings by themselves. After that, any party with access to the published model embeddings can use
the query function Q to select models based on the data for its own task.

Flexibility: The paradigm is flexible as it can easily support model selection across different im-
plementation frameworks, different owners, and different platforms. Firstly, attributing to the in-
dependent preparations, different owners and platforms can embed models independently with the
preparation function P , potentially implemented in different frameworks. Secondly, since the only
candidate-related inputs to the query function Q are the model embeddings, the only remaining bar-
rier is to collect them. Fortunately, model embeddings are typically very portable as they are just
real vectors, which can be stored and processed in diverse formats through various tools. In addition,
typical dimensions of model embeddings are fairly small: For instance, in later empirical evalua-
tions, we incorporate settings with 512-dimensional and 768-dimensional model embeddings, while
as an informal comparison, each of Figure 1(a), 1(b) and 1(c) contains 1510 × 1170 ≈ 1.8 × 106

RGB pixels, which is about 5.3× 106 dimensions.

Preservation of candidate privacy: The process preserves the privacy (and/or intellectual proper-
ties) of model owners as no model-related information other than their embeddings is released to any
other parties (e.g. other model owners and the owners of the target tasks) throughout the selection.

Preservation of query privacy: This framework preserves the privacy of users who select models
for their tasks as not only will their task data be kept private but also model owners will have no
knowledge regarding if there is a selection or not, unless the users notify them. After all, once all
model embeddings are collected, users can finish the selection entirely locally.
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Table 1: Properties of different model selection paradigms.

model selection
paradigm

scalable
preparation

efficient
query updatable decentralizable flexible candidate

privacy
query

privacy

preparation-free ✓ ✓ ✓

query-efficient ✓ ✓

ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

We conclude this section with the above table summarizing properties of model selection paradigms.
Notably, the proposed paradigm is potentially applicable to different scenarios relying on different
subsets of the properties: In centralized settings where a single party has access to not only all
candidate models but also the data of the target task, the updatability can be the most important; In
hybrid settings where the candidate models are hosted by one party and the task data is hosted by an-
other, the preservation of candidate privacy and query privacy also become critical; In decentralized
settings where candidate models are possessed by multiple parties, all properties are valuable.

4 A PROOF-OF-CONCEPT SOLUTION: STANDARDIZED EMBEDDER

In this section, we introduce the design of Standardized Embedder as a proof-of-concept solution to
independently-prepared query-efficient model selection. We view every deep model as a collection
of features, where each feature is a function mapping the input space to scalar values. The key
intuition of our design is to define computationally tractable vectors characterizing the representa-
tion powers of a set of features with respect to the baseline features, so that these individually and
independently extracted vectors can be comparable for model selections.

As illustrated in Figure 1(c), this baseline solution contains two major components: independent
preparations, where model embedding vectors are learned independently for different candidates,
and efficient query, where a task embedding vector is learned from the downstream data and is used
to search among model embeddings to guide model selection. These two components are presented
respectively in Section 4.2 and 4.3, built on concepts we presented in Section 4.1.

4.1 TOOL: (APPROXIMATE) FUNCTIONALITY EQUIVALENCE FOR SETS OF FEATURES

Firstly, we introduce notations. Let X be the input space. A feature f : X → R is defined as
a function mapping any sample from the input space X to a real number. A set of features F is
therefore a set of functions, which can also be considered as a function F : X → Rn mapping any
sample to a vector of n dimensions, where n can be either finite or countably infinite, depending on
whether or not the set contains a finite number of features.
Definition 1 (Functionality Equivalence). For two sets F : X → Rn and F̂ : X → Rm of features,
they are considered δ-equivalent in functionality over a distribution D over X , if and only if there
exist two affine transformations w, b ∈ Rn×m × Rm and ŵ, b̂ ∈ Rm×n × Rn such thatEx∼D

[
Scos

(
w⊤F (x) + b, F̂ (x)

)]
≥ 1− δ

Ex∼D

[
Scos

(
F (x), ŵ⊤F̂ (x) + b̂

)]
≥ 1− δ

where Scos (u, v) denotes cosine similarity between two vectors u and v.

Functionality equivalence characterizes cases where two sets of features are considered the same
regarding their usability in unknown applications. Intuitively, since most (if not all) modern archi-
tectures of neural networks have at least one affine transformation following the feature layers, two
sets of features should be considered equivalent even if they differ by an affine transformation. Sim-
ilar arguments are introduced by Wang et al. (2018) to understand deep representations, where they
consider two representations to be equivalent when the subspaces spanned by their activation vec-
tors are identical. While in principle other similarity metrics can be utilized as well, we use cosine
similarity in this work since it is naturally invariant to feature scalings.
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(a) Preparation: independent embedding of models (b) Query: embedding of tasks

Figure 2: An illustration of Standardized Embedder. (a) Using features of a public model as the
baseline, a vector embedding is learned independently for each pre-trained model. The embed-
dings of models denote their approximately equivalent feature subsets in the baseline features. (b)
Task embeddings are defined by subsets of the baseline features that are important to corresponding
downstream tasks, which are identified through enforcing sparsity regularization.

