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ABSTRACT

Second-order methods have enormous potential in improving the convergence of
deep neural network (DNN) training, but are prohibitive due to their large mem-
ory and compute requirements. Furthermore, computing the matrix inverse or the
Newton direction, which is needed in second-order methods, requires high pre-
cision computation for stable training as the preconditioner could have a large
condition number. This paper provides a first attempt at developing computa-
tionally efficient sparse preconditioners for DNN training which can also tolerate
low precision computation. Our new Sparsified Online Newton (SONew) algo-
rithm emerges from the novel use of the LogDet matrix divergence measure; we
combine it with sparsity constraints to minimize regret in the online convex opti-
mization framework. Our mathematical analysis allows us to reduce the condition
number of our sparse preconditioning matrix, thus improving the stability of train-
ing with low precision. We conduct experiments on a feed-forward neural-network
autoencoder benchmark, where we compare training loss of optimizers when run
for a fixed number of epochs. In the float32 experiments, our methods outperform
the best-performing first-order optimizers and perform comparably to Shampoo,
a state-of-the-art second-order optimizer. However, our method is even more ef-
fective in low precision, where SONew finishes training considerably faster while
performing comparably with Shampoo on training loss.

1 INTRODUCTION

Stochastic first order methods which use the negative gradient direction to update parameters have
become the standard for training deep neural networks (DNNs). Gradient-based preconditioning
involves finding an update direction, by multiplying the gradient with a preconditioner matrix care-
fully chosen from gradients observed in previous iterations, to improve convergence. (Full-matrix)
Adagrad (Duchi et al., 2011b), online Newton method (Hazan et al., 2007) and natural gradient
descent (Amari, 1998) use a full-matrix preconditioner, but computing and storing the full matrix is
infeasible when there are millions of parameters. Thus, diagonal versions such as diagonal Adagrad,
Adam (Kingma & Ba, 2014), and RMSprop (Hinton et al., 2012) are now widely used to train DNNs
due to their scalability.

Several higher-order methods have previously been applied to deep learning (Gupta et al., 2018; Anil
et al., 2020; Goldfarb et al., 2020; Martens & Grosse, 2015). All these methods use Kronecker prod-
ucts that reduce computational and storage costs to make them feasible for training neural networks.
However, these methods rely on matrix inverses or pth-roots that require high precision arithmetic as
the matrices they deal with can have large condition numbers (Anil et al., 2020; 2022). Meanwhile,
deep learning hardware accelerators have evolved towards using lower precision (bfloat16, float16,
int8) (Henry et al., 2019; Jouppi et al., 2017) to reduce overall computational and memory costs
and improve training performance. This calls for further research in developing efficient optimiza-
tion techniques that work with low precision. Indeed there is recent work along these directions,
from careful quantization of Adam (Dettmers et al., 2021) to 8-bits to optimizer agnostic local loss
optimization (Amid et al., 2022) that leverage first-order methods to match higher-order methods.

In this paper, we present a first attempt towards computationally efficient sparse preconditioners
for DNN training. Regret analysis when using a preconditioner reveals that the error is bounded
by two summations (see (3) below); the first summation depends on the change in the precondi-
tioning matrix, while the second depends on the generalized gradient norm. We take the approach
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of minimizing the second term while regularizing two successive preconditioners to be close in the
LogDet matrix divergence measure (Kulis et al., 2009). This technique gives us an Online Newton
method (Hazan et al., 2007). To make it computationally efficient, we further sparsify the precondi-
tioner by finding a sparse approximation that is close in LogDet divergence. Thus we are consistent
in using the same measure (LogDet divergence) in both the regularization and sparsification steps.
This gives us our Sparsified Online Newton (SONew) method, which only requires O(n) time and
memory complexity per iteration. We achieve this by imposing structured sparsity, such as tridiag-
onal and banded sparsity patterns, in the preconditioner. This is unlike most existing online Newton
methods that require at least O(n2) space and time complexity. By making each step linear time,
the SONew method can be applied to train modern DNNs. Further, for some sparsity structures, our
method is easily parallelized thus making negligible the overhead of computing the preconditioner.
We also show that introducing sparsity allows us to reduce the condition number of the problem; as
a consequence our preconditioner allows us to train DNNs even in low precision arithmetic.

We establish regret bound guarantees of our algorithm in the online convex optimization frame-
work. This involves using various properties about LogDet divergence and connections to other
Bregman matrix divergences (Bregman, 1967), such as the von Neumann matrix divergence (Kulis
et al., 2009). We conduct experiments on an MLP Autoencoder, where we obtain better training
loss compared to first order methods. We also conduct experiments on large-scale benchmarks in
Appendix A.5, and observe comparable or improved performance than Adam (Kingma & Ba, 2014).
Our MLP experiments in limited precision arithmetic (bfloat16) showed comparable performance
with second-order methods, while being considerably faster.

2 BACKGROUND

The inner product between matrices is defined as ⟨A,B⟩ = Tr(ATB), where Tr(.) denotes the
matrix trace. The Frobenius norm of a matrix A is ∥A∥F =

√
Tr(ATA), while its spectral norm is

∥A∥2 = maxx ∥Ax∥2 / ∥x∥2. We use In ∈ Rn×n to denote an identity matrix. We use Sn, S++
n to

denote the set of symmetric, and positive definite matrices respectively. The generalized norm of a
vector x ∈ Rn with respect to matrix A ∈ S++

n is defined as ∥x∥A =
√
xTAx. We use det (A) to

denote the determinant of matrix A, and diag(A) to denote diagonal matrix with diag(A)ii = Aii.
We use G and G̃ to denote a graph and its sub-graph with a vertex set [n] = {1, . . . , n}. Let EG
denote set of edges in graph G, and neigG(i) denote neighbours of vertex i in graph G. The sparsity
graph/pattern of a matrix A ∈ Rn×n is a graph G with edges EG = {(i, j) : Aij ̸= 0} corresponding
to the non-zero entries in A. We extensively use Sn(G)++ to denote the set of positive definite
matrices with sparsity structure given by graph G. Given an index set I = {i1, i2, .., in}, we use
AII to denote the corresponding principal sub-matrix of A.

2.1 LOGDET MATRIX DIVERGENCE

Let ϕ : S++
n → R be a strictly convex, differentiable function. Then the Bregman matrix divergence

between X,Y ∈ S++
n is defined as (Bregman, 1967; Kulis et al., 2009):

Dϕ(X,Y ) = ϕ(X)− ϕ(Y )− Tr(∇ϕ(Y )T (X − Y )).

Since ϕ is convex, Dϕ(X,U) ≥ 0 for all X,Y ≻ 0. A well known example is when ϕ(X) = ∥X∥2F ,
the corresponding Bregman divergence Dϕ(X,Y ) = ∥X − Y ∥2F is the squared Frobenius norm. In
this paper, we extensively use the divergence when the convex function is ϕ(X) = − log det (X);
the corresponding divergence measure Dℓd(X,Y ) is called the LogDet matrix divergence:

Dℓd(X,Y ) = − log det
(
XY −1

)
+Tr(XY −1)− n. (1)

The LogDet divergence is scale invariant to invertible matrices A, i.e. Dℓd(A
TXA,ATY A) =

Dℓd(X,Y ). The following revealing form of LogDet divergence in terms of eigendecompositions
of X = V ΛV T and Y = UΘUT (Kulis et al., 2009):

Dℓd(X,Y ) =
∑
i

∑
j

(vTi uj)
2(λi/θj − log(λi/θj)− 1). (2)

These two properties are later used in Section 3 to highlight the significance of LogDet divergence
in our algorithm.
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3 SONEW: SPARSIFIED ONLINE NEWTON METHOD

We now present our proposed SONew algorithm.

3.1 REGRET MINIMIZATION VIA LOGDET DIVERGENCE

We set up our problem under the online convex optimization framework (OCO) (Shalev-Shwartz
et al., 2012; Hazan et al., 2016), where at each round the learner makes a prediction wt in an online
fashion and receives a convex loss ft(wt) and gradient gt = ∇ft(wt) as feedback. The goal of the
learner is to reduce regret RT by predicting wt so that a low aggregate loss

∑T
t=1 ft(wt) is achieved

compared to the best possible, w∗ = argminw
∑T

t=1 ft(w). Formally, the regret is given by

RT (w1, . . . , wT ) =

T∑
t=1

ft(wt)−
T∑

t=1

ft(w
∗).