4.2 PREPARATION: INDEPENDENTLY LEARNED MODEL EMBEDDINGS THROUGH
IDENTIFYING EQUIVALENT FEATURE SUBSETS

With functionality equivalence from Definition 1, we can characterize the representation powers
of any set of features by associating them with the equivalent subsets from a pre-defined, baseline
feature set B : X → RN (Empirically we will use a public model as this baseline feature set, which
will be elaborated in Section 5). Since any subset of the baseline feature set B : X → RN can be
directly associated with a binary vector from {0, 1}N (i.e. each 1 indicating the presence of a feature
and each 0 indicating an absence; See Appendix C for examples), we simply use such vectors as
the embeddings of models. Notably, while technically we define binary embedding vectors here,
the embedding space will be relaxed to a continuous one (i.e. [0, 1]N ) for the actual algorithm. The
formal definition is as follows.

Definition 2 (Vector Embedding through Equivalent Feature Subsets). Given a baseline feature set
B : X → RN , a vector v ∈ {0, 1}N is a δ-embedding vector of a feature set F : X → Rn over a
distribution D if and only if F and {Bi|vi = 1} are δ-equivalent in functionality over D.

Given a set of features as the baseline, the embedding vectors corresponding to a set of features are
defined through Definition 2. Consequently, we can now conceptually map each model, represented
as a set of features, into a vector embedding space that associates with the baseline features.

In practice, to compute the embedding vectors given baseline features, we relax the binary embed-
ding space to a continuous one and reformulate it as the following optimization:

max
v,w,b,ŵ,b̂

min (Lto baseline, Lfrom baseline)

s.t. Lto baseline = Ex∼D

[
Scos

(
w⊤F (x) + b, v ⊙B(x)

)]
Lfrom baseline = Ex∼D

[
Scos

(
F (x), ŵ⊤ (v ⊙B(x)) + b̂

)]
v ∈ [0, 1]n and w, b ∈ Rn×N × RN , ŵ, b̂ ∈ RN×n × Rn

where F : X → Rn is the feature set that we want to vectorize, B : X → RN is the set of baseline
features, D is the underlying data distribution, v is the (relaxed) embedding vector, w, b, ŵ, b̂ are
parameters of affine transforms and ⊙ denotes Hadamard product (i.e. element-wise multiplication).
An illustration of the model embedding process is included in Figure 2(a).

Empirically, the constraint v ∈ [0, 1]n is implemented via reparameterization through the sigmoid
function, i.e. vi = 1/(1 + e−v′

i/τ ), where τ is a constant known as temperature and we use a fixed
temperature of τ = 0.01 in all experiments. Intuitively, the optimization wants to find a subset of
the baseline features (indicated by the mask v) that is δ-equivalent to F for smaller δ.
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Both Definition 2 and the relaxation are straightforward, but it is worth noting that the embedding
depends on not only the model (i.e. the set of features) to be embedded, but also the set of baseline
features, and the embedding vectors may not be unique by definition depending on the choice of
baseline features. Conceptually, what we do here is to compare the embedding distributions of
different models by drawing a single embedding vector from each distribution.

4.3 QUERY: TASK EMBEDDINGS THROUGH FEATURE SIFTING

With models embedded in a vector space, the missing piece to enable model selections through
vector comparisons is to identify a reference point (e.g. a task embedding) in the embedding space
from the context of downstream applications. In this section, we showcase how one can derive the
task embedding vector from downstream data and how to select competitive models by comparing
only embedding vectors. An illustration of the process is included in Figure 2(b): Intuitively, we
derive a reference point in the vector space by identifying subsets of the baseline features B : X →
RN that are important to the task of interest, which can then be directly associated with binary
vectors from {0, 1}N , similar to how we previously embed models as vectors.

Formally, for a downstream task, let X be the input space, Y be the label space, we use D̂ to
denote the downstream data distribution, which is a distribution over X × Y . Using L to denote the
corresponding task loss, identifying important features can be formulated as follows:

min
v,w,b

Ex,y∼D̂

[
L
(
w⊤(v ⊙B(x)) + b, y

)]
+ γ||v||1

s.t. ||w⊤||1 = 1 and v ∈ [0, 1]n

where v ∈ [0, 1]n is the embedding vector of the task to be learned, w, b ∈ Rn×|Y| × R|Y| jointly
denotes a prediction head associated with the task of interest, ||v||1 denotes the ℓ1 norm of the
embedding vector (which functions as sparsity regularization), ||w⊤||1 denotes the matrix norm of
w⊤ induced by ℓ1 norm of vectors (i.e. ||w⊤||1 = supx ̸=0 ||w⊤x||1/||x||1 = maxi

∑
j |wij |) and

γ is sparsity level, a scalar hyper-parameter controlling the strength of the sparsity regularization
γ||v||1. A rule of thumb for choosing γ is discussed in Section 5.4.