To upper bound this regret, we proceed as in Hazan et al. (2016) by analyzing the error in the
iterates for the update wt+1 := wt − ηXtgt, where Xt ∈ Rn×n. Then ∥wt+1 − w∗∥2X−1

t
=

∥wt − ηXtgt − w∗∥2X−1
t

= ∥wt − w∗∥2X−1
t

+ η2gTt Xtgt − 2η(wt − w∗)T gt. The convexity of

ft implies that ft(wt)− ft(w
∗) ≤ (wt − w∗)T gt leading to ft(wt)− ft(w

∗) ≤ ∥wt − w∗∥2X−1
t

−
∥wt+1 − w∗∥2X−1

t
+ η2gTt Xtgt. Summing over all t ∈ [T ] and rearranging reveals the following

upper bound on overall regret:

RT ≤ 1

2η
∥w1 − w∗∥2X−1

1
+

1

2η

T∑
t=2

(wt − w∗)T (X−1
t −X−1

t−1)(wt − w∗) +
η

2

T∑
t=1

gTt Xtgt. (3)

Since w∗ is unknown, finding Xt which minimizes (3) is infeasible. So to minimize regret, we
attempt to minimize the last term in (3) while regularizing X−1

t to be “close” to X−1
t−1. The nearness

measure we choose is the LogDet matrix divergence, thus leading to the following objective

Xt = argmin
X∈S++

n

gTt Xgt, such that Dℓd (X,Xt−1) ≤ ct, (4)

where Dℓd is as in (1). Why do we use the LogDet divergence? From (2), due to the term λi/θj ,
Dℓd(X,Xt−1) prioritizes matching the smaller eigenvalues of Xt−1 with those of X , i.e., matching
the larger eigenvalues of X−1

t−1 and X−1. As a consequence, LogDet divergence regularizes X by
matching up its large eigenvalues with those of Xt−1. For e.g., if smallest and largest eigenvalue
of Xt−1 are θn and θ1, then for an eigenvalue λ of X , when λ > θn, θ1, the penalty from (2)
for θn is higher than for θ1, (λ/θn − log(λ/θn) − 1) > (λ/θ1 − log(λ/θ1) − 1). This intuition
leads us to formulate (4) as our objective. We recall that there is precedence of using the LogDet
divergence in the optimization literature; indeed the celebrated BFGS algorithm (Broyden, 1967;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) can be shown to be the unique solution obtained
when the LogDet divergence between successive preconditioners, subject to a secant constraint, is
minimized (as shown in the beautiful 4-page paper by Fletcher (1991)).

The optimization problem in (4) is convex in X since the LogDet divergence is convex in its
first argument. The Lagrange L(X,λt) = gTt Xgt + λt(Dℓd(X,Xt−1) − ct) = Tr(Xgtg

T
t ) +

λt(− log det
(
XX−1

t−1

)
+ Tr(XX−1

t−1) − n)). Setting ∇L(X,λt) = 0, and using the fact that
∇ log det (X) = X−1 we get the following update rule:

X−1
t = X−1

t−1 + gtg
T
t /λt. (5)

Note that setting ct = 0 (equivalently λt = ∞) ∀t ∈ [n] in (4) results in no change to the pre-
conditioner in any round. In this case, with X0 = In, we get online gradient descent (Zinkevich,
2003). On the other hand, setting λt = 1 gives the update rule of the online Newton method Hazan
et al. (2007). Our update rule differs from (full-matrix) Adagrad (Duchi et al., 2011b) which has
X−2

t = X−2
t−1 + gtg

T
t .

Maintaining and updating Xt as in (5) is possible by using Sherman-Morrison formula but requires
O(n2) storage and time complexity. This becomes impractical when n is in the order of millions
which is typically the case in DNNs.
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Algorithm 1 Sparsified Online Newton
(SONew) Algorithm

Inputs: λt := coefficient in the update (5),
G := sparsity graph (banded/tridiagonal),
ϵ := damping parameter,
T := total number of iterations/mini-batches,
ηt := step size/learning rate.
Output: wT+1

1: H0 = ϵId, w1 = 0
2: for t ∈ {1, . . . , T} do
3: compute gt = ∇ft(wt)
4: Ht := Ht−1 + PG(gtg

T
t /λt) ∈ Sn(G) with

PG as in (8). ▷ O(n) time & memory
5: Get L,D = SPARSIFIED INVERSE (Ht,G),

where Xt = LDLT solves (11).
6: Compute update ut = LDLT gt,
7: wt+1 = wt − ηtut

8: end for
9: return wT+1

Algorithm 2 SPARSIFIED INVERSE(H,G) in
O(n) flops

Inputs:H ∈ Sn(G), is as (10).
G := the banded graph of band size b ≪ n
Outputs: lower triangular banded L ∈ Rn×n

and diagonal matrix D ∈ Rn×n

1: function SPARSIFIED INVERSE(H , G)
2: L := 0, D := 0
3: Ljj := 1, ∀j ∈ [n]
4: for j ∈ {1, . . . , n} do ▷ parallelizable
5: Let HjIj and HIjIj be defined

as in Section 2, where Ij =
{j + 1, . . . , j + b} ∩ [n],

6: Solve for LIjj in the linear system
HIjIjLIjj = −HIjj ▷ O(b3) time.

7: Djj := 1/(Hjj +HT
Ijj

LIjj)
8: end for
9: return L,D

10: end function

3.2 SPARSIFYING THE PRECONDITIONER

To reduce the memory required to maintain and update Xt using (5), we consider the follow-
ing general problem: find sparse X ≻ 0 with ∥X∥0 ≤ αn, α > 1, such that the objective
Dℓd(X, (X−1

t−1 + gtg
T
t /λt)

−1) is minimized. Due to the L0-norm constraint, this is a non-convex
problem, which makes it difficult to solve exactly. Since L1-norm serves as a convex relaxation for
the L0 norm, we could use it instead, resulting in the following optimization problem also known as
graphical lasso estimator (Friedman et al., 2008):

min
X∈S++

n

Dℓd (X, (X−1
t−1 + gtg

T
t /λt)

−1) + λ ∥X∥1 .

The sparsity introduced by L1-norm penalty will reduce the memory usage. However, the time taken
to solve the above problem, even with the current best methods (Bollhöfer et al., 2019; Hsieh et al.,
2013; Fattahi & Sojoudi, 2019; Zhang et al., 2018), can still be too large (as these methods take
several minutes for a matrix of size million), making it impractical to embed in DNN training since
preconditioning may need to be done after processing every mini-batch.

In this paper, we take a different direction where we use fixed sparsity pattern constraints, specified
by a fixed undirected graph G. To sparsify the solution in (5), we formulate the subproblem

Xt = argmin
X∈Sn(G)++

Dℓd (X, (X−1
t−1 + gtg

T
t /λt)

−1), (6)

where Sn(G)++ denotes the set of positive definite matrices with the fixed sparsity pattern given by
graph G. Note that even for sparsification we use the LogDet measure; thus both the steps (4) and
(6) use the same measure.

Algorithm 1 presents one proposed SONew method, which solves (6) using O(n) time and memory
for banded matrices with band size b, in particular a tridiagonal matrix, corresponding to a chain
graph, is a banded matrix with bandsize 1.

Maintaining Ht ∈ Sn(G) in line 4. Solving the subproblem in (6) naively is impractical since
X−1

t−1 is a dense matrix. However, the structure of the LogDet divergence comes to the rescue; (6)
can be expanded as follows:

Xt = argmin
X∈Sn(G)++

− log det (X) + Tr(X(X−1
t−1 + gtg

T
t /λt)). (7)

Let us define the projection onto Sn(G), PG : Rn×n → Rn×n as:

PG(M)ij =

{
Mij if (i, j) ∈ EG ,

0 otherwise
, (8)
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Note that the Tr(.) term in (7) involves only the non-zero elements of X ∈ Sn(G)++. Hence, (7)
can be written as

Xt = argmin
X∈Sn(G)++

− log det (X) + Tr(XPG(X
−1
t−1 + gtg

T
t /λt)), (9)

Computing matrix X−1
t−1 can be avoided by analyzing optimality condition of (9). Let g(X) be the

objective function in (9), then the optimality condition of (9) is PG(∇g(X)) = 0. Expanding g(X)
gives

PG(X
−1
t ) = PG(X

−1
t−1 + gtg

T
t /λt) = PG(X

−1
t−1) + PG(gtg

T
t /λt),

Ht = Ht−1 + PG(gtg
T
t /λt). (10)

Thus we only need to maintain Ht ∈ Sn(G), which is Ht = PG(X
−1
t ). This matrix is updated as

Ht = Ht−1 + PG(gtg
T
t /λt), which can be done in O(|EG |) memory and time, while computing

the matrix X−1
t would have cost O(n2). In SONew, this key observation is used to maintain Ht in

line 4.

Computing Xt in line 5. Now that Ht is known at every round t, we can replace PG(X
−1
t−1 +

gtg
T
t /λt) in (9) with Ht as:

Xt = argmin
X∈Sn(G)++

− log det (X) + Tr(XHt). (11)

For an arbitrary graph G, solving this subproblem might be difficult. Theorems 1 and 2 show embar-
rassingly parallelizable explicit solutions to the subproblem 11 for tridiagonal and banded sparsity
patterns. Proofs of Theorems 1 and 2 are given in Appendix A.1.
Theorem 1 (Explicit solution of (11) for tridiagonal matrix/chain graph). Let the sparsity structure
G be a chain with edges EG = {(j, j + 1) : j ∈ [n− 1]}, and let H ∈ Sn(G), then the solution
of (11) is given by X̂ = LDLT , where the unit lower triangular matrix L and diagonal matrix D
have the following non-zero entries:

Ljj = 1, Lj+1j = − Hj+1j

Hj+1j+1
, D−1

jj =

(
Hjj −

H2
j+1j

Hj+1j+1

)
, j ≤ n− 1, D−1

nn = Hnn (12)

The time and memory complexity required to compute (12) is O(n). Note that the computation of
(12) can be easily parallelized. This explicit solution can be generalized to banded sparsity structures
with band size b.
Theorem 2 (Explicit solution of (11) for banded matrices). Let the sparsity pattern G be a
banded matrix of band size b, i.e. for every vertex j, let Ij = {j + 1, . . . , j + b}, then edges
EG = (

⋃n
j=1 {j} × Ij) ∩ {(i, j) : i ≤ n, j ≤ n}. Then Xt = LDLT is the solution of (11) with

nonzero entries of L and D defined as follows :

Ljj = 1, LIjj = −H−1
IjIj

HIjj , D−1
jj = (Hjj −HT

IjjH
−1
IjIj

HIjj), 1 ≤ j ≤ n. (13)

Finding the above solution requires solving n linear systems of size b (which is small) as shown in
Algorithm 2, and takes O((n− b+ 1)b3) flops. Since b ≪ n, the number of flops is O(n).

3.3 ANALYSIS OF SONEW

The following theorem establishes regret guarantees of SONew in online convex optimization frame-
work mentioned in Section 3.1.
Theorem 3. When G = tridiagona/chain graph, then Algorithm 1 incurs the following regret under
convex losses ft

RT ≤ O

C1/2 · T 3/4 ·
(
1 + β

1− β

)1/2

·

 n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)
3/4
 ,
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where g(i)1:T = [(g1)i, . . . (gT )i] denotes gradient history of ith variable/parameter ,G(i)
∞ = ∥g(i)1:T ∥∞,

C = maxt(
∑n

i=1(wt−w∗)2i (G
(i)
∞ )2), βi =

〈
g
(i)
1:T ,g

(i+1)
1:T

〉
√

(ϵ+
∥∥∥g(i)

1:T

∥∥∥2

2
)·(ϵ+

∥∥∥g(i+1)
1:T

∥∥∥2

2
)

denotes dot-product between

gradient histories of connected parameters in the chain graph, β = maxi∈[n−1] βi.

SONew is scale-invariant to diagonal transformation of gradients; if the gradients sent as feedback
to the OCO learner are ḡt = Λgt, then the iterates for the transformed problem will be x̄t =
Λ−1wt = Λ−1xt−1 − η(Λ−1Xt−1Λ

−1)Λ(gt−1), this is due to scale-invariance property of LogDet
divergence in Section 2.1,i.e, the transformed preconditioner is X̄t = Λ−1Xt−1Λ

−1. Furthermore,
the regret bound derived in Theorem 3 for transformed and original problem is approximately same.
Our regret bound is data-dependent, since if βi is nearer to 1, then the regret is smaller due to
the log(1 − β2

i ) term. This effect is more amplified when log(1 + ∥g(i)1:T ∥22/ϵ) is relatively low
compared to log(1 − β2

i ). The proof for Theorem 3 is given in Appendix A.2. We also derive a
regret bound with O(

√
κT 1/2) dependency on T in Appendix A.3, where the condition number

κ(diag(Ht)) ≤ κ.

4 NUMERICAL STABILITY OF SONEW

The matrix H ∈ Sn(G) given as input to Algorithm 2 should have positive definite submatrices
HJjJj

, Jj = Ij ∪ {j}, j ∈ [n], where Ij is as in Theorem 2, hence, it should have positive schur
complements (Hjj−HT

Ijj
H−1

IjIj
HIjj). But, if the matrices HJjJj and HIjIj are illconditioned, then

the computed value for (Hjj+HT
Ijj

LIjj) = (Hjj−HT
Ijj

H−1
IjIj

HIjj), in line 7 of Algorithm 2, can be
zero or negative due to catastrophic cancellation, since finding LIjj = −H−1

IjIj
HIjj in floating point

arithmetic can result in rounding errors. To understand this issue further, we conduct perturbation
analysis in Theorem 4 which establishes a componentwise condition number (Higham, 2002) of the
optimization problem in (11) with a tridiagonal sparsity structure G.
Theorem 4 (Condition number of tridiagonal LogDet subproblem 11). Let H ∈ S++

n be such that
Hii = 1 for i ∈ [n]. Let ∆H be a symmetric perturbation such that ∆Hii = 0 for i ∈ [n], and
H +∆H ∈ S++

n . Let PG(H) be the input to 11, where G is a chain graph, then

κℓd
∞ ≤ max

i∈[n−1]
2/(1− β2

i ) = κ̂ℓd
∞, (14)

where, βi = Hii+1,κℓd
∞ := componentwise condition number of (11) for perturbation ∆H . 1

So, the tridiagonal LogDet problem with inputs H as mentioned in Theorem 4, has high con-
dition number when 1 − β2

i = Hii − H2
ii+1/Hi+1i+1 are low and as a result the precondi-

tioner Xt in SONew (Algorithm 1) has high componentwise relative errors. In SONew (1), the
Ht = PG(

∑t
s=1 gsg

T
s /λt) generated in line 4 could be such that the matrix

∑t
s=1 gsg

T
s /λt need

not be positive definite and so the schur complements Hii −H2
ii+1/Hi+1i+1 can be zero, giving an

infinite condition number κℓd
∞ by Theorem 4. The following lemma describes such cases in detail

for a more general banded sparsity structure case.
Lemma 1 (Degenerate inputs to banded LogDet subproblem). Let H = PG(GGT ), where G ∈
Rn×T and let g(i)1:T be ith row of G, which is gradients of parameter i for T rounds, then Hij =〈
g
(i)
1:T , g

(j)
1:T

〉
.

• Case 1: For tridiagonal sparsity structure G: if g
(j)
1:T = g

(j+1)
1:T , then Hjj −

H2
jj+1/Hj+1j+1 = 0.

• Case 2: For b > 1 in (13): If rank(HJjJj
) = rank(HIjIj ) = b, then (Hjj −

HT
Ijj

H−1
IjIj

HIjj) = 0 and Djj = ∞. If rank(HIjIj ) < b then the inverse H−1
IjIj

doesn’t
exist and Djj is not well-defined.

If GGT =
∑T

i=1 gigi is a singular matrix, then solution to the LogDet problem might not be well-
defined as shown in Lemma 1. For instance, Case 1 can occur when preconditioning the input layer

1The full version of Theorem 4 along with proof is given in Appendix A.4.
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of an image-based DNN with flattened image inputs, where jth and (j + 1)th pixel can be highly
correlated throughout the dataset. Case 2 can occur in the first b iterations in Algorithm 1 when
the rank of submatrices rank(HIjIj ) < b and ϵ = 0.2. We develop Algorithm 3 which is robust to
degenerate inputs H , given that Hii > 0. It finds a subgraph G̃ of G for which (13) is well-defined.
This is done by removing edges which causes inverse H−1

IjIj
to be singular or (Hjj−HT

Ijj
H−1

IjIj
HIjj)

to be low. Our ablation study in Table 4 demonstrates noticeable improvement in performance
Algorithm 3 is used.

Theorem 5 (Numerically stable algorithm). Algorithm 3 finds a subgraph G̃ of G, such that ex-
plicit solution for G̃ in (13) is well-defined. Furthermore, when G is a tridiagonal/chain graph,
the component-wise condition number upperbound in (14) is reduced upon using Algorithm 3,
κ̂G̃
ℓd < κ̂G

ℓd, where κ̂G̃
ℓd, κ̂G

ℓd are defined as in Theorem 4 for graphs G̃ and G respectively.

The proofs for Lemma 1 and Theorem 5 are given in Appendix A.4.

Algorithm 3 Numerically stable banded LogDet solution
1: Input: G− tridiagonal or banded graph, H− symmetric matrix in Rn×n with sparsity structure G and

Hii > 0, γ− tolerance parameter for low schur complements.
2: Output: Finds subgraph G̃ of G without any degenerate cases from Lemma 1 and finds preconditioner X̂

corresponding to the subgraph
3: Let Ei = {(i, j) : (i, j) ∈ EG} be edges from vertex i to its neighbours in graph G.
4: Let V +

i = {j : i < j, (i, j) ∈ EG} and V −
i = {j : i > j, (i, j) ∈ EG}, denote positive and negative

neighbourhood of vertex i.
5: Let K =

{
i : Hii −HT

Iii
H−1

IiIi
HIii is not defined or ≤ γ, i ∈ [n]

}
6: Consider a new subgraph G̃ with edges EG̃ = EG \ (

⋃
i∈K Ei ∪ (V +

i × V −
i ))

7: return X̂ := SPARSIFIED INVERSE (H̃t, G̃), where H̃t = PG̃(Ht)

5 RELATED WORK

Online Newton method is a second order method in online convex optimization framework with
properties such as scale invariance (Luo et al., 2016) and logarithmic regrets in exp-concave and
strongly convex functions (Hazan et al., 2007; 2016). However, it has a time complexity of O(n2),
making it infeasible for large n. A diagonal version of this method SC-Adagrad (Mukkamala &
Hein, 2017) was proposed to make the online Newton method scalable for deep-learning. SC-
Adagrad is equivalent to setting the sparsity pattern G in equation 11 as a null graph, furthermore,
setting G as a complete graph will result in online Newton method. However, introduction of LogDet
divergence measure in SONew allows us to set different sparsity graphs as G such as banded graph
with band-size b, for which our preconditioning process is more computationally efficient with a
time complexity of O(b3(n − b + 1)) compared to online-newton method O(n2). As discussed in
Theorem 3, SONew also utilizes correlation among gradients of parameters to improve convergence,
in contrast to diagonal preconditioners such as SC-Adagrad.