Selection metric. Given the task embedding, we compare it with embeddings of candidate models
to identify the most similar ones to the task embedding with respect to a similarity metric—-the cor-
responding models are the ones to be selected. Notably, all our embedding vectors, including model
embeddings and task embeddings, are relaxations of binary vectors denoting subsets of the baseline
features. This is well related to fuzzy set theory (Zadeh, 1965; Klir & Yuan, 1995) where each ele-
ment can have a degree of membership between 0 and 1 to indicate whether it is not/fully/partially
included in a set. Interpreting both model embeddings and task embeddings as fuzzy sets, we incor-
porate standard fuzzy set intersection to measure the similarity between model embeddings and task
embeddings. Formally, let u, v ∈ [0, 1]n be two embedding vectors (interpreted as fuzzy sets), the
cardinality of their standard intersection is simply Istandard(u, v) =

∑n
i=1 min(ui, vi).

Intuitively, the task embedding denotes the set of baseline features useful for the task of interest and
each model embedding denotes the set of baseline features possessed by the corresponding candidate
model. Thus informally the cardinality of their intersection measures the quantity of the useful
features owned by candidate models and therefore provides guidance for downstream performance.

5 EVALUATION

5.1 EVALUATION SETUP

For empirical evaluations, we gather 100 pre-trained models with various architectures and training
recipes as the candidates of model selection. The details are included in Appendix A.

Preparations. Recalling that Standardized Embedder uses a public model as the baseline features
and (approximate) functionality equivalence is defined over an underlying distribution D, we in-
clude different choices of baseline features, a pre-trained ResNet-18 or a pre-trained Swin Trans-
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former (tiny) and we use the validation set of ImageNet (50000 samples in total) as the underlying
distribution D (for the embedding of candidate models). We use the same hyper-parameters when
embedding different candidate models: We use SGD optimizer with a batch size of 128, an initial
learning rate of 0.1, a momentum of 0.9, and a weight decay of 5e-4; We divide the learning rate by
a factor of 10 every 1k steps for settings with 4k training steps (=10.24 epochs) per candidate, and
every 3k steps for settings with 10k training steps (=25.6 epochs) per candidate.

Queries. We evaluate the ability of Standardized Embedder to select competitive models for three
downstream benchmarks, CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009)
and STL-10 (Coates et al., 2011), which are natural object classifications benchmarks with varying
granularity and varying domain shifts (compared to ImageNet validation set that we use as the
distribution to embed models). To learn task embeddings, we use SGD optimizer with a batch size
of 128, an initial learning rate of 0.1, a momentum of 0.9, and a weight decay of 5e-4 for 60 epochs,
with the learning rate divided by a factor of 10 every 15 epochs. Notably, the weight decay is
disabled for the task embedding to be learned to avoid interfering with the sparsity regularization
from Section 4.3. For coherence, we defer to Section 5.4 the choice of the sparsity level γ.

Ground truth. To evaluate model selection, one has to collect the actual performance of every
candidate model on each downstream task (Note that this is not really scalable as it is essentially the
naive selection scheme that tries every candidate out, thus limiting the scales of our evaluation). Here
for simplicity, we incorporate a linear probing protocol for evaluation: For every candidate model
and for each downstream task, we train a linear classifier over its features with the SGD optimizer
as the downstream accuracy (of this candidate model with respect to this downstream task), using a
batch size of 128, an initial learning rate of 0.1, a momentum of 0.9, and a weight decay of 5e-4 for
60 epochs, with the learning rate divided by a factor of 10 every 15 epochs.

5.2 THE PERFORMANCE OF STANDARDIZED EMBEDDER

In Table 2, we include the quantitative evaluations on the performance of Standardized Embedder.
For each downstream task, we report on the left half of the table the downstream accuracy of the
best candidates (i.e. the ground truth) for references and report on the right half of the table the
downstream accuracy of models selected (i.e. the top-1/top-3/top-5 candidates according to the se-
lection metric). Standardized Embedder successfully locates models comparable to the best possible
candidates with respect to different downstream tasks: When selecting only 1 model from the 100
candidates, the worst accuracy gap across all evaluated settings of Standardized Embedder (i.e.
with different baseline features and training steps per candidate) and all downstream tasks evaluated
is 3.34%, which is reduced to 2.45% when selecting 3 models and 1.47% when selecting 5 models;
For the best evaluated setting of Standardized Embedder, which uses Swin Transformer (tiny) as
baseline features and 10k steps per candidate, the gap is at most 1.10% for all evaluated downstream
tasks even when selecting only 1 model.