Shampoo (Gupta et al., 2018; Anil et al., 2020) uses Kronecker factored preconditioners to reduce
the memory and time complexity from O(n2) to O(d21 + d22) and O(d31 + d32) respectively, where
n = d1d2 denotes number of parameters for a linear layer of dimensions d1 × d2. The time com-
plexity of matrix inversion takes a heavy toll in Shampoo’s compute time even with the Kronecker
product assumption on the preconditioner, whereas, our method has a time complexity of O(b3d1d2)
quadratic in dimensions of the linear layer (note that b = 1 for tridiagonal structure). Furthermore,
precision lost in matrix inversion can be large due to high condition number matrices occurring in
training (Anil et al., 2022; 2020).

LogDet problem in equation 11 is closely related to the Maximum Determinant Matrix Comple-
tion (MDMC) (Andersen et al., 2013; Vandenberghe et al., 2015). The MDMC problem is the dual
of LogDet problem (11), and has explicit solutions for chordal graphs (Andersen et al., 2013). Thus
the explicit solutions in (13) are the same as the ones proved in Andersen et al. (2013). Also, we
noticed that the tridiagonal explicit solution has been used previously in KFAC (Martens & Grosse,
2015) in the context of a gaussian graphical model interpretation of gradients. In this paper we also
analyze conditioning and degenerate cases of these explicit solutions (which can occur frequently in

2This is proved in Appendix A.4
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DNN training) and develop algorithms to avoid such cases. In addition, we have regret guarantees
connecting these explicit solutions to regret in online convex optimization problem setup. There is
prior work (Luo et al., 2016; 2019) in reducing the complexity - O(n2) flops of Online Newton Step
(ONS) to O(n) flops using sketching. These ONS variants maintain a low rank approximation of
Ht (as in Algorithm 1) and updating it with a new gradient gt at every iteration requires conduct-
ing SVD (Luo et al., 2019)/orthonormalization (Luo et al., 2016) of a tall and thin matrix in Rn×r,
where r denotes the rank of approximation of Ht. Our proposed method (Algorithm 1) has a more
parallelizable update Ht := Ht−1 + PG(gtg

T
t ) making it more suitable for DNN training.

6 EXPERIMENTAL RESULTS

In this section we describe our experiments on Autoencoder benchmark (Schmidhuber, 2015) using
MNIST dataset (Deng, 2012). Our results on larger benchmarks are given in Appendix A.5. We
compare SONew against commonly used first order methods including SGD (Kiefer & Wolfowitz,
1952)), SGD with Momentum (Qian, 1999), Nesterov (Nesterov, 1983), Adagrad (Duchi et al.,
2011a), Adam (Kingma & Ba, 2014), and Rmsprop (Tieleman & Hinton, 2012). We also compare
with Shampoo (Gupta et al., 2018), a state of the art second-order optimizer used in practice. Com-
puting preconditioner at every step in shampoo could be infeasible, instead it is computed every t
steps - referred to as Shampoo(t) in the experiments.

For SONew, we use exponentially moving average (EMA) for both first order and second order
statistics. EMA is commonly used in adaptive optimizers for deep-learning training Kingma & Ba
(2014); Qian (1999). Let β1, β2 ∈ [0, 1] be the coefficients for EMA and gt ∈ Rn be the gradient
at tth iteration/mini-batch. Let µt ∈ Rn be the first order gradient statistic, and Ht ∈ Sn(G) be the
second order gradient statistic as in (10). Then, the following modification to update rules are made
to in the SONew implementation.

µt = β1µt−1 + (1− β1)gt, Ht = β2Ht−1 + (1− β2)gtg
T
t .

Furthermore, µt is used in wt+1 = wt − ηtXtµt, replacing the gradient gt, similar to Kingma &
Ba (2014). As discussed in Section 3.2 we need to store the values of Ht only corresponding to
the sparsity pattern, hence SONew uses O(n) space. The updates above get computed in parallel in
O(1) time. Moreover, we use Algorithm 3 to make SONew numerically stable. We also use graft-
ing (Agarwal et al., 2022), a technique used to transfer step size between optimization algorithms.
Specifically, given an update v1 of Optimizer-1 and v2 of Optimizer-2, grafting allows to use the
direction suggested by Optimizer-2 with step size suggested by Optimizer-1. The final update is
given by ∥v1∥

∥v2∥ · v2. Grafting has been shown to take advantage of a tuned optimizer step size and
improve performance. In our case, we use Adam grafting - using Adam optimizer step size ∥v1∥
with SONew direction v2/∥v2∥.

We use three sparsity patterns for SONew - a) diagonal sparsity, resulting in a diagonal precondi-
tioner similar to adaptive first order methods like Adam and Adagrad; b) tridiagonal sparsity, corre-
sponding to a chain graph; and c) banded sparsity, represented by ”band-k” in tables and figures for
band size of k.

All the baselines and SONew are trained for 100 epochs and use the train set of MNIST dataset
containing 60k points. We use a standard sized (2.72M parameters) Autoencoder with layer sizes:
[1000, 500, 250, 30, 250, 500, 1000] and tanh non-linearity. Batch size is fixed at 1000 and we use
learning rate schedule with a linear warmup of 5 epochs followed by linear decay towards 0. Over
2k hyperparameters are searched over for each experiment using a Bayesian optimization package.
The search space for each optimizer is mentioned in Appendix A.5.

From the float32 experiments in Table 1 we observe that among first order methods, diag-SONew
performs the best while taking same amount of time. Increasing the number of edges in the sparsity
graph to tridiag or banded with band size 4 enhances the performance further. Tridiag-SONew
performs 4× faster than Shampoo at a marginal cost to the loss - even when Shampoo updates
preconditioner once every 20 steps. When dealing with large scale models like Resnet50 (He et al.,
2015a), Shampoo requires updating preconditioner much more often (Anil et al., 2019), whereas
our method is also promising in such scenarios. We leave comparison of SONew with Shampoo
on such large benchmarks as a future work. To show efficacy of SONew at lower precision, we
conduct bfloat16 experiments. We notice in Table 2 that diag-SONew performs the best in first order
methods, just like in float32. Moreover SONew undergoes the least degradation in performance

8
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Table 1: float32 experiments on Autoencoder benchmark. “tridiag” repersents tridiag-SONew, and “band-
4” represents banded-SONew with band size 4. We observe that diag-SONew performs the best among all
first order methods while taking similar time. tridiag and band-4 perform significantly better than first order
methods while requiring similar linear space and being marginally slower. Shampoo performs best but takes
O(d3) time for computing preconditioner of a linear layer of size d × d, whereas our methods take O(d2) to
find the precondioner.

Optimizer First Order Methods Second Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew Shampoo(20) tridiag band-4

Train CE loss 67.654 59.087 54.393 58.651 53.330 53.591 53.025 50.702 51.723 51.357

Time(s) 62 102 62 67 62 62 63 371 87 251

Table 2: bfloat16 experiments on Autoencoder benchmark. diag-SONew performs the best among all first
order methods, while degrading only marginally (0.26 absolute difference) compared to float32 performance.
tridiag-SONew and banded-SONew holds similar observations as well. Shampoo performs the best but has a
considerable drop (0.70) in performance compared to float32 due to using matrix inverse, and is slower due to
its cubic time complexity for computing preconditioners. Shampoo implementation uses 16-bit quantization to
make it work in 16-bit setting, leading to further slowdown. Hence the running time in bfloat16 is even higher
than in float32.

Optimizer First Order Methods Second Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew Shampoo(20) tridiag band-4

Train CE loss 80.454 72.975 68.854 70.053 53.743 54.328 53.29 51.401 51.937 51.84

Train time(s) 36 43 37 36 37 38 44 1245 70 502

(a) float32 (b) bfloat16

Figure 1: (a) Comparison of SONew (tridiag, band-4) with first-order optimizers and Shampoo (second-order).
Left (a) uses float32 training and right (b) uses bfloat16 training. We observe that tridiag and banded SONew
have better convergence compared to shampoo in lower precision in early stages, and performs better than all
first order methods in float32 and bfloat16.

compared to all other optimizers. We also provide an ablation study on effect of using Algorithm 3
on training loss in the appendix.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a computationally efficient sparse preconditioner. Our algorithm
arises from a novel regret bound analysis using LogDet Divergence, and furthermore we make it
numerically stable. Experimental results on the Autoencoder benchmark confirm the effectiveness
of SONew in both float32 as well as bfloat16 precision. In the future, one can explore different
sparsity graphs for which efficient solutions exist for the LogDet subproblem (11).
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A APPENDIX

A.1 PROPERTIES OF LOGDET SUBPROBLEM

Proof of Theorem 2

The optimality condition of (11) is

PG(X
−1) = PG(H)

Let Z = L−TD−1L−1, then PG(Z) = H

ZL = L−TD−1 =⇒ ZLej = L−TD−1ej

Let Jj = Ij ∪ j, then select Jj indices of vectors on both sides of the second equality.

[
Zjj ZjIj
ZIjj ZJjJj

] [
1
LIj

]
=

[
1/djj
0

]
(15)
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Note that L−T is an upper triangular matrix with ones in the diagonal hence J th
j block of L−T ej

will be [1, 0, 0, . . .]. Also, since PG(Z) = H[
Zjj ZjIj
ZIjj ZJjJj

]
=

[
Hjj HjIj
HIjj HJjJj

]
Substituting this in the linear equation 15[

Hjj HjIj
HIjj HJjJj

] [
1
LIj

]
=

[
1/djj
0

]
[
Hjj HjIj
HIjj HJjJj

] [
djj

djj · LIj

]
=

[
1
0

]
Hjjdjj + djjH

T
IjjLIjj = 1

HIjjdjj + djjHIjIjLIjj = 0

The lemma follows from solving the above equations. Note that here we used that lower triangular
halves of matrices L and H have the same sparsity patterns, which follows from the fact that banded
graph is chordal and has a perfect elimination order [1, 2, . . . , n].

Proof of Theorem 1 The proof follows trivially from Theorem 1, when b is set to 1.

A.2 REGRET BOUND ANALYSIS

Proof of Theorem 3.

To upperbound the regret we prove the following lemma about regret decompsition
Lemma 2 ( Hazan et al. (2016) ). In the OCO problem setup, if a prediction wt ∈ Rn is made at
round t and is updated as wt+1 := wt − ηXtgt using a preconditioner matrix Xt ∈ S++

n

RT ≤ 1

2η
·(∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥X−1

T
) (16)

+
1

2η
·
T−1∑
t=1

(wt+1 − w∗)T (X−1
t+1 −X−1

t )(wt+1 − w∗) (17)

+

T∑
t=1

η

2
· gTt Xtgt (18)

Proof.

∥wt+1 − w∗∥2X−1
t

= ∥wt − ηXtgt − w∗∥2X−1
t

= ∥wt − w∗∥2X−1
t

+ η2gTt Xtgt − 2η(wt − w∗)T gt

=⇒ 2η(wt − w∗)T gt = ∥wt − w∗∥2X−1
t

− ∥wt+1 − w∗∥2X−1
t

+ η2gTt Xtgt

Using the convexity of ft, ft(wt) − ft(w
∗) ≤ (wt − w∗)T gt, where gt = ∆ft(wt) and summing

over t ∈ [T ]

RT ≤
T∑

t=1

1

2η
·
(
∥wt − w∗∥2X−1

t
− ∥wt+1 − w∗∥2X−1

t

)
+

η

2
· gTt Xtgt (19)

The first summation can be decomposed as follows
T∑

t=1

(
∥wt − w∗∥2X−1

t
− ∥wt+1 − w∗∥2X−1

t

)
=
(
∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥2X−1

T

)
+

T−1∑
t=1

(wt+1 − w∗)T (X−1
t+1 −X−1

t )(wt+1 − w∗)

13
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Substituting the above identity in the Equation (19) proves the lemma.

Let RT ≤ T1 + T2 + T3, where

• T1 = 1
2η · (∥w1 − w∗∥2X−1

1
− ∥wT+1 − w∗∥X−1

T
)

• T2 = 1
2η ·

∑T−1
t=1 (wt+1 − w∗)T (X−1

t+1 −X−1
t )(wt+1 − w∗)

• T3 =
∑T

t=1
η
2 · gTt Xtgt

The following lemmas will be used to bound T1, T2, T3.
Lemma 3. If G = chain/tridiagonal graph and X̂ = argminX∈Sn(G)++ Dℓd (X,H−1), then the
inverse X̂−1 takes the following expression

(X̂−1)ij =

{
Hij |i− j| ≤ 1
Hii+1Hi+1i+2...Hj−1j

Hi+1i+1...Hj−1j−1

(20)

Proof.
X̂−1X̂(j) = ej

Where X̂(j) is the jth column of X̂ . Let Ŷ denote the right hand side of Equation (20).

(Ŷ X̂)jj = X̂jj Ŷjj + X̂j−1j Ŷj−1j + X̂jj+1Ŷjj+1

= X̂jjHjj + X̂j−1jHj−1j + X̂jj+1Hjj+1

= 1

The third equality is by using the following alternative form of Equation (12):

(X̂(1))i,j =


0 if j − i > 1

−Hi,i+1

(HiiHi+1,i+1−H2
i+1,i+1)

if j = i+ 1

1
Hii

(
1 +

∑
j∈neigG(i)

H2
ij

HiiHjj−H2
ij

)
if i = j

, (21)

where i < j. Similarly, the offdiagonals of Ŷ X̂ can be evaluated to be zero as follows.
(Ŷ X̂)ij = ŶijX̂jj + Ŷij−1X̂j−1j + Ŷij+1X̂j+1j

= ŶijX̂jj + Ŷij
Hj−1j−1

Hj−1j
+ Ŷij

Hjj+1

Hjj
X̂j+1j

= 0

Lemma 4. Let y ∈ Rn, β = maxt maxi∈[n−1](Ht)ii+1/
√

(Ht)ii(Ht)i+1i+1 < 1, C =∑n
i=1 y

2
i (G

(i)
∞ )2 , where g

(i)
1:T = [(g1)i, . . . (gT )i] and G

(i)
∞ = ∥g(i)1:T ∥∞ , then

yTX−1
t y ≤ (Ct+ ϵ ∥y∥22)

(
1 + β

1− β

)
Proof. Let X̃−1

t = diag(Ht)
−1/2X̂t diag(Ht)

−1/2

yTX−1
t y ≤

∥∥∥diag(Ht)
1/2y

∥∥∥2
2

∥∥∥X̃−1
t

∥∥∥
2

(22)

Using the identity of spectral radius ρ(X) ≤ ∥X∥∞ and since X̃ is positive definite,
∥∥∥X̃−1

t

∥∥∥
2
≤

∥X̃−1
t ∥∞ ∥∥∥X̃−1

t

∥∥∥
2
≤ max

i

∑
j

∣∣∣(X̃−1
t )ij

∣∣∣


≤ 1 + 2(β + β2 + . . .)

≤ 1 + β

1− β

14
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The second inequality is using Lemma 3. Using (Ht)ii =
∥∥∥g(i)1:T

∥∥∥2
2
+ ϵ in Equation (22) will give

the lemma.

Lemma 5 (Upperbound of T1). T1 ≤ (C+ϵD2
2)

2η · 1+β
1−β , where D2 = maxt∈[T ] ∥wt − w∗∥2, where

C = maxt(
∑n

i=1(y
(t)
i )2(G

(i)
∞ )2).

Proof. Since XT is positive definite

T1 ≤
∥w1 − w∗∥2X−1

1

2η

≤ (y(1))TX−1
1 y(1)

2η

Using Lemma 4 proves the lemma.

Upperbounding T2

Let yt = wt − w∗, Pt = yTt X
−1
t yt, and Qt = yTt X

−1
t−1yt. Let P = [P2, · · · , PT ] and Q =

[Q2, · · · , QT ] be the two array representations. Then,

2ηT2 =

T−1∑
i=1

yTt+1

(
X−1

t+1 −X−1
t

)
yt+1

=

T∑
i=2

yTt
(
X−1

t −X−1
t−1

)
yt

=

T∑
i=2

yTt X
−1
t yt − yTt X

−1
t−1yt

=

T∑
i=2

Pt −Qt

= ∥P −Q∥1 (23)

In order to upper bound this, we derive here a generalized version of Pinsker’s inequality for our
setting.

Lemma 6. Let A = [A1, · · · , AT ] and B = [B1, · · · , BT ] be two T -length arrays. Let Bi, Ai >
0 ∀i ∈ [1, T + 1]. Then,

∥A−B∥21 ≤ 2

3

(
T∑

i=1

(2Ai +Bi)

)
DKL(B,A)

where the generalized KL-Divergence DKL(B,A) =
∑T

i=1

(
Bilog

(
Bi

Ai

)
−Bi +Ai

)
.

Proof. This proof is a mock up of Pinsker’s inequality for probability spaces. First step involves
using the following identity, for t ≥ −1

(1 + t)log(1 + t)− t ≥ 1

2
· t2

1 + t
3

Let ti = Bi

Ai
− 1. Then, −1 ≤ ti. Therefore,

15
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DKL(B,A) =

T∑
i=1

(
Bi log

(
Bi

Ai

)
−Bi +Ai

)

=

T∑
i=1

Ai

(
Bi

Ai
log

(
Bi

Ai

)
− Bi

Ai
+ 1

)

=

T∑
i=1

Ai ((ti + 1) log(ti + 1)− ti)

≥
T∑

i=1

Ait
2
i

2
(
1 + ti

3

)

DKL(B,A) =
T∑

i=1

Ait
2
i

2
(
1 + ti

3

) · ∑T
j=1 Aj(1 +

tj
3 )∑T

k=1 Ak(1 +
tk
3 )

≥

(∑T
i=1 Ai|ti|

)2
2
∑T

k=1 Ak(1 +
tk
3 )

(Using Cauchy-Schwartz)

=

(∑T
i=1 |Ai −Bi|

)2
2
3

∑T
k=1(2Ak +Bk)

=
∥A−B∥21

2
3

∑T
j=1(2Ai +Bi)

Using the above to bound Equation (23) with B := P and A := Q, we get

2ηT2 = ∥P −Q∥1 ≤

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
DKL(P,Q)

=

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
T∑

t=2

DKL(Pi, Qi)

=

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
T∑

t=2

DKL(yTt X
−1
t yt, yTt X

−1
t−1yt)

=

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
T∑

t=2

DKL(ȳtT X̄
−1
t ȳt, ȳtT X̄

−1
t−1ȳt)

≤

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
·

T∑
t=2

∥ȳt∥22 ·DvN (X̄−1
t , X̄−1

t−1) (24)

Here, ȳt = Λtyt, X̄t = ΛtXtΛt, X̄t−1 = ΛtXt−1Λt DvN is von-Neuman Divergence, and last
inequality is from Lindblad (1975). We upper bound Equation (24) using the following lemma.