In Figure 3 and Figure 4, we present both the downstream accuracy and the cardinality of standard
intersection (i.e. the selection metric) for different downstream tasks when using different baseline
features. We use the dashed line to highlight the downstream accuracy of the public model used as
baseline features. An important observation here is that Standardized Embedder is able to locate
much more competitive models when the public model used as baseline features is suboptimal.

5.3 ON THE CHOICE OF BASELINE FEATURES

Table 2 suggests that Standardized Embedder performs better when using Swin Transformer (tiny)
as baseline features compared to when using ResNet-18. To further understand this, we compare the
selection metric of candidate models on each of the evaluated downstream tasks when using different
baseline features in Figure 5 and Figure 6, where in all cases there are clusters of green/orange points
in the bottom right, which corresponds to Transformers and hybrid models (i.e. models with both
convolution and attention) that are overrated when using ResNet-18 as baseline features.

This is potentially attributed to the limitations of ConvNets (i.e. Convolutional Neural Networks):
The size of their receptive fields prevents them from capturing some long-range correlations utilized
by models with attention (i.e. Transformers and hybrid models). While this suggests models with
attention, such as Swin Transformer (tiny) we evaluated, can be potentially better choices of baseline
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Table 2: Empirical evaluations of Standardized Embedder with 100 pre-trained models as the
candidates (See Appendix A for the full list). Standardized Embedder successfully locates models
comparable to the best candidates for corresponding downstream tasks.

downstream task best candidate
(ground truth)

model used as
baseline features

training steps
per candidate

downstream accuracy of selected models
(+gap from the best candidate)

best of top 1 best of top 3 best of top 5

CIFAR-10 95.15%

ResNet-18
4k 91.81%

(3.34%)
94.57%
(0.58%)

94.57%
(0.58%)

10k 94.36%
(0.79%)

95.12%
(0.03%)

95.12%
(0.03%)

Swin-T (tiny)
4k 94.57%

(0.58%)
94.57%
(0.58%)

95.12%
(0.03%)

10k 95.12%
(0.03%)

95.12%
(0.03%)

95.12%
(0.03%)

CIFAR-100 82.58%

ResNet-18
4k 81.11%

(1.47%)
81.11%
(1.47%)

81.11%
(1.47%)

10k 80.13%
(2.45%)

80.13%
(2.45%)

81.57%
(1.01%)

Swin-T (tiny)
4k 81.11%

(1.47%)
81.48%
(1.10%)

81.48%
(1.10%)

10k 81.48%
(1.10%)

81.48%
(1.10%)

81.48%
(1.10%)

STL-10 99.24%

ResNet-18
4k 98.76%

(0.47%)
98.76%
(0.47%)

98.76%
(0.47%)

10k 97.51%
(1.72%)

98.60%
(0.64%)

98.76%
(0.47%)

Swin-T (tiny)
4k 97.69%

(1.55%)
98.60%
(0.64%)

98.60%
(0.64%)

10k 98.60%
(0.64%)

98.60%
(0.64%)

98.60%
(0.64%)

features than ConvNets, we want to emphasize that it remains open regarding what kind of models
will serve best as baseline features for model selection purposes. For now, we conclude this section
as follows: In settings evaluated, using Swin Transformer (tiny) as baseline features offers better
selections of models, while the results from using ResNet-18 are already good.

5.4 ON CHOOSING SPARSITY LEVEL IN EMBEDDING DOWNSTREAM TASKS

In Section 4.3, we introduce a scalar hyper-parameter, the sparsity level γ, to control the strength of
sparsity regularization γ∥v∥1 when defining the embedding of the downstream task. Here we will
present a rule of thumb that we use for choosing γ empirically in our experiments.

Intuitively, the sparsity regularization works by penalizing the use of any feature and therefore only
features that are critical enough for the downstream task will be utilized. As the sparsity level γ
increases, the subsets of features preserved will also be smaller. Informally, to determine the set
of features necessary for the downstream task, one can keep increasing the sparsity level γ until
the downstream performance starts to drop. In Figure 7, we include downstream accuracy of the
baseline features corresponding to varying sparsity level γ to present a rule of thumb for deciding
the values of sparsity level: simply using the smallest γ with at least 3% accuracy drop from the
converged accuracy (i.e. the eventual accuracy when the sparsity level keeps decreasing). This
single rule is applied to all experiments and it works well as previously presented in Section 5.2.

6 CONCLUSION

In this work, we propose a new paradigm of model selection that offers by definition properties
including updatability, decentralizability, flexibility, and preservation of both candidate and query
privacy. We present Standardized Embedder as a proof-of-concept solution and evaluate its per-
formance to select from a pool of 100 pre-trained models for multiple downstream benchmarks.
Empirically, this solution successfully locates models comparable to the best possible candidates.
Despite some limitations of our evaluation which are detailed in Appendix D, this highlights the
potential of the proposed paradigm. Through these, we hope to facilitate future work that further
leverages an ocean of pre-trained models, a rapidly increasing resource.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C. Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

Andrea Agostinelli, Michal Pándy, Jasper R. R. Uijlings, Thomas Mensink, and Vittorio Fer-
rari. How stable are transferability metrics evaluations? In Shai Avidan, Gabriel J. Bros-
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Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 9201–9225. PMLR, 2022. URL https://proceedings.mlr.press/v162/
huang22d.html.