Lemma 7. Let A,B be two PD matrices. Then,

DvN (A,B) ≤ λmax(A) ·Dℓd(B,A)

16
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Proof. Let A = V ΛV T and B = UΘUT

DvN (A,B) =
∑
i,j

(vTi uj)

(
λi log

(
λi

θj

)
− λi + θj

)

=
∑
i,j

(vTi uj)λi

(
log

(
λi

θj

)
− 1 +

θj
λi

)

≤ max
i

λi

∑
i,j

(vTi uj)

(
− log

(
θj
λi

)
− 1 +

θj
λi

)
= λmax(A) ·Dℓd(B,A)

Combining the above result, we get

T2 =
1

2η
· ∥P −Q∥1

≤ 1

2η
·

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
·

T∑
t=2

∥ȳt∥22
∥∥X̄−1

t

∥∥
2
·Dℓd(X̄

−1
t−1, X̄

−1
t )

≤ 1

2η
·

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
·

T∑
t=2

∥ȳt∥22
∥∥X̄−1

t

∥∥
2
·Dℓd(X̄

−1
t−1, X̄

−1
t )

The second inequality is due to scale invariance of LogDet divergence. If we set Λt = diag(Ht)
1/2,

then using Lemma 4

T2 ≤ 1

2η
·

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
·

T∑
t=2

(Ct+ ϵ ∥yt∥22)
(
1 + β

1− β

)
·Dℓd(X

−1
t−1, X

−1
t )

≤ 1

2η
·

√√√√2

3

(
T∑

t=2

(2Qt + Pt)

)
· (CT + ϵD2

2)

(
1 + β

1− β

)
·

T∑
t=2

Dℓd(X
−1
t−1, X

−1
t )

≤ 1

2η
· (CT + ϵD2

2)

(
1 + β

1− β

)
·

√√√√2

3
· T ·

T∑
t=2

Dℓd(X
−1
t−1, X

−1
t ) (25)

where, D2 = maxt ∥yt∥2, the second and third inequality is using Lemma 4. Now to bound the
Dℓd(X

−1
t−1, X

−1
t ) term in the above equation, we develop the following lemma.

Lemma 8. Tr(XtHt) = n, ∀t ∈ {2, . . . , T} in Algorithm 1 with any G

Proof. PG(X
−1
t ) = Ht is an optimality condition of LogDet subproblem Equation (11)

Tr(XtHt) = Tr(XtPG(X
−1
t ))

= Tr(XtX
−1
t )

= n

The second equality is because Xt follows the sparsity graph G.

Lemma 9.
T∑

t=2

Dℓd(X
−1
t−1, X

−1
t ) ≤ log(

det
(
X−1

T

)
det
(
X−1

1

) )
≤

n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)

17
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where βi =

〈
g
(i)
1:T ,g

(i+1)
1:T

〉
√

(ϵ+
∥∥∥g(i)

1:T

∥∥∥2

2
)·(ϵ+

∥∥∥g(i+1)
1:T

∥∥∥2

2
)

Proof. LogDet divergence is defined as follows

Dℓd(X
−1
t−1, X

−1
t ) = − log

(
det
(
X−1

t−1

)
det
(
X−1

t

) )+Tr(X−1
t−1Xt)− n

The second two terms on right hand side can be simplified analyzed as follows.

Tr(X−1
t−1Xt)− n = Tr(X−1

t−1Xt −X−1
t Xt)

= Tr((X−1
t−1 −X−1

t )Xt)

= −gTt Xtgt

< 0 (26)

Thus
T∑

t=2

Dℓd

(
X−1

t−1, X
−1
t

)
≤

T∑
t=2

− log

(
det
(
X−1

t−1

)
det
(
X−1

t

) )

≤ log

(
det
(
X−1

T

)
det
(
X−1

1

))
Since LogDet divergence is positive

Dℓd(X
−1
t−1, X

−1
t ) = − log

(
det
(
X−1

t−1

)
det
(
X−1

t

) )+Tr(X−1
t−1Xt)− n

≥ 0

=⇒ log

(
det
(
X−1

t

)
det
(
X−1

t−1

)) ≥ 0 (27)

The second inequality uses Equation (26). Now, using Equation (13), which is in cholesky decom-
position format,

log(det
(
X−1

T

)
) =

n−1∑
i=1

log
(
(HT )ii − (HT )

2
ii+1/(HT )i+1i+1

)
+ log((HT )nn)

≤
n−1∑
i=1

log(1− β2
i ) +

n∑
i=1

log((HT )ii)

Using the above, we can expand the log deteriminatn difference.

log

(
det
(
X−1

T

)
det
(
X−1

1

)) ≤ log

(
det
(
X−1

T

)
det
(
X−1

0

))

≤
n∑

i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)
(28)

Let X0 = argminX∈Sn(G)++ Dℓd(X,H−1
0 ), the above inequality is since log

(
det(X−1

1 )
det(X−1

0 )

)
≥ 0

using Equation (27)

Lemma 10 (Upperbound of T2).

T2 ≤ 1

2η
· (CT + ϵD2

2)

(
1 + β

1− β

)
·

√√√√√√2

3
· T ·

 n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log (1− β2
i )
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Proof. The proof directly follows from Equation (25) and Lemma 9

Lemma 11 (Upperbound of T3). Let X0 = argminX∈Sn(G)++ Dℓd(X,H−1
0 )

T3 =

T∑
t=1

η

2
· gTt Xtgt

≤ η

2
· log

(
det
(
X−1

T

)
det
(
X−1

0

))

≤ η

2
·

n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)

where βi =
((g

(i)
1:T )T g

(i+1)
1:T )2

(ϵ+
∥∥∥g(i)

1:T

∥∥∥2

2
)·(ϵ+

∥∥∥g(i+1)
1:T

∥∥∥2

2
)

Proof.

gTt Xtgt = Tr(Xtgtg
T
t )

= Tr(Xt(X
−1
t −X−1

t−1))

= n− Tr(XtX
−1
t−1)

≤ − log

(
det
(
X−1

t−1

)
det
(
X−1

t

) )

The second equality is using Lemma 3 and that Xt’s sparsity graph is tridiagonal. The first inequality
is using the property Dℓd(X

−1
t−1, X

−1
t ) ≥ 0 of LogDet divergence. Thus summing up and using

Equation (28) will give the lemma.

Putting together T1, T2 and T3 from Lemma 5, Lemma 10 and Lemma 11

T1 ≤ (C + ϵD2
2)

2η
· 1 + β

1− β
,

T2 ≤ 1

2η
(CT + ϵD2

2)

(
1 + β

1− β

)√√√√√√2

3
T

 n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log (1− β2
i )

, (29)

T3 ≤ η

2
·

n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)
(30)

If we set η =
C1/2T 3/4·( 1+β

1−β )1/2∑n
i=1 log

1+
∥g

(i)
1:T∥

2

2
ϵ

+
∑n−1

i=1 log(1−β2
i )

1/4 , then

RT ≤ T1 + T2 + T3

≤ O

C1/2 · T 3/4 ·
(
1 + β

1− β

)1/2

·

 n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log
(
1− β2

i

)
3/4
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A.3 O(T 1/2) REGRET UPPER BOUND

In this section we derive a regret upper bound with a O(T 1/2) growth, in contrast to the O(T 3/4)

obtained in A.2. In (29), T2 =
∑T

t=2(wt−w∗)T (X−1
t −X−1

t−1)(wt−w∗) is of the order O(T 3/2),
which can be reduced to O(T ), by upper bounding each entry of X−1

t − X−1
t−1 individually. The

following lemma helps in constructing a telescoping argument to bound
∣∣(X−1

t −X−1
t−1)i,j

∣∣.
Lemma 12. Let H, H̃ ∈ S++

n , such that H̃ = H + ggT , where g ∈ Rn, then

H̃ij√
H̃iiH̃jj

− Hij√
HiiHjj

=
gigj√
H̃iiH̃jj

+
Hij√
HiiHjj

(√
HiiHjj

H̃iiH̃jj

− 1

)
= θij

Proof.

H̃ij√
H̃iiH̃jj

− Hij√
HiiHjj

=
1√

HiiHjj

(H̃ij

√
HiiHjj√
H̃iiH̃jj

−Hij)

=
1√

HiiHjj

gigj

√
HiiHjj√
H̃iiH̃jj

+Hij

√HiiHjj√
H̃iiH̃jj

− 1



Lemma 13. Let H, H̃ ∈ S++
n , such that H̃ = H + ggT , where g ∈ Rn. Also, Ỹ =

argminX∈Sn(G)++ Dℓd(X, H̃) and Y = argminX∈Sn(G)++ Dℓd(X,H), where G is a chain graph,
then ∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣ ≤ G2
∞κ(kβ + k + 2)βk−1,

where i, i + k ≤ n, G∞ = ∥g∥∞ and maxi,j |Hij |/
√

HiiHjj ≤ β < 1. Let κ(diag(H)) :=

condition number of the diagonal part of H , then κ := max(κ(diag(H)), κ(diag(H̃))).