George Klir and Bo Yuan. Fuzzy sets and fuzzy logic, volume 4. Prentice hall New Jersey, 1995.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Xinran Liu, Yikun Bai, Yuzhe Lu, Andrea Soltoggio, and Soheil Kolouri. Wasserstein task embed-
ding for measuring task similarities, 2022a.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14420–14430, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer V2: scaling up capacity and reso-
lution. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pp. 11999–12009. IEEE, 2022b. doi: 10.1109/CVPR52688.
2022.01170. URL https://doi.org/10.1109/CVPR52688.2022.01170.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022c.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines
for efficient CNN architecture design. In Vittorio Ferrari, Martial Hebert, Cristian Sminchis-
escu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018, Proceedings, Part XIV, volume 11218 of Lecture Notes
in Computer Science, pp. 122–138. Springer, 2018. doi: 10.1007/978-3-030-01264-9\ 8. URL
https://doi.org/10.1007/978-3-030-01264-9_8.

11

https://proceedings.mlr.press/v162/huang22d.html
https://proceedings.mlr.press/v162/huang22d.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/CVPR52688.2022.01170
https://doi.org/10.1007/978-3-030-01264-9_8


Under review as a conference paper at ICLR 2024

Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure
to evaluate transferability of learned representations. In International Conference on Machine
Learning, pp. 7294–7305. PMLR, 2020.

Michal Pándy, Andrea Agostinelli, Jasper R. R. Uijlings, Vittorio Ferrari, and Thomas Mensink.
Transferability estimation using bhattacharyya class separability. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022, pp. 9162–9172. IEEE, 2022. doi: 10.1109/CVPR52688.2022.00896. URL https://
doi.org/10.1109/CVPR52688.2022.00896.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
CoRR, abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.05175.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pp. 10096–10106. PMLR, 2021.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Chao Xu, and Yunhe Wang. Ghostnetv2: enhance
cheap operation with long-range attention. Advances in Neural Information Processing Systems,
35:9969–9982, 2022.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pp. 459–
479. Springer, 2022.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Mo-
bileone: An improved one millisecond mobile backbone. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 7907–7917, 2023.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learn-
ing for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 43
(10):3349–3364, 2020.

12

https://doi.org/10.1109/CVPR52688.2022.00896
https://doi.org/10.1109/CVPR52688.2022.00896
http://arxiv.org/abs/1703.05175


Under review as a conference paper at ICLR 2024

Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John Hopcroft. Towards
understanding learning representations: To what extent do different neural networks learn the
same representation. Advances in neural information processing systems, 31, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Kaichao You, Yong Liu, Mingsheng Long, and Jianmin Wang. Logme: Practical assessment of pre-
trained models for transfer learning. CoRR, abs/2102.11005, 2021. URL https://arxiv.
org/abs/2102.11005.

Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang. Inceptionnext: When inception meets
convnext. arXiv preprint arXiv:2303.16900, 2023.

Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3712–3722, 2018.

Wangchunshu Zhou, Canwen Xu, and Julian J. McAuley. Efficiently tuned parameters are task em-
beddings. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pp. 5007–5014. Association for Computational
Linguistics, 2022. doi: 10.18653/v1/2022.emnlp-main.334. URL https://doi.org/10.
18653/v1/2022.emnlp-main.334.

13

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005
http://arxiv.org/abs/1605.07146
https://doi.org/10.18653/v1/2022.emnlp-main.334
https://doi.org/10.18653/v1/2022.emnlp-main.334


Under review as a conference paper at ICLR 2024

A FULL LIST OF CANDIDATE MODELS USED IN THE EXPERIMENTS

Table 3: A full list of the 100 pre-trained models that are used as the candidate models in the
experiments.

index name (used by the corresponding source) category source index name (used by the corresponding source) category source
1 ResNet18 Weights.IMAGENET1K V1 ConvNet torchvision 51 ShuffleNet V2 X1 0 Weights.IMAGENET1K V1 ConvNet torchvision
2 EfficientNet B0 Weights.IMAGENET1K V1 ConvNet torchvision 52 ShuffleNet V2 X1 5 Weights.IMAGENET1K V1 ConvNet torchvision
3 GoogLeNet Weights.IMAGENET1K V1 ConvNet torchvision 53 ShuffleNet V2 X2 0 Weights.IMAGENET1K V1 ConvNet torchvision
4 Swin T Weights.IMAGENET1K V1 Transformer torchvision 54 Swin V2 T Weights.IMAGENET1K V1 Transformer torchvision
5 MobileNet V3 Large Weights.IMAGENET1K V1 ConvNet torchvision 55 ViT B 32 Weights.IMAGENET1K V1 Transformer torchvision
6 MobileNet V3 Large Weights.IMAGENET1K V2 ConvNet torchvision 56 ViT B 16 Weights.IMAGENET1K V1 Transformer torchvision
7 MobileNet V3 Small Weights.IMAGENET1K V1 ConvNet torchvision 57 ViT B 16 Weights.IMAGENET1K SWAG LINEAR V1 Transformer torchvision
8 MNASNet0 5 Weights.IMAGENET1K V1 ConvNet torchvision 58 Wide ResNet50 2 Weights.IMAGENET1K V1 ConvNet torchvision
9 ShuffleNet V2 X0 5 Weights.IMAGENET1K V1 ConvNet torchvision 59 Wide ResNet50 2 Weights.IMAGENET1K V2 ConvNet torchvision
10 AlexNet Weights.IMAGENET1K V1 ConvNet torchvision 60 mobileone s0 ConvNet timm
11 ConvNeXt Tiny Weights.IMAGENET1K V1 ConvNet torchvision 61 mobileone s1 ConvNet timm
12 ConvNeXt Small Weights.IMAGENET1K V1 ConvNet torchvision 62 mobileone s2 ConvNet timm
13 DenseNet121 Weights.IMAGENET1K V1 ConvNet torchvision 63 mobileone s3 ConvNet timm
14 DenseNet161 Weights.IMAGENET1K V1 ConvNet torchvision 64 mobileone s4 ConvNet timm
15 DenseNet169 Weights.IMAGENET1K V1 ConvNet torchvision 65 inception next tiny.sail in1k ConvNet timm
16 DenseNet201 Weights.IMAGENET1K V1 ConvNet torchvision 66 inception next small.sail in1k ConvNet timm
17 EfficientNet B1 Weights.IMAGENET1K V1 ConvNet torchvision 67 inception next base.sail in1k ConvNet timm
18 EfficientNet B2 Weights.IMAGENET1K V1 ConvNet torchvision 68 ghostnet 100.in1k ConvNet timm
19 EfficientNet B3 Weights.IMAGENET1K V1 ConvNet torchvision 69 ghostnetv2 100.in1k ConvNet timm
20 EfficientNet B4 Weights.IMAGENET1K V1 ConvNet torchvision 70 ghostnetv2 130.in1k ConvNet timm
21 EfficientNet V2 S Weights.IMAGENET1K V1 ConvNet torchvision 71 ghostnetv2 160.in1k ConvNet timm
22 Inception V3 Weights.IMAGENET1K V1 ConvNet torchvision 72 repghostnet 050.in1k ConvNet timm
23 MNASNet0 75 Weights.IMAGENET1K V1 ConvNet torchvision 73 repghostnet 058.in1k ConvNet timm
24 MNASNet1 0 Weights.IMAGENET1K V1 ConvNet torchvision 74 repghostnet 080.in1k ConvNet timm
25 MNASNet1 3 Weights.IMAGENET1K V1 ConvNet torchvision 75 repghostnet 100.in1k ConvNet timm
26 MobileNet V2 Weights.IMAGENET1K V1 ConvNet torchvision 76 efficientvit b0.r224 in1k Transformer timm
27 MobileNet V2 Weights.IMAGENET1K V2 ConvNet torchvision 77 efficientvit b1.r224 in1k Transformer timm
28 RegNet X 1 6GF Weights.IMAGENET1K V1 ConvNet torchvision 78 efficientvit b2.r224 in1k Transformer timm
29 RegNet X 1 6GF Weights.IMAGENET1K V2 ConvNet torchvision 79 efficientvit b3.r224 in1k Transformer timm
30 RegNet X 3 2GF Weights.IMAGENET1K V1 ConvNet torchvision 80 efficientvit m0.r224 in1k Transformer timm
31 RegNet X 3 2GF Weights.IMAGENET1K V2 ConvNet torchvision 81 efficientvit m1.r224 in1k Transformer timm
32 RegNet X 400MF Weights.IMAGENET1K V1 ConvNet torchvision 82 efficientvit m2.r224 in1k Transformer timm
33 RegNet X 400MF Weights.IMAGENET1K V2 ConvNet torchvision 83 efficientvit m3.r224 in1k Transformer timm
34 RegNet X 800MF Weights.IMAGENET1K V1 ConvNet torchvision 84 efficientvit m4.r224 in1k Transformer timm
35 RegNet X 800MF Weights.IMAGENET1K V2 ConvNet torchvision 85 efficientvit m5.r224 in1k Transformer timm
36 RegNet Y 1 6GF Weights.IMAGENET1K V1 ConvNet torchvision 86 coatnet nano rw 224.sw in1k Hybrid (Conv + Attention) timm
37 RegNet Y 1 6GF Weights.IMAGENET1K V2 ConvNet torchvision 87 coatnext nano rw 224.sw in1k Hybrid (Conv + Attention) timm
38 RegNet Y 3 2GF Weights.IMAGENET1K V1 ConvNet torchvision 88 seresnext101 32x4d.gluon in1k ConvNet timm
39 RegNet Y 3 2GF Weights.IMAGENET1K V2 ConvNet torchvision 89 vit tiny r s16 p8 224.augreg in21k Transformer timm
40 RegNet Y 400MF Weights.IMAGENET1K V1 ConvNet torchvision 90 vit small r26 s32 224.augreg in21k Transformer timm
41 RegNet Y 400MF Weights.IMAGENET1K V2 ConvNet torchvision 91 vit tiny r s16 p8 224.augreg in21k ft in1k Transformer timm
42 RegNet Y 800MF Weights.IMAGENET1K V1 ConvNet torchvision 92 vit small r26 s32 224.augreg in21k ft in1k Transformer timm
43 RegNet Y 800MF Weights.IMAGENET1K V2 ConvNet torchvision 93 hrnet w18 small.gluon in1k ConvNet timm
44 ResNeXt50 32X4D Weights.IMAGENET1K V1 ConvNet torchvision 94 hrnet w18 small v2.gluon in1k ConvNet timm
45 ResNeXt50 32X4D Weights.IMAGENET1K V2 ConvNet torchvision 95 vit small patch16 224.dino Transformer timm
46 ResNet101 Weights.IMAGENET1K V1 ConvNet torchvision 96 vit base patch16 224.mae Transformer timm
47 ResNet101 Weights.IMAGENET1K V2 ConvNet torchvision 97 maxvit tiny tf 224.in1k Hybrid (Conv + Attention) timm
48 ResNet50 Weights.IMAGENET1K V1 ConvNet torchvision 98 maxvit tiny rw 224.sw in1k Hybrid (Conv + Attention) timm
49 ResNet50 Weights.IMAGENET1K V2 ConvNet torchvision 99 vit base patch32 224.sam in1k Transformer timm
50 ResNet34 Weights.IMAGENET1K V1 ConvNet torchvision 100 vit base patch32 clip 224.openai ft in1k Transformer timm