Proof. Using Lemma 3 will give the following:

∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣ = ∣∣∣∣∣H̃ii+1 . . . H̃i+k−1i+k

H̃i+1i+1 . . . H̃i+ki+k

− Hii+1 . . . Hi+k−1i+k

Hi+1i+1 . . . Hi+ki+k

∣∣∣∣∣
=

∣∣∣∣√H̃iiÑii+1 . . . Ñi+k−1i+k

√
H̃i+ki+k −

√
HiiNii+1 . . . Ni+k−1i+k

√
Hi+ki+k

∣∣∣∣
=

√
H̃iiH̃i+ki+k

∣∣∣∣∣Ñii+1 . . . Ñi+k−1i+k −Nii+1 . . . Ni+k−1i+k

√
HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣
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where Nij = Hij/
√
HiiHjj . Expanding Ñii+1 = Nii+1 + θii+1 (from Lemma 12), subsequently

Ñii+2 = Nii+2 + θii+2 and so on will give∣∣∣∣∣Ñii+1 . . . Ñi+k−1i+k −Nii+1 . . . Ni+k−1i+k

√
HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣ =∣∣∣∣∣θii+1Ñi+1i+2 . . . Ñi+k−1i+k +Nii+1

(
Ñi+1i+2 . . . Ñi+k−1i+k −Ni+1i+2 . . . Ni+k−1i+k

√
HiiHi+ki+k

H̃iiH̃i+ki+k

)∣∣∣∣∣
= |θii+1Ñi+1i+2 . . . Ñi+k−1i+k +Nii+1θi+1i+2Ñii+3 . . . Ñi+k−1i+k + . . .+Nii+1 . . . Nii+k−1θi+k−1i+k

+Nii+1 . . . Nii+k

(
1−

√
HiiHi+ki+k

H̃iiH̃i+ki+k

)
|

≤ (

k−1∑
l=0

|θi+li+l+1|)βk−1 + βk−1

∣∣∣∣∣1−
√

HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣ ,
=⇒

∣∣∣(Ỹ −1 − Y −1)ii+k

∣∣∣ ≤√H̃iiH̃i+ki+k

(
(

k−1∑
l=0

|θi+li+l+1|)βk−1 + βk−1

∣∣∣∣∣1−
√

HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣∣∣
)

where maxi,j |Ni,j |, maxi,j |Ñi,j | ≤ β. Expanding θi+li+l+1 from Lemma 12 in the term

|θi+li+l+1|
√
H̃iiH̃i+ki+k will give:

|θi+li+l+1|
√
H̃iiH̃i+ki+k =

∣∣∣∣∣∣
√
H̃iiH̃i+ki+k

gi+lgi+l+1√
H̃i+li+lH̃i+l+1i+l+1

+

√
H̃iiH̃i+ki+kNi+li+l+1

(√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

− 1

)∣∣∣∣∣
≤

∣∣∣∣∣∣
√

H̃iiH̃i+ki+k
gi+lgi+l+1√

H̃i+li+lH̃i+l+1i+l+1

∣∣∣∣∣∣+∣∣∣∣∣
√

H̃iiH̃i+ki+kNi+li+l+1

(
1−

√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

)∣∣∣∣∣
Since Hi+li+lHi+l+1i+l+1 ≤ H̃i+li+lH̃i+l+1i+l+1,

1−

√
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

≤ max

(
1− Hi+li+l

H̃i+li+l

, 1− Hi+l+1i+l+1

H̃i+l+1i+l+1

)
≤ max

(
g2i+l

˜Hi+li+l

,
g2i+l+1

˜Hi+l+1i+l+1

)
Using the above, Hi,i/Hj,j ≤ κ, and |gi| ≤ G∞, ∀i, j ∈ [n], gives√

H̃iiH̃i+ki+k|θi+li+l+1| ≤ G2
∞κ+ βG2

∞κ

≤ G2
∞κ(1 + β)

Thus the following part of
∣∣∣∣(Ỹ −1 − Y −1

)
ii+k

∣∣∣∣ can be upperbounded:

√
H̃iiH̃i+ki+k

(
(

k−1∑
l=0

|θi+li+l+1|)βk−1

)
≤ G2

∞κ(1 + β)kβk−1

Also, βk−1
∣∣∣1−√HiiHi+ki+k

H̃iiH̃i+ki+k

∣∣∣ ≤ βk−1κG2
∞, so∣∣∣∣(Ỹ −1 − Y −1

)
ii+k

∣∣∣∣ ≤ G2
∞κ(kβ + k + 2)βk−1
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Lemma 14 (O(T ) upper bound of T2). Given that κ(diag(Ht)) ≤ κ, ∥wt − w∗∥2 ≤ D2,
maxi,j |(Ht)ij |/

√
(Ht)ii(Ht)jj ≤ β < 1, ∀t ∈ [T ] in Algorithm 1, then T2 in (29) can be bounded

as follows:

T2 ≤ O
(

T

2η(1− β)2
(G∞D2)

2κ

)

Proof. Note that T2 = 1
2η ·

∑T−1
t=1 (wt+1 − w∗)T (X−1

t+1 − X−1
t )(wt+1 − w∗) ≤∑T−1

t=1 D2
2

∥∥(X−1
t+1 −X−1

t )
∥∥
2
. Using ∥A∥2 = ρ(A) ≤ ∥A∥∞ for symmetric matrices A, we get∥∥X−1

t+1 −X−1
t

∥∥
2
≤ ∥X−1

t+1 −X−1
t ∥∞

= max
i

(
∑
j

∣∣(X−1
t+1 −X−1

t )ij
∣∣)

≤ O(
G2

∞κ

(1− β)2
)

The third inequality is using Lemma 13. Expanding T2 with this bound gives the result.

Theorem 6 (O(T 1/2) regret upper bound). Setting

η =
T 1/2D2G∞

√
κ

(1− β)

√√√√∑n
i=1 log

(
1 +

∥∥∥g(i)
1:T

∥∥∥2

2

ϵ

)
+
∑n−1

i=1 log (1− β2
i )

,

gives the following regret

RT ≤ O

 1

(1− β)
T 1/2D2G∞

√
κ

√√√√√√ n∑
i=1

log

1 +

∥∥∥g(i)1:T

∥∥∥2
2

ϵ

+

n−1∑
i=1

log (1− β2
i )

 ,

where condition number κ(diag(Ht)) ≤ κ, ∥wt − w∗∥2 ≤ D2, maxi,j |(Ht)ij |/
√

(Ht)ii(Ht)jj ≤
β < 1, ∀t ∈ [T ] and gt, Ht are as defined in Algorithm 1.

Proof. The result follows from using (30) and Lemma 14.

A.4 NUMERICAL STABILITY

Theorem 7 (Full version of Theorem 4). Let H ∈ S++
n such that Hii = 1, for i ∈ [n] and a

symmetric perturbation ∆H such that ∆Hii = 0, for i ∈ [n] and H + ∆H ≻ 0. Let X̂ =

argminX∈Sn(G)++ Dℓd

(
X,H−1

)
and X̂ + ∆X̂ = argminX∈Sn(G)++ Dℓd

(
X, (H +∆H)−1

)
,

here G := chain/tridiagonal sparsity graph and Sn(G)++ denotes positive definite matrices which
follows the sparsity pattern G.

κℓd = max
|i−j|≤1

lim
ϵ→0

sup


∣∣∣∆X̂ij

∣∣∣
ϵ
∣∣∣X̂ij

∣∣∣ : |∆Hk,l| ≤ |ϵHk,l| , (k, l) ∈ EG


≤ max

i∈[n−1]
1/(1− β2

i )

where, κℓd := condition number of the LogDet subproblem, κ2(.) := condition number of a matrix
in ℓ2 norm, βi = Hii+1/

√
HiiHi+1i+1

Proof. Consider the offdiagonals for which (X̂ + ∆X̂)ii+1 = −Hii+1/(1 − H2
ii+1) =

f(Hii+1),where f(x) = −x/(1 − x2). Let y = f(x), ŷ = f(x + ∆x) and |∆x/x| ≤ ϵ then
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using Taylor series ∣∣∣∣ (ŷ − y)

y

∣∣∣∣ = ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ ∣∣∣∣∆x

x

∣∣∣∣+O((∆x)2)

=⇒ lim
ϵ→0

∣∣∣∣ (ŷ − y)

ϵy

∣∣∣∣ ≤ xf ′(x)

f(x)

Using the above inequality, with x := Hii+1 and y := X̂ii+1,

lim
ϵ→0

∣∣∣∣∣∆X̂ii+1

ϵX̂ii+1

∣∣∣∣∣ ≤ 1 +H2
ii+1

1−H2
ii+1

(31)

≤ 2

1−H2
ii+1

Let g(x) = x2/(1− x2), let y1 = g(w1), y2 = g(x2), ŷ1 = g(w1 +∆x), ŷ2 = g(x2 +∆x). Using
Taylor series ∣∣∣∣ (ŷ1 − y1)

y1

∣∣∣∣ = ∣∣∣∣x1f
′(x1)

f(x1)

∣∣∣∣ ∣∣∣∣∆x1

x1

∣∣∣∣+O((∆x1)
2)∣∣∣∣ (ŷ2 − y2)

y2

∣∣∣∣ = ∣∣∣∣x2f
′(x2)

f(x2)

∣∣∣∣ ∣∣∣∣∆x2

x2

∣∣∣∣+O((∆x2)
2)

=⇒ lim
ϵ→0

∆y1 +∆y2
ϵ(1 + y1 + y2)

≤ max

(
2

1− x2
1

,
2

1− x2
2

)
Putting x1 := Hii+1, x2 := Hii−1 and analyzing y1 := H2

ii+1/(1−H2
ii+1) and y2 := H2

ii−1/(1−
H2

ii−1) will result in the following

lim
ϵ→0

∣∣∣∣∣∆X̂ii

X̂ii

∣∣∣∣∣ ≤ max

(
2

1−H2
ii+1

,
2

1−H2
ii−1

)
(32)

Since X̂ii = 1 + H2
ii+1/(1 − H2

ii+1) + H2
ii−1/(1 − H2

ii−1). Putting together Equation (32) and
Equation (31), the theorem is proved.