In Table 3, we include the full list of pre-trained models that are used in our evaluations. We
include as follows relevant references and corresponding model indices in Table 3 (note that some
pre-trained models correspond to multiple references):

• ResNet (He et al., 2015): 1, 46, 47, 48, 49, 50, 88;

• EfficientNet/EfficientNetV2 (Tan & Le, 2019; 2021): 2, 17, 18, 19, 20, 21;

• GoogLeNet (Szegedy et al., 2015): 3;

• Swin Transformer/Swin Transformer V2 (Liu et al., 2021; 2022b): 4, 54;

• MobileNet V2/V3 (Sandler et al., 2018; Howard et al., 2019): 5, 6, 7, 26, 27;

• MNASNet (Tan et al., 2019): 8, 23, 24, 25;

• ShuffleNet V2 (Ma et al., 2018): 9, 51, 52, 53;

• AlexNet (Krizhevsky et al., 2012): 10;

• ConvNeXt (Liu et al., 2022c): 11, 12, 87;

• DenseNet (Huang et al., 2017): 13, 14, 15, 16;

• Inception V3 (Szegedy et al., 2016): 22;

• RegNet (Radosavovic et al., 2020): 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43;

• ResNeXt (Xie et al., 2017): 44, 45, 88;

• Vision Transformer (Dosovitskiy et al., 2020): 55, 56, 57, 89, 90, 91, 92, 95, 96, 99, 100;

• Wide ResNet (Zagoruyko & Komodakis, 2016): 58, 59;

• MobileOne (Vasu et al., 2023): 60, 61, 62, 63, 64;

• InceptionNeXt (Yu et al., 2023): 65, 66, 67;
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• GhostNet/GhostNetV2 (Han et al., 2020; Tang et al., 2022): 68, 69, 70, 71;
• RepGhostNet (Chen et al., 2022): 72, 73, 74, 75;
• EfficientViT (MIT) (Cai et al., 2022): 76, 77, 78, 79;
• EfficientViT (MSRA) (Liu et al., 2023): 80, 81, 82, 83, 84, 85;
• CoAtNet (Dai et al., 2021): 86, 87;
• Squeeze-and-Excitation (Hu et al., 2018): 88;
• Bag-of-Tricks (He et al., 2019): 88;
• AugReg (Steiner et al., 2021): 89, 90, 91, 92;
• HRNet (Wang et al., 2020): 93, 94;
• DINO (Caron et al., 2021): 95;
• Masked Autoencoder (He et al., 2022): 96;
• MaxViT (Tu et al., 2022): 97, 98;
• Sharpness-aware minimizer for ViT (Chen et al., 2021): 99;
• Reproducible scaling laws (Cherti et al., 2023): 100;
• CLIP (Radford et al., 2021): 100.
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B FIGURES OF EMPIRICAL EVALUATIONS

(a) downstream: CIFAR-10
baseline features: ResNet-18

(b) downstream: CIFAR-100
baseline features: ResNet-18

(c) downstream: STL-10
baseline features: ResNet-18

(d) downstream: CIFAR-10
baseline features: Swin-T (tiny)

(e) downstream: CIFAR-100
baseline features: Swin-T (tiny)

(f) downstream: STL-10
baseline features: Swin-T (tiny)

Figure 3: Downstream accuracy (i.e. the ground truth) v.s. the cardinality of standard intersections
(i.e. the selection metric) when using 4k steps per candidate. The downstream accuracy of the
baseline features are highlighted with the dashed line. When a public model is only suboptimal,
using it as baseline features for Standardized Embedder can still locate more competitive models.
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(a) downstream: CIFAR-10
baseline features: ResNet-18

(b) downstream: CIFAR-100
baseline features: ResNet-18

(c) downstream: STL-10
baseline features: ResNet-18

(d) downstream: CIFAR-10
baseline features: Swin-T (tiny)

(e) downstream: CIFAR-100
baseline features: Swin-T (tiny)

(f) downstream: STL-10
baseline features: Swin-T (tiny)

Figure 4: Downstream accuracy (i.e. the ground truth) v.s. the cardinality of standard intersections
(i.e. the selection metric) when using 10k steps per candidate. The downstream accuracy of the
baseline features are highlighted with the dashed line. When a public model is only suboptimal,
using it as baseline features for Standardized Embedder can still locate more competitive models.

17



Under review as a conference paper at ICLR 2024

(a) downstream: CIFAR-10 (b) downstream: CIFAR-100 (c) downstream: STL-10

Figure 5: Comparing the cardinality of standard intersections (i.e. the selection metric) when us-
ing different baseline features (ResNet-18 and Swin-T (tiny)) with 4k steps per candidate. The
green/orange points in the bottom right suggest using ResNet-18 as baseline features tend to over-
estimate (some) models with attentions compared to using Swin Transformer (tiny).

(a) downstream: CIFAR-10 (b) downstream: CIFAR-100 (c) downstream: STL-10

Figure 6: Comparing the cardinality of standard intersections (i.e. the selection metric) when us-
ing different baseline features (ResNet-18 and Swin-T (tiny)) with 10k steps per candidate. The
green/orange points in the bottom right suggest using ResNet-18 as baseline features tend to over-
estimate (some) models with attentions compared to using Swin Transformer (tiny).
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(a) downstream: CIFAR-10
baseline features: ResNet-18

(b) downstream: CIFAR-100
baseline features: ResNet-18

(c) downstream: STL-10
baseline features: ResNet-18

(d) downstream: CIFAR-10
baseline features: Swin-T (tiny)

(e) downstream: CIFAR-100
baseline features: Swin-T (tiny)

(f) downstream: STL-10
baseline features: Swin-T (tiny)

Figure 7: Downstream accuracy of the baseline features corresponding to varying level of sparsity
regularization γ. A rule of thumb for deciding the value of γ: using the smallest γ with at least 3%
accuracy drop from the converged accuracy.

C ILLUSTRATIVE EXAMPLE FOR SECTION 4.2

Here is an example to illustrate how to associate every subset of the baseline feature set B with a
binary vector from {0, 1}N . Assuming now the baseline feature set B : X → RN contains a total
of N = 4 features, b0, b1, b2, b3, where each of them is a function from X to R, then there will be a
total of 24 = 16 different subsets of B. We can associate each subset with a distinct, 4-dimensional
binary vector (i.e. a vector in {0, 1}4) by using 1 to indicate the presence of a feature and 0 to
indicate an absence of a feature in the subset. Specifically, (0, 0, 0, 0) will denote the empty subset,
(0, 0, 1, 0) will denote {b2} and (1, 0, 1, 1) will denote {b0, b2, b3}.

D LIMITATIONS

While the proposed paradigm, independently-prepared query-efficient model selection, and the
proof-of-concept solution, Standardized Embedder, are both very general, there are some limita-
tions of our experiments worth noting. Each of them corresponds to possible future directions.

• Limitation of input modality: In our experiments, we evaluate on vision models with image
inputs. We expect this can be generalized to other modalities including but not limited to text,
audio, tabular data and time series in the future.

• Limitation of types of downstream tasks: In our experiments, we evaluate on downstream classi-
fication tasks. We expect this can be generalized to other type of tasks including but not limited
to segmentation, detection, clustering and reconstruction in the future.

• Limitation of linear probing: In our experiments, we use linear probing to approximate ground
truth accuracy. We expect other transfer learning approaches to be incorporated in the future,
including but not limited to full fine-tuning, partial fine-tuning and ProtoNet (Snell et al., 2017).
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