Proof of Lemma 1

For b = 1, if g
(j)
1:T = g

(j+1)
1:T , then Hjj+1 = Hjj = Hj+1j+1 =

∥∥∥g(j)1:T

∥∥∥2
2
, thus Hjj−

H2
jj+1/Hj+1j+1 = 0.

For b > 1, since HIjIj , using Guttman rank additivity formula, rank(Hjj − H2
jj+1/Hj+1j+1) =

rank(HJjJj )− rank(HIjIj ) = 0, thus Hjj −H2
jj+1/Hj+1j+1 = 0.

Furthermore, if rank(H) ≤ b, then all b + 1 × b + 1 principal submatrices of H have rank b, thus
∀j, HJjJj

have a rank b, thus Djj for all j are undefined.

Proof of Theorem 5

Let Ii = {j : i < j, (i, j) ∈ EG} and I ′i =
{
j : i < j, (i, j) ∈ EG̃

}
Let K ={

i : Hii −HT
Iii

H−1
IiIi

HIii is undefined or 0, i ∈ [n]
}

denote vertices which are getting removed by
the algorithm, then for the new graph G̃, Dii = 1/Hii,∀i ∈ K since Hii > 0.
Let K̄ =

{
i : Hii −HT

Iii
H−1

IiIi
HIii > 0, i ∈ [n]

}
. Let for some j ∈ K̄, if

l = argmin {i : j < i, i ∈ K ∩ Ij} ,
denotes the nearest connected vertex higher than j for which Dll is undefined or zero, then according
to the definition EG̃ in Algorithm 3, I ′j = {j+1, . . . l−1} ⊂ Ij , since Djj is well-defined, HIjIj is
invertible, which makes it a positive definite matrix (since H is PSD). Since Hjj−HT

Ijj
H−1

IjIj
HIjj >

0, using Guttman rank additivity formula HJjJj
≻ 0, where Jj = Ij∪j. Since HJ′

jJ
′
j

is a submatrix
of HJjJj

, it is positive definite and hence its schur complement Hjj −HT
I′
jj
H−1

I′
jI

′
j
HI′

jj
> 0. Thus

for all j ∈ [n], the corresponding Djj’s are well-defined in the new graph G̃.

Note that κG̃
ℓd = maxi∈[n−1] 1/(1−β2

i ) < maxi∈K̄ 1/(1−β2
i ) = κG

ℓd, for tridiagonal graph, where
βi = Hii+1, in the case where Hii = 1. This is because the argmaxi∈[n−1] 1/(1− β2

i ) ∈ K.
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Table 3: float32 experiments on Autoencoder benchmark using different band sizes. Band size
0 corresponds to diag-SONew and 1 corresponds to tridiag-SONew. We see the training loss getting
better as we increase band size

Band size 0 (diag-SONew) 1 (tridiag-SONew) 4 10

Train CE loss 53.025 51.723 51.357 51.226

Table 4: bfloat16 experiments on Autoencoder benchmark with and without Algorithm 3. We
observe gains in training loss when using Algorithm 3

Optimizer Train CE loss - without Algorithm 3 Train CE loss - with Algorithm 3
tridiag-SONew 53.150 51.936

band-4-SONew 51.950 51.84

Table 5: Large Scale Benchmarks. We compare tds vs Adam on the following large scale bench-
mark. We compare train CE loss, and validation performance - measured as precision for OGBG
benchmark and error rate for Resnet50 and Vision Transformer benchmark.

Benchmark # model parameters # training points Train Loss (Adam) Train Loss(SONew) Valid. perf. (Adam) Valid. perf. (SONew)
Resnet50-Imagenet 204M 1.2M 0.0951 0.0857 22.61% 22.55%

Vision Tansformer-Imagenet 176M 1.2M 0.4589 0.45506 22.85% 23.30%

OGBG-molpcba 28.4M 437,929 0.0145 0.0157 0.2835 0.2820

A.5 ADDITIONAL EXPERIMENTS, ABLATIONS, AND DETAILS

Effect of band size in banded-SONew Increasing band size in banded-SONew captures more corre-
lation between parameters, hence should expectedly lead to better preconditioners. We confirm this
through experiments on the Autoencoder benchmark where we take band size = 0 (diag-SONew), 1
(tridiag-SONew), 4, and 10.

Effect of mini-batch size To find the effect of mini-batch size, in Table 7, We empirically compare
SONew with state of the art first-order methods such as Adam and RMSProp, and second-order
method Shampoo. We see that SONew performance doesn’t deteriorate much when using smaller
or larger batch size. First order methods on the other hand suffer significantly. We also notice that
Shampoo doesn’t perform better than SONew in these regimes.

Effect of Numerical Stability Algorithm 3 On tridiag-SONew and banded-4-SONew, we observe
that using Algorithm 3 improves training loss. We present in Table 4 results where we observed
significant performance improvements.

Large Scale Benchmark Comparison To test efficacy of SONew in Deep Learning, we test our
method against Adam on 3 large scale benchmarks - Resnet50 He et al. (2015b) on Imagenet Deng
et al. (2009) training, Vision Transformer Dosovitskiy et al. (2020) on Imagenet training, and Graph-
Network Battaglia et al. (2018); Godwin* et al. (2020) on OGBG-molpcba dataset Hu et al. (2020).
The numbers are given in Table 5. We see that SONew performs comparable or outperforms Adam
in all the benchmark in both train loss and validation performance. Moreover, we plot the training
and validation curve in Figure 2. We observe that SONew has an early advantage over Adam.

Hyperparaeter search space We provide the hyperparamter search space for experiments presented
in Section 6. We search over 2k hyperparameters for each experiment using a Bayesian Optimization
package. The search ranges are: first order momentum term β1 ∈ [1e − 1, 0.999], second order
momentum term β2 ∈ [1e − 1, 0.999], learning rate ∈ [1e − 7, 1e − 1], ϵ ∈ [1e − 10, 1e − 1]. We
give the optimal hyperparameter value for each experiment in Table 6. For large scale benchmark
(Table 5), we search β1, β2 ∈ [0.1, 0.999], lr ∈ [1e− 5, 1e− 1], ϵ ∈ [1e− 8, 1e− 4], weight decay
∈ [1e − 5, 1.0], learning rate warmup ∈ [2%, 5%, 10%]∗total train steps. We use cosine learning
rate schedule. For resnet50 imagenet, we also search label smoothing over [0.0, 0.2]. Batch size was
kept = 1024, 1024, and 512 for Resnet50, Vision Transformer, and OGBG respectively. We sweep
over 100 hyperparameters in the search space for both SONew and Adam.
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(a) Imagenet-Resnet50 train CE loss (b) Imagenet-Resnet50 valid. error rate

(c) OGBG train CE loss (d) OGBG valid. average precision

(e) Imagenet-Vision Transformer train CE
loss

(f) Imagenet-Vision Transformer validation
error rate

Figure 2: SONew vs Adam on large scale benchmark - Train Cross Entropy (CE) Loss (left column) and
validation performance (right column). We see that SONew has an early advantage over Adam in all the
experiments.
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Table 6: Optimal hyperparamers for Autoencoder Benchmark
(a) float32 experiments optimal hyperparamters

Baseline β1 β2 ϵ lr
SGD 0.99 0.91 8.37e-9 1.17e-2

Nesterov 0.914 0.90 3.88e-10 5.74e-3
Adagrad 0.95 0.90 9.96e-7 1.82e-2

Momentum 0.9 0.99 1e-5 6.89e-3
RMSProp 0.9 0.9 1e-10 4.61e-4

Adam 0.9 0.94 1.65e-6 3.75e-3
Diag-SONew 0.88 0.95 4.63e-6 1.18e-3

Shampoo 0.9 0.95 9.6e-9 3.70e-3
tridiag 0.9 0.96 1.3e-6 8.60e-3
band-4 0.88 0.95 1.5e-3 5.53e-3

(b) bfloat16 experiments optimal hyperparamters

Baseline β1 β2 ϵ lr
SGD 0.96 0.98 2.80e-2 1.35e-2

Nesterov 0.914 0.945 8.48e-9 6.19e-3
Adagrad 0.95 0.93 2.44e-5 2.53e-2

Momentum 0.9 0.99 0.1 7.77e-3
RMSProp 0.9 0.9 2.53e-10 4.83e-4

Adam 0.9 0.94 3.03e-10 3.45e-3
Diag-SONew 0.9 0.95 4.07e-6 8.50e-3

Shampoo 0.85 0.806 6.58e-4 5.03e-3
ztridiag 0.83 0.954 1.78e-6 7.83e-3
band-4 0.9 0.96 1.52e-6 4.53e-3

Table 7: Comparison on Autoencoder with different batch-sizes

Baseline\Batch size 100 1000 5000 10000
RMSProp 55.61 53.33 58.69 64.91

Adam 55.67 54.39 58.93 65.37

Shampoo(20) 53.91 50.70 53.52 54.90

tds 53.84 51.72 54.24 55.87

bds-4 53.52 51.35 53.03 54.89
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